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Abstract: The COVID-19 pandemic has accelerated innovations for supporting learning and 

teaching online. However, online learning also means a reduction of opportunities in direct 

communication between teachers and students. Given the inevitable diversity in learning progress 

and achievements for individual online learners, it is difficult for teachers to give personalized 

guidance to a large number of students. The personalized guidance may cover many aspects, 

including recommending tailored exercises to a specific student according to the student’s knowledge 

gaps on a subject. In this paper, we propose a personalized exercise recommendation method named 

causal deep learning (CDL) based on the combination of causal inference and deep learning. Deep 

learning is used to train and generate initial feature representations for the students and the exercises, 

and intervention algorithms based on causal inference are then applied to further tune these feature 

representations. Afterwards, deep learning is again used to predict individual students’ score ratings 

on exercises, from which the Top-N ranked exercises are recommended to similar students who 

likely need enhancing of skills and understanding of the subject areas indicated by the chosen 

exercises. Experiments of CDL and four baseline methods on two real-world datasets demonstrate 

that CDL is superior to the existing methods in terms of capturing students’ knowledge gaps in 

learning and more accurately recommending appropriate exercises to individual students to help 

bridge their knowledge gaps. 
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1. Introduction  

With more learners engaging with online learning, with massive amounts of learning resources 

readily available either freely or paid, choosing appropriate learning resources from the massive 

stack of online materials becomes an important problem for the learners in terms of both efficiently 

managing the time for study and achieving the best possible learning outcomes. One of these 

problems is how the learning system can provide a particular learner with well-fitted online exercises 

on a topic under study from a large number of accumulated exercises on the topic hosted in the 

learning system [1]. This is commonly known as personalized recommendation in e-learning. 

Some popular recommendation methods have been proposed by many researchers in the past two 

decades. For example, Walker et al. [2] proposed a method of personalized exercise recommendation 

by collaborative filtering in 2004. Hsu et al. [3] used a collaborative filtering algorithm to analyze the 

books and documents read by students and give personalized elective course recommendations. 

Milicevic et al. [4] provided different questions to different students guided by the individual 

students’ learning habits and hobbies. Segal et al. [5] used a personalized recommendation method 

called EduRank to feed exercises with different difficulty levels to different cohorts of students 

according to similarity scores shared by the students. Toledo et al. [6] used a collaborative filtering 

method to achieve similar recommendations for students studying programming online. Wu et al. [7] 

recommended learning materials to students through a fuzzy matching method. Dwivedi et al. [8] 

made a further improvement on recommendations by considering multiple factors, such as the 

student’s knowledge level, learning approaches, learning objectives and so on. Although these 

methods had certain positive effects on student learning, none of them could accurately catch a 

particular student’s grasp of a specific topic in relation to the levels or “knowledge points” associated 

with the topic. Recently, Jiang [9] et al. used the knowledge points associated with the exercises to 

provide recommendations to students, which has been well received by many educators [10]. 

Machine learning methods have been applied to exercise recommendations in recent years. 

In [11], the student’s mastery of knowledge points was fed to the recursive neural network to obtain 

better recommendation results. In [12], the authors added a new knowledge representation to deep 

learning to improve the recommendation results, which were further improved by subsequent 

studies [13–15]. However, machine learning algorithms by nature are highly influenced by the 

training data, which sometimes can create the bias problem. Also, machine learning mainly identifies 

the correlations between samples and labels but not the causality between them, if such is not 

properly indexed. However, the causal relationship between learning events is critical most of the 

time, as knowledge acquisition is often from knowns to unknowns. 

Causal inference could be used to find the cause and effect between two events (or two datasets), 

in addition to the surface correlation [16–18]. In terms of exercise recommendations, if a student did 

the earlier exercises well, the student would be likely to do the next batch of exercises well. If the 

student consistently did all successive sets of exercises well, we would have high confidence to 

expect the student to do the examination well. These causal relationships should be captured in the 

student’s interactive records in the system. Of course, a similar pattern may be found in the datasets 

of other students. If so, not only can the same causal relationship be consolidated, but also the 

students can be properly grouped so that they receive the same recommendations from the system. 

Hence, learning based on recommendations through causal inference may provide the best possible 

support to students engaging with online studies. A framework of applying causality in machine 

learning was proposed in a few studies recently [19–21]. However, how to effectively capture the 

causal relationships for automatic exercise recommendations in machine learning is still 

case-specific and has different challenges.  
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In this study, we propose a causal deep learning (CDL) model and an implementation of a new 

personalized exercise recommendation algorithm to evaluate the usefulness and effectiveness of this 

approach in assisting student learning online. Our experiments were conducted using the databases of 

a self-developed online learning system by the Northeast Normal University of China and the ACM 

KDD Cup competition. The performances of CDL on the two datasets are benchmarked with those of 

four existing methods. 

In Section 2, the framework of CDL is introduced, along with the representations of the main 

parts of CDL. Section 3 outlines the experimental conditions, and Section 4 presents the 

experimental results, data analysis and discussions on the performances of CDL with respect to the 

other four existing methods. A brief conclusion is summarized in Section 5.  

2. The framework for exercise recommendation based on causal deep learning (CDL) 

2.1. The framework 

This model mainly targets improving the accuracy of exercise recommendations through 

personalized recommendation driven by the potential causal relationships existing in both the 

exercises and the records of the student’s historic performances in attempting the exercises. For 

specific students, deep learning neural networks are used to learn the different scores they obtained 

on different exercises in historical records. The inputs to the network are extracted from both the 

student’s historic records and the exercise database. The output is the prediction of a set of ranked 

scores of the chosen exercises for the student. The framework of CDL is outlined in Figure 1. 

 

Figure 1. Framework for causal deep learning (CDL) (Cs is the student input embedded with causal 

interventions; Cs is the exercise input embedded with causal interventions) 

The two inputs work in a sequential way, rather than concurrently in other circumstances. The 

student’s historic performance after incorporating any potential causal relationships (Cs) is fed to the 

network first to “identify the student’s most appropriate academic level or capacity.” Then, a set of 

causally ranked candidate exercises (Ce) is fed to the “personalized” network to forecast “that 

specific student’s performances” in the selected exercises. The predicted scores with different 
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candidate exercises are sorted in ascending order [22]. A smaller predicted score corresponds to a 

lower likelihood that the student would have been familiar with the exercises. Hence, the knowledge 

area indicated by related exercises with low scores should be further enhanced for the student. 

Instead of providing the student with more exercises with which he/she has been familiar, indicated 

by a higher score, the student should be recommended more exercises with lower scores to improve 

the student’s performances in her/his weak areas. This in turn should bring improvement in the 

student’s performances in the weak areas. The inclusion of the causal relationships also helps 

enhance the learning efficiency for the student by eliminating repeated feeding of those exercises 

which the student may have already mastered.  

In most circumstances, recommendations are usually made based on “taking the top N 

highest-ranked items” from a sorted list, or the Top-N rule. Hence, the ranked scores from the 

network are converted to a descending order by the loss rate (rf) defined as 

     
 

  
,                                     (1) 

where   denotes the actual score for an exercise obtained by the student, and    denotes the 

perfect score allocated to the exercise. If the student’s actual score is the same as the perfect score for 

an exercise, i.e., g/ga = 1, its loss rate is zero, or the smallest. If the student’s actual score is zero, 

indicating the attempt being completely incorrect, with g/ga = 0, the loss rate is 1, or the highest. 

Thus, more exercises similar to that type of exercise should be recommended to the student.  

The following subsections present the five parts of CDL, respectively. 

2.2. Exercise encoding  

To illustrate our model framework more clearly, we first introduce some definitions. 

• Knowledge point. A knowledge point is the smallest unit of knowledge in a given discipline. In 

linear functions, for example,    represents the slope, while    represents the intercept, and so 

on. These smallest knowledge units are numbered sequentially to form a set containing all 

knowledge points in the subject. In symbolic terms, this means the following: 

              . Each of these knowledge points is indexed by numbering the points in the 

order in which they appear in the discipline. 

• Exercise. As shown in Table 1, each column represents a knowledge point, and each row 

represents an exercise. The knowledge points contained in the exercise will be set to 1 in the 

corresponding position, and other knowledge points not contained in the exercise will be set to 0 

in the corresponding position. In this way, each row vector in Table 1 is a representation of an 

exercise. 

• Knowledge graph and path. For each knowledge point, we look for other knowledge points 

that co-occur with it in the same exercise in order to generate a knowledge graph. For example, 

for a particular knowledge point k2, after traversing all the exercises, we find that it co-occurs 18 

times with k4, 12 times with k7, 10 times with k9, and 5 times with k11. The knowledge graph for 

k2 in terms of triples is then as follows: (k2, 18/(18+12+10+5), k4), (k2, 12/(18+12+10+5), k7), (k2, 

10/(18+12+10+5), k9), (k2, 5/(18+12+10+5), k11). In this order, we can generate its knowledge 

graph for all knowledge points. We know that k2 has four first-order (direct) neighbors, k4, k7, k9 

and k11. Next, this process is propagated to the leveled neighbors of k2, respectively, i.e., looking 
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for the neighbors of the first-order neighbors of k4, k7, k9 and k11, or the second-order neighbors 

of k2 (neighbors of neighbors). This cycle is repeated to generate a knowledge path centered at 

k2. 

The above process Is performed once for each knowledge point to generate knowledge paths 

for all knowledge points. In each round of computation with the model, the knowledge paths of 

all knowledge points in a particular exercise (determined by the bottom branch) are fed into the 

intermediate branches to participate in training and learning, i.e., Knowledge Path 1, Knowledge 

Path 2, ..., Knowledge Path n in Figure 1. 

 

Table 1. Exercise-knowledge matrix 

Exercise 
Knowledge 

                               …    

   1 1 0 1 0 0 0 0 0 0  0 

   0 1 1 1 0 0 0 0 0 0  0 

…             

   0 0 0 0 0 0 1 1 0 1  0 

 

• Path length. To facilitate the application of knowledge paths in Figure 1, we standardize the 

lengths of the paths in our experiments. The path length is 1 if all knowledge points are kept to 

first-order neighbors only and 2 if all knowledge points are kept to second-order neighbors. The 

path length is a hyperparameter of our model that can be set prior to the experiment. 

2.3. Student representation 

As a student’s ID does not reflect the student’s learning ability, it is not sufficient to use student 

IDs alone to characterize individual students. Therefore, in the CDL model in Figure 1, we integrate 

a particular student’s mastery of different knowledge paths into the representation of that student. 

This is done as follows. 

First, we encode a student into a one-hot vector indexed by the student’s ID. For example, 

student number 1 is represented as (1,0,0,0,...), with student number 2 as (0,1,0,0,...), student number 

3 as (0,0,1,0,...) and so on. Such encoding, while able to identify different students, is too sparse (i.e., 

too many zeros involved in computations) and wastes storage space. Thus, immediately afterwards, 

the one-hot neurons, which are the input on the student side, are fed into a fully-connected network, 

i.e., the embedding operation in the top branch in Figure 1. This process maps the student from the 

one-hot vector to a low-dimensional, dense and real-value vector, shown as the Es layer in Figure 1. 

Second, as already mentioned above, the Es is derived from the student ID alone and can only 

identify the student, and it does not contain semantic information describing the learning ability of 

that student. Therefore, based on the Es, the model learns the local knowledge paths for the different 

knowledge points mentioned in Subsection 2.2. Through the learning mechanism, the model can 

incorporate the knowledge paths with the highest failure rates for this student into Es with larger 

weighted probabilities, while other knowledge paths with lower failure rates (points where the 

student has a better grasp) are ignored. Through the operation of such a causal intervention, the 

resulting student representation Cs already contains the reasons for some of the student’s failures in 

learning, i.e., a portrayal of the extent to which that student can learn different knowledge points. 
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2.4. Exercise representation  

In a subject, different exercises contain different knowledge points. In order to represent each 

exercise in a structured way, we first number all the knowledge points in the subject. Assuming that 

there are N knowledge points in total, we number these knowledge points 1 to N in the order in 

which they are learned. 

With the encoding of all knowledge points 1 to N, each exercise can be characterized as an 

N-dimensional vector. For example, if a specific exercise contains only knowledge points #2 and #5, 

its representation is (0, 1, 0, 0, 1, 0, …, 0). That is, the second and fifth elements of this 

N-dimensional vector are set to 1, and all other positions are set to 0. Another example is that if a 

specific exercise contains only knowledge points 1, 3 and 7, it is represented as (1, 0, 1, 0, 0, 0, 1, 

0, …, 0). That is, the first, third and seventh elements of this  -dimensional vector are set to 1, and 

all other positions are set to 0. Following this way, all the exercises are represented as N-dimensional 

multi-hot vectors, which form part of the input to the exercises in Figure 1. 

Similar to the student one-hot representation in Subsection 2.3, the multi-hot vector is still 

high-dimensional, sparse and wasteful of storage space. Thus, the multi-hot neurons that are the 

input on the exercise side are fed into a fully-connected network, shown as the embedding operation 

in the bottom branch in Figure 1. This process maps the particular exercise from a multi-hot vector to 

a low-dimensional, dense and real-value vector as the Ee layer in Figure 1. 

Since Ee is derived only from the statistics of the knowledge points in a given exercise and does 

not contain semantic information describing the context of each knowledge point, the degree of 

difficulty of the exercise, being contained in the local knowledge paths where the individual 

knowledge points of the exercise are included, and these must be incorporated with Ee. Hence, 

through the learning mechanism, the model will incorporate the knowledge paths that are more likely 

to be answered incorrectly by students into Ee by assigning greater weighted probabilities to indicate 

the level of difficulty for the exercise. Other knowledge paths that are likely to be answered correctly 

by students (knowledge points that are easy to master) are ignored. Through the operation of such a 

causal intervention, the resulting representation of the exercise, Ce, should contain the specific 

reasons why the exercise was answered incorrectly, and the subsequent recommendations will be 

more biased towards the knowledge paths where these reasons lie. 

2.5. Exercise recommendation based on causal inference 

In order to explore causal relationships, for each student-exercise pair, in addition to feeding the 

student one-hot representation and the exercise multi-hot representation into the model in Figure 1, 

we also feed the knowledge path of each knowledge point for the exercise into the intermediate 

branches of the model to learn and find the relationship between the knowledge points and students’ 

scores. The results of the knowledge path finding are incorporated into the student branch and the 

exercise branch, respectively, to generate the final student representation (i.e., Cs in Figure 1) and 

exercise representation (i.e., Ce in Figure 1) so that each student’s weaknesses in knowledge 

acquisition can be identified accurately, and the personalized exercise suggestions can be given 

accordingly. 

Next, the loss rate can be calculated using the student representation Cs and the exercise 

representation Ce. In the previous studies, the interaction of multiple tasks is achieved by the dot 

product. It usually indicates the degree of match or similarity between the two vectors. If two vectors 

are remarkably similar, their dot product would be large; on the contrary, the product would be small. 

However, this similarity-based approach fails to satisfy the triangular inequality in the dot product 
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model. To address this shortcoming and to satisfy the objectives of this task, we use the Euclidean 

distance instead of the dot product to measure students’ interactions with exercises. 

This idea of characterizing a student’s loss rate score for an exercise by calculating the Euclidean 

distance of the two relevant vectors is in line with the intuition of our task. The goal of the task is to 

predict the student’s failure rate on an exercise, which itself can be seen as a “distance” of the student 

to the exercise. If a student’s mastery of an exercise is poor, there is a large distance between the 

student’s feature vector and the exercise feature vector, or there is a significant difference or 

mismatch between the student vector and the exercise vector. Therefore, a large distance between Cs 

and Ce indicates that the student’s ability is not yet up to the difficulty level of the exercise, and the 

model would predict a higher loss rate score for the student on the exercise. The student is then 

recommended similar exercises by means of the Top-N rule chosen from the highest to the lowest 

loss rate scores. 

The specific implementation method is shown in the interaction layer in Figure 1. Cs and Ce 

have been mapped to a space of the same dimension in the embedding layer. They have the same 

length to facilitate the element-wise subtraction calculation later. We leverage the 

element-by-element subtraction of two vectors, Cs and Ce, to model the “distance” interaction 

between the student and the exercise. 

Some nonlinear hidden layers are stacked on the input layer to form a deep structure to utilize its 

strong ability to explore the potential nonlinear relationships during learning. With increases in 

complexity for advanced subjects with more knowledge points and knowledge paths, the nonlinear 

hidden layer could help maintain the huge amount of semantic information and relationships between 

students and exercises during the entire process. 

Our goal is to predict the probability value, which is essentially a classification task rather than a 

regression task. Therefore, cross-entropy is selected as the loss function.  

2.6. Data normalization 

First, the scores of exercises need to be normalized. In the original dataset, what was recorded is 

the student’s real score on an exercise, which is not appropriate for direct use as the label of the 

model. For example, a student’s score for exercise A is 6, and that for exercise B is 4. On the surface, 

the score for B is low. It seems that the model should recommend more exercises similar to B. 

However, if the total score for A is 12, and that for B is 5, the scoring rate for A is 6/12 (50%), and 

that for B is 4/5 (80%). This shows that the student’s mastery of A is not as good as that of B, and 

more exercises similar to A should be recommended to the student. Therefore, normalization should 

be applied to all recorded scores against the exercises before feeding them to the system for 

recommendations. 

3. Experiments 

3.1. Datasets 

3.1.1. Self-built dataset for the Preliminary Advanced Mathematics (PAM) database 

Since most public databases do not contain the calibrated exercise knowledge points, to verify 

the effectiveness of our method, the Preliminary Advanced Mathematics (PAM) database, a database 

based on the self-developed online learning system containing the exercises for the advanced 

mathematics course for the preparatory students at the Northeast Normal University of China, was 
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selected for our experiments. The basic information of the PAM database is summarized in Table 2 

and is described as follows. 
 

Table 2. Summary of the PAM database 

Types of PAM exercises 

Multiple choice Judgement Filling the blank Calculation 

917 326 384 591 

 

 There are 2218 exercises in the PAM database, and all the exercises include 368 knowledge 

points that students need to master from four types: multiple choice, judgment, filling in the 

blank, and calculation. Each exercise contains 1 to 6 knowledge points. 

 The records in the PAM database contain 1264 answers to the exercises in the courses students 

attempted in the recent three years. 

3.1.2. The ACM Knowledge Discovery and Data Mining (KDD) Cup 

Algebra 2005-2006 is one of the datasets used by the KDD Cup for educational data mining and 

from the Bridge to Algebra online learning platform. It is often used to test the knowledge tracking 

algorithm. Data of the KDD Cup can be downloaded through 

http://pslcdatashop.web.cmu.edu/KDDCup. It contains data for 575 students and 437 exercises, with 

809694 interactive records. Each record includes 19 fields, such as student number, exercise type, 

knowledge points and answer results. Due to the large number of datasets, some being incomplete, 

we only selected 3000 interactive records from 300 students, covering 437 knowledge points and 

1085 exercises (Table 3). 

 

Table 3. Summary of the PAM and Algebra 2005-2006 datasets for experiments 

Dataset Number of students  Number of exercises Knowledge concepts Records 

PAM 450 2218 368 1264 

Algebra 2005-2006 300 1085 437 3000 

3.2. Experimental setup 

The data preparation goes through the following processes: data preprocessing, score 

normalization for all exercises and calculation of the loss rate of each exercise for individual students. 

The standardized records are split randomly into two lots, 80% for training and 20% for testing. 

Cross validation is conducted 10 times, and the average value is taken as the final result. The 

program runs on a GeForce GTX1080 GPU. 

3.3. Baselines 

For exercise recommendation, the collaborative filtering algorithm, deep leaning based 

algorithms, and knowledge graph based algorithms are currently in use. Therefore, the following 

algorithms based on these three types are chosen as the baselines to compare with our proposed CDL 

method. 

 

http://pslcdatashop.web.cmu.edu/KDDCup
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 User-CF [23]: This model is a collaborative filtering (CF) algorithm [24]. It is used to estimate 

the similarity of students based on their scores using the similarity formula, which leads to 

recommending similar exercises to students at similar scoring levels. 

 KS-CF [25]: KS-CF is also a collaborative filtering algorithm, but it calculates the student’s 

knowledge level matrix using the similarity formula, from which exercises are recommended to 

students at a similar knowledge level. 

 DKT
+
 [15]: DKT refers to deep knowledge tracing. It was used to estimate a student’s mastery 

of knowledge. Exercises were recommended to the students according to the level of their 

mastery. DKT
+
 adds a regulation term to the loss function of DKT to improve the accuracy and 

stability of the DKT algorithm. 

 KGEB-CF [26]: KGEB-CF treats students, exercises and results as student entities, exercise 

entities and the cross-entity relationship. These three data items form the necessary vectors in the 

knowledge graph. The exercise recommendation is made by combining the knowledge graph 

correlation algorithm and the collaborative filtering. 

4. Results and discussion 

The experimental results are compared in two aspects: the root mean square error (RMSE) of all 

algorithms and the accuracy and recall of the model in the Top-N recommendation. 

4.1. Comparison of RMSE 

Table 4 shows the performances of CDL and four baselines for predicting the loss rate. A smaller 

RMSE corresponds to a more accurate prediction of the loss rate. The following facts can be drawn 

from the RMSE data in Table 4. 

 

Table 4. RMSE and comparison 

Method 
Algebra 2005-2006 PAM 

RMSE CDL improvement RMSE CDL improvement 

User-CF 0.8441 10.95% 0.8718 14.44% 

KS-CF 0.8033 6.42% 0.7989 6.63% 

DKT+ 0.7892 4.75% 0.7602 1.88% 

KGEB-CF 0.7768 3.23% 0.7633 2.28% 

CDL 0.7617 - 0.7459 - 

Average improvement 6.33% 6.31% 

 

 In terms of RMSE, CDL is the best performer among the five methods on both PAM and 

Algebra 2005-2006. On PAM, the improvement of CDL by RMSE is from 3.23% over 

KGEB-CF to 10.59% over User-CF, with an average of 6.33%. On Algebra 2005-2006, the 

improvement of CDL by RMSE is from 1.88% over DKT
+
 to 14.44% over User-CF, with an 

average of 6.31%. In both cases, User-CF is the worst performer because it is one of the earliest 

algorithms for exercise recommendation. Its variant KS-CF performed much better on both cases. 

KGEB-CF, by incorporating CF into the processing, performed even better than KGEB-CF on 

both cases. Hence, collaborative filtering (CF) alone seems an outdated method for exercise 

recommendation.  
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 DKT
+
 seems the second best method behind CDL, but its performances seemed dependent on 

the database. It performed marginally below CDL on PAM but with an obvious margin below 

CDL on Algebra 2005-2006. Hence, we infer that the causal inference with deep learning 

combined into CDL should have made a positive contribution to the stable and superior 

performance of CDL over the four baseline methods.  

4.2. Comparison on accuracy and recall 

Tables 5 and 6 show the statistics of the performance of CDL and the baselines in ranking 

recommendations. In the Top-N recommendation, CDL is superior to other baselines in accuracy and 

recall. On PAM, the average improvements of CDL are 9.81%, 8.01%, 9.49% and 5.56% for P@5, 

P@10, R@5 and R@10, respectively. In Algebra 2005-2006, CDL also brought improvements for 

P@5, P@10, R@5 and R@10, but they were not as high as those on PAM. 
 

Table 5. Comparison of precision and recall on PAM 

Method 

PAM 

P@5 CDL 

improvement 

P@10 CDL 

improvement 

R@5 CDL 

improvement 

R@10 CDL 

improvement 

User-CF 0.493 15.82% 0.481 11.43% 0.049 14.29% 0.079 10.13% 

KS-CF 0.514 11.09% 0.496 8.06% 0.049 14.29% 0.081 7.41% 

DKT+ 0.529 7.94% 0.497 7.85% 0.053 5.67% 0.085 2.35% 

KGEB-CF 0.547 4.39% 0.512 4.69% 0.054 3.70% 0.085 2.35% 

CDL 0.571 - 0.536 - 0.056 - 0.087 - 

Average 

improvement 

9.81% 8.01% 9.49% 5.56% 

 

Table 6. Comparison of precision and recall on Algebra 2005-2006 

Method 

Algebra 2005-2006 

P@5 CDL 

improvement 

P@10 CDL 

improvement 

R@5 CDL 

improvement 

R@10 CDL 

improvement 

User-CF 0.502 8.23% 0.496 6.65% 0.048 12.50% 0.069 14.50% 

KS-CF 0.518 5.60% 0.512 3.32% 0.048 12.50% 0.072 9.72% 

DKT+ 0.532 2.82% 0.516 2.52% 0.050 8.00% 0.077 2.78% 

KGEB-CF 0.538 1.67% 0.523 1.15% 0.053 2.00% 0.074 6.76% 

CDL 0.547 - 0.529 - 0.054 - 0.079 - 

Average 

improvement 

4.58% 3.41% 8.75% 8.44% 

4.3. Comparison of performances of CDL with and without causal inference 

In order to prove the effect of causal inference on the performance of CDL, experiments were 

carried out without including the causal inference in the algorithm. The results are shown in Table 7, 

along with the results from the full CDL with the inclusion of the causal inference. There was an 

observable difference between the algorithms with and without causal inference, and the full CDL 



167 

 

STEM Education  Volume 2, Issue 2, 157–172 

consistently outperformed the one without causal inference on both databases. Hence, the causal 

inference has made a positive contribution to the improvement of CDL over other existing methods. 

 

Table 7. Comparison of performances of CDL with/without causal inference 

Dataset Metric 
Method 

CDL-Without-CI CDL-CI(CDL) 

PAM P@5   0.572 0.582 

P@10   0.507 0.545 

R@5   0.052 0.058 

R@10   0.078 0.091 

Algebra 2005-2006 P@5   0.569 0.578 

P@10   0.499 0.539 

R@5   0.051 0.055 

R@10   0.073 0.089 

4.4. The influence of knowledge path in the causal intervention 

By setting the length of the knowledge path to 3, 4, 5 and 6, the experimental results with CDL 

by RMSE are shown in Figure 3. If an exercise contains 3 to 5 knowledge points, CDL performed 

with a level of RMSE below 0.8. This indicates a relatively lower difficulty level for the subject. If 

an exercise contains 6 or more knowledge points, meaning a higher difficulty level for the subject 

that may require knowledge from multiple areas, the RMSE shows a tendency of exponential 

increase for CDL even still with a low value.  

 

Figure 3. Influence of the length of the knowledge path  

4.5. Influence of hyperparameters 

This experiment is mainly about the influence of hyperparameters on the performance of CDL. 

As CDL uses a deep learning algorithm, the hyperparameters mainly include the dimension of 

embedding layers, epochs and the number of interaction layers.  
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4.5.1. Dimension of embedding 

The value range of the embedding dimension is 50 to 300, and the incremental step size is 50. 

The results are shown in Figure 4. A larger embedding size corresponded to a smaller RMSE. In 

other words, the embedded size is basically inversely proportional to RMSE. However, when the 

embedding size is around 230, the RMSE is the lowest for both datasets. 

 

Figure 4. RMSE with different embedding sizes 

4.5.2. Epochs  

The value range of the epochs is 0 to 300, and the step size is 50. The results are shown in Figure 

5. On both datasets, the trend of RMSE is decreasing with the increase in the number of epochs. 

 

Figure 5. RMSE with different epochs 

4.5.3. Number of interaction layers 

The value range of interaction layers is 1 to 6, and the step size is 1. In order to facilitate the 

representation in Figure 6, PAM is represented by 1, and Algebra 2005-2006 is represented by 2, so 

P@5-1 indicates that the data is based on PAM. The performance of CDL is shown in Figure 6. 

More layers corresponded to a lower RMSE (Figure 6a). However, this trend may invert after 

reaching a certain number of layers. For example, with Algebra 2005-2006, the RMSE increased 

from the lowest value, with 4 layers, once the number of layers increased. 
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(a) Effects of different layers on RMSE 

 

(b) Effects of different layers on precision 

 
(c) Effects of different layers on recall 

Figure 6. Impact of interaction layers 

Precision and recall are basically the same for both datasets. More layers corresponded to better 

performance (Figure 6b). However, for the recall, when the number of interaction layers reached 5, 

the performance seemed to peak on PAM. More layers over 5 may decrease the performance on 

recall on PAM (Figure 6c). This may be related to the relatively smaller size of the PAM dataset 

compared with Algebra 2005-2006. 



170 

 

STEM Education  Volume 2, Issue 2, 157–172 

6. Conclusions 

We proposed a personalized exercise recommendation method, causal deep learning (CDL), 

based on the integration of causal inference and deep learning. The concept of CDL is to use students’ 

records of attempted exercises and the score rates to study the impact of exercise knowledge points 

on students’ achievements in a specific knowledge area, from which more relevant exercises can be 

recommended to the corresponding students who are likely to need improvement of skills in and 

understanding of the subject areas indicated by the chosen exercises. In this model, we first use deep 

learning to train and generate initial feature representations for the students and the exercises. Causal 

inference intervention algorithms are then used to fine tune these feature representations. The second 

time, deep learning is used to predict individual students’ score ratings on exercises, from which the 

Top-N ranked exercises are recommended to corresponding students to achieve targeted 

improvement. Experiments of CDL and four baseline methods on two real-world datasets were 

conducted to validate the performance of CDL. In terms of RMSE, precision and recall rate, CDL 

consistently outperformed the existing methods in all measures on the two datasets.  

Although the inclusion of causal inference has brought observable improvement in exercise 

recommendations by CDL, it should be able to make more significant contributions to the 

improvement in exercise recommendation by better capture of the casual relationships. In future 

projects, we would like to continue our efforts to better capture the causal inference for deep 

learning. 
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