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Abstract: Longevity risk is the risk that members of a given population will live longer than expected.
When it occurs, pension providers may have to pay pensions for longer than expected, significantly
increasing their costs. While this risk is being adequately studied using the national mortality data
provided by the Human Mortality Database, relatively few studies exist that analyse sub-national data. This
manuscript proposes a comparative study of some stochastic mortality models to measure the longevity risk
on Italian mortality data at the regional level. In particular, the use of the Lee-Carter and Li-Lee models
is explored. The models are compared in fitting quality, forecasting accuracy and complexity. Numerical
experiments and applications to immediate life annuity evaluation are presented.
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1. Introduction

In recent decades, life expectancy has been increasing in the most developed countries, mainly
thanks to the improvements in nutrition, hygiene, medical technology, health care, lifestyle. EUROSTAT
statistics show that the life expectancy for an individual aged 65 over the last 30 years is increased in
almost all European countries (27% in Italy, 28% in Spain and 25% in Greece). These improvements,
which are generally perceived as positive by individuals, have effects on retirement costs pose significant
challenges for governments as well as for individual pension funds and life insurers as described in De
Waegenaere et al. (2010). For example, we consider the savings needed to finance a stream of pensions
consumption that pays 1 per year. The expected present value of such annuity for an Italian individual
aged 65 (with an interest rate equal to 0) increased from 17.2 in 1990 to 21.8 in 2020. Pension providers
and actuaries should consider these longevity improvements in life insurance pricing and reserving to
avoid underestimating their future liabilities.
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There is extensive literature on mortality forecasting, especially in the category of extrapolation
methods, see for example Renshaw & Haberman (2003); Currie et al. (2004); Cairns et al. (2006,
2009). The model proposed by Lee & Carter (1992) (LC) is the best-known approach to stochastically
model and forecast the mortality rates of a given population. Their model decomposes the age-time
matrix of mortality rates into a bi-linear combination of age and period parameters using the Principal
Component Analysis (PCA). Forecasting is performed by projecting the time-index component into the
future with time-series models. A formal description of the LC model is presented in the next section.
The literature is rich in contributions that extended it in different directions or developed different models.
Brouhns et al. (2002) proposed an alternative to the Ordinary Least Squared estimation approach of
the classical LC method by assuming the Poisson distribution for the number of deaths and employing
maximum likelihood for parameter estimation. Renshaw & Haberman (2003) explored multi-factor
extensions of the LC model, while Renshaw & Haberman (2006) suggested the incorporation of a cohort
effect. Other extensions of the LC model can be found in Currie (2013); Nigri et al. (2019); Gao &
Shi (2021). Another very popular mortality model is the Cairns Blake Dowd (CBD) model proposed
in Cairns et al. (2006). It proceeds by fitting a parametric mortality model to each calendar year of
mortality experience separately and then extrapolating the coefficients to future years with time series
models. Many extensions of the CBD model have been proposed and investigated. Cairns et al. (2009)
presented some of them augmenting the classical CBD with a quadratic component in the parametric
model or a cohort effect. Hyndman & Ullah (2007) introduced a functional data approach in which the
mortality data of each year are smoothed via constrained regression splines before fitting a model using
principal components decomposition, and Hainaut & Denuit (2020) further extended the idea suggesting
a wavelet-based decomposition. Despite the numerous contributions, the LC model is extensively used by
practitioners and academics thanks to its simplicity and discrete forecasting accuracy.

Enchev et al. (2017) remarks that the drivers of the longevity improvements mentioned above often
spread quickly, and the mortality of different populations appears, in some way, correlated. For instance,
adverse events such as pandemics or wars can have a transversal impact on the mortality rates of many
countries. For this reason, the study of models able to describe the mortality dynamics of multiple
populations has aroused interest in recent years. Populations can differ for various features such as
gender, country or geographical area. One of the most straightforward approaches for multi-population
mortality modelling consists of using a set of independent models. Single-population mortality models,
e.g. LC models, are applied to the considered populations individually, and an own model describes
the mortality of each population. However, this approach completely ignores the dependency among
mortality of the different populations. Some authors address this issue by introducing common terms
in the single-population models. A very popular model is the (Augmented) Common Factor model
developed in Li & Lee (2005) that proposes a double log-bilinear mortality model augmenting common
age and period effects with sub–population-specific age and period effects. An attractive property of
this model is producing “coherent mortality forecasts” in that it ensures that long-term forecasts do
not diverge among the populations. A Poisson version of the Augmented Common Factor model is
proposed in Li (2013). In contrast, Kleinow (2015) relaxes the coherence assumption by imposing
that only the age-specific LC parameters modulate the period effect are common to all populations. At
the same time, different time indices fit each population. Other examples of multi-population mortality
models can be found in Hyndman et al. (2013); Schnürch et al. (2021); Chen et al. (2015). While
multi-population mortality models for populations belonging to different countries or genders have been
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extensively investigated at the country level, few studies exist that analyse sub-national and regional
mortality data. A recent application of multi-population models to United Kingdom data can be found
in Chen & Millossovich (2018), while Shang & Yang (2021) analyses the Australian sub-national data.
One of the few studies that analyse sub-national Italian data is presented in Danesi et al. (2004), where
a comparison of some single-population models is discussed. This manuscript proposes a comparative
study between single-population and multi-population mortality models on Italian mortality data at
the regional level. Italy represents an interesting case study for some reasons. On the one hand, the
differences among the Italian regions ( in terms of socio-economic development, living conditions, and
historical differences), particularly between those located in the north and south of the country, represent
a longstanding issue and is currently highly debated in the literature, see for example Franzini L &
Giannoni M (2010). It is reasonable to think that these differences could induce differences in mortality
among populations living in the different Italian areas. On the other hand, all the Italian regions share
the same regulatory, political, and health systems, which induces a somewhat dependency structure
among the regional mortality rates. The application of single-population LC models and the Li and
Lee Model is analysed. The comparison appears interesting since both models adopt a linear structure
for the time component. However, the approach based on single-population LC models assumes total
independence among the mortality of the different regions, while the Li and Lee model assumes that a
single factor drives the mortality of the different regions and only short-term divergences are allowed.

The remainder of the paper is organised as follows. Section 2 provides a formal description of the
mortality models considered; Section 3 describes the numerical experiments and the results, Section 4
shows an application to the life annuities pricing, and Section 5 concludes.

2. Materials and methods

This section introduces the stochastic mortality models used in this research. We denote by
X = {x0, x1, . . . , xω} the set of the age categories, T = {t0, t1, . . . , tn} the set of calendar years considered
and I = {pop1, pop2, . . . , popm} the set of sub-population considered.

2.1. Independent modelling

The LC model is the most popular approach to model the mortality of a single population. It
specifies a log-bilinear form for the logarithm of the central death rate log mx,t ∈ R at age x ∈ X in the
year t ∈ T in a given population:

log(mx,t) = αx + βxκt + εx,t, with i.i.d εx,t ∼ N(0, σ2
ε ) (1)

where αx ∈ R describes the average pattern of mortality for the age group; βx ∈ R represents the
age-specific patterns of mortality change, indicating the sensitivity of the logarithm of the force of
mortality at age x to variations in the time index κt; κt ∈ R explains the time trend of the general mortality
level; and εx,t represents the deviation of the model from the observed log-central death rate. To avoid
identifiability problems, the authors suggest imposing the following constraints∑

x∈X

βx = 1
∑
t∈T

κt

| T |
= 0 (2)

Quantitative Finance and Economics Volume 6, Issue 1, 138–157.



141

The estimates of the LC parameters are obtained by solving the optimisation problem

arg min
(αx)x,(βx)x,(κt)t

∑
x∈X

∑
t∈T

(
log(mx,t) − αx − βxκt

)2

(3)

(αx)x* are estimated as the logarithm of the geometric mean of the crude mortality rates, averaged over
all t, for each x ∈ X

α̂x = log
(∏

t∈T

(mx,t)1/|T |
)

while (κt)t and (βx)x are estimated using a first-order Singular Value Decompotion (SVD) to the center
log-mortality matrix H = {hx,t}x∈X,t∈T ∈ R

|X|×|T | where

hx,t =
(

log(mx,t) − α̂x
)

To forecast future mortality rates, the model assumes that the αx and βx parameters remain constant
over time and forecast future values of kt using a standard univariate time series model. Despite several
ARIMA (p, d, q) models could be considered, in practice the random walk with drift model is used
almost exclusively:

κt = κt−1 + γ + ξt with i.i.d ξt ∼ N(0, σ2
ξ) (4)

where γ ∈ R is the drift. When the aim is to model and forecast the mortality of many different
sub-populations ∀i ∈ I, one could apply an LC model for each subgroup considered. In this setting, the
mortality of each sub-group is described independently from the others. The model reads:

log(m(i)
x,t) = α(i)

x + β(i)
x κ

(i)
t + ε(i)

x,t ∀i ∈ I (5)

The model fitting is performed individually ∀i ∈ I and the population-specific time indices κ(i)
t are

projected with independent ARIMA (0,1,0) models.

2.2. Coherent Mortality modelling

Applying independent LC models to multiple populations can produce divergent long-term
predictions. However, if two or more populations share similar socioeconomic conditions, it might be
reasonable to assume that the differences in mortality among them should not diverge over time.

To avoid long-run divergence, Li & Lee (2005) proposed a model where all the populations share
the parameters of the bilinear term (β(i)

x = Bx ∈ R and κ(i)
t = Kt ∈ R,∀i ∈ I). They define the Common

Factor (CF) model as:

log m(i)
x,t = α(i)

x + BxKt + ν(i)
x,t, with i.i.d ν(i)

t ∼ N(0, (σ(i)
ν )2) (6)

where Kt is a common risk factor shaping all populations’ mortality evolution, which is modulated by
the age-specific parameter Bx and ν is the normally distributed error term. While the α(i)

x is estimated
separately for each individual sub-population, the estimates of Bx and Kt are obtained by applying

* The notation (α(i)
x )x indicates the curve of the αx for the different ages x parameters of a given population i. The same notation is used in

the following also for the other parameters.
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the ordinary LC method to the whole group. The time-specific common factor Kt is a non-stationary
process, and a random walk with drift model is used to obtain forecasts:

Kt = Kt−1 + δ + ηt with i.i.d ηt ∼ N(0, (σ(i)
η )2) (7)

To improve the fitting and forecasting, the authors suggest to include in the CF model an additional
bilinear term with population-specific parameters. In that case, we obtain the Augmented Common
Factor (ACF) Model:

log m(i)
x,t = α(i)

x + BxKt + b(i)
x k(i)

t + ζ(i)
x,t, with i.i.d ζ(i)

t ∼ N(0, (σ(i)
ζ )2) (8)

where the estimates of b(i)
x and k(i)

t are obtained by applying the first-order SVD to the residuals matrix of
the CF model. The sub-population specific time-components k(i)

t is assumed stationary and it described
with an order autoregressive AR(1) model:

k(i)
t = φ(i)

0 + φ(i)
1 k(i)

t−1 + o(i)
t with i.i.d o(i)

t ∼ N(0, (σ(i)
o )2) (9)

where φ(i)
0 , φ

(i)
1 ∈ R,∀i ∈ I.

2.3. Data

We perform the tests using the ISTAT data. It provides the mortality data of the Italian population
for different ages, years and geographic regions. We consider the single-age mortality rates of the total
population (male and female together) of full time span available on the ISTAT website†. In accordance
with the previous notation, we set X = {x ∈ N0 : 0 ≤ x ≤ 99}, T = {t ∈ N : 1974 ≤ x < 2020}. In
addition, we focus our attention on the 20 Italian region and set
I = {Lombardia, Lazio, . . . , Valle d′Aosta}. A graphical presentation of our dataset is illustrated in
Figure 1. It includes some subplots, one for each Italian region, where mortality rates are plotted in
log-scale. The order of the subplots reflects the population size of the different regions: the first one
refers to Lombardia, that is, the Italian region with the largest population, while the last one refers to
Valle d’Aosta, which is the region with the smallest population. Each curve refers to a different calendar
year: the curves in the dark blue refer to less recent years while the lighter ones refer to more recent
calendar years. It is immediate to note that the most recent curves lie below the dark ones highlighting a
progressive decline in mortality for all the 20 Italian regions. Furthermore, we also observe that when
one looks at less populated regions, the log-mortality curves exhibit some random fluctuations along the
age dimension. This evidence is probably due to the law of large numbers: the estimate of mortality
rates is more accurate when measured on large populations such as Lombardia and less precise when a
small population such as Valle d’Aosta is considered.

3. Results

This section presents the results of some numerical experiments performed on the ISTAT mortality
data.The aim is to analyse and compare the LC, the CF, and the ACF models from different perspectives.
The comparison is performed in terms of i) the fitting quality, ii) forecasting accuracy, and iii) the

† https://www.istat.it
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number of parameters to optimise. We split the mortality data into two parts. The first set of data
consists of the mortality rates for calendar years in T1 = {t ∈ T : t ≤ 1999}. It is used to fit the models.
The second one includes the mortality rates for the calendar years in T2 = {t ∈ T : t > 1999}, and it is
used to measure the forecasting accuracy of the models.

3.1. Model estimates

First, we discuss the fitting of the LC, CF and ACF models and the resulting estimates. The LC
model is estimated individually on the regional data following the SVD-based procedure described in
the previous section. Figures 2, 3 and 4 report the estimates of the parameters (α(i)

x )x, (β(i)
x )x and (κ(i)

t )t

for the different Italian regions. Also in this case, the order of the subplots reflects the population size of
the regions. Analysing Figure 2, we note that the (α(i)

x )x estimates exhibit the classic life table shape for
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Figure 2. Estimates of (α(i)
x )x of the LC model for the different Italian region.

all the Italian regions, and they are pretty similar among them. In addition, they seem relatively smooth
over the age dimension. This result appears reasonable since this curve is estimated as the average of
the observed log-mortality rates.

On the contrary, Figure 3 shows that the (β(i)
x )x curves present some irregular fluctuations especially

for Basilicata and Valle d’Aosta. Unfortunately, this problem is not new to the mortality modelling
literature. Delward et al. (2007) argues that an irregular pattern exhibit (β(i)

x )x can be observed sometimes
and that this issue is undesirable from an actuarial point of view since it could induce erratic variations
across ages in the resulting projected life tables. Interestingly, Figure 3 highlights a relationship between
the population size and the fluctuation in the (β(i)

x )x estimate exists. Indeed, the oscillations appear
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Figure 3. Estimates of (β(i)
x )x of the LC model for the different Italian region.

visible for the regions in the bottom of Figure 3 where the low-population‡ regions are located. One
might argue that the use of the LC model may not be adequate for modelling the mortality of regions
or subpopulations where the population size is too small. The motivation is due to the law of large
numbers. The estimates of the mortality rates are less precise when the sample size decreases. This
induces fluctuations in the observed mortality curves and affects the estimates (β(i)

x )x estimates, which
appear sensitive to this phenomenon.

The (κ(i)
t )t estimates for the different regions are presented in Figure 4. A dashed vertical line

corresponding to 1999 is drawn. The (κ(i)
t )t values on the left of that line are estimated on the mortality

data, while the values on the right represent the projections obtained using the ARIMA (0,1,0) models.
Figure 4 shows a decreasing trend of the mortality over time, and this evidence confirms that mortality
is progressively declining in all Italian regions although the drift terms γ(i),∀i ∈ I appear different. The
CF and ACF models are fitted following the procedure described in the original paper and using the
same data considered for the LC model. First, the (B(i)

x )x and (K(i)
t )t parameters are estimated by applying

the ordinary LC method to the aggregate mortality data. Figure 5 presents the resulting estimates.
The (B(i)

x )x curve appears relatively smooth since it is estimated considering the mortality data of all
regions. In addition, we also observe that the common risk factor K(t) is downward sloping, implying a
long-term trend of mortality improvement in all the Italian regions. Also in this case, the values to the
right of the dashed line are the projections obtained via ARIMA (0,1,0) model.

‡ We use this term to refer to the regions with a small population without considering the geographical extension as it is outside the scope of
this research.
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Figure 4. Estimates of (κ(i)
t )t of the LC model for the different Italian region.
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Figure 5. Estimates of (Bx)x (left) and (Kt)t (right) of the CF and ACF models.

3.2. Comparison

In this section, some comparisons among the LC, the CF and the ACF models are carried out in
terms of fitting quality, forecasting accuracy, and the number of parameters to optimise. The fitting
quality and the forecasting accuracy are measured in terms of Mean Squared Error (MSE) and Mean
Absolute Error (MAE) of the predicted mortality rates values from the actual ones:

MS E =

∑
x
∑

i
∑

t(m̂
(i)
x,t − m(i)

x,t)2

N

MAE =

∑
x
∑

i
∑

t |m̂
(i)
x,t − m(i)

x,t)|
N

where N is the size of the sample considered. Although the first measure penalises large deviations more
than the second one, these two values should be as low as possible. Moreover, we also desire that the
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number of parameters fit as low as possible. For this reason, we also analyse the number of parameters
and the Bayesian Information (BIC) or Schwarz Criterion. The last one is a measure that considers the
fitting quality and the number of parameters required. Models with lower BIC are generally preferred.
This criterion is often used in the mortality modelling literature, see Booth et al. (2006); Apicella et al.
(2019); Enchev et al. (2017).

Table 1 reports the results LC, CF and ACF models. The MSE and MAE values are in 10−4. We
report in bold the best performance for each used criterion.

Table 1. Number of parameters, MSE and MSE for fitting and forecasting of the LC, CF and
ACF models; the values are in 10−4.

Fitting Forecasting
Model # Parameters BIC MSE MAE MSE MAE

LC 4560 −99687.64 0.2169 16.2408 2.1162 39.8842
CF 228 −99480.93 0.3956 20.1524 4.099 95.0501
ACF 4808 −99718.77 0.1900 15.6569 0.7964 28.8717

Intuitively, the CF is the most parsimonious model since it has the lowest number of parameters.
The LC model is the second one, while the ACF model is the model that requires the most expensive
model in terms of the number of parameters. This ranking changes if we look at the fitting MSE. In
particular, we observe that the ACF model obtains the best fitting. The second is the LC model, while
the CF model is the least accurate. This evidence continues to hold even if we consider the MAE. This
result appears reasonable since more parameters make the model more flexible and, in that case, it should
better fit the data points used to optimise the parameters. From a BIC perspective, we observe that the CF
model is the best, the LC model the second, and the ACF model the third. This result is probably due
to the larger number of parameters required by the ACF model. However, these additional parameters
produce a significant gain in forecasting accuracy. The ACF model is the most accurate, the LC model is
the second, and the CF model is the least valid. This result is the same for both errors measures.

A more detailed comparison of the fitting and forecasting accuracies is shown in Table 2, which
reports the MSE and MAE of the three models in the different Italian regions in the fitting and forecasting.
Also in this case, we observe that the CF model is often the least accurate in fitting and forecasting from
both MSE and MAE perspectives. The fitting performance of the LC and ACF models are pretty similar:
both models achieve the best performance in 50% of the regions considered. This evidence works for
both error measures. The ACF model overperforms the LC model from a forecasting point of view. In
particular, the ACF model is the best in 75% of cases (15/20) from the MSE point of view, while it has
the best performance in 90% of cases (18/20) when the MAE is considered. Furthermore, we observe
that the gain in forecasting performance in cases where the LC model overperforms the ACF model
(Lazio, Sardegna, Abruzzo) is relatively modest. On the contrary, the gain appears significant in some
regions where the ACF model beats the LC model (Lombardia, Calabria, Basilicata). The only case
where the LC model overperforms the ACF model from both MAE and MSE perspectives is Toscana.
We conclude that the CF model performs poorly on regional Italian data. It is necessary to include the
sub-population specific bilinear terms to obtain satisfactory fitting and forecasting performance. We
drop the CF model and focus on the LC and ACF models to make further comparisons.

Figure 6 further compares the three methods. It shows the MSE and the MAE in the different
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Table 2. MSE and MSE for fitting and forecasting of the LC, CF and ACF models in the
different Italian regions; the values are in 10−4.

Country LC CF ACF LC CF ACF

MSE

Lazio 0.1570 0.2493 0.2129 0.3300 4.3693 0.3676
Campania 0.2504 0.3694 0.3178 0.9781 4.6704 0.4238
Sicilia 0.2399 0.4170 0.1117 1.0505 4.8197 0.6862
Veneto 0.1192 0.1884 0.1453 1.4601 3.8790 0.7292
Emilia-Romagna 0.0853 0.1046 0.0616 0.9207 3.8268 0.5885
Piemonte 0.0888 0.1249 0.0906 0.9305 4.1159 0.5436
Puglia 0.1919 0.2047 0.1199 0.4306 4.0716 0.3730
Toscana 0.1161 0.1108 0.0611 0.5179 4.0900 0.6900
Calabria 0.2271 0.5606 0.3370 3.6670 4.0192 1.3038
Sardegna 0.1662 0.1865 0.1696 0.3854 3.8333 0.3954
Liguria 0.0578 0.0932 0.0867 0.3395 3.8239 0.4457
Marche 0.0940 0.1347 0.1334 0.5868 3.9673 0.5805
Abruzzo 0.0908 0.0845 0.0767 0.3860 4.2181 0.4180
Friuli-Venezia Giulia 0.1282 0.2029 0.1547 0.6482 3.8721 0.5260
Trentino Alto Adige 0.1220 0.3600 0.1314 1.8999 3.7722 0.8129
Umbria 0.1495 0.1947 0.1702 0.3939 3.9955 0.3943
Basilicata 1.3531 3.3721 0.8315 23.6278 4.2491 4.2366
Molise 0.0908 0.0845 0.0767 0.7047 3.9790 0.6492
Valle d’Aosta 0.5261 0.6274 0.4214 2.0250 4.6717 1.4133

MAE

Lombardia 12.1486 19.9305 11.7124 37.2103 92.1732 26.7736
Lazio 14.5028 19.4734 18.2472 24.6515 99.9781 22.3118
Campania 18.7160 22.9006 20.6232 35.5810 105.6370 22.8750
Sicilia 18.8805 25.5242 14.3848 35.0671 105.0941 28.2108
Veneto 13.3441 17.9538 14.7495 41.2196 91.4148 31.1028
Emilia-Romagna 12.0344 13.4764 10.7691 34.2336 91.4306 27.3125
Piemonte 11.4615 13.5049 12.0035 33.6106 96.2467 27.1122
Puglia 16.6614 17.0389 13.1328 24.0734 95.4091 21.9900
Toscana 13.9102 14.1957 11.1923 25.4458 94.1629 28.8530
Calabria 17.4076 27.7452 21.5707 63.3229 95.8088 33.8510
Sardegna 14.9562 16.1873 16.2295 26.1191 92.6877 20.7598
Liguria 11.0432 13.0582 12.5367 26.6906 93.8239 24.2515
Marche 12.5060 13.3978 13.1364 26.7175 91.2184 26.5269
Abruzzo 12.6381 12.3112 11.4253 22.5176 96.6803 23.4488
Friuli-Venezia Giulia 16.4157 17.1397 16.9118 31.6200 92.1787 28.2669
Trentino Alto Adige 15.4234 25.4248 16.1150 45.9268 88.2525 32.3867
Umbria 16.0213 18.4215 17.6157 22.9201 93.4483 22.6744
Basilicata 38.5176 58.6050 31.4198 164.4508 96.2181 61.1973
Molise 12.6381 12.3112 11.4253 28.3012 93.0878 27.3108
Valle d’Aosta 25.5891 24.4487 17.9363 48.0054 96.0502 40.2191
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Figure 6. Forecasting MAE and MSE of the LC, CF and ACF models distinguishing by year.

forecast years from 2000 to 2019. Interestingly, the curves related to the ACF model are the lowest,
those relating to the LC model are the second, while the CF model is the least accurate in all forecast
years. In the following, we will focus our attention on the LC and ACF model since they are more
performing. Figure 7 plots the forecasting error of the LC and ACF models for all ages and calendar
years, distinguished by region. The residuals are calculated as predictions minus the observed values,
scaled by the estimated standard deviation of the actual values calculated at each age. The red areas
in Figure 7 indicate an overestimation of mortality rates, while blue areas indicate an underestimation.
Some interesting comments can be made. First, we note that some pronounced red areas are present in
the heatmaps related to the LC model for ages 20–45. This result appears especially evident for Liguria,
Emilia Romagna, Lombardia and Lazio, highlighting a systematic overestimation of the mortality
rates for the LC model in that age range. This effect is less pronounced in the ACF model heatmaps
suggesting that it better anticipates longevity improvements and reduces the systematic overestimation
of mortality rates at those ages. The overestimation of mortality rates for the LC model also relates to
very old ages for some regions; see Basilicata and Calabria. This effect also appears to be less noticeable
for the forecasts produced by the ACF model.

Finally, one might also notice that some oblique lines are visible in the heatmaps of both models.
This effect, known as the cohort effect, refers to the mortality rates of individuals born in the same year.
It is probably because both models don’t include cohort terms in the model specification. Figure 8
depicts the confidence intervals at 95% level produced by the LC and ACF models for mortality rates at
age x = 65. One could observe that the mortality rates of all regions show a decreasing trend suggesting
that mortality is improving across all the Italian areas. The ACF model generally presents confidence
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Figure 8. Confidence interval (at 95% level) of the projected log-mortality rates at age x = 65
produced by the LC and the ACF models for the different Italian region.

intervals of similar width for all regions. In contrast, the LC model generates narrowed confidence bands
for high-population regions such as Lombardia and Lazio and wide confidence bands for low-population
regions such as Valle d’Aosta and Basilicata. Furthermore, we observe that in some regions, such as
Abruzzo, Molise, Puglia, Piemonte, and Veneto, the confidence intervals produced by the two models
are quite similar, while they appear different for Valle d’Aosta and Basilicata.

Figure 9 presents the projected log mortality curves obtained via LC and ACF models for t =

2000, 2010, 2020, 2030, and different Italian regions. The ACF model produces coherent forecasts
since the projected curves do not diverge in the long run. In contrast, the projections obtained via
single-population LC models diverge when t increases.

4. Application to the Annuity value

In this section, we measure the impact of applying the regional mortality data and the ACF model
to evaluate life annuity. The price of an immediate life annuity sold to an individual aged x in year t is
given by:

ax,t =
∑
k≥0

{

k∏
j=0

px+ j,t+ j}(1 + r)−(k+1)

where px,t is the one-year survival probability derived from the mortality model, and r is the interest rate.
The annuity value is a random variable, and simulation-based approaches are often used to compute
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Figure 9. Projected log-mortality curves of the LC ACF models for t =

2000, 2010, 2020, 2030.

its distribution. In this case, we consider the interest rate as deterministic, while the mortality risk is
stochastic. We derive the distribution of value of an immediate life annuity with x = 65 and t = 1999
for each Italian region, simulating possible trajectories of the future mortality evolution according to
the ACF model. In this case, we consider only the random error of projecting the mortality indices
Kt and κ(i)

t as risk sources. A sample of 10000 paths is generated, and the resulting annuity values
are computed. The interest rate is assumed to be equal to zero; therefore, ax,t corresponds to the life
expectancy at age x and time t. Figure 10 shows the simulated distributions of the annuity price for all
the Italian regions. We also report the value of an immediate life annuity computed according to the
LC model using the total national data. This value represents an interesting benchmark since annuity
pricing is generally performed using national data as also discussed in Bozzo et al. (2021). It is denoted
with a vertical red line in Figure 10. For this national benchmark, we use Human Mortality Database
(HMD) dataWilmoth & Shkolnikov (2021). § We observe some heterogeneity in the distributions of the
different regions. In some cases, the (average) annuity value difference is almost equal to 2 years (see
Marche and Sicilia). This evidence had already been observed, in terms of average values, in Bozzo et
al. (2021). In particular, Figure 10 shows that the distributions of the annuity value for some regions
are essentially below the national average (See Sicilia and Campania) and vice versa, there are some
regions where the annuity value is above the reference value (Marche). Some differences are also visible
in the variability: Molise and Abruzzo have more concentrated distributions around the average, while

§ It is the most popular data source for the study of mortality and provides data at the national level (rates, deaths, exposure to risk) for a
large set of countries and calendar years. We calibrate the LC model employing the same period and age range described above.
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Sicily and Trentino have more dispersed distributions. In general, Figure 10 highlights a certain degree
of heterogeneity across the different Italian regions. This result points out the importance of considering
differences in mortality among the Italian regions in the actuarial calculations.

5. Conclusions

This paper presents a comparison of different approaches to modelling Italian sub-national mortality
data. We consider the independent modelling approach based on rdsingle-population LC models and
the coherent multi-population model proposed by Li & Lee (2005). The analysis was performed on
the Italian mortality data provided at the regional level by ISTAT. The tests have shown that, although
the two models produce somewhat similar fitting performance, the ACF model produces significantly
better forecasting performances. It beats the LC model in 90% of the Italian regions from an MAE
perspective. In addition, the ACF model appears to capture and predict longevity improvements better.
The ACF model was also employed to simulate the annuity prices of an individual aged 65 in 1999
in the different Italian regions. We observed some heterogeneity among the regions. Furthermore, in
some cases, the value of the annuity differed significantly from the national benchmark. The analysis
of the regional data could provide additional information about the heterogeneity in longevity in the
national population. In particular, understanding the regions’ mortality differences could be helpful from
a longevity risk management perspective. Indeed, suppose an annuity portfolio that is not adequately
balanced between annuitants living in areas characterised by higher life expectancies and annuitants
residing in regions with lower life expectancy. In that case, the use of aggregate national data could
lead to misestimating future liabilities and inducing financial trouble. Future research will proceed
in different ways. First, we plan to investigate sub-national data of other countries like the United
States, Hungary and France. Second, we would like to explore the application of more sophisticated
single-population and multi-population mortality models Kleinow (2015); Hyndman et al. (2013). The
use of non-linear mortality models could highlight further interesting information on the difference in
subnational mortality data. Finally, we aim to explore the use of machine learning and deep learning
techniques in sub-national mortality data, which have shown enormous potential in multi-country and
large-scale mortality modelling; see for example Perla et al. (2021); Richman & Wüthrich (2021).
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