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Abstract: Equity returns are typically higher correlated during market downturns than during bullish
times. This paper develops a novel approach how investor expectations for such correlation asymmetries
can be quantified from forward-looking data. Based on option implied volatilities, it is found that
the correlation asymmetry is significant, rejecting the use of the classic mono-correlation assumption.
Further, the spread between expected down and up correlations is time-varying and positively dependent
on the current market mood: stock diversification is more difficult when it is needed the most. Thus,
the three main advantages of the proposed model are (i) the distinction between up- and down-
correlations, (ii) it actually captures investor expectations as traded in current market prices and (iii) the
immediate response to the current market outlook. Practical relevance of this paper is highlighted by the
computation of expected up-/down CAPM betas.
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1. Introduction

Equity investment practice frequently distinguishes between up- and down correlations as stock
markets typically face such asymmetries: during bullish times, average correlation among stocks is low
to moderate, but remarkably increases if markets turn into bearish. This effect is not only thoroughly
documented within realized return patterns (e.g. Erb et al. (1994) or Ang & Chen (2002)), but also highly
affects portfolio diversification. Given so, this paper investigates whether such correlation duality also
exists at investor expectations and how it can be quantified from forward looking data. Hence, aim of
the presented paper is to develop an econometric model which is able to fulfill this task. The core of the
model builds on option implied volatilities, which reflect per construction investor expectations. Upon
those risk believes it is demonstrated that asymmetric up-/down correlations will cause skewness in the
joint distribution of the market portfolio. Let the correlation spread be understood as down-correlations
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minus up ones. If this spread is positive, then marginal return distributions of constituents will aggregate
superior for the negative side of the joint distribution (i.e., market portfolio) than for the positive side.
As a logic consequent, the joint distribution will be negatively skewed, even though if single stocks
would be normally distributed. Thus, the model argues that expected skewness of the market portfolio in
excess of marginal skews can be directly linked to correlation duality, which in turn allows to estimate
such. Besides the theoretical discourse, robustness of the model is verified upon simulated data to
analyze its precision and to verify that it is free of statistical biases. From empirical data of the S&P500
I demonstrate that it is straightforward to implement and highlight its practical usage for applications in
corporate finance (e.g., equity valuation) or portfolio management.

While the body of finance literature on option implied volatilities is already very broad (like
Schmalensee & Trippi (1978), Bakshi et al. (2003) or Schneider et al. (2020)), research on equity
implied correlations is scarce (e.g., Skintzi & Refenes (2005)). Further, although correlation duality is
profoundly documented within historical return data (Longin & Solnik (1995), Cappiello et al. (2006) or
Ang & Bekaert (2015)), to the best of my knowledge no study yet analyzed up- and down correlations
within forward looking data. Therefore, this paper contributes to existing literature by providing a
model which is able to quantify expected correlation asymmetries and delivers initial insights into their
empirical behavior with some remarkable findings.

The reading starts with a brief literature overview to trace the outline of the relevant field. Section
3 sketches the model from a theoretical perspective, whose quality is evaluated on simulated data in
Section 4. Within the fifth section the model is applied upon real world data which allows to analyze
empirical characteristics of the expected correlation spread. Final conclusion are drawn in Section 6.

2. Literature overview

Generally speaking, this paper relates to two areas of finance research. First, to empirical studies
analyzing equity correlations during different market phases. Second, to the measurement of investor
expectations out of option data.

The field of correlation’s time varying behavior enjoys a broad body of academic literature. For
example, there are earlier studies like King & Wadhwani (1990) or Bertero & Mayer (1990) which found
that correlations across international financial markets significantly increased during the market crash of
1987, which gives indication in favor of down correlations being higher than up correlations. On a long
time analysis (1960–1990), Longin & Solnik (1995) conclude that the level of correlation is greater
during phases of high volatility, which can also be interpreted in favor of the market mood dependent
correlation duality. However, there are also early studies that do not coerce with this statement, like
Kaplanis (1988) or Ratner (1992) who claim that correlations remain constant over time, or Kizys &
Pierdzioch (2006) who find on the period of 1970–2004 that correlation’s dependence on the business
cycle is not significant. Erb et al. (1994) explicitly analyze correlation structures among countries in
dependence of the economic cycle with the conclusion, that during recessions they are substantially
greater than during market recoveries. While there are conflicting results especially at earlier studies, by
now the majority of evidence consent to correlation asymmetries, for example Ramchand & Susmel
(1998), Longin & Solnik (2001), Ang & Chen (2002), Sancetta & Satchell (2007), Cappiello et al. (2006)
or Ang & Bekaert (2015). Besides macroeconomic analyzes of equity correlation structures, other
works focused on implementing such asymmetries. A frequent example in that context are dual factor
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pricing models (especially CAPM, see Pettengill et al. (1995)), which are not only used at investment
practice, but also find broad support in academic research like Howton & Peterson (1999), Faff (2001),
Pettengill et al. (2002) or Chong et al. (2011), Chong & Phillips (2013).

What those mentioned studies have in common is that they analyze correlations of realized returns.
When quantifying expectations, however, the use of such historical return data can be problematic
as there is no guarantee that realizations in the past will repeat themselves in the future. (cp. Bali
et al. (2019) or Schneider et al. (2020)) This is why the study presented here focuses on the use of
forward looking data. Or, to be more precisely, the model builds on the availability of option implied
volatilities. Literature in this discipline was initialized by Black & Scholes (1973), the use of implied
volatilities as investor expectations goes back to Schmalensee & Trippi (1978). Guo et al. (2016) point
out that working with implied volatilities rather than option prices directly became common practice in
quantitative finance. Recent examples of option implied information are (among many others) Bakshi
et al. (2003) who provide a model for ex-ante higher moments, Schneider et al. (2020) analyzing asset
pricing anomalies or Bali et al. (2019) with an expectation-based empirical asset pricing study - just to
name a few. Besides the field of asset pricing, implied volatilities are also used in an economic context,
for example by Fassas, Kenourgios & Papadamou (2020) to quantify the effect of monetary policy
announcements upon expected currency risk. Or, by Fassas, Papadamou & Philippas (2020) where
implied volatilities serve to measure international spillover effects in investor risk-aversion with respect
to quantitative easing. Also pointing into the behavioral direction, Äijö (2008) and Schadner (2020a)
find empirical support that the implied volatility term structure indicates investor sentiment. On the
econometric side, Jeon et al. (2020) demonstrate that implied volatilities can be used to enhance the
predictive power of existing models.

As there exist many studies on implied volatilities as well as implied correlations for the FX market
(e.g., Walter & Lopez (2000)), literature on implied equity correlations is rather scarce. The difficulty of
computing implied correlations (and the respective matrix) arises from the fact that in a stock market
there are no direct derivatives for pairs of stocks, thus no unique solution to this problem currently exists.
However, one mathematically feasible solution to the ex-ante correlation matrix is the CBOE Implied
Correlation Index (cp. Skintzi & Refenes (2005)), which solves the puzzle under the equi-correlation
assumption (i.e., all pairs within the implied correlation matrix share the same value). This purely
ex-ante methodology was mixed with ex-post computations by researchers like Buss & Vilkov (2009,
2012), Numpacharoen & Numpacharoen (2013) or Driessen et al. (2013). Building on Skintzi &
Refenes (2005)’s equicorrelation method, Linders & Schoutens (2014) provide an empirical analysis
of the implied correlation surface with options of fixed maturities and different degrees of moneyness.
They find that, just like for the implied volatility smile (cp. Mixon (2010)), the ex-ante correlation curve
over degrees of moneyness is typically downward sloping. Without further tests nor discussion, they
mention that “...the decreasing implied correlation curve may imply that the market expects stocks to
go down simultaneously, while they are expected to go up more independently” (Linders & Schoutens
(2014)). This statement is key cause for this study to not only develop a model that captures implied
correlation duality, but also to investigate whether there is a link between the implied correlation surface
and ex-ante correlation spreads.
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3. Concept

Assume a financial market of n traded stocks i ∈ I = {1, . . . , n} that are weighted according to the
n × 1 vector w to form the market portfolio m. There are financial options upon each single firm as well
as the market index per se traded, such that respective prices can be used to express implied volatilities
of the underlying.1 As implied volatilities are per definition forward looking, they serve as proxies for
expected risk under the risk neutral measure.2 Given this framework, m’s first two central moments are
identical to its cumulants κ and computed as

κ1;m = µm = w′µ and (1)
κ2;m = σ2

m + κ2
1;m with σ2

m = w′DΓDw (2)

where µ corresponds to the n × 1 vector of expected stock returns, Γ to the n × n correlation matrix and
D being a n × n diagonal matrix of implied volatilities, ∀i : Dii = σi. Since w is directly observable
and σ2

m as well as D can be easily estimated from option prices, CBOE’s equicorrelation approach now
sets all off-diagonal elements within Γ equal to an average level c̄ that resembles Equation 2, meaning
that w′DΓDw ≡ w′DΓ̄Dw. CBOE’s respective white paper (Skintzi & Refenes (2005)) suggests
approximating c̄ by iteratively solving this equilibrium. However, different to that, Schadner (2020b)
suggests a closed form solution that is computational more efficient. Let us introduce the n × n identity
matrix E as well as J = 1 − E where 1 is a n × n unity matrix (consisting only of 1’s). Thus, the
equicorrelation matrix can be split up as

Γ̄ =


1 c̄ · · ·

c̄ 1 · · ·
...

...
. . .

 = c̄


0 1 · · ·

1 0 · · ·
...

...
. . .

 +


1 0 · · ·

0 1 · · ·
...

...
. . .

 = c̄J + E ∀i , j : c̄i j = c̄ (3)

such that the implied correlation puzzle under the equicorrelation model is solved by

c̄ =
σ2

m − v0

v1
with v0 := w′D2w, v1 := w′DJDw (4)

which is basically one plausible solution to this ex-ante correlation puzzle. Nonetheless, as only n + 1
implied volatilities are observable but there exist (n2 − 1)/n unknown correlation pairs, several other
theoretically possible solutions exist. Say we fix option’s time to maturity to some fixed target level τ
(e.g., one month), and apply Equation 4 over different levels of moneyness d = ln( Pstrike

P0
).3 In the Black-

Scholes market model, where higher than 2nd order moments are zero and correlations are symmetric,
all implied volatilities would form a flat surface over all levels of τ and d. This assumption is clearly
an unrealistic scenario, but still a good starting point hence it became common practice to compute
Black-Scholes implied volatilities and fit regression splines to estimate higher moments (cp. Zhang &
Xiang (2008)). With Equation 3, c̄ can be easily computed for different levels of d, which by plotting

1 For example, by Black-Scholes option pricing formula an observed call price can be iteratively solved to observe the implied volatility the
derivative is priced under, see e.g. Schmalensee & Trippi (1978).

2 Known in finance literature as Q-measure. Note that the study presented here makes all computations for Q dynamics. The reader
interested in P expectations can apply the very same model, but has to subtract a variance risk premium from Q implied volatilities, see
e.g. in Carr & Wu (2006).

3 P0 is the current price of the underlying, Pstrike the strike price of the option.
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c̄ against d forms the implied correlation surface. Figure 1 is such an example of the S&P500 for the
dates Dec. 31, 2007 and Sept. 30, 2015.

Figure 1. S&P500 implied correlation surface over different levels of moneyness observed on
Dec. 31, 2007 and Sept. 30, 2015. A downward sloping curvature is presumed to indicate
that investors expect stock returns to correlate higher for market downturns than for up moves.
This believe is referred to as correlation duality.

While in the Black-Scholes framework this curve should be flat, Linders & Schoutens (2014) find
that empirically this curve is typically of negative slope. Without any proof, they mention that this
smirk may be attributable to the fact that realized correlations during market downturns are on average
higher than for up markets, and that the slope may be directly interpreted as investor expect correlation
asymmetries. However, to the best of the author’s knowledge, no study yet has explicitly analyzed
whether this statement holds or not.

For the subsequent reading please consider the following notation: when used as syntax, + refers to
positive returns (i.e., interval over [0,∞)); vice versa, − refers to negative returns (interval of (−∞, 0)).
Further, note that generally for any pdf of x it holds that

σ2 = E[x2] − E[x]2 (5)

σ2 + µ2 =

∫ ∞

−∞

x2 f (x)dx (6)

=

∫ 0

−∞

x2 f (x)dx +

∫ ∞

0
x2 f (x)dx (7)

= PM− + PM+ (8)

with PM− as the 2nd order lower partial moment and PM+ as the 2nd order upper partial moment, both
with a reference point equal to 0 such that PM− corresponds to negative returns and vice versa PM+ to
positive ones.

Lemma 1. Correlation-duality causes skewness in the joint distribution of the portfolio.

Proof Consider a continuous multivariate normal random variable X̃ = {x̃1, x̃2, ...} which describes
a set of correlated stocks I. The return vector of the market portfolio rm is thus given as the value
weighted sum of X̃, rm = w′X̃. If joint densities of X̃ are elliptical, then it is straight forward that the joint
distribution rm will be normally distributed and the link between stocks can be efficiently expressed by
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their linear dependence, i.e. Pearson’s correlation. In such a setting, PM−
m can be (statistically unbiased)

approximated by the value weighted aggregate of individual PMi’s:4

PM−
m ≈ w′L− Γ L−w ≡ w′L− Γ̄ L−w L−

n×n
:

L−i j = PM−
i ∀i = j

0 ∀i , j
(9)

P̂M
−

m = c̄ l−1 + l−0 (10)

with P̂M
−

m as the unbiased approximate of PM−
m and

l−1 = w′L−JL−w and l−0 = w′L−L−w (11)

Note that likewise D is a diagonal matrix of volatilities, L is a diagonal matrix of individual partial
moments. Equations 9 to 11 are equivalent for the construction of PM+

m, hence

P̂M
+

m = c̄ l+1 + l+0 (12)

What happens now if correlations are on average higher during market downturns (rm < 0) than
during market recovery (rm > 0), say c̄− > c̄ > c̄+? To analyze this, we define the correlation-duality
regime as follows:

corr{X̃} :=

Γ+ ≡ c̄+J + E if rm > 0
Γ− ≡ c̄−J + E if rm < 0

(13)

Meaning that positive market returns are generated under Γ+ and vice versa with Γ−. Given so, the
PMm’s will now aggregate under different correlation parameter, that is,

P̂M
−

m = c̄− l−1 + l−0 and P̂M
+

m = c̄+ l+1 + l+0 (14)

Let us define ∆c̄ := c̄− − c̄+ and note that l1’s and l0’s (Equation 11) are drawn from individual
distributions, hence (mathematically) independent of ∆c̄. Henceforth, by Equation 14 it follows that

iff ∆c̄ > 0 : P̂M
−

m(c̄−) > P̂M
−

m(c̄) and P̂M
+

m(c̄+) < P̂M
+

m(c̄) (15)

such that with an increasing correlation spread, probability mass within the joint distribution will be
shifted from the positive to the negative tail. Henceforth, the joint distribution becomes asymmetric,
which is in contradiction to the joint distribution being normal. In this sense, the larger the discrepancy
between c̄+ and c̄−, the more will be one side of the mean be weighted against the other one. From
this follows that correlation duality causes skewness in the return distribution of the market portfolio,
even though if single constituents would be normally distributed. By Equation 15, if c̄− > c̄+ then
median(rm) > µm which implies that rm will be negatively skewed; vice versa for c̄− < c̄+. Hence,

∂P̂M
−

m

∂∆c̄
> 0 and

∂P̂M
+

m

∂∆c̄
< 0 =⇒

∂γm

∂∆c̄
< 0 a.s. (16)

means that the larger the correlation spread, the more negative the expected skew of the market
portfolio becomes. This law should still hold if individual stock returns are not normally distributed,
even if other aggregation procedures apply. Thus, X may be described by any realistic multivariate
stock return distribution, it generally holds that c̄+ , c̄− creates skewness in the market portfolio.

4 Like portfolio value-at-risk from the RiskMetrics model, see Longerstaey & Spencer (1996).
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Lemma 2. Correlation-duality causes portfolio skewness as it causes co-skewness among stocks.

Proof Consider the way Pearson’s skewness is defined,

γ :=
s
σ3 = E

[( x − µ
σ

)3
]

=
E[x3] − 3E[x2]µ + 2µ3

σ3 =
κ3 − 3κ2κ1 + 2κ3

1

κ3/2
2

(17)

with s as the distribution’s third (non-standardized) moment. The first two moments were already
defined in Equation 2. For our market portfolio the observable term that remains is the third cumulant
κ3;m which is computed from

κ3;m = w′κ3;X(w ⊗ w) ≡
∑

i

∑
j

∑
k

wiw jwksi jk (18)

where κ3;X is the super-symmetric (non-standardized) skew-co-skewness matrix of size n × n2. This
means that κ3;X is a combination of n many symmetric n × n matrices,

κ3;X
n×n2

=

{
κ3;1
n×n

κ3;2
n×n

· · · κ3;n
n×n

}
(19)

κ3;m is thus equivalent to the value weighted sum of each possible skew/co-skewness term si jk. Like the
co-variance matrix has entries for single firm variances, κ3;X also has entries that are linked to individual
distribution’s skewness. Specifically, firm i’s skewness is captured at the ith position on the diagonal of
the κ3;i sub-matrix,

individual skews: diag(κ3;i)i = si = γiσ
3
i ∀i ∈ I (20)

All other elements within κ3;X that are not on such special positions are co-skewness terms. In
the case of normally distributed stocks we faced individual skews equal zero, γi = 0, ∀i. Under
non-normal distributions, individual skews may be different from zero, but still computable (from
option data) on an individual level and thus independent of other firms. Therefore, one recognizes
that correlation-duality can only drive cross-sectional co-skewness terms in order to cause skew in the
aggregated portfolio. Being aware of that, one can distinguish γm generated from individual skew and
γm caused by co-skewness. To get there, I develop an approach to compute the equi-co-skew from
option data which is similar to the equicorrelation procedure before.

Let K be a n × n2 matrix with 0’s on the positions indicated by Equation 20 and 1’s otherwise.
Respectively, 1

n×n2
− K indicates positions affected by individual skews. Likewise D contained firm

volatilities, we capture individual skew loadings on the n × n diagonal matrix S . Hence the feasible
solution to κ3;X with individual skews but equi-co-skews is given by

κ3;X = s̄K︸︷︷︸
co-skews

+ S (1 − K)︸    ︷︷    ︸
skews

(21)

which implies
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κ3;m = w′[s̄K + S (1 − K)](w ⊗ w) (22)
= s̄ w′K(w ⊗ w)︸        ︷︷        ︸

u1

+ w′S (1 − K)(w ⊗ w)︸                  ︷︷                  ︸
u0

(23)

= s̄u1 + u0 (24)

With this simplification, portfolio skewness composes as

γm =
1
σ3

m
[s̄u1 + u0 − 3µmσ

2
m − µ

3
m] (25)

through which the equi-co-skew can be computed out of option data,

s̄ =
1
u1

[γmσ
3
m − u0 + 3µmσ

2
m + µ3

m] (26)

As far as the author is aware of this approach is first in finance literature to estimate expected
co-skewness completely from ex-ante data and is perhaps interesting for several other applications. Back
to our task, since all individual skew contributions are captured within u0 and co-skew effects within s̄u1,
by Equation 25 one can distinguish portfolio skewness generated from firm skews and co-skews as 5

γm = γm;co +
u0

σ3
m

with γm;co := s̄
u1

σ3
m
−

3µm

σm
−
µ3

m

σ3
m

(27)

Therefore, since

∂γm

∂∆c̄
< 0 and

u0

σ3
m
⊥ ∆c̄ =⇒

∂γm;co

∂∆c̄
< 0 (28)

it is shown that correlation-duality causes skewness as it generates co-skewness among stocks.

3.1. Approximating joint distribution using Gram-Charlier

To quantify the magnitude of ∆c̄ on γm, one has to approximate the shape of market distribution. I
do so by Gram-Charlier expansion using the first three moments,6 whose cdf is generally given as

F(x) =

∫ ∞

−∞

f (x)dx (29)

=

∫ ∞

−∞

φ(x)
[
1 +

γ

6
He3(z)

]
dx He3 = z3 − 3z, z =

x − µ
σ

(30)

=

∫ ∞

−∞

φ(x)dx +
γ

6

∫ ∞

−∞

φ(x)He3(z)dx (31)

5 Note that in the case of multivariate normal it holds that s̄ , 0. This is easily illustrated by X̃ ∼ N(·) : sX̃ = E[X̃3]− 3E[X̃2]E[X̃] + 2E[X̃]3

and since in this case it holds that u0 = 0 and E[X̃3] = s̄u1 + u0 ≡ 3E[X̃2]E[X̃] − 2E[X̃]3 =⇒ sX̃ = 0 iff s̄ , 0 =⇒ γX̃ = 0.
6 As demonstrated above, correlation duality is a generator of asymmetry, thus I am not interested into excess kurtosis and assume even

higher moments are neglectable small.
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where φ(x) denotes the pdf of a normal distribution and He3 is the third Hermite polynomial. Taking
Equation 5, for the market portfolio one writes

σ2
m + µ2

m︸   ︷︷   ︸
PM

=

∫ ∞

−∞

x2φ(x)dx︸           ︷︷           ︸
PMnorm

+
γm

6

∫ ∞

−∞

x2φ(x)He3(z)dx︸                         ︷︷                         ︸
PMcorr

(32)

which can be interpreted as the total 2nd partial moment of the skewed joint distribution PM composes
of a normally distributed part PMnorm and a correction term PMcorr. The split is convenient because for
PMnorm we know that the aggregation formula of Equation 14 applies unbiased, such that it holds

PM − PMcorr =

∫ 0

−∞

x2φ(x)dx +

∫ ∞

0
x2φ(x)dx (33)

P̂M − P̂Mcorr = c̄−l−1 + l−0 + c̄+l+1 + l+0 (34)

Note that from option implied data, the parameters σ, γ, µ can be estimated, such that the integrals
can be computed. In order to correct for individual skews, PMcorr is computed under γm;co (Equation 27)
rather than total γm which should remove potential statistical biases related to non-symmetric marginal
distributions. With this in mind, we can do the split

P̂M
−

− P̂M
−

corr = c̄−l−1 + l−0 and P̂M
+
− P̂M

+

corr = c̄+l+1 + l+0 (35)

such that by rearranging terms, the average expected up and down correlation can be computed by

c̄− =
1
l−1

[P̂M
−

− P̂M
−

corr − l−0 ] and c̄+ =
1
l+1

[P̂M
+
− P̂M

+

corr − l+0 ] (36)

Lemma 3. The option implied correlation surface contains information about asymmetric expectations
for up-/down correlations.

Proof It is generally known that a smile within the Black-Scholes implied volatility surface over
different strikes refers to non-zero higher moments believes (cp. for example Bakshi et al. (2003), Mixon
(2010)). Respectively, the slope within is (positively) connected to ex-ante skewness for which finance
literature developed several methods to approximate. On the example of Gram-Charlier expansion, the
volatility surface σ(d) over different levels of moneyness d can be interpolated as

σ(d) = σAT M +
γ d

6
√
τ

d := ln
(

Pstrike

P0

)
(37)

(cp. Jarrow & Rudd (1982)) with Pstrike as the option’s strike level, P0 as the current price of the
underlying and σAT M as the at-the-money implied volatility (i.e., σ(Pstrike = P0)). In awareness of
Equation 4, one is now able to write the implied volatility surface in terms of equi-correlations,

σm(d) =
√

c̄(d)v1 + v0 (38)
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so combining these two equations, the implied correlation surface can be directly linked to market
skewness,7

( √
c̄(d)v1 + v0 − σm

) 6
√
τ

d
= γm ⇐⇒ c̄(d) =

1
v1

(
σm +

γm d
6
√
τ

)2

−
v0

v1
(39)

Therefore, substituting back in what we already know,

c̄(d) =
1
v1

[
σm +

(
γm;co(c̄+, c̄−) +

u0

σ3
m

)
d

6
√
τ

]2

−
v0

v1
(40)

models the link between asymmetric expected correlations and the implied correlation surface. Since

∀d :
∂γm;co

∂∆c̄
< 0 =⇒

∂c̄(d)
∂∆c̄

< 0 a.s. (41)

it is shown that the implied correlation surface reflects that investors may have different believes for up-
than for down correlations. Further, this will also confirm the statement of Linders & Schoutens (2014)
that if ∂c̄(d)

∂d < 0, then ∆c̄ > 0
Besides the demonstrated Gram-Charlier case, within every risk-neutral approximation method

available in literature,8 γm is positively proportional to ∂σ(d)
∂d such that the result of Equation 41 generally

holds almost surely.

4. Simulation

Quality of the dual-correlation model is evaluated upon simulated data, where one can explicitly
control for true up-/down correlations and backtest the estimation precision as if they were hidden. For
this purpose, the simulation is broken down into two parts. I start by analyzing the joint distributional
asymmetry caused through a correlation spread. Specifically, the impact of ∆c̄ on ∆PM and on portfolio
skewness are quantified. Then I continue by evaluating the model precision itself, that is the error of true
up-/down correlations versus those estimated through the Gram-Charlier approach. All computations
executed within this section and in the empirical part were made using the statistical software R.

The simulation data is generated as follows. The number of stocks is set to n = 100 and the
time-series length to 1000, where one time step represents one trading day. For all stocks the mean
return is defined to equal the risk free rate, which is set to 1% per year, thus ∀i : µi = r f = 1%/252.9

Differently, stock volatilities are drawn from a random uniform distribution ranging between 10%/
√

252
and 50%/

√
252. Since real stock markets typically show a very unequally distribution of market values,

w is created as

w =
w0∑
w0

with w0(i) =
1

ln(i + 1)
∀i ∈ [1, n] (42)

7 Note that for simplicity σm ≡ σm;AT M in my notation.
8 It is common that a negative slope within the implied volatility surface corresponds to negative skewness believes (see e.g. Jarrow & Rudd

(1982), Bakshi et al. (2003), Mixon (2010) or Bali et al. (2019))
9 Same mean return for all stocks is required to meet Q dynamics. 1% p.a. divided by 252 trading days converts annual quotations to daily

returns.
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to better meet real world scenarios.10 With this setting, two correlated multivariate normal return
matrices are generated, one under the true up correlation, r+ ∼ N(µ, σ; c̄+), and one under the true down
correlation, r− ∼ N(µ, σ; c̄−). c̄+ is drawn from a uniform random distribution within [0.2, 0.6] and
respectively c̄− ∈ [0.3, 0.7]. Now, two portfolios are formed, r+

p = w′r+ and r−p = w′r−, which serve as
reference. The cross-sectional return matrix r with distinct up-/down correlations is now generated by
combining the subsamples r+|r+

p > 0 and r−|r−p < 0,

r :=
[
r+|r+

p > 0
r−|r−p < 0

]
(43)

where rows are randomly re-sampled afterwards in order to remove systematic auto-correlation. Once r
is generated, the return vector of the market portfolio simply evolves as rm = w′r. This procedure is
then repeated a 1000 times to get a basket of simulated return data under different correlation spreads.

4.1. Asymmetries caused by correlation spreads

As discussed in Section 3, ceteris paribus, a difference in up- and down correlations is expected
to cause asymmetric 2nd order partial moments in the joint distribution of the market portfolio. By the
simulated data one is now able to explicitly verify this argument. For each of the 1000 simulated r
matrices I compute PM−, PM+ and skewness of the respective market portfolio. Figure 2 visualizes the
spread in partial moments as well as γm plotted against ∆c̄, both plots come with a linearly fitted line
to further emphasize the relation. Although every single firm’s r is drawn from a normal distribution,
both plots confirm that the joint distribution becomes asymmetric around its mean as soon as down-
correlations are different from up-correlations. Note that ∆c̄ = 0 leads to γm being on average 0, which is
straight forward as it describes the mono-correlation regime-otherwise, if this picture would not evolve,
then there would be an error in the generated data. The proper fit of the OLS lines indicate that there
is no systematic statistical bias with respect to the approximation of the lower partial moments by the
suggested Gram-Charlier expansion. By Equation 35 this linearity is an important feature.11 Goodness
of fit of the regression lines are 0.91 and 0.86 with highly significant coefficients (t-statistics of 103.5,
−78.0). Importantly, there does not seem to be any significant misestimation with respect to the level of
the correlation spread, neither in ∆PM nor in γm. With the patterns found in Figure 2 Hypothesis 1 can
be confirmed. Since all individual skews are equal to 0, the right plot of Figure 2 together with Equation
27 confirm Hypothesis 2.

10 Visualization of input volatilities and weights can be found in the Appendix.
11 I confirm that Gram-Charlier expansion is suitable as both plots seem to result in (i) elliptical estimates, (ii) do not show patterns of

non-linearity and (iii) residuals look to fulfill homoscedasticity. In the case of simulated data being drawn from a different distribution
one may check whether the correction term of Equation 36 is sufficient to remove statistical biases, otherwise further specifications are
required.
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Figure 2. Analysis of (true) correlation spread’s impact on portfolio asymmetries (∆c̄ =

c̄− − c̄+). Left plot displays difference in partial moments (PM− − PM+), right plot highlights
generated portfolio skewness. As proposed by the model, ∆c̄ causes both asymmetric PM− to
PM+ as well as skewness in the return distribution of the market portfolio. This observation is
an incentive to model a dual-correlation regime via the skewness channel.

Figure 3. True up-/down correlations versus estimated ones. Red lines are of intercept
zero and slope 1 to serve as accuracy reference. Left and mid plot show levels, right plot
the difference in estimated versus true dual-correlations. The Gram-Charlier approach as
discussed seems to deliver a good fit for estimating correlation duality. From visual inspection,
no statistical bias of the estimation model with respect to the level of true correlations is
observable.

4.2. Model precision

Having underpin Hypothesis 1 and 2, the question arises of how precise the proposed approximation
method is. For this purpose I plot ex-ante specified up-/down correlations against estimated ones of
Equation 36 and investigate whether there are systematic misestimations. Figure 3 does this plot. In
addition, the displayed lines are of intercept 0 and slope of 1. Hence the lines serve as reference: the
closer the estimates are on the line the higher the accuracy. Therefore, by Figure 3 one observes that
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estimation accuracy seems proper and there is no significant heteroscedasticity with respect to the level
of true up-/down correlations. This conclusion is important in an econometric sense, as by such one can
presume the model to be statistically unbiased. The estimation error for up-correlations ranged between
−0.055 and 0.061 at a mean of 0.002, respective values for the down-scenario are −0.081, 0.071 and
−0.0005.

Figure 4. Estimation error of up-/down correlations versus correlation spreads. No clear
dependence observable, thus no statistical bias with respect to ∆c̄. Thus, I suggest the Gram-
Charlier approach to be a feasible estimation model for expected up- and down correlations.

Going further into details, one may be also interested whether there is a statistical bias related to the
spread of correlations. Herein Figure 4 grasps the corresponding results. From visual inspection I am
not able to identify any systematic misestimation, as residuals for both cases seem to be homoscedastic
in ∆c̄.

Concluding the Simulation, I find support in favor of Hypothesis 1 and 2. By inspecting residuals of
estimated up-/down correlations, I presume that the proposed method delivers accurate and statistically
unbiased estimates for c̄+ and c̄−. Hence I suggest the model to be robust and appropriate for econometric
usage.

5. Empirical application

Within this section the discussed framework is applied upon empirical data. First, I start by
computing time-series of expected up-, down- and mid- correlations and compare them to each other.
Mid correlation is simply defined as the one used in Equation 3, that is CBOE’s equi-correlation. Second,
I analyze whether the implied correlation smirk as mentioned in Section 3 or Linders & Schoutens
(2014) is indeed empirically linked to differences in expected up-/down correlations. Within the third
part the model is used to demonstrate practical relevance upon an example of computing expected
up- and down CAPM betas, which are frequently used by portfolio managers (but typically estimated
ex-post).

All data are derived from Bloomberg L.P. and Thomson Reuter’s Datastream. Computations are
made upon the S&P 500 cross-section using option implied volatilities with a target maturity of 1 month
for both the single stocks and the index itself. The observation horizon is Dec. 2007 to Sept. 2018 and
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the computations are rolled over on an end-of-monthly basis. Note that the input data reflect investor
expectations under risk-neutrality (Q-measure), which can be transformed into P dynamics by explicitly
modeling expected variance as well as correlation risk premia. However, this is out of the scope of this
study and I would like to refer the reader interested into such a conversion to Carr & Wu (2009) or
Fassas & Papadamou (2018).

5.1. Up-, down- and mid correlations

Figure 5. Time Series of estimated up-, down- and mid correlations. Upper panel displays
the level, lower panel the spread between down and up correlations. While overall there is an
declining trend for the absolute level, the spread seems to increase over time. Estimates were
made by correcting for individual firm skews.

Herein the described model of Section 3 is applied upon empirical data to compute time series of
up and down correlations. Computations are made under the correction of firms’ individual ex-ante
skews,12 see Equation 27. The results are visualized in Figure 5 and summarized in Table 1. Overall I
find that for the entire observation horizon the correlation spread was positive with a slightly increasing
trend. This means that the aggregate of investor expectations thoroughly presumed equity returns to
be higher correlated for market downturns (rm < 0) than for recoveries (rm > 0). As can be seen in
Figure 5, the correlation spread shows time-varying behavior and ranges between 0.074 and 0.303 with
a mean of 0.167. Thus, non-surprisingly, a t-test of the spread results in ∆c̄ being significantly positive
at a t-statistic of 41.18. When compared to CBOE’s equicorrelation, the c̄+ was on average 24.7%
lower than c̄, while c̄− was 25% higher, hence diversification opportunities diminish in bearish markets.

12 Ex-ante skewness are estimated according to Jarrow & Rudd (1982), i.e. regression fit of Equation 37
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Concluding those observations, patterns found in empirical ex-post analyses (discussed in Section 2) are
also reflected ex-ante within investor expectations, such that assuming a mono-correlation regime may
cause statistical biases in financial analyses. This significant spread also underlines the importance of
using a dual-correlation regime within practical applications.

Table 1. Summary statistics of expected up (c̄+), down (c̄−) and mid (c̄) correlations.
Interestingly, up correlations were on average 24.7% lower compared to the classic mid
correlation; respectively, down correlations exceeded mid correlations by 25.0%. The average
spread between c̄− and c̄+ is 0.167, while the minimum spread is 0.074, which is not even
close to zero. Thus, empirics strongly support existence of a dual-correlation regime and
reject the mono-correlation assumption.

Corr. Min. 1st Qu. Median Mean 3rd Qu. Max.

up 0.049 0.196 0.293 0.300 0.392 0.626
mid 0.104 0.290 0.372 0.384 0.477 0.737
down 0.161 0.367 0.453 0.468 0.555 0.854

∆c̄ 0.074 0.133 0.165 0.167 0.197 0.303
up/mid −54.5% −31.3% −21.8% −24.7% −16.7% −8.1%
down/mid 8.3% 17.3% 22.4% 25.0% 31.6% 55.1%

In this context I believe it is further interesting to analyze correlation’s and spread’s dependency
on market mood. With economic intuition one would argue that an risk averse investor trades a higher
spread for bearish times (i.e., greater likelihood for downturns) than for confident times. For this
purpose I use the sentiment index iH of Schadner (2020a)13 which is a measure of the magnitude and
the direction of the market mood (optimistic/pessimistic). iH as originally presented is transformed in
the following way, ĩH = 2(iH − 0.5) such that ĩH ∈ (−1, 1), from which follows that ĩH is specified over
the same interval as correlations are. ĩH is interpreted as the more positive ĩH becomes, the better the
observed market mood; vice versa, if ĩH turns negative, then investors are pessimistic. Respective results
of the conducted analysis can be found in Figure 6 and Table 2. Since it is documented that the level of
average implied correlation seems to be dependent on the economic cycle (see Linders & Schoutens
(2014)), I start by quantifying the link between c̄ and ĩH. From plotting empirical ĩH against c̄ and
fitting a simple OLS regression, I find that there is a significant negative relation between those two
variables with a coefficient of −0.717 (t-statistic of -18.56). Hence the finding coerces with the statement
of Linders & Schoutens (2014). I further investigate how ∆c̄ changes with respect to changes in ĩH. If
market participants are risk averse, then economic intuition would tell that correlation spreads increase
if market fear rises and vice versa. Let ∆t(∆c̄) := ∆c̄t − ∆c̄t−1 and ∆t(iH) := ĩHt − ĩHt−1 express the
time changes in correlation spreads and market mood, by plotting corresponding observations against
each other (Figure 6, right plot) one can inspect that the suggested relation indeed holds in empirical
data. Also for this setting, a simple OLS regression delivers a proper fit and indicates the regression’s
coefficients to be highly significant at a level of −0.225 and t-statistic of −7.828.

13 Option implied Hurst exponent which is computed from the term-structure of S&P500 ATM implied volatilities.
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Figure 6. Implied correlations versus market mood. X-axes are assigned to the transformed
implied Hurst exponent (ĩH): above 0 indicates an optimistic market phase, below 0 reflects a
bearish market. Left plot displays the level of average correlations on the y-axis versus level
of ĩH, right plot the time-changes of ∆c̄ vs. time-changes of ĩH. The displayed pattern seems
interesting in the following sense: market mood and average correlations tend to move in
opposing directions. Thus, when diversification is need the most, i.e. during bearish markets
(ĩH < 0), it is more difficult to achieve. This risk aversion can be also observed with a look on
time-increments; when the mood drops then this comes simultaneously with an increase in
∆c̄. Other way around, investors are willing to reduce correlation spreads when market mood
rises.

Table 2. Fitted OLS regression lines with respect to market mood (ĩH), see Figure 6. First
column (1) analyzes the levels of equicorrelations vs. ĩH, second column the time-changes
in the correlation spread with respect to time changes in ĩH . Average correlation relates
significantly negative to market mood. Thus, high correlation expectations are observed during
bearish markets, while bullish markets are easier to diversify at. The significant negative
relation in (2) is equivalently interpreted as investors risk-aversion: if sentiment drops, than
there may be a higher likelihood of market downturns, thus market participants increase the
traded correlation spread.

(1) levels (2) time increments

average corr. ∆t(∆c̄)

ĩH −0.717∗∗∗ ∆t ĩH −0.225∗∗∗

(0.039) (0.029)

Intercept 0.518∗∗∗ Intercept 0.001
(0.010) (0.003)

R2 0.729 0.325

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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An additional empirical analysis has been carried out with respect to the S&P 500 constituent
turnover. The turnover is defined as the number of firms entering or exiting the index, respective
decisions for the index are made on a quarterly basis. Hence, the data is split into quarters and for each
sub-sample the turnover as well as quarter-average and end-of-quarter c̄, ∆c̄ are computed. In a next step,
Spearman dependencies between turnover and c̄, ∆c̄ are estimated.14 The results indicate no monotonic
relationship between the turnover and c̄, estimates are −0.023 (q.-average) and −0.010 (end-of-q.). The
relationships between turnover and implied spreads ∆c̄ are slightly negative at −0.161 (q.-average) and
−0.212 (end-of-q.), but still in-significant. Therefore I conclude that there is no substantial dependence
between turnover rates and implied correlations.

5.2. Implied correlation surface vs. correlation spread

Within the subsequent analysis it is evaluated whether Hypothesis 3 is met in empirical data or
not. Specifically, time series of equicorrelations (Equation 3) are computed for moneyness levels of
90%, 95%, 100%, 105% and 110%; Figure 7 shows the respective output. Hypothesis 3 basically states
that the duality spread (c̄− − c̄+; cp. Figure 5) has to increases when the lines in Figure 7 diverge, and
diminish when the lines within the plot overlap. The test of Hypothesis 3 is broken down into two
set-ups, a ’two-sided’ one (Figure 8, upper plots) and a ’one-sided’ one (Figure 8, lower plots). For the
two-sided set-up both options of the OTM spread have a moneyness level different from 100%, while
for the one-sided set-up one of the option’s moneyness level is fixed to at-the-money and the other one
is non-ATM. The reason to do so is the following, while with the two-sided test I evaluate whether
there is a general connection between moneyness spreads and correlation duality, the one-sided test also
evaluates whether the direction is correct. Let excess correlations be defined as estimates in excess of c̄
(i.e., mid-correlation computed under ATM level). By the economic argument of Linders & Schoutens
(2014) as well as the sketched proof before, the excess down correlation has to be positively related to
excess correlations of moneyness levels lower than 100%. Vice versa, excess correlations of moneyness
> 100% should be positively related to the excess up-correlation. The two-sided spreads are chosen
to be symmetric around ATM, thus I analyze the 95%–105% spread and the 90%–110% one. For the
one-sided test implied estimates are compared for ±5% in excess of ATM. Results for the one-sided
as well as two-sided set-up can be found in Figure 8 and Table 3. Generally, I find thorough empirical
support for Hypothesis 3. As initially suggested, all four analyzes realize a significant positive relation
between spreads from the correlation smile and spreads from estimated up-/down correlations. This
does not only confirm the model, but also motivates to use (excess) correlations of the implied smile as
proxies for expected up- and down correlations.

14 Spearman instead of Pearson measure is used due to the smaller sample size.
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Figure 7. Time series of implied (mid-)correlations for different levels of option moneyness.
Obviously the implied correlation surface is not flat thorough the observation period as lines
do not coerce. Hypothesis 3 claims that the spread among different levels of moneyness links
to investors expecting different up- than down correlations.

Figure 8. Upper plots display correlation spreads from non-ATM options (y-axis) versus
spread of estimated up-/down correlations (x-axis); left-upper plot shows values from
moneyness equal to 100 ± 5%, right-upper plot the 100 ± 10% case. The linearly fitted
blue lines support the statement that implied correlation smiles indicate correlation duality.
Lower plots display spreads in excess of the mid-correlation. As suggested by the model,
excess down correlations are positively linked to excess OTM spreads, same holds for excess
up correlations and ITM spreads. Summary statistics of the OLS fitted lines can be found in
Table 3.
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Table 3. Linearly fitted regression lines as displayed in Figure 8. All slopes are (i) significant
and (ii) close to 1. This pattern supports the statement that a smirk in the implied correlation
surface (Figure 1) can be interpreted as investors expect up-movements to be less correlated
than down-movements.

moneyness spread:

95% − 105% 90% − 110% 95% − 100% 100% − 110%

Up-/Down Spread 1.003∗∗∗ 0.947∗∗∗

(c̄− − c̄+) (0.137) (0.174)

Excess Down 1.037∗∗∗

(c̄− − c̄) (0.232)

Excess Up 1.003∗∗∗

(c̄ − c̄+) (0.202)

Intercept 0.065∗∗∗ 0.118∗∗∗ 0.064∗∗∗ −0.001
(0.024) (0.030) (0.020) (0.017)

R2 0.294 0.188 0.135 0.162

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

From those observations I conclude the statement of Linders & Schoutens (2014) and thus also
Hypothesis 3 to hold. Hence the implied correlation surface may be directly used for approximating
expected up-/down correlations.

5.3. Practical example: expected up-/down betas

Within this section I highlight the use of the dual correlation regime upon the example of up- and
down betas of the CAPM model (Sharpe (1964)), which are frequently used by investment practitioners
in the context of corporate valuation, portfolio or risk management purposes. (cp. Chong & Phillips
(2013)) Worth to mention, the beta-duality within this study is addressed via the channel of asymmetric
correlation believes, an alternative (economic) approach is given by Campbell & Vuolteenaho (2004)
who break CAPM beta into two components: a discount-rate beta and a cash-flow beta. Within their
work, the former one is the “good” beta, the latter one the “bad” beta. At the dual-correlation model,
up-betas are “good” (preferred by investors) and down-betas are “bad” (disfavored).15

Under standard CAPM, a stock’s beta βi is defined as

βi =
cov(i,m)
σ2

m
=
ρi,mσiσm

σ2
m

(44)

15 A link between the two models exists if it can be proven that discount-rate and cash-flow news are drivers of asymmetric correlation
believes. This proof requires an in-depth theoretical and empirical analysis and is out of scope of this study.
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Thus, the extension for correlation duality is very simple; given volatilities as well as correlations are
computed ex-ante, at time t, the vector of expected up betas β+ and down betas β− evolve from Equations
36 and 44 as

β+ =
1
σ2

m
DΓ+Dw and β− =

1
σ2

m
DΓ−Dw (45)

which are computed on a monthly basis. Note that the use of implied data here has two main advantages.
First, beta estimates are per construction time conditional as implied volatilities are. Second, since all
input data are ex-ante, estimates reflect per definition investor expectations which is a key requirement
of CAPM.

For the empirical analysis the correlation estimates from before are used to compute β+
t and β−t

for each t. Respectively, mid-betas (βmid) are calculated under the equicorrelation regime using c̄.
Therefore, I receive time-series for each of the three different beta vectors. Tabble 4 summarizes the
resulting estimates over time and stocks. Since by Figure 5 the down correlation is mainly larger than
its counterpart, it is not surprising that β+

it’s are on average below 1 and β−it’s above 1. By expressing the
estimates relative to βmid the picture is very similar to Table 3 from before. That is, the mono-correlation
model would underestimate market risk exposure on average by 24.8%, while it overestimates upside
potential by 24.5%. This conclusion fosters the relevance of such a dual-correlation regime for efficient
portfolio risk management. Densities of β+ and β− are visualized in Figure 10. At Figure 9 time-series of
the cross-sectional beta vectors are summarized, showing the 5% and 95% quantile as well as the mean
of β+ and β−. As ∆c̄ is increasing over the observation horizon, it follows that average β+ decreases
while β− increases over t. Interesting at this point, the discrepancy between up- and down betas is less
during the time period of the financial crisis (2008).

Figure 9. Time series of cross-section’s estimated up- and down CAPM betas. mean
corresponds to cross-sectional average beta, q5 to the 5% and q95 to the 95% quantile.
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Table 4. Summary statistics of cross-sectional and time-conditional expected CAPM up- and
down beta estimates. First two rows give insights to the distributions of betas. Last two rows
show how the dual betas are different in comparison to standard CAPM betas. Thus one
sees that expected up betas are significantly overestimated, on average by 24.5%, while the
opposite holds for downside betas by 24.8%.

Min. 1st Qu. Median Mean 3rd Qu. Max.

β+ 0.017 0.617 0.781 0.836 0.999 5.142
β− 0.029 1.052 1.294 1.379 1.592 10.324
β+/βmid −54.5% −31.3% −21.7% −24.5% −16.5% −7.8%
β−/βmid 8.0% 17.2% 22.2% 24.8% 31.6% 55.1%

Figure 10. Visualization of Table 4: Densities of up- and down CAPM betas over the entire
cross section and time series. Up-betas peak below 1, down-betas above. This is due to the
fact that investors expect the cross-section to correlate higher for market down movements
than for growth phases. Hence there is a larger risk exposure for the downside.

Henceforth it gets obvious that there is a clear difference between expected up- and down betas. To
put it in a nutshell, the empirical application demonstrates that the proposed model of correlation duality
is straight forward to implement and gives some interesting insights to financial market’s behavior.

6. Conclusions

It is commonly known that equity correlations are typically higher during market down turns than
for recovery times, which is not only documented in academic literature, but also frequently incorporated
by investment practitioners for risk- and portfolio management purposes. Given this fact, this paper
develops a model which allows to estimate expected up- and down correlations while relying purely
on forward looking data (i.e., option implied volatilities). To the best of my knowledge, the method is
first to be completely specified ex-ante and thus not affected by a backward looking bias, which allows
to react faster to changes in the the current market situation. When validated on simulated data, the
approach evolves to deliver reliable and unbiased estimates. Applied upon empirical data (S&P500,
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2007–2018), several conclusions are derived. For example, expected down correlations are mainly
higher than up correlations; the spread is on average 0.167. In greater detail, it is observed that this
spread is time-varying and significantly dependent on current market mood: the worse, the greater the
correlation spread. From this follows that stock diversification is expected to be more difficult when it is
needed the most. By comparing estimated ex-ante up-/down correlations with the implied correlation
surface I am able to confirm presumptions made in other studies, demonstrating that there is a theoretical
as well as empirical link between them. To further highlight the practical relevance of a dual-correlation
regime, empirical insights are provided that there is a substantial difference between expected up- and
down CAPM betas. Additional potential practical implications of the implied correlation regime are for
example at portfolio management, where one wants to control for down-side risk (e.g., value-at-risk)
using such forward looking information. Another example could be in the context of policy research:
implied volatility indices are highly affected by policy announcements (e.g., Rehman (2017), Shaikh
(2019)), analyzing respective responses of implied up- and down-correlations is then likely to indicate
how policy announcements affect changes in investor risk perceptions.

Acknowledgments

Most of the research for this work has been conducted during the author’s former affiliation with
the University of Innsbruck, Austria.

Conflict of interest

The author declares no conflicts of interest in this paper.

References
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