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Abstract: The COVID-19 pandemic has demonstrated the importance and value of multi-period asset
allocation strategies responding to rapid changes in market behavior. In this article, we formulate and
solve a multi-stage stochastic optimization problem, choosing the indices’ optimal weights dynamically
in line with a customized data-driven Bellman’s procedure. We use basic asset classes (equities, fixed
income, cash and cash equivalents) and five corresponding indices for the development of optimal
strategies. In our multi-period setup, the probability model describing the uncertainty about the
value of asset returns changes over time and is scenario-specific. Given a high enough variation
of model parameters, this allows to account for possible crises events. In this article, we construct
optimal allocation strategies accounting for the influence of the COVID-19 pandemic on financial
returns. We observe that the growth in the number of infections influences financial markets and makes
assets’ behavior more dependent. Solving the multi-stage asset allocation problem dynamically, we (i)
propose a fully data-driven method to estimate time-varying conditional probability models and (ii) we
implement the optimal quantization procedure for the scenario approximation. We consider optimality
of quantization methods in the sense of minimal distances between continuous-state distributions and
their discrete approximations. Minimizing the well-known Kantorovich-Wasserstein distance at each
time stage, we bound the approximation error, enhancing accuracy of the decision-making. Using
the first-stage allocation strategy developed via our method, we observe ca. 10% wealth growth on
average out-of-sample with a maximum of ca. 20% and a minimum of ca. 5% over a three-month
period. Further, we demonstrate that monthly reoptimization aids in reducing uncertainty at a cost of
maximal wealth. Also, we show that optimistically offsetted distribution parameters lead to a reduction
in out-of-sample wealth due to the COVID-19 crisis.
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1. Introduction

Nowadays, people, companies and governments in our fast-developing and changing world are
increasingly starting to face more situations and problems where they need to take decisions under
uncertainty in a multi-period environment. In the financial sector, the ongoing COVID-19 pandemic has
demonstrated the lack of robust multi-stage investment strategies in respect to non-stationary returns
with high variability. Reflecting the impact of the COVID-19 crisis on the insurance industry, the
Swiss Re Group, one of the world’s leading providers of reinsurance and insurance, has reported a net
loss of EUR 200 mln. for the first quarter of 2020. According to Willis Towers Watson (WTW), a
leading global advisory, broking and solutions company, the coronavirus crisis could result in general
insurance losses of up to EUR 70 bln. across key insurance classes in the UK and US. On the global
scale, the expected monetary loss of global Gross Domestic Product (GDP) ranges from EUR 70.83
bln. to EUR 320.42 bln. dependent on the severity of the scenario. Moreover, even these losses can be
underestimated due to the inability of models to accurately reflect the reality.

In this work, we focus on an asset manager who aims to optimize his/her portfolio allocation in a
multi-period environment given highly non-stationary historical data on five assets. The historical data
spans from 4th January 1999 to 6th July 2020, is on a daily basis and covers the following indices:

US0003M: 3-month US dollar LIBOR interest rate

SBWGU: World Government Bond index in US dollars

LG30TRUU: Barclays Global High Yield Total Return Index

NDDUWI: MSCI World Total Return (Net) Index

NDUEEGF: MSCI Emerging Markets Index.

We consider a multi-period portfolio allocation problem of constrained maximization of the expected
CARA utility and we use the multi-stage stochastic optimization as a well-known mathematical tool for
the solution of decision-making problems under uncertainty (Shapiro et al. 2009; Pflug and Römisch
2007). We employ numerical solution methods to overcome the fact that the explicit theoretical solution of
a multi-stage optimization program may be difficult or even impossible to obtain due to its functional form
Pflug and Pichler (2012) and Keshavarz and Boyd (2012). This makes a numerical approach a challenging,
important and, very often, irreplaceable method in the field of research.

Our goal in this work is to develop dynamic programming schemes combined with optimal
uncertainty approximation techniques. Dynamic programming arises from pioneering papers (Bellman
1956; Bertsekas 1976; Dreyfus 1965), that expressed the optimal policy in terms of an optimization
problem with iteratively evolving value function. More recent works (Bertsekas 2007; Keshavarz
and Boyd 2012; Hanasusanto and Kuhn 2013; Powell 2007) are built on the fact that the stage-wise
estimation of the future value function is a computationally complex procedure. This stresses the
necessity to develop numerically efficient dynamic programming algorithms for the solution of multi-
stage stochastic optimization problems. Some efficient algorithms are described in the works of
(Bertsekas 2007; Hanasusanto and Kuhn 2013; Keshavarz and Boyd 2012; Powell 2007). However,
most of the existing methods use a randomized approach in accounting for the stage-wise available
information. This may result in a solution bias, especially during a crisis period.
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The recent article (Bertsimas et al. 2020) makes a very progressive step towards data-driven approaches
in multi-stage stochastic optimization by taking the time dependency structure explicitly into account
in a linear case. We follow this path and, in our applied setup, we develop a data-driven dynamic
programming scheme for a case with a concave objective function (CARA utility). In our work, optimal
allocation decisions for the future are taken in a multi-period environment, given only past time-series
data on assets’ returns. Clearly, some assumptions about the future of stock returns are necessary for
the solution of the problem. Our assumptions concern returns’ marginal and conditional distribution
functions, for which we consider three scenarios: pessimistic, optimistic and conservative.

Pessimistic: In the pessimistic scenario, we consider distribution estimates which arise based on the
COVID-19 time period data and we allow the next wave to happen in the planning horizon.

Optimistic: In the optimistic scenario, we estimate returns’ distribution functions based on the data before
the COVID-19 pandemic, thus, accounting for returns on pre-crisis levels in our planning horizon.

Conservative: In the conservative case, we use a theoretical approach, given the type of marginal
distributions the in-sample data follows. If marginal distributions are Gaussian, the conditional
distributions can be expressed in a closed form in line with the well-known work of (Lipster and
Shiryayev 1978).

As a fourth scenario, one could account for signal-based nonparametric conditional distribution
estimates using COVID-19 early signals to compute means and covariances of future probability models.
This, however, is not within the scope of our work due to the lack of historical data on the possible signals.
Instead, we work with stochastic processes defined by their continuous-state probability distributions
estimated data-based and we assume that these distributions may change over periods in line with their
conditional forms (Fort and Pagés 2002; Graf and Luschgy 2000; Pflug 2001). Working, therefore, in a
purely distributional setup, we propose two solution schemes: (i) one scheme approximates the initial
continuous-state stochastic process by a finitely valued scenario tree prior to an optimization step, while
(ii) another uses a data-driven scenario tree approximation directly inside the dynamic programming
procedure. Overall, our solution procedure can be subdivided into the following steps:

Step 1: Obtain data-driven estimates of marginal and conditional distribution functions;

Step 2: Approximate the estimated continuous distributions by optimized discrete ones;

Step 3: Solve the underlying optimization problem dynamically,

where Steps 2 and 3 are combined together in the data-driven scheme and where the initial multi-stage
stochastic optimization program is formulated in a continuous form while the approximate problem is
finite and discrete. The distance between the problems determines the approximation error and, thus,
the approximation accuracy.

Next, if a closed-form solution would be available for the multi-stage stochastic optimization
problem of interest, Step 1 would directly lead to the optimal decision. However, due to the variational
form of multi-stage problems and to the absence of closed-form solutions in a general case, an estimation
of continuous-state distribution functions (i.e., Step 1) does not provide the optimal strategy and further
approximations are necessary. For the approximation of uncertainty in returns, we focus on optimal
quantization methods of continuous-state stochastic processes by finite and discrete scenario trees
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using the well-known Kantorovich-Wasserstein distance and its optimization, i.e., Step 2 (Kantorovich
1942; Römisch 2010; Timonina 2013; Timonina 2014; Villani 2003). We minimize the Kantorovich-
Wasserstein distances between continuous-state distribution functions and their discrete approximations
at each stage of the scenario tree.

On one hand, the use of the Kantorovich-Wasserstein distance is motivated by the fact that the
amount of information available on scenario trees is crucial for the correct estimation and minimization of
the approximation error. In particular, past time-interdependencies and future probabilistic information
must be considered: their incorporation would be noisy in case of random sampling (i.e., Monte-Carlo
generation). On the other hand, the fundamental result of (Pflug and Pichler 2012) suggests that the
approximation error between the optimization problems can be bounded by the term proportional to
the sum of stage-wise Kantorovich-Wasserstein distances. Thus, the minimization of this sum over a
finite tree structure would lead to the optimal quantization that could provide a fine approximation of
the initial problem and, moreover, bound the minimal distance between corresponding optimal values.
For example, if the difference in optimal values in wealth-maximization problems could be bounded by
100,- USD, one would be confident that the developed strategy is worse than the true optimal one by no
more than 100 USD.

The stage-wise minimization of the Kantorovich-Wasserstein distance between a continuous and a
discrete distribution can be performed via existing numerical methods (Pflug and Pichler 2011; Timonina
2013; Timonina 2014; Villani 2003). The question of computational efficiency is clearly of interest in
scenario quantization. It is necessary to understand how many values the scenario process should have at
each stage of the scenario tree in order to reduce the computational time and to keep the approximation
error small. One would wish for small scenario trees and high approximation quality. Importantly, our
scenario quantization approach allows to avoid a high number of Monte-Carlo (or Quasi Monte-Carlo)
samples which such methods would require, and to enhance the accuracy of the approximation due
to the quantization optimality. Furthermore, our data-driven dynamic programming scheme requires
much less distribution estimates than the dynamic programming on scenario trees; in particular, the
number of distributions grows linearly compared to the exponentially increasing complexity of scenario
tree methods. Due to this, our solution method can be applied in a huge variety of areas. Starting from
financial planning and inventory control, possible applications include topics such as energy production
and trading, electricity generation planning, pension fund management and similar fields.

From the asset manager perspective, we approximate a continuous non-linear asset allocation
problem by a discrete one. Solving the problem numerically via our methods, we construct multi-stage
optimal asset allocation strategies. In the final part of our work, we compare the profitability of different
investment tactics:

Constant tactic: the investor uses the first-stage decision of the three-stage stochastic optimization
problem without changing the strategy from month to month;

Reoptimization tactic: the investor changes the weights, reoptimizing the solution from month to
month (and, thus, using the first-stage decision each month);

Adaptation tactic: the investor adapts the decision from month to month without reoptimization based
on the initial multi-stage solution of the dynamic program.

In general, we consider the problem from the side of an investor who reoptimizes or adapts the
decision in each period, as well as from the perspective with no reoptimization (or adaptation) due
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to high fees or operating costs. Performing our analysis with a link to COVID-19 daily data on new
infections, we observe that the reoptimization tactic aids in reducing future wealth uncertainty even
in times of crisis (COVID-19). Using the first-stage allocation strategy developed via our method, we
observe ca. 10% wealth growth on average out-of-sample with a maximum of ca. 20% and minimum of
ca. 5% in three months. Also, our analysis accounts for an increase in volatility of assets, highlighting
the relation between the pandemic and the assets’ behavior, which is in line with the articles (Hoffmann
et al. 2005; Hou 2007; Safvenblad 1997; Lo and Mackinlay 1989; Veronesi 1999), studying the effect
of bad news on the stock market and demonstrating a faster diffusion of a negative information (e.g.,
growth in COVID-19 infections). We show that optimistically offsetted distribution parameters (mean
and covariance matrix) lead to a reduction in the out-of-sample wealth.

The rest of the research article is structured as follows. Section 2 describes the mathematical
framework, introducing multi-period asset allocation problems. In Section 3 we describe a forward-
looking solution procedure on scenario trees and develop dynamic programming schemes with optimal
quantizers. Finally, describing our data in Section 4, we propose a three-month optimal allocation
strategy adapted to COVID-19 in Section 5.

2. Problem formulation

Consider the following multi-stage multi-asset portfolio allocation problem maximizing the
expected total utility H(x, ξ) on a horizon t = 1, ...,T

max
x

E

H(x, ξ) = −

T∑
t=1

exp(−atWt(ξt))

 ,
subject to ξ / F , x / F , (1)
Wt(ξt) = Wt−1(ξt−1)xt−1(ξt−1) · (1 + ξt), ∀t = 1, ...,T,
xt−1(ξt−1) ≤ βt−1, xt−1(ξt−1) ≥ 0, 1′xt−1(ξt−1) = 1, ∀t = 1, ...,T.

Here, at is a time-dependent constant representing the degree of the investor’s risk preference. We
let W0 be the initial wealth, Wt the investor’s realized wealth at period t = 1, ...,T , x = (x0, ..., xT−1)
the vector of optimal weights and ξ = (ξ1, ..., ξT ) the multi-dimensional stochastic process of returns
following stage-wise multivariate distributions ξt ∼ Ft(·). We let ξ0 be the current non-stochastic return
and assume it to be equal to zero without loss of generality. We denote process history up to time t by
ξt = (ξ1, ..., ξt). Further, we introduce constraints ξ / F , x / F incorporating consecutively evolving
information. Random returns ξt and their optimal weights xt are measurable with respect to σ-algebra
Ft ∀t. Notations 0 and 1 stand for the vectors of zeros and ones correspondingly. The vector βt bounds
the percentage allocated to each asset.

Note that both the decision xt and the wealth Wt depend on the history ξt of the stochastic process.
As its realization is unknown at time t = 0, the decision xt differs for each possible path of ξt. Therefore,
the optimal solution varies in time and is a function of the past uncertainty. To obtain the solution,
it is not enough to estimate multivariate distributions Ft(ξt). One needs to account for conditional
distributions Ft(ξt|ξ

t−1). Given the above, problem (1) is a multi-period decision-making problem under
time-interdependent uncertainty (Ermoliev et al. 2004; Shapiro et al. 2009), which can be solved via
multi-stage stochastic optimization and approximation techniques.

We use numerical methods for the solution, approximating continuous distribution functions by
discrete ones. Our goal is to customize the well-known dynamic programming procedure for the problem
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(1) enhancing the efficiency of the method via fast data-driven estimates of distribution functions and
via an effective approximation of the value function. Overall, a numerical approach is very often an
irreplaceable solution method due to the variational form of such problems.

In general terms, problem (1) belongs to the class of multi-stage expectation-maximization stochastic
optimization programs given in the form with an objective function H(x, ξ) represented as a sum of stage-wise
profit/loss functions ht(·), i.e., H(x, ξ) = h0(x0) +

∑T
t=1 ht(xt, ξt) (Pflug and Römisch 2007):

max
x∈X,x/F

E

H(x, ξ) = h0(x0) +

T∑
t=1

ht(xt, ξt)

 , (2)

where ξ = (ξ1, ..., ξT ) is a continuous-state stochastic process defined on the probability space (Ω,F , P)
and ξt = (ξ1, ..., ξt) is its history up to time t. The random process ξ and the solution x = (x0, ..., xT−1)
fulfill the non-anticipativity conditions implying the consecutive evolution of information in time (e.g.,
exact future returns are not known before the realization occurs). For this, we require the measurability
with respect to σ-algebra Ft ∀t, e.g., ξ / F . Also, X denotes a general set of constraints on x.

For the numerical solution of the problem (2), we introduce the approximated problem (3) with the
objective function H(x̃, ξ̃) = h0(x̃0) +

∑T
t=1 ht(x̃t, ξ̃t):

max
x̃∈X,x̃/F̃

E

H(x̃, ξ̃) = h0(x̃0) +

T∑
t=1

ht(x̃t, ξ̃t)

 . (3)

Here, the finitely-valued scenario process ξ̃ = (̃ξ1, ..., ξ̃T ) approximates the stochastic process ξ
(Pflug and Römisch 2007, Pflug 2010, Pflug and Pichler 2011, Pflug and Pichler 2012). The process ξ̃ is
defined on a probability space (Ω̃, F̃ , P̃). The distance between problems (2) and (3) determines the
approximation error (Pflug and Pichler 2012; Timonina 2013).

For the approximation of the problem (1), we use a scenario process ξ̃ which has S t samples
for each conditional distribution Fd

t (ξ̃t |̃ξ
t−1) ∀d = 1, ...,Dt at a given time t = 1, ...,T , i.e., ξ̃s,d

t , t =

1, ...,T, d = 1, ...,Dt, s = 1, ..., S t. These values are attained with probabilities ps,d
t equal to the

probability of a distribution multiplied by the probability of a scenario at a particular time. The problem,
thus, yields

max
x̃

−

T∑
t=1

Dt∑
d=1

S t∑
s=1

ps,d
t exp(−atW s,d

t ),

subject to ξ̃ / F̃ , x̃ / F̃ , (4)
W s,d

t = Wt−1 x̃d
t−1 · (1 + ξ̃s,d

t ), ∀t = 1, ...,T, ∀s = 1, ..., S t, ∀d = 1, ...,Dt,

x̃t−1 ≤ βt−1, x̃d
t−1 ≥ 0, 1′ x̃d

t−1 = 1, ∀t = 1, ...,T, ∀d = 1, ...,Dt.

Note that we could avoid the recursion W s,d
t = Wt−1 x̃d

t−1 · (1 + ξ̃s,d
t ) of the problem (1) replacing it

with the constraint W s,d
t = W0 x̃d

t−1 · (1 + ξ̃s,d
t ) if the stage-wise optimal solution xt−1 would not depend

on the starting wealth Wt−1 providing the same fraction for any initial wealth. This is due to the fact
that the investor is interested in the optimal allocation but not the optimal value of the problem and,
thus, we could keep the investment amount fixed to W0 at each period without influencing the optimal
weights. Nevertheless, the constrained maximization of CARA utility does not imply this property
being counterintuitive in this respect (a simple example can be found in Appendix 7.1).
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3. Numerical solution method

The approximate problem (4) can be solved via a forward-looking procedure, for which the
construction of a scenario tree is necessary before the optimization step (Section 3.1). Scenario trees
grow exponentially in the number of nodes, making the method accurate but inefficient. Differently,
problem (4) can be solved using the Bellman’s principle of optimality starting at the stage T due to
the fact that the objective function of the optimization problem (4) is separable in decisions x̃t ∀t. In
this part of the article, we demonstrate how to linearize the growth of scenario trees in the number of
distributions given the starting wealth W0 at each period t. For this, we use the Bellman’s principle
of optimality and construct a data-driven scenario tree during the optimization step (Section 3.2). We
reduce the approximation error between problems (1) and (4) using the stage-wise minimization of
the well-known Kantorovich-Wasserstein distance between continuous and approximate (i.e., discrete)
distribution functions. Combining the stage-wise optimal quantization with a backtracking dynamic
programming enhances the solution accuracy and keeps the method suitable for high-dimensional cases.
In Section 3.3, we consider the solution method on scenario trees with the stage-wise evolution of the
starting wealth Wt. In the numerical section, we test all proposed strategies for the case when the starting
wealth evolves in time and the investor uses the total available amount for the allocation.

3.1. Forward-looking procedure

The forward-looking approach used for the solution of multi-stage stochastic optimization problems
is based on the approximation of stochastic process ξ = (ξ1, ..., ξT ) by a scenario tree. At the stage t = 1,
there is only one conditional distribution which coincides with the marginal one, due to the fact that
ξ0 = 0 is a non-stochastic observation. Approximating this distribution with the discrete one sitting on
S 1 points, one assumes S 1 conditional distributions at the stage t = 2. Further, approximating each of
these S 1 distributions by discrete ones with S 2 points, one assumes S 2 · S 1 conditional distributions at
the stage t = 3 and so on. Thus, starting with the stage t = 1 and proceeding to t = T , one estimates
conditional distributions based on previously sampled realization paths (Mirkov and Pflug 2007; Mirkov
2008). Next, one approximates these distributions by discrete ones using scenario quantization methods
(e.g., Monte-Carlo sampling, quasi Monte-Carlo sampling, optimal quantization) and acquires a finitely-
valued scenario tree (Heitsch and Römisch 2009; Pflug and Pichler 2011) directly used for the numerical
solution of the multi-stage stochastic optimization problem. One can use multiple quantization methods
in order to approximate the stochastic process ξ by a scenario tree:

Monte-Carlo (random) generation randomly selects S t points from the conditional distribution
function Fd

t and assigns equal probabilities to them (Fishman 1995);

Quasi Monte-Carlo generation replaces random samples of the Monte-Carlo method by deterministic
points uniformly distributed in [0, 1]r, where r is the dimensionality of the stochastic process;

Optimal quantization minimizes the well-known Kantorovich-Wasserstein distance dlKA
(
Ft, F̃t

)
(see

Appendix 7.2) between the continuous multivariate distribution Ft and its discrete approximation
F̃t (Kantorovich 1942, Villani 2003). The optimal supporting points ξ̃s, s = 1, ..., S t are found by
the minimization of a functional

∫
mins d(ξt, ξ̃

s)Ft(dξt) over ξ̃1, ..., ξ̃S t with d(ξt, ξ̃
s) being an l1- or

an l2-distance.
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Algorithm 1 Stage-wise optimal quantization.
There is only one distribution function F1 at the stage t = 1 of the tree. Approximate this distribution by a discrete one
finding S 1 optimal points and the corresponding probabilities. Set D2 = S 1.
for t=2,...,T do
Dependent on the supporting point at the stage t − 1, discretize Dt conditional distributions Fd

t , d = 1, ...,Dt at t:

• Find S t optimal supporting points via the minimization of the multiple integral
∫

mini d(ξt, ξ̃
s,d
t )Fd

t (dξt) over
ξ̃1,d

t , ..., ξ̃S t ,d
t , ∀d = 1, ...,Dt. Assign probabilities ps,d

t , s = 1, ..., S t to these points minimizing the Kantorovich-
Wasserstein distance dlKA(Fd

t ,
∑S t

s=1 ps,d
t δξ̃s,d

t
), ∀d = 1, ...,Dt. Set Dt+1 = Dt · S t.

end for

Algorithm 1 describes the stage-wise optimal quantization with optimal supporting points and
probabilities demonstrated in Figure 1a. The stochastic process is Gaussian and every conditional
distribution of ξt given the history ξt−1 is also a normal distribution with known mean and variance
(Lipster and Shiryayev 1978). For comparison, Figure 1b shows a randomly-quantized scenario tree.
Note that the Monte-Carlo generation assigns equal probabilties to the sampled points.
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Figure 1. Quantization of the scenario tree with a Gaussian random variables ξt, ∀t.

Overall, trees with high branchiness give a finer approximation of stochastic processes. However,
the exponential complexity of forward-looking procedures is the result of an increase in the number of
scenarios and in the size of the tree. For example, a binary tree with T = 3 has 7 conditional distributions
and, thus, 7 decision vectors. Differently, a ternary tree (Figure 1b) has 13 conditional distributions and,
thus, 13 decision vectors. Note that Figure 1 demonstrates the univariate case with a one-dimensional ξ̃t.
In case of multidimensionality of the process ξ̃, vectors would correspond to each node of the tree.

In this article, we use optimal quantization for the distributional discretization due to the fact that it
provides a better guarantee for the approximation quality. Under the assumption of Lipschitz-continuity
with constants L1, ...., LT , i.e., if dlKA(Ft(·|u), Ft(·|v)) ≤ Ltd(u, v), ∀t = 1, ...,T , the sum of stage-wise
Kantorovich-Wasserstein distances establishes an upper bound for the approximation error between
problems (2) and (3): the proof is provided in (Pflug and Pichler 2012), which implies

|v − ṽ| ≤ L1

T∑
t=1

dlKA(Ft, F̃t)
T∏

s=t+1

(Ls + 1),

where value functions v and ṽ correspond to optimal solutions of the multi-stage problems (2) and (3).
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3.2. Data-driven dynamic programming

The idea of dynamic programming goes back to pioneering papers (Bellman 1956; Bertsekas 1976;
Dreyfus 1965), expressing the optimal policy in terms of an optimization problem with iteratively
evolving value function (the optimal cost-to-go function). More recent works (Bertsekas 2007;
Keshavarz and Boyd 2012; Hanasusanto and Kuhn 2013; Powell 2007) are built on the fact that the
evaluation of optimal cost-to-go functions involving multivariate conditional expectations is
computationally complex. This stresses the necessity to develop numerically efficient dynamic
programming algorithms.

For a time-separable optimization problem, the objective function can be written in a way, which
allows to separate (to partition) current decision xt from all previous decisions at stages (0, 1, ..., t − 1).
Such problems can be solved via multiple algorithms (Bertsekas 2007; Hanasusanto and Kuhn 2013;
Keshavarz and Boyd 2012; Powell 2007). However, the suboptimality of existing methods due to a
randomized approach in accounting for the information available at stages t = 1, ...,T of the problems
may result in under- or overestimation of the optimal value, especially in case of stochastic processes
with a heavy-tailed distribution functions or in case of a non-stationary data, as during a crisis. We
use stage-wise optimal quantizers and propose an efficient data-driven technique for the solution of the
problem (4) with the constraint W s,d

t = W0 x̃d
t−1 · (1 + ξ̃s,d

t ).

Step 1 - Uncertainty approximation: Estimate conditional distributions directly from historical data.
For this, subdivide the data into T parts of length N and, for each of them, estimate D distributions
fitting randomly selected n < N data points.
In our case, the time horizon we plan for is equal to T = 3 months (90 days) with one period
length of N = 30 days. First of all, we select the most recent 90-day historical data, subdividing it
into three equal parts. For each of the parts, we estimate D = 30 distribution functions, randomly
selecting the starting date and considering multiple 10-day periods of historical returns in the
corresponding data. We optimize S = 10 quantizers for each of these distributions. By this, we
linearize the complexity fixing the number of distributions at stage t at D instead of

∏t
i=1 S i−1.

Step 2 - Dynamic programming at the stage T − 1: Start with the stage t = T − 1 and solve the
following single-stage optimization problem for each of D conditional distribution functions:

Ṽd
T−1 = max

xT−1
−

S T∑
s=1

ps,d
T exp(−aW s,d

T ), (5)

subject to W s,d
T = W0 x̃d

T−1 · (1 + ξ̃s,d
T ), ∀s = 1, ..., S T ,

x̃d
T−1 ≥ 0, 1′ x̃d

T−1 = 1.

Step 3 - Dynamic programming at the stage t − 1 < T − 1: We estimate the optimal value Ṽd
t−1 via

the solution of the following problem ∀d = 1, ...,D:

Ṽd
t−1 = max

xt
−

S t∑
s=1

ps,d
t

{
exp(−aW s,d

t ) + E
[
Ṽt+1 | ξ̃

s,d
t

]}
, (6)

subject to W s,d
t = W0 x̃d

t−1 · (1 + ξ̃s,d
t ), ∀s = 1, ..., S t,

x̃d
t−1 ≥ 0, 1′ x̃d

t−1 = 1,
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where E
[
Ṽt+1 | ξ̃

s,d
t

]
is the expectation of the value function conditional on the scenario realization

s of the d-th distribution at stage t. We evaluate E
[
Ṽt+1 | ξ̃

s,d
t

]
as

E
[
Ṽt+1 | ξ̃

s,d
t

]
=

1∑D
j=1

1
dls,d, j

KA

·

D∑
i=1

1

dls,d,i
KA

Ṽ i
t+1, (7)

where dls,d,i
KA = dlKA(F s,d

t+1, F̃
i
t+1), ∀i = 1, ...,D are Kantorovich-Wasserstein distances between

theoretical and data-driven distributions for each scenario s = 1, .., S t, d = 1, ...,D (Figure 2).
Theoretical conditional distributions are dependent on the scenario ξ̃s,d

t and have a closed form in
the Gaussian case. Data-driven distributions correspond to the estimates in Step 1.

t t+1

dKA

s,1

t-1

dKA

s,i
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1

VVtt

j

ξt-1

ξt
s

ξt
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ξt
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Vt
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data-driven
distributions

theoretical
distribution
conditional on 

Vt

1

Figure 2. Data-driven dynamic programming.

In Figure 2, ξ̃t−1 is a non-stochastic observation at stage t − 1. There are S optimal supporting
points quantizing the data-driven conditional distribution at stage t. Furthermore, there are D data-driven
distributions at stage t + 1 and D optimal values Ṽd

t+1 for each of them. One needs to evaluate the
expectation E

[
Ṽt+1 | ξ̃

s,d
t

]
corresponding to the theoretical distribution conditional on each of the optimal

supporting points ξ̃s,d
t at the stage t. We compute E

[
Ṽt+1 | ξ̃

s,d
t

]
by weighting the values Ṽd

t+1 according
to Kantorovich-Wasserstein distances in line with (7). By this, we assign lower weights to the values
based on distributions further away from theoretical probability models conditional on ξ̃s,d

t .
In case of Gaussian-type distributions with mean vector µ = (µ1, . . . , µT ) and a non-singular

covariance matrix C = (ct1,t2)t1,t2=1,...,T , the theoretical distribution conditional on the current state has a
closed form and is equal to the distribution (8) (Lipster and Shiryayev 1978):

ξt | ξ
t−1 ∼ N

(
µt + (ξt−1 − µt−1)C−1

t−1ct, ct,t − (ct)>C−1
t−1ct), (8)

where µt−1 =
(
µ1, ..., µt−1

)
is the unconditional mean process up to time t − 1 and the submatrix

Ct =


c1,1 . . . c1,t
...

. . .
...

ct,1 . . . ct,t

 is dissected into Ct =

(
Ct−1 ct

(ct)> ct,t

)
.
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Algorithm 2 Data-driven dynamic programming with optimal quantizers.
Estimate conditional probability distributions directly from historical data in line with Step 1;

Compute Ṽd
T−1 ∀d = 1, ...,D by solving the optimization problem (5);

for t = T − 2, ..., 0 do

Solve the optimization problem (6) using interpolation (7). This leads to optimal values Ṽd
t , ∀d = 1, ...,D at stage t.

end for

Algorithm 2 describes the overall dynamic optimization procedure. The total number of data-driven
distribution estimates in Algorithm 2 is D · T .

Going backwards in time t = T − 1, ..., 1 in the dynamic programming procedure, one needs to
estimate the expected value function at the stage t + 1. As shown in equation (7), we weight the value
function estimates dependent on the distance between two probability distributions. The first distribution
is the data-driven approximation ξt | ξ

t−1 ∼ N
(
µd

t ,Σ
d
t ), while the second one should be the theoretical

(true) one and, in general, should coincide with (8) for the Gaussian case. However, to evaluate (8), one
requires the complete history of stochastic process quantizers, which is unavailable if not following the
forward-looking procedure. Thus, we approximate this distribution using the Markovian structure of
means and covariances and assuming that unconditional distribution at the stage t + 1 coincides with the
conditional estimate at the stage t (i.e., N

(
µd

t ,Σ
d
t )). Thus, we employ the following structure:

ξt | ξ
t−1 ∼ N

(
µd

t ,Σ
d
t ), (9)

ξt+1 | ξ
t ∼ N

(
µd

t + (ξ̂s
t − µ

d
t )(Σd

t )−1cov(rt+1, rt), Σd
t − cov(rt+1, rt)>(Σd

t )−1cov(rt+1rt)
)
, (10)

where the parameters change their location dependent on the current quantizer and the conditional mean
estimate. Here, cov(rt+1, rt) is a covariance estimate for the returns in periods t + 1 and t, while ξ̂s

t ,
s = 1, ..., S is an optimal quantizer of the Gaussian distribution with mean µd

t and covariance Σd
t .

This sheds light on our approach to estimate distances dlt,i
KA during the dynamic programming procedure,

starting with the stage T and going backwards in time without explicit information on the historical
mean process. We evaluate the Kantorovich-Wasserstein metric between distribution (10) and the
data-driven estimate N

(
µd

t+1,Σ
d
t+1).

In Section 3.3 we provide a general dynamic programming scheme, accounting for state variables
and incorporating scenario trees. Clearly, this makes the procedure more accurate but much less efficient
than the one in Section 3.2. In Section 4, we assess the historical data on several asset classes and
analyze it in relation with WHO data on COVID-19 cases, searching for a reaction of returns to the
announcement on new infection cases.

3.3. Dynamic programming on a scenario tree

As stated in Section 3.2, the objective function of a time-separable optimization problem can be
written in a way which allows to separate current decision xt from all previous decisions. If such a
partition is not straightforward in time (e.g., wealth Wt−1 directly depends on xt−2, which, thus,
influences stage t in the problem (1)), the separation can be done artificially by the introduction of state
variables wt =

(
xt−1, ξt−1

)′
, accumulating all available information on previous decisions and on random

component realizations: see (Shapiro et al. 2009) for model state equations for linear optimization. In a
general form, optimization problems (2) and (3) can be written as follows:
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sup
x∈X,x/F

E

h0(w0, x0) +

T∑
t=1

ht(wt, xt, ξt)

 , (11)

sup
x̃∈X,x̃/F̃

E

h0(w0, x̃0) +

T∑
t=1

ht(w̃t, x̃t, ξ̃t)

 . (12)

Note that the state variable wt may grow in time as wt =
(
wt−1, xt−1, ξt−1

)′
∀t = 1, ...,T , describing

the accumulation of information (Timonina and Pflug 2017). However, in many practical cases part
of the information becomes irrelevant, allowing to neglect some dimensions of the vector wt. If the
stochastic process has the Markovian structure, the next value of the process depends on its current value
only, being conditionally independent of all the previous values of the stochastic process. Furthermore,
some non-Markovian processes can still be represented as Markov chains by expanding the state
space. Thus, in line with the recursive wealth constraint in our problem (1), we assume that the
dimension of the endogenous variable wt does not change in time and that the variable obeys the
recursion wt+1 = gt(wt, xt, ξt+1) ∀t = 0, ...,T − 1 with the given initial state w0 at t = 0. Further, we use
Algorithm 1 for the construction of the optimally-quantized scenario tree and combine it with a dynamic
programming scheme accounting for the state variable wt:

Step 1 - Uncertainty approximation: Fix the scenario tree structure and quantize conditional
distributions optimally as in Algorithm 1. One acquires optimal supporting points sitting at each
node of the tree and the corresponding conditional probabilities. Use a grid for the endogenous
variable wt, ∀t = 1, ...,T . Let us denote points in the grid as {w̃k

t }
T
t=1, ∀k = 1, ...,K. Differently, one

can use random trajectories for the endogenous state variable or, as in the work (Hanasusanto and
Kuhn 2013), one can employ the historical data paths for wt, ∀t = 1, ...,T .

Step 2 - Dynamic programming at the stage T : Use the scenario tree discretization, as well as the
grid for the endogenous variable at stage t = T . Let Ṽk,s,d

T be the optimal value computed at
the point (w̃k

T , ξ̃
s,d
T ) of the scenario tree. The quantizer ξ̃s,d

T corresponds to the d-th theoretical
distribution at stage T . We estimate the value Ṽk,s,d

T via the solution of the problem (13) ∀k, s, d:

Ṽk,s,d
T = max

xT
hT (w̃k

T , xT , ξ̃
s,d
T ), (13)

subject to xT ∈ XT , xT / FT .

Step 3 - Dynamic programming at the stage t: Solving the optimization problem at stage t + 1, we
proceed to stage t. Let Ṽk,s,d

t be the optimal value evaluated at the point (w̃k
t , ξ̃

s,d
t ) of the scenario

tree. We estimate Ṽk,s,d
t via the following problem ∀k = 1, ...,K, ∀s = 1, ..., S t, ∀d = 1, ...,Dt:

Ṽk,s,d
t = max

xt

[
ht(w̃k

t , xt, ξ̃
s,d
t ) +

S t+1∑
i=1

pi, j
t+1Ṽk,i, j

t+1

]
, (14)

subject to xt ∈ Xt, xt / Ft,

wt+1 = gt(w̃k
t , xt, ξ̃

i, j
t+1), ∀i = 1, ..., S t+1,

where Ṽk,i, j
t+1 = Ṽt+1(wt+1, ξ̃

i, j
t+1) and j is the index of the conditional distribution at stage t + 1. Note

that the index j is a function of the realized scenario s and the distribution d.
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Importantly, in order to solve the optimization problem (14), one needs to evaluate the optimal
value Ṽk,i, j

t+1 at the point (gt(w̃k
t , xt, ξ̃

i, j
t+1), ξ̃i, j

t+1). A variety of value function approximation methods are
presented in works of (Boyd 2009; Johnson et al. 1993; Nadaraya 1964; Rosen and Marcia 2004;
Watson and Geoffrey 1964). However, one needs to guarantee the global solution of a multi-stage
optimization problem of interest. In this article, we approximate the value function continuously in
wt+1 under assumptions about concavity and monotonicity of functions ht(wt, xt, ξt), gt(wt, xt, ξt+1) and
Vt+1(wt+1, ξt+1) (see Theorems 1 and 2 in Appendix). If convexity (resp. concavity) and monotonicity
conditions of Theorems 1 or 2 hold for functions ht(wt, xt, ξt), gt(wt, xt, ξt+1) and Vt+1(wt+1, ξt+1) in the
dynamic program (14), we can guarantee that the function Vt(wt, ξt) is also convex (resp. concave) and
monotone. Moreover, these properties stay recursive ∀t = 1, ...,T , due to Theorems 1 and 2.

For dynamic programs (13) and (14), Theorems 1 and 2 give the possibility to approximate the
optimal value function Vt+1(wt+1, ξt+1) by a concave and monotone interpolation in wt+1 prior to the
solution of the corresponding optimization problem and, therefore, to evaluate the value function at any
point wt+1, which does not necessarily coincide with grid points {w̃k

t }, k = 1, ...,K.
We use the following value functions for our interpolations:

Quadratic: requires monotonicity and concavity constraints and is suitable for general problems;

Linear: does not require constraints to guarantee the global solution, but can be over-simplistic;

Exponential: does not require monotonicity constraints and is especially suitable for the problem (1)
due to its form with CARA utility.

Example 1. Let S = S t ∀t and suppose that the optimization problem (14) is evaluated at all points
(w̃k

t , ξ̃
s,d
t ) of stage t: Table 1 schematically demonstrates these optimal values of the cost-to-go function

with respect to subtrees outgoing from the first two nodes at the stage t − 1. For each scenario tree node
ξ̃s,d

t , ∀s = 1, ..., S t, d = 1, ...,Dt, one approximates the function Ṽt(wt, ξ̃
s,d
t ) of wt by fitting a concave

and monotone (under conditions of Theorem 1 or 2) function Ṽt(wt, ξ̃
s,d
t ) to the data in the corresponding

column of Table 1. Therefore, one obtains S tDt concave and monotone function estimates and, hence,
one can evaluate optimal value Ṽt(wt, ξ̃

s,d
t ) at any point wt.

Table 1. Optimal values of the cost-to-go function at the stage t for the first two subtrees.

p̃1,1
t p̃2,1

t . . . p̃S ,1
t p̃1,2

t . . . p̃S ,2
t . . .

ξ̃1,1
t ξ̃2,1

t . . . ξ̃S ,1
t ξ̃1,2

t . . . ξ̃S ,2
t . . .

w̃1
t Ṽt(w̃1

t , ξ̃
1,1
t ) Ṽt(w̃1

t , ξ̃
2,1
t ) . . . Ṽt(w̃1

t , ξ̃
S ,1
t ) Ṽt(w̃1

t , ξ̃
1,2
t ) . . . Ṽt(w̃1

t , ξ̃
S ,2
t ) . . .

w̃2
t Ṽt(w̃2

t , ξ̃
1,1
t ) Ṽt(w̃2

t , ξ̃
2,1
t ) . . . Ṽt(w̃2

t , ξ̃
S ,1
t ) Ṽt(w̃2

t , ξ̃
1,2
t ) . . . Ṽt(w̃2

t , ξ̃
S ,2
t ) . . .

...
...

...
. . .

...
...

. . .
... · · ·

w̃K
t Ṽt(w̃K

t , ξ̃
1,1
t ) Ṽt(w̃K

t , ξ̃
2,1
t ) . . . Ṽt(w̃K

t , ξ̃
S ,1
t ) Ṽt(w̃K

t , ξ̃
1,2
t ) . . . Ṽt(w̃K

t , ξ̃
S ,2
t ) . . .

The quadratic approximation of the function Ṽt(wt, ξ̃
i, j
t ), ∀i is described below:

Ṽt(wt, ξ̃
i, j
t ) = wt

T Aiwt + bT
i wt + ci, (15)

where Ai, bi and ci are to be estimated by fitting concave and monotone function Ṽt(wt, ξ̃
i, j
t ) to the points

Ṽt(w̃k
t , ξ̃

i, j
t ), ∀k = 1, ...,K.
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Algorithm 3 Dynamic programming with optimal quantizers.

Grid {w̃k
t }

T−1
t=1 , ∀k = 1, ...,K and quantize the scenario tree by finding {̃ξs,d

t }
T
t=1 and { p̃s,d

t }
T
t=1, ∀i = 1, ..., S tDt;

for t = T − 1, ..., 0 do
if t == T − 1 then

Compute ṼT−1(w̃k
T−1, ξ̃

s,d
T−1), ∀s, d, k by solving the optimization problem (13);

else if 0 < t < T − 1 then
Define current node (w̃k

t , ξ̃
s,d
t ) and evaluate wt+1 = gt(w̃k

t , xt, ξ̃
i, j
t+1), ∀i. j outgoing from s, d;

Interpolate Ṽt+1(wt+1, ξ̃
i, j
t+1) by quadratic (15), exponential (17) or linear approximation (18);

Solve the optimization problem (14) using the interpolation at the stage t + 1;
else if t == 0 then

Solve the optimization problem (14) using the interpolation at the stage t = 1.
end if

end for

Importantly, if conditions of Theorem 1 hold, the estimates are obtained via the sum of squares
minimization under the constraint implying monotonicity in the sense w1 � w2 ⇒ Ṽt(w1, ξ̃

i, j
t ) ≥

Ṽt(w2, ξ̃
i, j
t ), i.e.,

∂Ṽt(wt, ξ̃
i, j
t )

∂(wt)m
≥ 0 ∀m⇐⇒ 2Aiwt + bi � 0,

where (wt)m is the m-th coordinate of the vector wt. Differently, if conditions of Theorem 2 hold, the
opposite constraint should be used, i.e.,

∂Ṽt(wt, ξ̃
i, j
t )

∂(wt)m
≤ 0 ∀m⇐⇒ 2Aiwt + bi � 0,

which implies monotonicity in the sense w1 � w2 ⇒ Ṽt(w1, ξ̃
i, j
t ) ≤ Ṽt(w2, ξ̃

i, j
t ).

The quadratic function (15) can be computed efficiently by solving the following semidefinite
program ∀i = 1, ..., S tDt:

min
Ai,bi,ci

K∑
k=1

[
(w̃k

t )
T Aiw̃k

t + bT
i w̃k

t + ci − Ṽt(w̃k
t , ξ̃

i, j
t )

]2
, (16)

subject to
Ai ∈ S

m, bi ∈ R
m, ci ∈ R

zT Aiz ≤ 0 ∀z ∈ Rm (concavity constraint)
2Aiw̃k

t + bi � 0, ∀k = 1, ...,K (monotonicity constraint),

where Sm is the set of symmetric matrices and l is the corresponding dimensionality (in our case of
CARA-maximization, l = 1 as future value functions and future total wealth are directly dependent).

Further, as the wealth at stage t is exponentially related to the value function at stage t, we can
also use an exponential approximation for the relationship between the wealth at stage t and the value
function at stage t + 1 in the problem (1): this would automatically imply monotonicity if

min
bi,ci

K∑
k=1

[
− exp(−bT

i w̃k
t ) − Ṽt(w̃k

t , ξ̃
i, j
t )

]2
, (17)

subject to bi ∈ R
l
+.
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Also, one does not require monotonicity conditions in case of linear programming (i.e., if functions
ht(wt, xt, ξt), gt(wt, xt, ξt+1) and Vt+1(wt+1, ξt+1) are linear in wt and xt). Indeed, linearity conditions are
a special case of the requirements of Lemma 2 and they are recursively preserved in the dynamic
programming (see Corollary 1). In case of linearity of the program (i.e., in case conditions of Corollary
1 are satisfied), we implement the well-known linear interpolation at the next stage, i.e.,

min
bi,ci

K∑
k=1

[
bT

i w̃k
t + ci − Ṽt(w̃k

t , ξ̃
i, j
t )

]2
, (18)

subject to bi ∈ R
l, ci ∈ R

Algorithm 3 describes the overall dynamic optimization procedure. Also, Figure 3 demonstrates linear
and quadratic approximations of the value function in problem (1).
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a. Approximation via a linear function.
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b. Approximation via a quadratic function.
Figure 3. Value function approximations with and without monotonicity constraints.

Next, comparing the complexity of Algorithms 2 and 3 one can compute the cumulative number
of necessary distribution estimates in both of them. In a logarithmic scale, one observes that the
number grows exponentially for the dynamic programming on scenario trees (similar to forward-looking
algorithms) while the number is linear in the data-driven scheme.
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Figure 4. Uncertainty approximation complexity.
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4. Data analysis

We employ historical time series data on five assets extracted from Bloomberg: 3-month US
dollar LIBOR interest rate (US0003M), World Government Bond index in US dollars (SBWGU),
Barclays Global High Yield Total Return Index (LG30TRUU), MSCI World Total Return (Net) Index
(NDDUWI) and MSCI Emerging Markets Index (NDUEEGF). The data spans from 4th January 1999
to 6th July 2020 and is on daily basis. Assuming the planning horizon of T = 3 months (90 days) to the
future, we subdivide the data into in-sample and out-of-sample parts, in order to construct and to test our
multi-stage optimal allocation strategies. The in-sample data includes data points on a 3-month horizon
until 27th March 2020, while the out-of-sample tests are performed on the basis of data between 28th of
March and 6th July 2020. The in-sample data is demonstrated in Figure 5a.
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Figure 5. COVID-19 cases in US v.s. stock returns (in-sample and out-of-sample).

Our in-sample data includes the beginning of the COVID-19 pandemic. Thus, in Figure 5, we
observe a strong increase in the volatility of assets, pointing out the relation between the pandemic and
the assets’ behavior. This goes in line with the works (Hoffmann et al. 2005; Hou 2007; Safvenblad
1997; Lo and Mackinlay 1989; Veronesi 1999), that study the effect of bad news on the stock market and
demonstrate a faster diffusion of a negative information (e.g., growth in COVID-19 cases). Denoting
daily returns by rt and computing monthly cumulative returns as Rt =

∏30
i=1(1 + rt−i)−1, we plot monthly

values w.r.t. COVID-19 cases in the US in Figure 5b, observing a dramatic drop of returns coinciding
in time with the beginning of the COVID-19 world-wide expansion (March 2020). The out-of-sample
data does not suggest stabilization of returns to the level before the pandemic. However, to some extent,
the variance decreases after April 2020. In Figure 5, we observe a strong interdependency in assets’
behavior as negative news arrives.

Clearly, one cannot assume stationarity of the stochastic process based on the assets’ behavior
in Figure 5. Thus, we allow means, variance and other elements of the covariance matrix to vary in
time. To demonstrate the changes in these parameters, we estimate the Gaussian mixture distribution in
the rolling interval of 30 days for daily and monthly returns in Figure 6. As expected, we observe a
sharp decrease in returns and a strong increase of the covariance matrix elements as soon as negative
news about COVID-19 cases arrives. The asset with the smallest variance during the COVID-19 wave
is the 3-month LIBOR (US0003M). The increased interdependency between assets and the increased
volatility in bad times are align with the studies on diffusion of information (Hoffmann et al. 2005; Hou
2007; Safvenblad 1997; Lo and Mackinlay 1989, Veronesi 1999).
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Figure 6. Means, variances and covariance of monthly asset returns.

To model the volatility peaks in the dynamic programming procedure, we estimate 30 Gaussian
mixture distributions N(µt,Ct) for each of the months t = 1, 2, 3 of our daily in-sample data (N = 30
days periods). We model monthly return distributions as normal with means Nµt and covariance matrix
√

NCt (by this, we assume independence in daily data within each month). However, we account for a
correlation structure of returns across different months, assuming that the effects are cumulative in time.
The process of modeling monthly correlations is in line with equations (9), (10).

In the next section, we construct single- and multi-stage optimal portfolios accounting for the
changes in conditional distributions in our planning horizon (T = 3 months). We consider the following
three cases for the construction of the multi-stage optimal portfolio:

Pessimistic: Distributions of returns in our planning horizon are equal to the time-dependent estimates
provided by our in-sample data. Thus, one expects stabilization of returns in April and May, as
well as the second wave of COVID-19 starting in June. As one can observe in the out-of-sample
data, this does not happen in reality, suggesting a pessimistic scenario. In general, one could
employ epidemiological models using growth in infections as a signal for prediction.

Optimistic: Differently from the first case, one does not expect the second wave of COVID-19 in the
planning horizon, assuming the situation to be resolved already after the first wave. This case is
optimistic, as it underestimates the variance.

Conservative: Here, we assume only marginal distributions to follow the in-sample data, while
conditional distributions are evaluated based on the equation (8).

5. Optimal portfolio allocation

Consider the optimization problem (1) with T = 1. Using the in-sample data on five assets listed in
Section 4, we approximate the uncertainty about future daily returns via a Gaussian mixture distribution,
finding mean µ1 and covariance matrix C1. We sample future scenarios for monthly returns quantizing
the distribution with mean Nµ1 and covariance matrix

√
NC1 (N = 30 days) by the Kantorovich-

Wasserstein distance minimization. We demonstrate the wealth in 100 uncertainty scenarios dependent
on the risk-aversion parameter αt = α1 in Figure 7a. With the initial wealth W0 = 1000, we define the
probability of success of our investment strategy as the probability of the total wealth W1 exceeding the
initial wealth W0, i.e., as P(W1 > W0). We plot this probability dependent on the risk-aversion parameter
α1 in Figure 7b. We observe low variation in the resulting wealth dependent on the parameter α1. Due
to this and as the scenarios have different probabilities with a Gaussian form, we fix αt = 0.5 ∀t for our
further computations.
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Figure 7. Influence of the risk-aversion parameter α on wealth in different scenarios.

The optimal allocation obtained via a single-stage problem is based on distribution functions
estimated using the in-sample data on returns. The result is shown in Figure 8a, where the maximal
weight is assigned to the 3-month US dollar LIBOR interest rate remaining stable despite COVID-19.
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b. Three-stage problem.
Figure 8. Optimal weights for optimization problems with different horizon.

In Section 5.1, we consider the optimization problem (1) with T = 3, i.e., a three-stage stochastic
optimization problem, which we solve via Algorithms 2 and 3.

5.1. Data-driven asset allocation

Using Algorithm 2, we approximate the uncertainty about future daily and monthly returns as
described in Section 4. We incorporate the dependency between months according to equations (9)–(10)
and estimate multiple conditional distributions at each stage of the planning horizon. The optimal
weights are shown in Figure 8b, where the variability strongly increases from stage t = 1 to t = 3 of
the planning horizon in line with a natural increase of uncertainty in time. We observe that the amount
allocated to the emerging market index is minimal among all other assets and decreases from stage
t = 1 to t = 3. This corresponds to the fact that the first outbreaks of the pandemic took place in
emerging countries. Furthermore, the weights at t = 3 are evocative of the allocation of the single-stage
problem (Figure 8a). This corresponds to the increased volatility of assets during the COVID-19 wave.
Differently, the first and the second-stage decisions assign the maximal weight to the World Total Return
index leaving only a small fraction to the 3-month LIBOR. This results in ca. 2.5% increase of the total
wealth compared to the single-stage strategy tested on the out-of-sample data (Figure 9a).
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Figure 9. Wealth comparison for the three-stage problem.

Maximal achieved wealth of the three-stage problem in Figure 9 is equal to ca. W3 = 1200, while
the minimal wealth is ca. W3 = 1050. The difference in possible wealths comes from the fact that we
work with a five-dimensional Gaussian mixture distribution whose optimal quantization is not unique.
Due to the symmetricity of the distribution, this leads to multiple possible allocations based on the
expected wealth maximization. In our analysis, we estimate 30 conditional distributions for each period,
quantize each of them with 10 points and find 30 optimal allocations corresponding to the different
quantizations, testing the performance of each of them in Figure 9a.

Furthermore, in Figure 9a, we use the first-stage decision of the three-stage stochastic optimization
problem and compare its performance to the behavior of the single-stage problem decision without
changing the strategy from month to month. We observe that the decision corresponding to the
single-stage problem underperforms the first-stage decision of our dynamic program. Thus, our initial
recommendation to employ dynamic programming for optimal allocation can be confirmed unless the
operating costs for taking such a decision are too high (e.g., salaries to additional analysts).

Further, we consider several possibilities for adapting the optimal weights via our dynamic
programming procedure:

i) we can change the weights, reoptimizing the solution from month to month (and, thus, using the
first-stage decision each month), or

ii) we can adapt the decision from month to month without reoptimization, based on the initial solution
of our dynamic program.

Clearly, case (i) requires the in-sample data growth, while case (ii) is based on the initial in-sample
data and does not account for new data realizations.

In general, changing the strategy allows to collect some part of the profit at each period but comes
with processing fees. Importantly, any of our estimated strategies can appear to be more profitable
in the long run, because of some uncovered and unpredictiable properties of the out-of-sample data.
For example, the first-stage dynamic programming strategy demonstrates higher profitability than the
strategy (i) in the third month in Figure 9b. Moreover, strategy (ii) outperforms both the first-stage
decision and the strategy (i) in this month. Nevertheless, strategy (i) demonstrates a better performance
in the second month of our planning horizon. Obviously, Figure 9b corresponds to only one possible
allocation, though there are multiple optimal quantizations and different strategies corresponding to
them due to multidimensionality of the asset returns process.
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Next, studying the performance of 30 estimated strategies, we observe a clear reduction of
uncertainty in wealth due to the use of monthly reoptimization (i); see Figure 10. In Figure 10a, each
period starting investment is assumed to be the mean among resulting wealths one period before; this
allows to test the average performance of our decisions. In Figure 10b, the reinvested amount is the
maximal resulting wealth one period before.

We observe that the uncertainty reduction comes at a cost of maximal possible wealth, which, on
average, drops from ca. W3 = 1200 to ca. W3 = 1150 (the minimal possible wealth increases from ca.
W3 = 1050 to ca. W3 = 1100). In the best case scenario, i.e., if the reinvested amount takes its maximal
possible value in each period, the maximal wealth of the reoptimization strategy is comparable with the
no-reoptimization case (ca. 0.5% overperformance of no-reoptimization). To take the decision about the
employment of these strategies, the asset manager needs to account for the risk tolerance level in the
case of a wealth reduction, for the corresponding probability and for the implementation fees.
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Figure 10. Total wealth on out-of-sample data (change v.s no change in strategy).

As mentioned before, the reoptimization strategy allows dividends to be paid (as one does not
necessarily invests the total available amount), but is subject to reinvestment fees. Clearly, one also
needs to account for operating costs of the reoptimization while making the decision about the strategy
implementation. If the cost of working hours or machinery is too high, one can avoid reoptimization,
adapting the strategy based on the second-stage decision of the initial dynamic program. In Figure
11, we compare the reoptimization strategy (i) to the strategy (ii), which utilizes adaptation instead of
reoptimization. This results in a small increase of uncertainty in wealth while neglecting reoptimization.
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Figure 11. Reoptimization v.s. simple adaptation.

Based on the out-of-sample data, we can observe that in our pessimistic scenario, the second wave
of COVID-19 was assumed to be earlier than what happened in reality. This is due to the fact that our
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in-sample data suggested the COVID-19 wave in the third month of the planning horizon. Clearly, in the
absence of fine epidemiological models a prediction of COVID-19 signals is a complex task by itself.
Nevertheless, from the asset-management perspective, our pessimistic strategy (expecting COVID-19
second wave) appears to be profitable on the out-of-sample data.

Next, we test the offsetted means and covariances of assets according to the optimistic scenario
which expects the resolution of the pandemic in the planning horizon. For this, we assume that the
parameters stay constant for the whole planning horizon and are estimated based on data in January 2020,
i.e., before the first-wave of COVID-19. Solving the problem (1), we observe ca. 1% maximal wealth
reduction in case of offsetted estimations (see Figure 12a). Further, neglecting monthly reoptimization
can become beneficial in case of the optimistically offsetted parameters as seen in Figure 12b, which
suggest ca. 1.3% increase in maximal wealth with optimistic mean and covariance.
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a. Constant v.s. adapting parameters.
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b. Reoptimization with constant parameters.
Figure 12. Total wealth on out-of-sample data with offsetted parameters.

5.2. Asset allocation on scenario trees

Further, we solve problem (1) using Algorithm 3, which is more general than Algorithm 2 but arrives
at a cost of high computational efficiency. To perform this method, we construct a five-dimensional
scenario tree, which considers theoretical rather than data-driven conditional distributions (Figure 13).

a. US0003M quantization. d. NDDUWI quantization.
Figure 13. Scenario tree quantization of selected assets.

On one hand, such theory-driven scenario trees allow to cover possible variations in data more
broadly, avoiding data-driven estimates of conditional distributions and keeping the marginal estimates
only. On the other hand, this method can be over-pessimistic and can result in offsetted decisions due
to the fact that one would be willing to reduce complexity by decreasing the size of the scenario tree,
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which, in turn, would also result in the accuracy reduction. Indeed, we observe that the first-stage
decision in Figures 14a,c are closely related to the decision of a single-stage optimization problem
whose solution is presented in Figure 8. Furthermore, the performance of an out-of-sample wealth is
even more uncertain than the performance of wealth in a single-stage problem (Figure 14b,d).
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Figure 14. First-stage optimal decision and the corresponding wealth evolution.

Finally, we consider multiple optimal discretizations and make the second- and the third-stage
decisions vary, dependent on both the quantization and the uncertainty realization. We present the
allocation in Figure 15 (the first-stage decision varies dependent on the quantization only). Here, we
logically observe similar patterns but a higher variance of the solution driven by scenario trees.
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c. Scenario trees (exponential function)
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d. Data-driven dynamic programming.
Figure 15. Optimal decisions for Algorithms 2 and 3.
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6. Conclusion

In our work, we focus on an asset manager aiming to optimize his/her portfolio allocation in a
multi-period environment given highly non-stationary historical data on five assets. To address this goal,
we formulate and solve a multi-period portfolio allocation problem of constrained maximization of the
expected CARA utility. Using the multi-stage stochastic optimization as a well-known mathematical
tool for the solution of decision-making problems under uncertainty, we develop a data-driven dynamic
programming scheme for a case with a concave objective function (CARA utility).

Firstly, we show the benefits of the dynamic programming compared to the use of a single-stage
optimization problem, which suggests lower out-of-sample returns on average and does not account
for interdependencies of returns in time. Further, we consider pessimistic, optimistic and conservative
scenarios to account for the time-dependent evolution of probability distribution parameters in time,
necessary in multi-stage optimization. Solving the problem numerically via our methods, we construct
multi-stage optimal asset allocation strategies and compare the profitability of investment tactics given
constant, reoptimized and adapted decision strategies. Thus, we consider the problem from the side of
an investor who reoptimizes or adapts the decision in each period, as well as from the perspective of
no reoptimization (or adaptation) due to high fees or operating costs. Using the first-stage allocation
strategy developed via our method for the whole planning horizon, we observe ca. 10% wealth growth
on average out-of-sample with a maximum of ca. 20% and minimum of ca. 5% in three months. We
observe that the reoptimization tactic aids in reducing future wealth uncertainty even in times of crisis
(COVID-19). Also, we demonstrate that the adaptation tactic, which avoids frequent reoptimization
and, thus, allows to save operating costs such as cost of machinery or additional working hours, leads
only to a small increase in uncertainty on the resulting wealth. Performing our analysis with a link to
COVID-19 daily data on new infections, we account for an increase in volatility of assets pointing out
the relation between the pandemic and the assets’ behavior. This goes in line with works that study
the effect of bad news on the stock market, showing a faster diffusion of a negative information (e.g.,
growth in COVID-19 infections). To demonstrate the effects of a scenario that does not account for
future possible crises, we optimistically offset distribution parameters (mean and covariance matrix) and
show that this results in a reduction in the out-of-sample wealth. In our future research, we would like
to implement signal-based nonparametric conditional distributions linking COVID-19 early signals with
distribution estimates by way of their means and covariances. This will allow better predictions of the
evolution of distributional parameters in time, requiring, however, the employment of epidemiological
models for COVID-19, not yet present in the literature.
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Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on Stochastic Programming: Modeling and
Theory, MPS-SIAM Series on Optimization, 9.

Timonina A (2013) Multi-stage Stochastic Optimization: the Distance Between Stochastic Scenario
Processes, Springer-Verlag Berlin Heidelberg.

Timonina A (2014) Approximation of Continuous-state Scenario Processes in Multi-stage Stochastic
Optimization and its Applications. Wien Univ Diss.

Timonina-Farkas A, Pflug GC (2017) Stochastic Dynamic Programming Using Optimal Quantizers.
Optimization Online. Available from: http://www.optimization-online.org/DB_HTML/
2017/10/6269.html.

Lo AW, Mackinlay CA (1989) When are Contrarian Profits Due to Stock Market Overreaction? NBER
Working Paper No. W2977. Available from: http://ssrn.com/abstract=227214.

Veronesi P (1999) Stock Market Overreaction to Bad News in Good Times: A Rational Expectations
Equilibrium Model. Rev Financ Stud.

Villani C (2003) Topics in Optimal Transportation, Graduate Studies in Mathematics, American
Mathematical Society, 58, Providence, RI.

Watson S, Geoffrey (1964) Smooth Regression Analysis. Sankhya: Indian J Stat 26: 359–372.

Quantitative Finance and Economics Volume 5, Issue 2, 198–227.

http://www.optimization-online.org/DB_HTML/2017/10/6269.html.
http://www.optimization-online.org/DB_HTML/2017/10/6269.html.


223

7. Appendix

The following statements hold true for a general minimization problem. Similar statements are
valid for maximization problems of interest.

Lemma 1. If function h(w, x) is jointly convex in (w, x), then the function min
x

h(w, x) is convex in w.

Proof 1. For any w1 and w2, let x1 := argmin
x

h(w1, x) and x2 := argmin
x

h(w2, x). As the function

h(w, x) is jointly convex, the following holds by definition and is in line with our notations:

h(λw1 + (1 − λ)w2, λx1 + (1 − λ)x2) ≤ λh(w1, x1) + (1 − λ)h(w2, x2),
= λmin

x
h(w1, x) + (1 − λ)min

x
h(w2, x).

Therefore, the statement of Lemma 1 follows:

min
x

h(λw1 + (1 − λ)w2, x) ≤ h(λw1 + (1 − λ)w2, λx1 + (1 − λ)x2)

≤ λmin
x

h(w1, x) + (1 − λ)min
x

h(w2, x).

�

Lemma 2. The following holds true:

1. If g : Rn → Rn is componentwise convex and V : Rn → R1 is convex and monotonically increasing
as y1 � y2 ⇒ V(y1) ≥ V(y2), then V ◦ g is convex;

2. If g : Rn → Rn is componentwise concave and V : Rn → R1 is convex and monotonically
decreasing as y1 � y2 ⇒ V(y1) ≤ V(y2), then V ◦ g is convex;

3. If g : Rn → Rn is linear and V : Rn → R1 is convex and monotone (i.e. either increasing as
y1 � y2 ⇒ V(y1) ≥ V(y2) or decreasing as y1 � y2 ⇒ V(y1) ≤ V(y2)), then V ◦ g is convex.

Proof 2. 1. Proof of the statement 1 of Lemma 2:
As g : Rn → Rn is componentwise convex, the following holds by definition:

g(λw1 + (1 − λ)w2) � λg(w1) + (1 − λ)g(w2).

Further, as the function V is monotonically increasing and convex, we claim:

V ◦ g(λw1 + (1 − λ)w2) ≤ V ◦
(
λg(w1) + (1 − λ)g(w2)

)
≤ λV ◦ g(w1) + (1 − λ)V ◦ g(w2),

which implies the statement 1 of Lemma 2.

2. Proof of the statement 2 of Lemma 2:
As g : Rn → Rn is componentwise concave, the following holds by definition:

g(λw1 + (1 − λ)w2) � λg(w1) + (1 − λ)g(w2).

Further, as the function V is monotonically decreasing and convex, we claim:

V ◦ g(λw1 + (1 − λ)w2) ≤ V ◦
(
λg(w1) + (1 − λ)g(w2)

)
≤ λV ◦ g(w1) + (1 − λ)V ◦ g(w2),

which implies the statement 2 of Lemma 2.
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3. Statement 3 directly follows from the statements 1 and 2 of Lemma 2.
�

Theorem 1. Let ξ0 and ξ1 be two dependent random variables defined on some probability space
(Ω,F , P) and let the following hold:

1. Function h(w, x, ξ0) : Rn → R1 is jointly convex in (w, x) and is monotonically increasing as
w1 � w2 ⇒ h(w1, x, ξ0) ≥ h(w2, x, ξ0), ∀x, ξ0;

2. Function g(w, x, ξ1) : Rn → Rn is componentwise convex in (w, x) and is componentwise increasing
in w;

3. Function V1(y, ξ1) : Rn → R1 is convex in y and is monotonically increasing as y1 � y2 ⇒

V1(y1, ξ1) ≥ V1(y2, ξ1), ∀ξ1.

Then the function V0(w, ξ0) := min
x

{
h(w, x, ξ0)+E

[
V1(g(w, x, ξ1), ξ1) | ξ0

]}
is convex in w and is monotone

in the sense of w1 � w2 ⇒ V0(w1, ξ0) ≥ V0(w2, ξ0), ∀ξ0.

Proof 3. By statement 1 of Lemma 2, function V1(g(w, x, ξ1), ξ1) is jointly convex in (w, x). Further,
the function

(
h(w, x, ξ0) + E

[
V1(g(w, x, ξ1), ξ1) | ξ0

])
is jointly convex in (w, x) as the sum of two jointly

convex functions. Therefore, the convexity result of Theorem 1 follows by Lemma 1.
In order to prove the monotonicity result of Theorem 1, notice, that the following holds:

y1 � y2 ⇒ V1(y1, ξ1) ≥ V1(y2, ξ1),
w1 � w2 ⇒ g(w1, x, ξ1) � g(w2, x, ξ1), ∀x, ξ1,

that implies w1 � w2 ⇒ V1(g(w1, x, ξ1), ξ1) ≥ V1(g(w2, x, ξ1), ξ1), preserving monotonicity of the
function V1(g(w, x, ξ1), ξ1) in w. As the minimized sum of two monotone functions, the function V0(w, ξ0)
is also monotone in w in the sense of w1 � w2 ⇒ V0(w1, ξ0) ≥ V0(w2, ξ0), ∀ξ0.
�

Theorem 2. Let ξ0 and ξ1 be two dependent random variables defined on some probability space
(Ω,F , P) and let the following hold:

1. Function h(w, x, ξ0) : Rn → R1 is jointly convex in (w, x) and is monotonically decreasing as
w1 � w2 ⇒ h(w1, x, ξ0) ≤ h(w2, x, ξ0), ∀x, ξ0;

2. Function g(w, x, ξ1) : Rn → Rn is componentwise concave in (w, x) and is componentwise
increasing in w;

3. Function V1(y, ξ1) : Rn → R1 is convex in y and is monotonically decreasing as y1 � y2 ⇒

V1(y1, ξ1) ≤ V1(y2, ξ1), ∀ξ1.

Then the function V0(w, ξ0) := min
x

{
h(w, x, ξ0)+E

[
V1(g(w, x, ξ1), ξ1) | ξ0

]}
is convex in w and is monotone

in the sense of w1 � w2 ⇒ V0(w1, ξ0) ≤ V0(w2, ξ0), ∀ξ0.

Proof 4. By statement 2 of Lemma 2, function V1(g(w, x, ξ1), ξ1) is jointly convex in (w, x). Further,
the function

(
h(w, x, ξ0) + E

[
V1(g(w, x, ξ1), ξ1) | ξ0

])
is jointly convex in (w, x) as the sum of two jointly
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convex functions. Therefore, the convexity result of Theorem 2 follows by Lemma 1.
In order to prove the monotonicity result of Theorem 2, notice that the following holds:

y1 � y2 ⇒ V1(y1, ξ1) ≤ V1(y2, ξ1),
w1 � w2 ⇒ g(w1, x, ξ1) � g(w2, x, ξ1), ∀x, ξ1,

that implies w1 � w2 ⇒ V1(g(w1, x, ξ1), ξ1) ≤ V1(g(w2, x, ξ1), ξ1), preserving monotonicity of the
function V1(g(w, x, ξ1), ξ1) in s. As the minimized sum of two monotone functions, the function V0(w, ξ0)
is also monotone in w in the sense of w1 � w2 ⇒ V0(w1, ξ0) ≤ V0(w2, ξ0), ∀ξ0.
�

Corollary 1. Let ξ0 and ξ1 be two dependent random variables defined on some probability space
(Ω,F , P) and let the following hold:

1. Functions h(w, x, ξ0) : Rn → R1 and g(w, x, ξ1) : Rn → Rn are linear in (w, x);

2. Function V1(y, ξ1) : Rn → R1 is linear in y.

Then the function V0(w, ξ0) =

(
h(w, x, ξ0) + E

[
V1(g(w, x, ξ1), ξ1) | ξ0

])
is linear in (w, x).

Proof 5. Directly follows from Lemma 2.
�

7.1. Counterexample

Consider the following single-stage optimization problem, which has a larger feasible region that
the problem (1):

V = max
x

−E

(
exp(−aT WT (ξT ))

)
,

subject to WT (ξt) = WT−1xT−1 · (1 + ξT ), 1′xT−1 = 1.

This optmization problem has a closed-form solution if a random variable ξT is Gaussian, i.e., if
ξT ∼ N(µ,Σ). Indeed, due to monotonicity of the objective function, the Lagrangian can be written as
L(xT−1, λ) = xT

T−1µ+1− aT WT−1
2 xT

T−1ΣxT−1 +λ(1′xT−1−1), where λ ∈ R is the dual variable corresponding
to the constraint 1′xT−1 = 1. The optimal solution yields

xT−1(WT−1) =
1

aT WT−1
Σ−1(µ + λ(WT−1)1

)
, where λ(WT−1) =

aT WT−1 − 1
T Σ−1µ

1T Σ−11
.

Both the optimal solution and the optimal value depend on the starting wealth WT−1. Importantly, the
optimal value has the following form

V = − exp
(
aT WT−1 +

1
2
(
µ + λ(WT−1)1

)T
Σ−1(µ + λ(WT−1)1

))
= − exp (aT WT−1) f (WT−1),

where f (WT−1) is a non-linear function of the starting wealth. Thus, in a multi-stage setup, the optimal
solution xT−2 at stage T − 2 would influence both exp (aT WT−1) and f (WT−1).
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7.2. Distance between probability measures

To get an intuitive understanding of the distance between probability measures let us start with a
description of the well-known Monge Transportation Problem, which was initially formulated in the
following way:
Split two equally large volumes into small particles and then associate them with each other so that the
sum of products of the paths along which the particles are transported (i.e., the distances between
associated particles) to the volume of the transported particle is least. Along what paths must the
particles be transported and what is the smallest transportation cost?
Denote the initial and final volumes by Ω and Ω̃ respectively and notice that in general it is not
necessary to assume them to be of equal volumes. Instead, they are bodies with equal masses though
with not necessarily uniform densities. Let π(·, ·) be the probability measure on Ω × Ω̃ describing the
shipping plan. Then the fraction of volume of Ω that is transported from w into w̃ is defined by π(w, w̃)
for any w ⊂ Ω and w̃ ⊂ Ω̃. According to the constraints of the problem, π(w, Ω̃) =

Volume(w)
Volume(Ω) and

π(Ω, w̃) =
Volume(w̃)
Volume(Ω̃)

. The projections of π(·, ·) on the first and the second coordinates, denoted by F(·)

and F̃(·), describe masses of Ω and Ω̃ respectively: π(Ω, ·) = F̃(·) and π(·, Ω̃) = F(·).
If we denote the cost of the transportation from w to w̃ by d(w, w̃) then the total cost is∫

Ω×Ω̃
d(w, w̃)π(dw, dw̃), where π(dw, dw̃) is the mass shipped from the neighborhood of w to the

neighborhood of w̃. Hence, we obtain the so-called Kantorovich formulation of the Monge problem:
Suppose that F and F̃ are two Borel probability measures given on separable metric spaces (Ω, dΩ) and
(Ω̃, dΩ̃) respectively and P(F,F̃) is the space of all Borel probability measures π on Ω × Ω̃ with fixed
marginals F(·) = π(·, Ω̃) and F̃(·) = π(Ω, ·). Evaluate the functional

D(F, F̃) = infπ
{ ∫

Ω×Ω̃
d(w, w̃)π(dw, dw̃) : π ∈ P(F,F̃)

}
, where d(w, w̃) is the cost function for the

transportation of w ∈ Ω to w̃ ∈ Ω̃.

Definition 1 (Kantorovich (multivariate) distance). The Kantorovich distance (Kantorovich 1942)
between measures can be defined in the following way:

dlKA(F, F̃) = inf
π

∫
Ω×Ω̃

d(w, w̃)π[dw, dw̃]

π[· × Ω̃] = F(·), π[Ω × ·] = F̃(·).

The Wasserstein distance between measures is a generalization of the Kantorovich distance for order
q ≥ 1, i.e.,

dlWAq(F, F̃) = inf
π

{ ∫
Ω×Ω̃

d(w, w̃)qπ[dw, dw̃]
} 1

q

,

π[· × Ω̃] = F(·), π[Ω × ·] = F̃(·).

Assume now that we search for the approximation of the continuous probability measure F by a
discrete one that sits only on S points, i.e., the discrete measure F̃. The following theorem addresses the
question of how the approximation depends on the number of points S .
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Theorem 3 (Graf and Luschgy 2000). Suppose that an r-dimensional distribution with probability

measure F has a density f with
∫
|u|1+δ f (u)du < ∞ for some δ > 0 and suppose that

[ ∫
f (x)

r
r+1 dx

] r+1
r

≤

c, where c is some constant.
Then ∃F̃, such that dlKA(F, F̃) ≤ cS −

1
r , where F̃ is the discrete approximation of F that sits on S points,

and dlKA(F, F̃)→ 0 for S → ∞.

Proof. The result of the theorem follows from the Zador-Gersho formula (Graf and Luschgy 2000). �

Therefore, increasing the number of points in the approximation, one can guarantee that the
Kantorovich-Wasserstein distance converges to zero.
In this article, we approximate five-dimensional distribution functions by discrete distributions, using
“Algorithm 1D, l1-distance” from the article (Timonina 2013). For a fixed number of optimal supporting
points S , we continue iterations of the “Algorithm 1D, l1-distance” until the Kantorovich-Wasserstein
distance between two subsequent approximations reaches 10−6 (see Figure 16 for an example of a
lognormal case).

Iteration
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Figure 16. Convergence of the Kantorovich-Wasserstein distance for the case of lognormal
distribution with parameters µ = 0 and σ = 1.

The discrete probability measure F̃ sits on S optimal supporting points denoted by z̃ = (̃z1, z̃2, ..., z̃S )T ,
which have corresponding probabilities p̃ = ( p̃1, p̃2, ..., p̃S )T , i.e., F̃ =

∑S
i=1 p̃iδ̃zi .
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