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Abstract: The dynamics of financial systems depends not only on Brownian motion but also on 
wave-like behavior of fluctuations. Statistical mechanics and viscoelastic theory were used to 
elucidate it by using the daily data of S&P-500 from 1986 to 2019. The viscoelastic behavior of asset 
values or stock market index can be studied within the basis of “cause-and-effect” principle by using 
scattering diagram of the data. The angles between the consecutive vectors in scattering diagram 
reveal that some peculiar angles deviate from the main course of the percent occurrence. These 
angles correspond to relatively more stable states, and they can be expressed in terms of golden ratio. 
The Elliott waves and golden ratio observed in financial systems can be explained by the existence of 
these peculiar angles. Whenever stability is of major concern such as in sharp falls or sharp increases 
and also in Elliott waves these angles reveal more frequently. The formation principles of Elliott 
waves were established on physical and mathematical grounds.  
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1. Introduction 

The fundamental assumption underlying the dynamics of stock markets is the stochastic behavior 
of traders, which determines the market values of equities in the same manner. Bachelier was the 
pioneer to model the Brownian processes in 1900 even before Einstein (1905), and applied it to study 
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financial systems (Davis and Etheridge, 2006). He proposed that the price of assets can be described as 
a stochastic process, he used Brownian motion for valuing stock options, but, his work was forgotten 
until rediscovered in 1950s. After him, the random walk mathematics was made more rigorous by 
Wiener, and since then it has been quite often used to explain numerous physical processes.  

The financial mathematics is essentially based on the stochastic behavior of stock markets, and 
probability theory is quite often used to make computations and future estimates. By the same token, 
the various types of applications of the Boltzmann-Liouville theory of statistical mechanics, the 
Langevin equation, the Fokker-Planck equation, Markovian process, Lévy flight process, and the 
Chapman-Kolmogorov equation finds applications in mathematical finance. In fact, the famous 
Black-Sholes equation is derived using the analogy with the Fourier’s heat-transfer equation and the 
Fokker-Planck equation (Richmond et al., 2013, Neftçi, 2000). Brownian motion does not permit the 
incorporation of jumps in stock markets, and the models which include Lévy processes offer a better 
description of such sharp changes (Courtois and Walter, 2014).  

The fractal theory and scaling introduced by Mandelbrot opened a new door in financial 
systems as well as in all natural and social systems to recognize chaos as a kind of hyper order 
(Mandelbrot, 1983; Mandelbrot, 1997). There have been efforts in the past to use chaos theory and 
fractal structure in conjunction with other theories to analyze financial systems (Yu, 2013). Besides 
the chaos theories some other methods like path integrals and different entropy concepts imply that 
some basic physical principles are needed to explain the stock price dynamics (Montagna and 
Nicrosini, 2002; Matteo, 2007; Jiang and Gu, 2016; Hattori and Abea, 2016; Ya, 2010). The 
“econophysics” coined by Stanley now has been a new discipline to use physical concepts and 
methods to study financial systems (Mantegna and Stanley, 2000).  

Assuming that stochastic processes are fundamental facts of markets the question then arises on how 
we can explain the Elliott waves in a variety of markets. Elliott’s descriptions are empirically-derived sets 
of rules to interpret market dynamics, which, essentially fluctuate due to a number of reasons, and traders’ 
psychology to optimize their benefits create some kind of well-defined patterns. The description depends 
on some assumptions which are difficult to analyze (Gehm, 1983). The behavior of people swings 
through trends and reverses, no matter whether it takes place in ten-minutes or ten-years interval of time, 
and exhibits some patterns which are called Elliott waves. There occur cycles, super-cycles, and grand 
super-cycles in the market. Cycles are composed of two major components, one “impulse wave” which 
can be subdivide into five waves (shown by 1-2-3-4-5) and the other the “corrective wave” subdivided 
into three waves (shown by a-b-c) (Frost and Prechter, 1999; Greenblatt, 2013; Kirkpatrick and Dahlquist, 
2010). There are severe attempts to use Elliott wave patterns to make future forecasting through the tools 
of fuzzy logic, neural network, artificial intelligence, etc. (Chen et al., 2007; Magazzino et al., 2012; 
Tirea et al., 2012; Kotyrba et al., 2013; Volna et al., 2013; Wang et al., 2013; D’Angelo and Grimaldi, 
2017, Marañon and Kumral, 2018; Patel and Modi, 2018). It was shown that Elliott waves could be 
generated as the trajectories of fractional Brownian motion, such that the generator has a Hurst parameter 
close to zero (Ilalan, 2016).  

Elliott waves are intrinsically related to Fibonacci numbers and golden ratio (Frost and Prechter, 
1999; Casti, 2002; Chatterjee et al., 2002; Atsalakis et al., 2011; Glover et al., 2013). Elliott waves 
are commonly used as technical analysis tools to make future predictions (Vishvaksenan et al., 2016; 
Tirea and Negru, 2016; Kyal, 2017, 2018; Chendroyaperumal, 2011; Ribeiro, 2019; Sattari, 2020). It 
could also be combined with other methods for more advanced predictions (Reich, 2017; Goodman, 
2017; Duan et al., 2018; Ramli, 2018; Ivanova, 2019). In technical analysis the terms 
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“support/resistance” are used to mean that asset price tends to cease and reverse its trend to decrease 
or increase, respectively. Fibonacci numbers describe the sequential growth of living organisms, 
historically, to calculate the growth of rabbit populations in the wild. The population growth occurs 
through autocatalysis, i.e., the present number multiplies itself. Autocatalysis in financial systems 
was described in the past in relation to graph theory and especially on the formation of networks, but 
not in relation to the physical dynamics (Jain and Krischna, 2003; Caetano and Yoneyama, 2015).  

Autocatalytic behavior in asset prices originates both from the nature of asset and the self-oriented 
behavior of customers. The people would naturally think of their daily and future endeavors and plan 
their investments accordingly. They would like to buy those assets of which price tends to increase due to 
any reason such as technological, climatic, home or international political situation, etc. Autocatalysis 
occurs in different manners in different systems. In living organisms, the off-springs contribute to the 
multiplication of population, i.e., the organisms multiply themselves; in saving account the amount of 
interest gain turns out to be the amount of multiplication by the end of the term; in forest fire it is the 
exothermic energy which is multiplied as a greater number of trees are burnt per unit time. In finance, 
autocatalysis first occurs at the customers’ profit stage. Everybody wants to get more by selecting out 
certain type of assets. It then occurs at the asset value stage as its price increases due to demand, that is, 
the value of the asset increases in time. Thus, the collective behavior of customers for massive buys and 
sells results in massive fluctuations which creates a kind of wave in financial systems. The wave 
generation is common in competitive systems. For instance, in the autocatalytic Lotka-Volterra system 
having “grass-rabbit-fox” as the system elements the timely change of rabbit and fox populations follows 
oscillating curves with a time lag in between. The increase of the number of preys and predators in the 
system results in further cycles and so new additional periodicities. The system may even go to chaos 
depending on the system parameters, mainly the initial populations, birth rates, etc. The chaotic behavior 
in financial systems and the related scaling relations also indicate that there might be a kind of order 
originating from the dynamical structure. In fact, even Brownian motion has scaling relations (Peitgen et 
al., 1992). The competition among multi component systems produces mixed wave-like and chaotic 
behavior. In the limit, the strong turbulence or chaos in the system enhances the Brownian behavior 
which then becomes highly dominant while wave-like behavior is depressed.  

In all studies done in the past the financial systems were considered to be a stochastic system 
and statistical methods were heavily used to analyze them. The use of statistical mechanics and chaos 
theories naturally introduced a new impact in the field, but yet the hard-core physical concepts like 
energy is not an issue in scientific research. The use of entropy in financial systems is related to the 
statistical properties and not to the time dependent dynamical behavior. The physical and 
mathematical basis of the of Elliott waves in financial systems also has not yet been understood. The 
stability and instability issue in stochastic systems cannot be easily grasped without using the 
thermodynamic concepts. To address all these hard-core physics approach has been used here. First 
the theoretical basis of wave behavior was established. Then the dynamic energy and entropy 
changes were discussed by using the theory of viscoelasticity. The randomness and the wave-like 
behavior in financial systems was studied on equal footing, and their interplay on the stability and 
instability was discussed by tracking the states which can be expressed in terms of golden ratio. 
Finally, the physical and the mathematical grounds of Elliott waves and golden ratio was established. 
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2. Fluctuations 

The price of an asset may change up and down at varying magnitudes, and let us show the 
distribution of fluctuations by .f  It changes with time t, current price   per share, and also with 
velocity ,v  i.e., with the velocity of the change of price. The distribution ( , , )f t  v  at time t goes to 

( , , )f t dt d d    v v  at time .t dt  New shares are not frequently issued in stock markets. 

Assume the number of shares is constant in dt, one can write,  

( ) ( ) ( ) ( )( , , ) ( , , )t t t dt t dtf t d d f t dt d d d d        v v v v v   (1) 

The Taylor expansion of the right-hand side about 0,dt   and its truncation gives, 

0
f f f

t t t

    
  

    



v
v

 (2) 

If new shares are issued anytime this equation need to modified as,  

new issues

f f f f

t t t t

                



v
v

 (3) 

For simplicity we can drop the new issues and go with Equation 2. 
There are a vast number of assets in the market and correspondingly there are too much 

fluctuations in their values due to the activities of traders. Let us consider a target asset and show its 
distribution function at time t by ( ).f t  At time t dt  its distribution becomes f  as it is traded, and 

its market value either increased or decreased depending on in what direction it is traded on the 
average. If we show the extent of fluctuation (i.e., the change in dt) by f   we can simply write that 

.f f f    Let us define an averaging operator A; when it operated on f  it gives (Weinstock, 1969; 

Dupree, 1966; Gündüz, 1979; Gündüz, 1996),  

Steady distribution function at time t.A f f    (4) 

(1 ) Distribution function due to fluctuations.A f f       (5) 

It is clear that, 0,A f    and (1 ) .A f f    Equation 2 can now be split into two equations by 

operating on Equation 2 by A and (1-A), such that,  

( )
( ) ( ) ( ) ( )

f f t
A AL t f t AL t f t

t t

     
 

  (6) 

( )
(1 ) (1 ) ( ) ( ) (1 ) ( ) ( )

f f t
A A L t f t A L t f t

t t

        
 

  (7) 

In these equations L is a linear operator defined by, 
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L
t

              


 
v

v v
v v

  (8) 

where / t v=  represents the velocity of the change of asset value, and   is a unit force term as 

t v/  denotes acceleration. The ( )f t  and ( )f t  terms keep changing in time, the values of 

( )f t t   and ( )f t t    depend on ( )f t  and ( ),f t  respectively. Therefore, we can define a time 

propagator 0( , )U t t  to be a solution of,  

0(1 ) ( ) ( , ) 0A L t U t t
t

    
  (9) 

0 0( , ) ( , ) 1U t t U t t    (10) 

Dupree originally introduced this type of propagator to elucidate strong turbulence problems in 
plasma physics, and Weinstock further improved this technique (Dupree, 1966; Weinstock, 1969; 
Gündüz, 1979). We can use Equation 9 to solve Equation 7, and after a few steps one gets, 

0 0 1 1 1 1( ) ( , ) ( ) ( , )(1 ) ( ) ( )f t U t t f t U t t A L t f t dt      (11) 

The substitution of Equation 11 in 6 yields, 

0 0 1 1 1 1

( )
( ) ( ) ( ) ( , ) ( ) ( ) ( , )(1 ) ( ) ( )

f t
AL t f t AL t U t t f t AL t U t t A L t f t dt

t

     
    (12) 

We now operate on L(t) by A and (1 ),A  and get,  

( ) ( ) ( )L t L t L t    (13) 

L( t )
 

 
 




v
v

  (14) 

( )
( )

L t
t

 



v

  (15) 

Equation 12 can be put into a more useful form, and this was done in Appendix-A. The new 
form is (Equation (A-9)),   

0 0 1 1 1 1

( )
( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

f t
L t f t AL t U t t f t A L t U t t L t f t dt

t

       
     (16) 
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This equation is of non-Markovian nature, because, the last term depends on t1 rather than the 
running time t. 1( , )U t t  propagates   and v  backwards in time over the trajectories of Equation 9; 

and the system owns has a kind of memory. The substitution of Equation 15 in Equation 16 gives, 

1 1 1
1

( )
( ) ( ) ( , ) ( )

( ) ( )

f t
L t f t U t t f t dt

t t t

          
  
v v

  (17) 

where the first term on the right-hand side was omitted as it denotes the very initial state. Meanwhile 
A before the integral sign was also dropped as it operates on f ത(t1). Defining,  

1 1( , )= U t t dt  D   (18) 

one can rewrite Equation 17 as,  

1 1
1

( )
( ) ( ) ( )

( ) ( )

f t
f t f t f t dt

t t t

     
         




v
v v v

D   (19) 

Equation 17 entails that ( )f t  picks up the fluctuations and grows in time when it has tendency 

to grow. It may also go in the opposite direction if an instability breaks up in the system.  
For a while, let us assume a very short interval of time such that the system variables do not 

change significantly. Then, we have near-equilibrium state, so that ( ) / 0.f t t    Let us also assume 

that the change of f  with respect to 𝜇 is very small or negligible. By the same token, 1( ) ( ),t t  v v  

and also 1( , ) 1.U t t   Thus, we get only the last term on the right-hand side, and it denotes the 

contribution of fluctuations. This is a time independent case, and so we have .D  Since 1( , )U t t  

propagates   and v  backwards in time, the integration of the last term of Equation 19 yields,  

2 0
f

k f






 



v

  (20) 

where k is a constant. The solution of this equation is simply, 

cos( )-i t +i tf e e t      (21) 

where /k   It is seen that an oscillatory trigonometric function (i.e., cosine function) can 

describe the distribution function of a fluctuating system at its equilibrium state (or steady-state). 
What actually happens is that our target asset picks up the small fluctuating waves persistently 
occurring in the market and its value changes accordingly. In case if its value decreases then if feeds 
back other assets, i.e., traders go and buy the other assets. That is, f  changes by f   in positive or 

negative direction depending on the activities of traders.  
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3. Force, energy, and entropy 

3.1. Conservative and dissipative energies 

In this section the change in asset values will be studied not by distributional or statistical 
methods but by using the concepts like viscoelasticity, thermodynamic energy etc., and the 
distributional properties will be treated back in the next section. Hence, the way how distributional 
dynamics consolidates macro dynamics will be explained.  

Since  is a unit force term there is a direct relation between the force and the asset value. 
However, the essential question here is to define the force in financial systems. Whatever affects the 
stock markets something like industrial or agricultural productions and sales, climatic conditions, 
domestic or international policies, strikes, wars, political crises, etc. their overall effects show up as 
the change in the price of asset values. All these effects in the large scale are reflected as the change 
in stock market index. Thus, the effect of force term is somehow embedded in the change of asset 
values or in the change of stock market index. In this research S&P-500 stock market index was used 
as case study.  

Figure 1a shows randomly scattered data, but we may also think of its pattern to imply the 
existence of Elliott wave even though we need a larger picture for a correct decision. The numbers 1 
to 5 may represent the motive phase while the letters “a” to “c” may represent the corrective phase. 
Anyway, the discussion on Elliott waves will be considered in Section 4&5. We now consider only 
the scattered aspects of data.  

                           (a)                                                                           (b) 

Figure 1. (a): Weekly change of SP; (b): Its scattering diagram. 

Whatever affect the markets are reflected as the magnitudes of data. However, there is not one-
to-one correlation between the magnitude of cause and the magnitude of its outcome. For instance, 
consider a terrifying volcanic eruption or decision to cut the crude oil production world-wide by 
some percent. The repetitions of these actions by the same magnitude do not influence the affected 
asset prices or the market index by the same repeating ratio of magnitude. However, since the index 
is influenced from the events, the effects of consecutive cumulative events can be observed from the 
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consecutive values of market index. Two consecutive index values (i.e., Si and Si+1) can be simply 
related to each other by a simple equation, 

1i iS G S    (22) 

where G is a constant.  
In physics, if there is a change then there exists a flux associated with it. For instance, heat flow 

(Fourier’s law), mass flow (Fick’s law), chemical reaction (Gibbs’ law), electric current (Ohm’s law), 
and deformation (stress-strain equation) all have the same mathematical structure which can be 
simply expressed as,  

 or  X=(1/ )J X J L L   (23) 

where J denotes the flux, X the driving force, and 1/L  is a phenomenological constant relating force 
to flux (or current). This mathematical form has its roots in the discourse of ancient philosophers 
Heraclitus and Aristotle. Heraclitus’ nature is very dynamic and keeps changing indefinitely as 
expressed by his famous statement “everything in nature is in flux (i.e., flows)”. Aristotle introduced 
the concept of “potentiality” which is an a priori need for the events to occur in nature, and said 
“today’s actuality is the potential of tomorrow’s actuality”.  

Potentiality-to-actuality relation somehow looks like cause-and-effect principle, but it is much more 
general than that. Because, it is possible to cast even non-physical parameters into this expression. For 
instance, G in Equation 22 is a phenomenological constant, and if 1G   the whatever goes in comes out 

1(i.e. );i iS S   the asset value or index does not change. If 1G   the output 1iS   comes out to be less 

than the input iS  because of the loss due to several reasons. When 1G   the output 1iS   comes out to be 

more than the input iS  because of some other additional positive inputs during the process. Aristotle’s 

principle can be phrased for this special case as; “now” (or )iS  influences “next” 1(or )iS   by a 

proportion G. Therefore, if we plot 1iS   vs iS  we can study the changes in the system more quantitatively. 

The scattering diagram of Fig.1a was given in Figure 1b where less data was used for clarity.  
The series data of Figure 1a is connected by arrows in Figure 1b, and thus each arrow 

connecting consecutive data gives information about what happened in causality domain. We have a 
graph diagram in Figure 1b and each vector of the graph can be associated with force and energy. 
Now let us consider two consecutive vectors given in Figure 2.  
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Figure 2. Two consecutive arrows in a scattering diagram. 

Since “loss” and “gain” is somehow determined by the magnitude of G in Equation 22, or by 
the relative magnitudes of iS  and 1,iS   the length of vectors and the angles between two consecutive 

vectors can give us information about the force and the energy involved. Note that vector AB in 
Figure 2 is changed or deformed into vector BC with a new length and angle between them. 
Therefore, we need to use the type of physics of deformable objects, that is, we need to use 
viscoelastic theory to evaluate the behavior displayed in scattering diagram. In viscoelastic theory, 
the slope of BC gives the ratio /G G   i.e., 

tan
G

m
G


 


   (24) 

According to vector properties we may write, 

2 2( ) ( )G G iG G i G         (25) 

Hence, by using Equation 22 one can find out the numerical value of G first, and then by using 
Equations 24 and 25 one can determine the numerical values of G  and .G   

Once G  and G  were determined one can then compute the thermodynamic work-like and heat-
like energies. The energy of the in-line motion (i.e., horizontal direction) gives work-like energy, and the 
one along the out-of-line direction (i.e., vertical direction) gives heat-like energy. Note that the work-like 
energy is conservative but the heat-like energy is dissipative. The work-like energy (w), and the heat-like 
energy (q) expressions can be obtained from the definitions of these energies in viscoelastic theory. The 
energy is defined as “energy~(stress)2/modulus” (Rosen, 19930). Hence, we can write,  

2
BC

w
G




  (26) 

2
BC

q
G




  (27) 

In former studies the patterns of G  and G  depending on the magnitude of Wiener noise were 
studied in full detail by using produced data at varying drift and volatility and also by using the daily 
data for DJI, Nasdaq-100, Nasdaq-Composite, and S&P 500 for 30 years from 1986 to 2015 (Gündüz 
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and Gündüz, 2016; Gündüz and Gündüz, 2017). In a recent article, lethargy concept which 
substitutes Wiener noise in the general sense was used to elucidate the pattern formations not only in 
stock markets (Nasdaq-100) but also in some other time series systems like uniform distribution (i.e., 
white noise), normal distribution (i.e., brown noise) and music (Gündüz, 2018).  

Since viscoelastic theory involves deformations it is crucial to compute the extent of 
deformations associated with the vectors given in scattering diagram (i.e., Figure 1b). In Figure 3 
several vectors with different slopes are shown, where grids were used to grasp deformation pattern 
visually. The gray unit cells are those through which a vector passes through. Since momentum and 
energy are used in the general sense to characterize the changes in the physical world, the unit cells 
which characterize the surface shape of vectors of Figure 3 can be studied by utilizing the surface 
energy of a crystal subjected to shear force.  

 

Figure 3. Vectors with different slopes.

In Appendix-B the computation of the surface energy because of deformation was given (i.e., 
Equation B-4). It is, 

(cos sin ) cos( / 4)
2 2

E
d d

       
l l

  (28) 

where “l‘” is the length of vector, “d” is the length of each side of unit cell, and “” is the energy of the 

free (or broken) surface of unit cell. This equation denotes a circle with a diameter of 2 .E / d l  The 

energy attains its maximum value of 2maxE / d l  when o/ 4 45 ,    because, cos( / 4) 1.    

This is the case for “f” vector in Figure 3. When o0 ,   we get the minimum energy, i.e. 2 ,minE / d l  

and this is the case for vector “f” in Figure 3.  
Vector “a” has similar energy like “f” and vector “b” like “e”. We can visualize “b” as “e” 

provided the horizontal and vertical axes are interchanged. In other words, instead of considering the 
slope “m” we need to consider its inverse “1/m” when θ > 45o. Then we get the right surface energy 
for “b” vector equal to that of “e”. The same thing holds also for “a” and “f”. Since slope is equal to 
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/G G   according to Equation 24, we can say that the maximum dissipative situation occurs when 
G G   (or when o45 ,    tan 1);   vector “c” represents this case.  

Figure 4. Change of, (a) S&P-500, (b) work-like conservative energy, (c) heat-like dissipative energy. 
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In scattering diagram, the vectors are connected to each other like segments in a polymer chain. 
An impact on a chain disturbs the closest segments, but it fades away as one gets far away from that 
point. A similar situation also occurs in the vectors of scattering diagram, where the consecutive ones 
have a strong memory while as one moves further the memory of the vectors left far behind fades out. 
In this respect, in the scattering diagram, we do not have short-term memory as in Markovian 
systems but weakened memory of the past. The calculations for the conservative work-like energy 
and the dissipative heat-like energy were carried out for S&P-500 daily index data from January-1-
1986 to December-31-2019, and shown in Figure 4. Figure 4a shows the change of index, Figure 4b, 
and Figure 4c show the changes of w, and q, respectively. 

The w and q values were displayed both with positive and negative signs. A vector in scattering 
diagram absorbs energy in the thermodynamic sense as it goes away from the origin and so the value 
of w increases and a positive sign is assigned, and if it moves in the reverse direction negative sign is 
assigned. In fact, the directional change along horizontal axis (i.e. in )x  tells us what to be used. In 
the same manner, if the change in vertical axis (i.e. in )y  is positive the vector goes upward and 

gains heat-like energy, and the sign is positive, and when ∆y is negative the vector goes downward 
and loses heat-like energy and the sign is negative. However, care is needed when 1m   and 
negative in sign. In this case, the sign of q and w will be reversed as the coordinates are exchanged. 
When 1m   but positive there occurs no sign effect.  

There occurs more or less a smooth increase until 2600th day from the beginning and then a 
peak develops in between 2600th–4353th days (Figure 4a). The change of w until 2600th day is pretty 
much smooth while q shows considerable fluctuations (Figures 4a and 4c). In the 2600th–4353th days 
interval we have serious fluctuations in w, and q shows highly turbulent fluctuations in this interval. 
The magnitude of fluctuations in w decreased within 4353th–5203th days and the system has the 
similar behavior of the first zone (i.e. 0-2600th day) but with more severe fluctuations. As seen from 
Figure 4b high turbulence is observed again after 5203th day till 5775th day. Therefore, the beginning 
of this second peak is not 4353th day but 5203th day. In other words, the extent of fluctuations tells us 
where the peak starts and where it ends. In fact, we have very severe change in w at 5775th day, and it 
is not just before minimum at 5847th day.  

The change of w follows the same behavior and as seen from the remaining part of Figure 4b large 
magnitude of fluctuations occur whenever there occurs a sharp change in the index value. Sharp changes 
actually occur due to Levy flight behavior, not due to Brownian motion, but they both coexist in financial 
systems. The behavior of q also follows the same pattern of w with higher degree of turbulence. 

3.2. Configurational entropy of vectors 

The configuration of vectors on scattering diagram as mentioned earlier looks like the 
configurations of polymer chains. The configurational entropy of the chains is computed from the 
statistical distribution of the end-to-end distance. However, in a scattering diagram each vector attaches 
once at a time and it is an evolving system with continuously increasing number of vectors of different 
lengths. Therefore, the configurational entropy can be calculated in a similar manner but with a slight 
modification. The beginning point of the first vector can be taken as the starting point, and the end-to-
end distance at each attachment of a new vector can be found out with respect to this point. 

The probability distribution function of the end points at each step can be in general expressed by,  
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 (29) 

where p denotes the probability distribution, and r denotes the average end-to-end distance between 
the origin and the end point of the last vector. From the definition of entropy ( ),entS  one gets, 
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    (30) 

where k is the Boltzmann constant, and   takes care of the first term which is a constant. Now 
consider only two-vector case as in Figure 2. Let ( , )r x y  be the distance of point C to the origin, i.e., 

point A. Thus 0 0( , )r x y  denotes the coordinate points of B. We can relate 0 0( , )r x y  to ( , )r x y  

through the deformation matrix 1 2( , ),   such that,  

1 0 2 0,      x x y y     (31) 

Now Equation 31 is substituted into Equation 30 to express x and y in terms of 0x  and 0.y  

Equation 30 can also be expressed in terms of 0x  and 0.y  The difference between these two gives us 

the change of entropy ( )entS  as 0 0( , ) ( , ).r x y r x y  Hence, one gets, 
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    
    

  (32) 

The computed values of entS  for each sequential change of vectors is given in Figure 5 

together with the change of the index values in time.  
The entropy change is given in Figure 5 where the second vertical axis denotes the index values.  

Figure 5. Change of configurational entropy of vectors. 
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Most of the entropy values are very close to 0.5 which is the most probable case when there 
occurs extremely high randomness in the system. In order words, Brownian motion is highly 
dominant as expected in S&P-500 index. The large magnitude entropy changes occur whenever the 
index value goes to minimum as seen from Figure 5. This is due to the reason that the w and q values 
also were very large as the index rolled down to minimum (Figure 4). The large difference in w and q 
values naturally entails large changes in entropy.  

4. Instability 

Stock markets are very dynamic and fluctuating systems exhibiting instantaneous changes. In 
other words, persistent instability prevails because of both frequently low and infrequently high 
magnitude fluctuations. The energy and entropy computations were carried out above without taking 
into consideration the magnitudes of fluctuations.  

In energy calculations, we needed only two parameters, one is the vector length and the other is the 
modulus which are related to the slope or to the angle   (Figure 2). The vector length and   are 
intimately related to each other. In entropy calculations, the vector length has some considerable effect 
but the dominant parameter is the angle ,  because, the end-to-end distance is predominantly dependent 

on how vectors move forward or backward through a series of bending at varying angles. Therefore, the 
statistical distribution of   can give important clues about the dynamical behavior of the system.  

4.1. The Elliott waves and    

As we know the Elliott waves refer to a kind of pattern or to a kind of order in the system. The 
Elliott waves are dictated by the Fibonacci numbers which represent a special kind of growth rate or refer 
to the growth through autocatalysis. The ratio of consecutive Fibonacci numbers in a few steps gets close 
to the limiting value which is the golden ratio ,  and it is given by the following series expansion.  

1
1

1
1

1
1

1
1

1 ...

  







  (33) 

The unique property of this series system is that all the numbers used are “1”, therefore, it is the least 
convergent series. In other words, if the inner dynamics of a system is described by ,  then it is in a state 

which is the closest to instability. Therefore, the golden number or the Elliott waves represent the states 
where randomness is a bit lowered such that a kind of stability at minimality is achieved. 
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Figure 6. Moduli of in-line and out-of-line components of consecutive vectors. 

Since G  and G  are the modulus of the in-line and out-of-line components of a vector, 
respectively, the G  and G  components of vectors in a scattering diagram can be shown by a 
representative picture given in Figure 6.  

 

Figure 7. The network structure of storage and loss moduli (  and )G G  . 

Figure 7 has the same structure of the series and parallel connected resistors in an electrical 
circuit. The equivalent G value (Geq) can be found out using the method of computing equivalent 
resistor for this system. It is given by the following equation. 
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  (35) 

In the case when all moduli are equal, i.e., when 1 1 2 2 3 3....G G G G G G           or in an 

alternative saying when o45   for all cases, one gets,  
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  (36) 

Hence,  

1eqG G    (37) 

If we had only 1,G   2 ,G  and 2G  in Figure 7 we would have 1(3 / 2);eqG G  adding 2G  to this 

group would give 1(5 / 3);eqG G  and then adding 3G  would give 1(8 / 5),eqG G  and so on. Note 

that these ratios are the ratio of consecutive Fibonacci numbers. What happens here is an interesting 
feature of such autocatalytic systems which are subject also to fluctuations. Such systems have quite 
large instabilities and the stability state to be achieved will be something definable or expressible in 
terms of golden ratio which represents the least stable state or least convergent state mathematically. 
Other states which are a bit more stable can be then be expressed by Fibonacci numbers. This is what 
we observe in Elliott waves, they represent the fairly stable or quasi-stable states very close to 
instability either in the motive phase or corrective phase. The Elliott pattern can be destroyed easily, 
because, the Brownian motion prevails in the medium, and the Elliott waves form on a knife-edge. 
The segments of long-term patterns include many fluctuating zones. There is a “continuous 
destruction and generation” phenomenon in the medium, and the Elliot patterns may show up in the 
short and long terms.  

Due to coexistence of both Elliott waves and Brownian motion there exists a mutual energy 
transfer between the two. If energy is transferred from Brownian particles (i.e., independently 
behaving traders) to Elliott waves (i.e., traders behaving according to a kind of common or group 
motion) then Elliott waves gain more energy. It first speeds up (i.e., motive phase), then tries to 
stabilize itself (i.e., corrective phase). As high energy states traders start to sell their shares to make 
profit out it, which, in turn, leads to instability, i.e., the wave is damped and energy is transferred 
from the wave to Brownian particles. It means, the people go and buy shares of other assets in the 
market. The Elliott wave may reborn sooner or later as it may pick up again the fluctuating tiny 
waves prevailing in the medium all the time.  

4.2. The distribution of    

The percent distribution of   is given in Figure 8 where   angle was changed by o1 .  That is, 
the number of the data between say o90  and o89  is summed up and its percentage was reported at 

o89.5 .   
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Figure 8. The distribution of   obtained at intervals of o1 .  

There are two major minima in Figure 6, one at around o45  and the other at around o45 .  The 
distribution strip more or less has an oscillatory dependence on angle. It clearly indicates that some 
angles occur more frequently and some less frequently. The fluctuations create a band rather than an 
oscillating curve.  

Since stability conditions are achieved at certain proportions of Fibonacci numbers we must 
expect some anomalies in the trend of the distribution of some system parameters, and in more 
pronounced manner in the distribution of   values. The question then arises as how the golden ratio 
can be related to .  It was shown by Equation 21 that the steady part of the distribution function 
oscillates by a trigonometric relation (i.e., cosine function relation) when it is at equilibrium state. 
The oscillation frequency   is inversely proportional to the force expressed by .  In Equations 26 

and 27 the vector BCതതതത refers to a kind of force which is expressed by both   and Si. In fact, Figure 8 

implies that the distribution of   also shows similar behavior. There should be some preferred angles 
and the associated changes in the stock markets accordingly. The next question is then the cosine of 
what angle is related to golden ratio. We know from trigonometry that,  

2cos
5

    (38) 

where, o180 ,   and so, ocos36 / 2.  Using the cosine law 2(i.e. cos2 2cos 1)    it is 

possible to find out other angles which involve   in some form. For instance, by writing o2 36   

one can express o18  in terms of   such that ocos18 (1/ 2) 2 .   Using the same procedure one 

can also express o9  in terms .  By using the above expression in the general form 

(i.e. cos( ) cos cos sin sin )        one can express all angles which are multiple of o9  in 

terms of .  Some of these expressions can be quite simple, such as o osin18 cos72 1/ 2 ,   and 
osin54 / 2.   
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The percent distribution data was summed in an interval of o3  o(i.e. 1.5 )  rather than o1 ,  and 

the distribution in percent is given in Figure 9 where the vertical grid lines pass through o9  multiple 
of   values.  

In Figure 9 the angles which are the multiples of o9  are designated by black circles while the 
others are designated by open circles. In Figure 9a the arrows indicate the relative position of a 
peculiar black circle between the two white neighbors. The down-arrow says that the black circle is 
at a position lower than the two white circles on its left and right. Similarly, the up-arrow says that 
the black circle is at a position higher than the white circles on its left and right. Out of 19 black 
circles 9 of them are down-arrows, 6 of them are up-arrows, and 4 of them are in alignment with the 
white circles. This indicates that black circles which are expressed in terms of   are in the further 

lower positions (i.e., down-arrows) or in the further upper positions (i.e., up-arrows) than the white 
circles. They have higher influence on the dynamics of stability and instability in the system.  

In Figure 9 the angles which are the multiples of o9  are designated by black circles while the 
others are designated by open circles. In Figure 9a the arrows indicate the relative position of a 
peculiar black circle between the two white neighbors. The down-arrow says that the black circle is 
at a position lower than the two white circles on its left and right. Similarly, the up-arrow says that 
the black circle is at a position higher than the white circles on its left and right. Out of 19 black 
circles 9 of them are down-arrows, 6 of them are up-arrows, and 4 of them are in alignment with the 
white circles. This indicates that black circles which are expressed in terms of   are in the further 

lower positions (i.e., down-arrows) or in the further upper positions (i.e., up-arrows) than the white 
circles. They have higher influence on the dynamics of stability and instability in the system.  

There seem to be two different patterns of the distribution as seen from Figure 9b where the 
broken curves somehow pass through the appropriate points. The down-arrow points are mainly 
aligned on or below the lower curve whereas all upper arrow circles are above the upper curve. In 
addition, all upper-arrow points are either in the minimum or maximum zones of Figure 9b. 

The lower curve includes relatively less frequency of occurrence of angles and the upper curve 
the relatively more frequently occurring angles. The angles with higher percentage of occurrence 
represent the more preferable dynamical behavior in the system. These points are aligned in the 
upper zone of Figure 9 along the horizontal grid line passing through 2%. The dynamical changes 
corresponding to the minimal zones o(i.e. around 45 )  are relatively fewer occurring cases. 

However, in these zones up-arrows have relatively higher percentages and play more predominant 
role to influence the dynamical changes. Another point is that at o0   the up-arrow also plays a 
major role to change the behavior.  

The minimal zones around o45  correspond to an important physical fact. At o45  we have 
,G G   that is, the elastic (i.e., conservative) and viscous (i.e., dissipative) components are of equal 

magnitude. In order words, the system is neither elastic nor viscous, and in viscoelastic theory this 
state is called “gel” state; it is a kind of transition state. This state is minimal as seen from Figures 8 
and 9. The dynamics of asset values or stock market index reflect the behavior of traders. They don’t 
like to stay at the insecure (i.e., unstable) gel state, rather they take decisive actions which make them 
more deterministic in their behavior.  
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Figure 9. The distribution of   obtained at intervals of o3 .   

4.3. The change of Si and   

In order to have a feeling about how   angles of multiples of o9  appear in the time series data 

of S&P-500 two different cases were displayed in Figure 10. In the first case a small segment 
(between December 7, 1994 and April 3, 1995) where there occurs a smooth increase was considered, 
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while in the second case the data around a minimum (between January 13, 2009 and June 22, 2009) 
was considered. They are shown in Figures10a and 10b, respectively.  

As observed from Figure 10a in several cases the next white circle after the black one exhibits a 
jump in value, which represents actually a kind of excited state compared to the back one; these are 
the cases at 2264th, 2269th, 2298th, and 2323th days data points. The smooth increase of the points 
ends with a black circle in some cases, such as 2264th, 2287th, and 2298th days data points. In some 
cases, black circles appear at the minimum which represent the most stable states; these are 2269th, 
2290th, 2296th, 2321th, and 2339th day data points. These observations clearly show that the black 
circles represent the relatively stable cases in financial dynamics. It does not mean that stability 
occurs only in these points, but it rather says that in a turbulent media where there exists Brownian 
dominated motion, the stability close by to instability is achieved at states where dynamics can be 
expressible in terms of golden ratio or terms which involve golden ratio of some form.  

In Figure 10b we observe similar behaviors as in Figure 10a. What is interesting is that the 
downward peak region with a minimum behaves in a different way than the case in Figure 10a. The 
peak between two vertical broken lines starts with a black circle at the 5832th day with an Si value of 
826.84 and ends with another black circle at the 5865th day with an Si value of 834.38; both values 
are of similar magnitude. On the left leg we have 9 black and 10 white circles while we have 10 
black and 9 white circles. The ratio of blacks to whites is almost one. This is not the situation in 
Figure 10a where we have 26 black and 55 white circles; the ratio of black to white is less than one 
half. This ratio is very close to “1 black-2 white” distribution displayed in Figure 9.  

There are two important points here; the first point is related to the dynamics in the peak. The 
almost equal number of blacks and whites in this peak shows that traders make such decisions which 
ensure them to stabilize their positions, i.e., they take very careful actions. They take more 
courageous decisions if the things go as in Fig.10a, where positions represented by black circles are 
less preferred.  
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Figure 10. Change of Si values, (a): in a smoothly rising region, and (b): in a peak. 

The second important conclusion is that even in very smoothly rising market as in Figure 10a 
blacks and whites are half and half. However, the way the points in Figure 9a are arranged so that for 
every one black circle we have two white circles, because, the intervals were arranged by 3o, and 
there are two whites for any o9  of change in   angle. If the system were completely random the 
percent distribution of blacks and white circle wouldn’t be at half and half ratio.  
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4.4. Entropy and    

The stability and instability issues are related to entropy. The entropy is calculated by using two 
consecutive index values as seen from Equations 31 and 32. The quite low or quite high entropy 
values occur when the difference between two consecutive index values is high. This situation is 
clearly observed in Figure 5 where we observe larger entropy change in the zone of minimal regions. 
We can investigate the change of entropy at the peculiar angles which are multiples of o9 . This can 
be done by matching the black symbols of Figures 10a and 10b with their corresponding entropies.  

Figure 11. The peculiar angles of Figure10a and the corresponding entropy values. 
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The matching of the index values of the peak between two vertical broken lines of Figure 10b 
with the entropy values of the same region is given in Figure 12.  

Figure 12. The peculiar angles of Figure 10b and the corresponding entropy values. 

In the peak region of Figure 12b the percent distribution of white squares is 22.2% for case “i”, 
33.3% for case “ii”, and 44.5% for case “iii”. In case of black squares, the distribution is 29.4% for 
case “i”, 47.1% for case “ii”, and 23.5% for case “iii”.  

The percentage of white squares in Figure 12b for the case “iii” is 44.5% which is larger than 
the case in Figure 11b where it is 32.7%. The white squares are somehow pushed out from the 
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maximal and minimal regions in Figure 12b. These regions are occupied at a relatively higher 
percentage by black squares. In Figure 11b the percentage of black squares in “i” and “ii” regions 
add up to 58.6% whereas it is 76.5% in Figure 12b. In Figure 11b the black squares in the minimal 
regions is 34.5% whereas it is 47.1% in Figure 12b. In a peak severe change occurs while descending 
down or rising up. The motion is quite directed and up and down fluctuations of similar magnitude 
are quite reduced. The decrease in the index value is due to degradation of the wave (i.e. ),f  into 
smaller waves (i.e. ),f   and the index value increases as the reverse happens. In the peak region, the 

traders are much more precautious and their attitudes are conservative, and they are represented by 
the increased number of black circles or black squares.  

5. Elliott waves and peculiar angles  

The connection between the Elliott waves and the golden ratio can be better understood in terms 
of the changes of angles derived from golden ratio, i.e., in terms of the multiples of 9o. The physics 
behind such changes is the gel state which occurs at 45o. The gel state is expressed in term of a 
geometric term which is the angle that provides equality between the two opponent forces due to 
conservative and dissipative actions. There are five steps (i.e., 0o, 9o, 18o, 27o, 36o) between 0o and 
45o, and also another five steps between 45o and 90o. Here we exclude 45o as the gel state is a quasi-
state, it is neither elastic nor viscous. Other states reveal from the decomposition of this quasi-state. 
We may say that the real states (or new forms) reveal from this quasi-state as in the case of spinodal 
decomposition. In case of   angle we have four such regions between o90  and 90o, and also four 
regions for   angle (Figure 2) between 0o and 180o.  

The   or   angle is actually connected to the oscillation frequency   according to equation 21. 
Therefore, the fluctuations with tiny amplitudes result in tiny waves according to equation 21, and 
these waves combine and decompose perpetually. Besides the main frequencies the harmonic 
frequencies are also generated. Can small fluctuations add up and give big fluctuations? The answer 
is positive according to equation 19–21.  

The major motive Elliott wave is denoted by the numbers (1) to (5), and the corrective wave by 
(A) to (C) which has relatively smaller amplitude in Figure 13. The golden ratio found out from the 
heights between the horizontal broken lines was indicated outside the diagram on the right-hand side.  

Here we must keep in mind that whenever we have an Elliott wave, we have a collective motion 
and therefore we have an ordered structure. As the golden ratio denotes the closest stable state to 
randomness or in other words the least stable state (see Equation 36–37) we may question how 
Elliott waves and golden ratio are bound to each other. 

As mentioned before the least stable states can be achieved when the angles between the 
consecutive vectors are multiples of 9o, and there are only five stages which allows this possibility 
between o o0 -45 .  A wave designates a collective motion, and collective motion can be thought of as the 
commonly exercised behavior of a large group of dealers in the market. Their behavior turns into wave 
behavior, i.e., creates wave in the physical sense, and the most durable surviving waves can be achieved 
when the angles between the consecutive vectors have five choices. The waves not structured in five 
consecutive branches are naturally short-lived waves and they are difficult to recognize. 
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Figure 13. A global Elliott wave in S&P-500. 

Now let us consider autocatalysis here once more. Every growing system has two major groups 
of parameters; the ones which increase the growth, and the ones which control (i.e., pulls down) the 
growth. Similarly, a commodity, asset, and so forth may have increasing value or its value is dragged 
down depending on conditions. The logistic equation is used to formulate this phenomenon.  

1 (1 )n n nx rx x     (39) 

where xn denotes the situation at the nth step and xn+1 denotes it at the (n+1)th step. xn refers to the 
growth and (1 )nx  to the control variable. Inside the parenthesis “1” means that every change is 

expressed in terms of fractions. r  is a constant and tells us at what proportion xn is transformed into 
xn+1. Another well-known autocatalytic system is the Lotka-Volterra problem in ecology where xn 
denotes the prey population and (1 )nx  the predator population. It is a time dependent continuous 

function and we have dx/dt on the left-hand side instead of xn+1. If we consider the increase of 
predator population then the sign of the term on the right-hand side of Equation 39 changes. In the 
increasing step of an asset price the asset functions as predator, it pulls (or attracts) the investors, and 
adversely influences the price of the other assets. Hence, we can change Equation 39 into the form,  

1 (1 )n n nx x x      (40) 

where we set also 1r  for simplicity. It can now be expressed as,  

2
1n n nx x x     (41) 
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In Figure 13 the points (1), (2), (3), (4), (5), (A), (B), and (C) are connected by dotted lines, and each 
line has a kind of memory of what happened in between the two connected points. In Equation 22 we had 
related two consecutive values with each other, and using a similar logic we can relate two consecutive 
lines also. The angle between the two lines gives information about the dynamics in the range covered by 
the lines. We can ask if the angles produced by the dotted lines passing through (1)-(2)-(3)  and through 
(2)-(3)-(4)  have a kind of connected property. A more general question is that if the autocatalytic 

behavior has a kind of deterministic effect can we see this effect in the angles between the lines of the 
subsequent points (1), (2), (3), (4), (5), (A), (B), and (C)? If so, then the angles must also exhibit a kind of 
behavior of which underlying dynamics base on Equation 41. Thus, we can set xn to denote the angle 
function between the lines. Since oscillations are given by the cosine of an angle by Equation 21, we can 
set   for t  in Equation 21. That is, we can set cos .n nx   Equation 41 now becomes,  

2
1cos cos cosn n n       (42) 

The angles which are the multiples of 9o were said to be related to golden ratio because of 
Equation 38. Starting with 9o we can obtain other angles for instance 18o from the cosine relation 

2(i.e. cos2 2cos 1).    For a special case let us set, 1 2 ,n n    then we can write Equation 42 as,  

2cos 2 cos cosn n n      (43) 

Hence, by substituting Equation 43 in 42 we easily get, 

2cos cos 1 0n n      (44) 

The solution gives cos 0.618 1/ .n    This surprising result is due to the fact that if we set 

1 1nx    in Equation 41 we get the algebraic relation 2 1 0,x x    which is also the algebraic 

relation to obtain the golden ratio. The autocatalytic systems (or logistic equation) and the golden 
ratio have common mathematical basis. Therefore, we may expect that the angles between any two 
connecting lines in an Elliott wave may be the multiple of 9o.  

It was also mentioned above that the growth of a wave expressed by Equation 17 or Equation 19 
also represents a kind of autocatalytic mechanism; the more it peaks up smaller waves, the greater it 
gets in time. However, the bigger it becomes the larger the probability that it breaks up into smaller 
waves. This mechanism is the underlying logic of Equation 39.  

Now we can calculate the   values in degrees between the consecutive lines connecting the 

points (1), (2), (3), (4), and (5) in Figure13 by using geometric relations. The calculated values were 
given in Table 1. The numbers in parenthesis in the first row are the associated corner numbers. The 
  refers to the calculated degrees, and '  is the best fitting degree which is the multiple of 9o.  

Table 1. The comparison of calculated degrees with the best fitting degrees. 

Degrees (1) (2) (3) (4) (5) 
  87.06 82.59 82.34 73.65 63.00

'  90 81 81 72 63 
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The agreement between   and '  is very good. The lines were drawn between the first and the last 

points in each case. The angle is very case sensitive, and even a small change in the second decimal of Si 
value is directly reflected as a significant change in the value of   As mentioned before '  values were 

determined with 3o (±1.5o) precision. The largest difference occurs in (1) by 2.94o. 
Now we can make local analysis for the Elliott waves. Figure 14 shows a magnified view of the 

first two major branches (i.e., line #1&#2) of Figure 13. 

Figure 14. First major peak of Figure 13. 

The apex of the first peak of Figure 13 is shown by 5 in Figure 14. In the rising branch we have 
a motive phase designated by the numbers from 1 to 5 also marked by the dotted lines, and we also 
have a corrective phase which is shown by the letters from A to C. There could be more fine 
structured waves for instance between 2 and 4, but the analysis will not be further carried out for 
such detailed states. In Table 2 we see the angles between two consecutive intersecting dotted lines; 
and the numbers or letters denote the appropriate corners.  

Table 2. The comparison of calculated values with the best fitting values in the 
ascending branch of Figure 14. 

Degrees 1 2 3 4 5 A B C
  69.33 54.60 53.42 47.17 53.03 56.05 71.65 27.54

'  72 54 54 45 54 54 72 27 

It is seen that each   has a degree which is very close to one of the peculiar degrees. In fact, the 

dotted lines were drawn by using only two data points excluding all others in between. In a 
fluctuating system a point at minimum or at maximum may not represent the real minimum or 
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maximum, because, the data represents only the closing value by the end of a day, and it is not 
meaningful to take the daily average. Anyway, Table 2 clearly indicates that the calculated   
degrees are strongly associated with the peculiar degrees ,'  i.e., the multiples of 9o. 

On the descending branch we have a motive phase from 1'  to 5',  and two corrective phases 
which are from A'  to C ,'  and  from A''  to C ,''  respectively. The angles of the motive phase are 

shown in Table 3 and those of corrective phases in Table 4. 

Table 3. The comparison of   values with '  values of the motive phase in the 

descending branch of Figure 14.  

Degrees 1'  2'  3'  4' 5'  
  19.86 25.15 35.61 34.99 14.39

'  18 27 36 36 18 

Table 4. The comparison of   values with '  values of the corrective phases in the 

descending branch of Figure 14. 

Degrees A'  B'  C'  A'' B''  C''  
  46.10 73.04 37.99 24.85 44.67 52.45

'  45 72 36 27 45 54 

Here we see again a nice correspondence between   and '  values in both Table 3&4.  

In order to investigate it further the descending #4 and the ascending #5 branches of major 
Elliott wave (Figure 13) were also analyzed. These two cases were shown in detail in Figure 15.  

In Figure 15a the corrective phase reveals within the motive phase, whereas in Figure 15b it 
reveals after the motive wave. The angles are given in Table 5, and Table 6, respectively.  

Figure 15. (a): The fourth; (b): the fifth branch of Figure 13. 
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Table 5. The comparison of calculated values with the best fitting values of in Figure 15a. 

Degrees 1 2 3 4 5 A B C
  35.41 28.17 25.87 28.13 17.44 18.47 15.88 16.72

'  36 27 27 27 18 18 18 18 

Table 6. The comparison of calculated values with the best fitting values of in Figure 15b. 

Degrees 1 2 3 4 5 A B C
  35.19 44.91 60.85 73.15 47.87 19.75 27.57 25.38

'  36 45 63 72 45 18 27 27 

We also see in Tables 5 and 6 that there is a close correspondence between the values of   and 
the values of '.  

In Figure 13 there are two regions where the amplitudes of fluctuations are quite low. One them 
is the third branch of the major Elliott wave, and the second is the very early smooth region where 
the amplitudes are really minute. The magnified views of these regions were shown in Figure 16. 

The angles for Figure 16a were given in Table 7, and the angles for Figure 16b were given in 
Table 8.  

There is also a very good correspondence between   with '  when we have small 

amplitude fluctuations.  
We always observe consistency in all cases from Table 1 to Table 8.  

Figure 16. (a): The third branch of Figure 13; (b): the very early period of Figure 13. 

 

 



192 

 

Quantitative Finance and Economics              Volume 5, Issue 1, 163–197. 

Table 7. The comparison of calculated values with in Figure 16a. 

Degrees 1 2 3 4 5 A B C
  82.84 70.24 62.26 62.40 60.35 55.34 52.74 63.27

'  81 72 63 63 63 54 54 63 

Table 8. The comparison of calculated   values with  values in Figure 16b. 

Degrees 1 2 3 4 5 
  74.58 62.80 78.26 59.72 53.95

'  72 63 81 63 54 

6. Conclusions 

Asset values and stock market index values cannot be fully described by Brownian motion, but 
rather by a mixed Brownian and wave-like dynamics. Fluctuations create small waves which are 
picked up by a rising asset, commodity, or so forth. By the same way the high asset value is partly 
degraded to produce small fluctuating waves which are picked up by other assets. This behavior can 
be elucidated at macro level using scattering diagram technique and the theory of viscoelasticity, 
such that, a vector in scattering diagram can be split into its conservative and dissipative components. 
The distribution of angles between the consecutive vectors do not have uniformity but rather have 
some peculiar preferences. These angles are those which can be expressed in terms of golden ratio 
and they actually correspond to relatively higher stability states.  

The entropy values corresponding to the states associated with these peculiar angles also support 
that the stability and instability issues in stock markets are closely related to the occurrence of these 
angles. The traders in financial systems always look for secure positions, and they are more precautions 
while there were sharp falls and rises, where, we see these peculiar angles more frequently.  

The Elliot waves represent an ordered pattern which forms in a manner that its structure has a 
stability state closest to instability. The angles between the lines of Elliott waves come out to be 
those which are obtained from golden ratio. In other words, we observe the relations involving 
golden ratio in the time dependent spectrum of asset values because of the formation mechanism of 
the Elliott waves. In this study, the formation principles of Elliott waves were established on physical 
and mathematical grounds.  
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Appendix A 

The multiplication of both sides of Equation 11 by ( )AL t  gives, 

0 0 1 1 1 1( ) ( ) ( ) ( , ) ( ) ( ) ( , )(1 ) ( ) ( )AL t f t AL t U t t f t AL t U t t A L t f t dt      (A-1) 

We have the following conditions,  

( ) ( ) 0AL t f t    (A-2) 

1 1(1 ) ( ) ( )A L t L t    (A-3) 

Now Equation (A-1) takes the form,  

0 0 1 1 1 1( ) ( , ) ( ) ( ) ( , )(1 ) ( ) ( )AL t U t t f t AL t U t t A L t f t dt     (A-4) 

The second term of Equation 12 simply reduces to the following equation, because, 

( ) ( ) 0.AL t f t   

( ) ( ) ( ) ( )AL t f t L t f t   (A-5) 

The third term of Equation12 can be expressed as, 
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0 0 0 0 0 0 0 0( ) ( , ) ( ) ( ( ) ( )) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )AL t U t t f t A L t L t U t t f t L t U t t f t AL t U t t f t           (A-6) 

The substitution of Equation (A-4) in Equation (A-6) yields, 

0 0 0 0 1 1 1 1( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )AL t U t t f t AL t U t t f t AL t U t t L t f t dt             (A-7) 

Then the substitution of Equation (A-5) and Equation (A-7) in Equation 12 gives,  

0 0 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

                                                                      ( ) ( , )(1 ) ( ) ( )

f
L t f t AL t U t t f t AL t U t t L t f t dt

t

A L t U t t A L t f t dt

      


 




  (A-8) 

Using Equation 13 in the last term, and doing some simplifications yields, 

0 0 1 1 1 1( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

                                                                     

f
L t f t AL t U t t f t A L t U t t L t f t dt

t

       
     (A-9) 

Appendix B 

A typical broken surface of a crystal is shown in Figure B-1.  

 

Figure B-1. Surface of a broken crystal.  

The surface has two dimensions but only the side view is shown in Figure B-1, the other 
dimension may be assumed to be unity. We will consider the edge with length l  in Figure B-1. 
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The ticks on the unit cells indicate new unit cell surfaces created, and “d” denotes the length of 
each side of unit cell. Let’s assign a unit energy of /2  to each bond, i.e., to each newly created unit 
cell surface both along the horizontal (i.e., x-) and vertical (i.e., y-) axis. The surface energy can be 
calculated by taking into consideration the horizontal and vertical axes.  

cos# of  broken bonds along x - direction =
d

l
  (B-1) 

sin# of  broken bonds along y - direction =
d

l
  (B-2) 

The total number of bonds along both directions is, 

(cos sin )dtotal # of  broken bonds = n  =
d

 
l

   (B-3) 

The total energy of created surfaces can be given by,  

(cos sin ) cos( / 4)
2 2

E = =
d d

     
l l

   (B-4) 

This equation denotes a circle with a diameter of / 2 .d l   
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