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Abstract: This paper is devoted to study a robust optimal excess-of-loss reinsurance and investment 

problem with p-thinning dependent risks for an ambiguity-averse insurer (AAI). Assume that the 

AAI’s wealth process consists of two p-thinning dependent classes of insurance business. The AAI is 

allowed to purchase excess-of-loss reinsurance and invest in a financial market consisting of one 

risk-free asset and one risky asset, where risky asset’s price follows CEV model. Under the criterion 

of maximizing the expected exponential utility of AAI’s terminal wealth, the explicit expressions of 

the optimal excess-of-loss reinsurance and investment strategy are derived by employing techniques 

of stochastic control theory. Moreover, we provide the verification theorem and present some 

numerical examples to analyze the impacts of parameters on our optimal control strategies.  
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1. Introduction 

Reinsurance and investment becomes more and more important in the insurance risk 

management. Recently, there has been a great deal of interest to investigate the optimal reinsurance 

and investment problems. For instance, Hipp and Plum (2000), Schmidli (2001) and Promislow and 

Young (2005) considered the optimal investment and/or reinsurance strategies for insurers to 

minimize the ruin probability; Irgens and Paulsen (2004), Yang and Zhang (2005), Liang et al. (2011), 
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Guan and Liang (2014), Zhu (2015), Pan et al. (2019) and Zhang and Zhao (2020) studied the 

optimal problems under the criterion of maximize the survival probability or the expected utility of 

the insurer’s terminal wealth; Bai and Zhang (2008), Zeng et al. (2013), Li et al. (2015), Zeng et al. 

(2016), Liang et al. (2016) and Tian et al. (2020) investigated the optimal reinsurance and investment 

problems under mean-variance criterion. 

However, most of the above-mentioned literatures usually assume that there is only one class of 

insurance business in the insurer’s wealth process. In reality, there usually are more than one classes 

of insurance businesses in the operation and management of an insurer, i.e., car claims and medical 

claims. Moreover, different insurance businesses are usually correlated through some way. A typical 

example is that a traffic accident (or fire accidents or earthquakes or aviation accidents and so on) 

may cause medical claims or property loss or death claims. Therefore, it is necessary to investigate 

the dependent risks in the actuarial literature. Liang and Yuen (2016) and Yuen et al. (2015) began to 

investigate optimal proportional reinsurance problems with dependent risks, they assumed that there 

are two or more dependent classes of insurance business in the insurer’s wealth process and claim 

number processes are correlated through a common shock component, and their aims were to 

maximize the expected utility of the insurer’s terminal wealth and derived the optimal proportional 

strategies. Then Bi et al. (2016) studied the optimal proportional investment and reinsurance 

problems under mean-variance criterion for the risk model with common shock dependence. Later, 

Zhang and Zhao (2020) considered the optimal proportional reinsurance and investment problem 

with p-thinning dependent risks. For other research about dependent risks, one can refer to Yuen et al. 

(2002), Gong et al. (2012), Liang and Wang (2012), Liang et al. (2016) and the references therein.  

Moreover, ambiguity is still being worthy of further exploration. In practice, model 

uncertainties do exist widely in finance, especially in insurance and portfolio selection. In the recent 

years, optimal investment-reinsurance problems with ambiguity have been paid more attention. For 

example, Yi et al. (2013) and Zheng et al. (2016) optimized proportional reinsurance and investment 

problems with model uncertainty for an insurer. Huang et al. (2017) considered a robust optimal 

proportional reinsurance and investment problems for both an insurer and a reinsurer. Yang et al. 

(2017) took multiple dependent classes of insurance business into account and studied the optimal 

mean-variance proportional reinsurance-investment problem with delay. Zeng et al. (2016) analyzed 

a robust optimal proportional reinsurance-investment problem under the mean-variance criterion for 

an ambiguity-averse insurer (AAI) who worries about model uncertainty. Besides, excess-of-loss 

reinsurance is also more important, as shown in Asmussen et al. (2000), it is even better than the 

proportional reinsurance in most situations. Later, A and Li (2015), Li et al. (2017), A et al. (2018) 

and Zhang and Zhao (2019) analyzed robust optimal excess-of-loss reinsurance and investment 

problems for an AAI. 

To the best of our knowledge, few researches focus on the robust optimal excess-of-loss reinsurance 

and investment problem with p-thinning dependent risks. Inspired by Zhang and Zhao (2019), this paper 

not only takes excess-of-loss reinsurance into account, but also considering the model uncertainly. 

Suppose that there are two p-dependent classes of insurance business in the insurer’s wealth process. The 

insurer can purchase excess-of-loss reinsurance and invest in a risk-free asset and a risky asset, where the 

price process of risky asset follows CEV model. Firstly, a robust optimal control problem with p-thinning 

dependent risks is formulated. Secondly, the robust optimal excess-of-loss reinsurance and investment 

strategies are derived under the criterion of maximizing the expected exponential utility of AAI’s terminal 

wealth. This paper has three following high contributions: (i) both p-thinning dependent risks and 
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excess-of-loss reinsurance are considered in an optimal problem; (ii) ambiguity is taken into account in 

this problem; (iii) some special cases such as the case of investment-only and ambiguity-neutral insurer 

are given, which means that our results generalized some existing results, e.g., Gu et al. (2012), A et al. 

(2015), A et al. (2018) and Zhang and Zhao (2020). 

The rest of this paper is organized as follows. Formulation of our model is presented in section 2. 

Section 3 derives robust optimal strategies by maximizing the utility of AAI’s terminal wealth. We give 

the verification theorem in Section 4. Section 5 provides some special cases of our model. In Section 6, 

some numerical simulations are presented to illustrate our results. Section 7 concludes the paper. 

2. Model formulation 

Let ( , ,P F ) be a complete probability space with filtration{ , [0 ]},t t ,TF where tF stands for the 

information of the market available up to time t andT is a positive finite constant which represents 

the terminal time. All processes introduced below are assumed be well-defined and adapted 

processes in this space. Assume that trading takes place continuously, without taxes or transaction 

costs, and that all securities are infinitely divisible.  

2.1. Wealth process  

The insurer’s wealth process { ( ) 0,, [ ]}tt TR   with two dependent classes of insurance business is 

described by 

( ) ( )

0

1 1

( ) +

pN t N t

i i

i i

R t x ct X Y
= =

= − −           (1) 

where 0 0x   is the initial surplus, 0c   represents the premium rate; iX  is the ith claim size from the 

first class of business; { , 1}iX i   are assumed to be i.i.d. positive random variables with common 

distribution function denotes ( ).XF  Denote finite first moment [ ] 0i XE X =  and second moment 
2 2[ ]i XE X = ; iY  is the ith claim size from the second class of business and { , 1}iY i   are assumed to be 

i.i.d. positive random variables with common distribution function ( )YF  . Denote finite first moment 

[ ] 0i YE Y =   and second moment denote 2 2[ ]i YE Y = . The claim number process  ( ), 0N t t   is assumed 

to be a Poisson process with intensity 0   representing the number of claims occurring in time interval 

[0, ],t while  ( ), 0pN t t   is a p-thinning process of  ( ), 0N t t   which is another Poisson process with 

intensity .p  As we know, each claim iX  in reality may or may not cause another claim iY , if yes, we 

assume that the claim iY  is caused with probability p. This paper assumes that the events whether each 

claim iX  causes another claim iY  or not are mutually independent. Thus, the claim number process 

( )pN t  for the claims iY  is a p-thinning process of ( )N t  for claims iX . The compound Poisson process 
( )

1

N t

ii
X

=  and ( )

1

p
N t

ii
Y

=  are the cumulative amount of claims iX  and iY  in time interval [0, ],t  

respectively. Moreover, we assume that    , 1 , , 1i iX i Y i   and  ( ), 0N t t   are mutually independent. 

As we all know, a serious epidemic like Covid-19 pandemic has been caused medical claims or 

death claims. The thinning-dependent structure in (1) can be interpreted as that medical insurance 

claims (i.e., iX ) causes death insurance claims (i.e., iY ) with probability p due to Covid-19 pandemic, 

then the death claim number process (i.e. ( )pN t ) is a p-thinning process of the claim number process 

of medical insurance (i.e. ( )N t ). 
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In addition, the insurer’s premium rate is calculated according to the expected value principle, i.e. 

1 2(1 ) (1 )X Yc p    = + + +  

where 0i   is the insurer’s safety loading of the ith class of insurance business. 

Denote by 1 sup{ : ( ) 1} ,XD x F x=   +  then (0) 0,XF = 0 ( ) 1XF x  for 10 x D  and ( ) 1XF x =  for 

1;x D  denote by 2 sup{ : ( ) 1} ,YD y F y=   +  then (0) 0,YF = 0 ( ) 1YF y  for 0  2 ,y D and ( ) 1YF y = for 

2 .y D  

2.2. Excess-of-loss reinsurance 

Assume that the insurer is allowed to purchase excess-of-loss reinsurance in order to reduce the 

underlying claims risk. Let ( 1,2)im i =  be (fixed) excess-of-loss retention levels, and let 

1

1min{ , }
m

i iX X m= 2

2min{ , }
m

i iY Y m=  

be the parts of the first claims and the second claims held by the insurer, respectively. Then by (1), 

the wealth process { ( ) [0 ], },m tX Tt   after considering reinsurance with retention levels 1 2( , )m m m=  

becomes 

1 2

( ) ( )

0

1 1

d ( ) d d d , (0)

pN t N t
m mm m m

i i

i i

X t c t X Y X x
= =

= − − =         (2) 

with the premium rate 

1 2

1 2

1 2

1 1 1 2 2 2

(1 )( [ ]) (1 )( [ ])

(( ) (1 ) [ ])+ (( ) (1 ) [ ])

m mm

X i Y i

m m

X i Y i

c c E X p E Y

E X p E Y

     

         

= − + − − + −

= − + + − + +
 

where i  is the reinsurer’s safety loading of the ith class of insurance business. This paper assumes 

i i   which represents that the reinsurance is not cheap.  

According to Grandell (1991) and Promislow and Young (2005), the claim process 1

( )

1

d
N t

m

i

i

X
=

 can 

be approximated by a diffusion risk model as follows 

1 1

( )

1

1

d [ ]d d ( )
N t

m m

i i X

i

X E X t W t 
=

= −   

similarly, 

2 2

( )

2

1

d [ ]d d ( )

pN t
m m

i i Y

i

Y pE Y t W t 
=

= −  

Then the wealth process (2) can be approximated by the following diffusion model  
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1 2 1 2d ( ) ( ( ) ( ))d ( )d ( ) ( )d ( )m

X YX t c m c m t m W t m W t = + + +  

2 2

1 2 1 2 1 2 0( ( ) ( ))d ( ) ( ) 2 ( ) ( )d ( )
d

c m c m t m m m m W t   = + + + +     (3) 

where 

1 1 2

1 1 1 1 1( ) (( ) [ ]), ( ) [( ) ]
m m

X i ic m E X m E X      = − + =      (4) 

2 2 2

2 2 2 2 2( ) (( ) [ ]), ( ) [( ) ]
m m

Y i ic m p E Y m pE Y      = − + =      (5) 

( )XW t  and ( )YW t  are two standard Brownian motions, and their correlation coefficient is given by 

1 2

1 2

[ ] [ ]
( ) ( )

m m

i i

p
E X E Y

m m




 
=  

and 0 ( )W t  is another standard Brownian motion which is dependent of ( )XW t  and ( )YW t . 

Remark 1. If 0p = , the model (1) will reduce to the classical C-L model in Zhang et al. (2020) 

and (3) will reduce to that in A and Li (2015), A et al. (2018) and Li et al. (2016), which implies that 

our model can generalize the optimal formulation of existing results to the case with p-thinning 

dependent risks.  

For convenience, let  

           
( ) ( )

1 2
1 2

1 2
1 2

1 2
0 0

2 2

1 2
0 0

( ) [ ] ( )d , ( ) [ ] ( )d

( ) 2 ( )d , ( ) 2 ( )d

m m
m m

X i X Y i Y

m m
m m

X i X Y i Y

g m E X F x x g m E Y F y y

G m E X xF x x G m E Y yF y y

 = = = =



    = = = =
      

 

 
           (6) 

where ( ) 1 ( ), ( ) 1 ( ).X X Y YF x F x F y F y= − = −   

2.3. Financial market 

Moreover, the insurer is allowed to invest in one risk-free asset (bound) and one risky asset 

(stock). The price process ( )B t  of the risk-free asset follows 

0d ( ) ( )d , [0, ]

(0) 1

B t r B t t t T

B

= 


=
 

and the price process ( )S t of risky asset is given by the following CEV model 

1

1

0

d ( ) ( )d ( )d ( ), [0, ]

(0)

S t S t t S t W t t T

S S

  + = + 


=
       (7) 

where 0 ( 0)r   is the interest rate of the bond, 0( )r   represents the expected instantaneous rate of 

the risky asset, ( 0)   is the volatility of the risky asset price and ( 0)   is the elasticity parameter, 
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respectively. 1( ), 0W t t  is a standard tF -adapted Brownian motion, independent of , 1 ,iX i   , 1iY i   

and  ( ), 0 .N t t   

Remark 2. If 0 =  in (7), the CEV model will reduce to the GBM model. 

2.4. Optimal problem for an AAI 

Let 1 2: { ( ) : ( ), ( ), ( ), [0, ]}u u t m t m t t t T= =   be the reinsurance-investment strategy, where ( )im t  is 

the excess-of-loss retention level for ith claim at time t, note that ( )i im t D= represents “no 

reinsurance”, ( ) 0im t =  represents “full reinsurance”, and ( )t  represents the money amount invested 

in the risky asset at time t, so the amount of money invested in the risk-free asset at time t is 

( ) ( ),uX t t− here ( )uX t  represents the wealth of the insurer after adopting strategy .u  Therefore, the 

evolution of ( )uX t  is governed by  

1 1 2 1 1d ( ) [ ( ) ( ) ( ) ( ( )) ( ( ))]d ( ) ( )d ( )u uX t rX t r t c m t c m t t t S t W t   = + − + + +  

1 2 1 2 0( ( )) ( ( )) 2 ( ( )) ( ( ))d ( )X Y X YG m t pG m t pg m t g m t W t  + + +                (8) 

with
0(0) .uX x=   

For notational convenience, we write ( )im t and ( )t as im and in below.  

In traditional, the insurer is assumed to be ambiguity-neutral with the objective function as 

follows 

, ,sup ( ( ))u

t x s
u

E U X T


             (9) 

where 
, , ( )t x sE   denotes the expectation under P considering the dynamics of the process (X , )u S  with 

initial condition ( , , ) [0, ] ,t x s T R R+   andΠ is the set of admissible strategies given by Definition 2.1.  

However, most of insurers are ambiguity-averse and they always try to be against worse-case 

scenarios. Thus, it is reasonable to consider an ambiguity-averse insurer (AAI) in the field of 

insurance. In what follows, a robust portfolio choice with uncertainty will be presented for an AAI. 

Assume that there is a relatively good estimated model (also called reference model) for the AAI to 

describe the risky assets prices and claim process, but the AAI is always skeptical about the chosen 

reference model and always hopes to take alternative models into consideration. According to 

Anderson (1999), the alternative models can be defined by the following set of probability 

measuresQ which are equivalent to the P: 

: { | ~ }Q Q P=Q   

Definition 2.1. The strategy u is said to be admissible if it is tF -progressively measurable and 

satisfies  

(i) [0, ], 1,( ) [0, ], 2;i i tm t D T i =    

(ii) ( )* 2

0
( ) d ,

T
QE u w w   and ( )* 2

0

2( ) ( d) ,
T

QE ww S w   where 2 2

1 2

2 2( ) ( ) (( );) m t m tt tu + +=  
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(iii) ( , , ) [0, ] ,t x s T R R+     the SDDE (8) has a pathwise unique solution { ( ), [0,uX t t ]}T  with 

*

, , [ ( ( ))] ,Q u

t x sE U X T    where *Q  is the chosen model to describe the worst case, 
, ,s[ ]t xE   is the 

condition expectation given ( ) , ( ) .uX t x R S t s R+=  =   LetΠbe the set of all admissible strategies. 

Next, define a process 0 1{ ( ) ( ( ), ( )) | [0, ]}t t t t T  =   satisfying that 

(i) ( )t is tF -measurable, [0, ];t T   

(ii) 
21

2 0
[exp{ ( ) d }] ,

T

E t t    where 
2 2 2

0 1( ) ( ) ( ).t t t  = +  We denote for the space of all such 

processes .  

For ,    we define a real-valued process  ( ) | [0, ]t t T   on ( , F, P) by 

2

0 0

1
( ) ( )d ( ) ( ) d

2

t t

t w W w w w  
 

= − − 
 
   

where 0 1( ) ( ( ), ( )) .W t W t W t =  By Ito’s differentiation rule, 

d ( ) ( )[ ( )d ( )]t t t W t   = −  

So, we know that ( )t  is a P-martingale and [ ( )] 1.E t =  For each ,   define a new 

real-world probability measure Q absolutely continuous to P on TF as follows 

d
: ( )

d
T

Q
t

P

=
F

 

Now, a family of real-world probability measures Q parameterized by    have been 

constructed. Applying Girsanov’s theorem, we know that 
0 1( ) ( ( ), ( ))Q Q QW t W t W t =  with 

d ( ) d ( ) ( ) dQW t W t t t = +  under Q is a standard two-dimension Brownian motion.  

Noting that the alternative models in classQ are different due to the drift terms. Thus, the risky 

asset’s price (7) under Q is  

1

1 1

0

d ( ) ( )[ ( ) ( )]d ( )d ( ), [0, ]

(0)

QS t S t t S t t S t W t t T

S s

     + = − + 


=
     (10) 

and the wealth process (8) under Q can be rewritten as 

2 2

1 2 0 1 2 1 2 1

2 2

1 1 2 1 2 0

d ( ) [ ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )]d

( )d ( ) 2 ( ) ( )d ( )

u u

X Y

Q Q

X Y

X t rX t r c c t pg m g m t S t t

S t W t pg m g m W t





       

   

= + − + + − + + −

+ + + +
  (11) 

by recalling that 2

1 1( ), ( ), ( ( ()), 1, )2 ), (i i i i i Xt m m t c c m t i G m t  = = = = =  and 2

2 2( ( )).YpG m t =  
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Suppose that the insurer tries to seek a robust optimal control which is the best choice in some 

worst-case models. Inspired by Maenhout (2004) and Branger and Larsen (2013), the robust control 

problem to modify problem (9) can be formulated as follows  

                    , ,ssup inf ( ( )) Ψ( , ( ), ( ), ( ))d
T

Q u u

t x
tQu

E U X T w X w S w w w


+ Q
                 (12) 

where  

2
( )

Ψ( , , , )
2 ( , , )

t
t x s

t x s





=                               (13) 

and , ,s

Q

t xE  is calculated under Q;   is a strictly positive deterministic function and stands for the 

strength of the preference for robustness; the deviation from the reference model is penalized by the 

second term in the expectation, which depends on the relative entropy arising from the diffusion risks. 

To solve (12), we define the optimal value function ( , , )J t x s  as 

 , ,( , , ) sup inf ( ( )) Ψ( , ( ), ( ), ( ))d
T

Q u u

t x s
tQu

J t x s E U X T w X w S w w w


= + Q
                 (14) 

For convenience, some notations are first provided. Let
0 R R+ O be an open set and 

0[0, ] .T= O O Denoted by 1,2,2C the space of ( , , )J t x s such that J and its partial 

derivatives , , , ,t x s xxJ J J J ,xs ssJ J  are continuous on O.  To solve the problem (14), applying dynamic 

programming principle, we can derive the following robust Hamilton-Jacobi-Bellman (HJB) 

equation (see Kraft(2005) and Maenhout(2006) ): 

 
1 2

,

[0, ] [0, ]

sup inf ( , , )+Ψ( , , , ) 0u

R Ru D D R

J t x s t x s




   

=A        (15) 

with boundary condition  

( , , ) ( )J T x s U x=          (16) 

where ,uA is the generator of (14) under Q given by 

, 2 2

1 2 0 1 2 1 2 1[ ( ) 2 ( ) ( ) ]u

t X Y xJ J rx r c c pg m g m s J        = + + − + + − + + −A  

              
2 2 2 2 2 11

1 2 1 2 12

2 2 2 2 2 11

2

[ 2 ( ) ( )] ( )X Y xx s

ss xs

s pg m g m J s s J

s J s J

 

 

       

 

+

+ +

+ + + + + −

+ +
     (17) 

Note that J is a short notation for ( , , ).J t x s  

3. Robust optimal results 

This section is devoted to derive the robust optimal strategy *u  under the worst-case scenario. 

Suppose that the AAI has the exponential utility function given by as follows 
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1
( ) vxU x e

v

−= −           (18) 

where the constant v (> 0) represents the absolute risk aversion coefficient. As we all know, the 

exponential utility function plays an important role in insurance mathematics and actuarial practice. 

It is independent of the level of insurers’ wealth and it is the only utility function under the principle 

of “zero utility” giving a fair premium (see Gerber, 1979). 

In what follows, we set out to solve the HJB equation (15). At first, we show the form of . For 

analytical tractability, following Maenhout (2004, 2006), we set 

( , , ) 0
( , , )

m
t x s

vJ t x s


−
=   

which is state-dependent, where ( 0)m   represents the ambiguity-aversion coefficient, which 

describes the AAI’s attitude to the diffusion risk. 

Then, to solve (15) preference parameter  , we conjecture the form of the value function as 

follows 

( )1
( , , ) exp{ ( , )}r T tJ t x s vxe G t s

v

−= − − +
        

(19) 

with ( , ) 0.G T s =  Let , ,t s ssG G G be the partial derivatives of ( ,s).G t  According to (19), we have  

( ) ( )

2 2 ( ) ( ) 2

[ ] , , ,

, , ( )

r T t r T t

t t x s s

r T t r T t

xx xs s ss s ss

J vxre G J J ve J J G J

J v e J J ve G J J G G J

− −

− −

 = + = − =


= = − = +

      (20) 

Step1: Substituting (20) into (15) and rearranging terms, since 0,J   we get  

1 2

1 2 2 2 21
1 2

R[0,D ] [0,D ] R

2 2 ( )

1 2 0 1 2 1 2 1

2 2 ( ) 2 2 2 2 21
1 2 1 22

2 2 1 ( ) 2 2

0 1

sup inf { ( ) ( )

[( ) 2 ( ) ( ) ]

( 2 ( ) ( ))

( )}
2

t s s ss
Ru

r T t

X Y

r T t

X Y

r T t

s

G s s G s G G

r c c pg m g m s ve

v e s pg m g m

v
s ve G

m

 









   

       

    

  

+ +

   

−

−

+ −

+ − + +

− − + + − + + −

+ + + +

− − + 0.=      (21) 

Step2: According to (21), fixing u  and maximizing over  , we derive the first-order condition for 

the following minimum point * : 

* ( ) 2 2

0 1 2 1 2

* 1 ( )

1

2 ( ) ( )r T t

X Y

r T t

s

me pg m g m

m
s G me s

v

 

   

   

−

+ −

 = + +



= − +


       (22) 

Observe that *

0  is a function on time and the retention levels 1 2( , )m m , while *

1  is a function 

on the investment quote  and (t, s). Replacing (22) back into (21) leads to  
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1 2

2 2 2 2 2 2 2 ( )1

2

2 ( ) 2 2 2 2 2 1 ( ) ( )

2 2 ( )

1 2 1 2
,

( )

1 1 2 2

2

( )
inf{ ( ) ( ) }

2

inf { ( 2 ( ) ( ))
2

( ) ( )} 0

r T t

t s s ss

r T t r T t r T t

s

r T t

X Y
m m

r T t

X Y

m v
G sG s G s G Mve

v

v m v
e s m v s e G r ve

m v
pg m g m e

g m p g m ve

 

 



  

     

  

  

+ + −

− + − −

−

−

+
+ + + −

+
+ − + − −

+
+ +

− − =

   (23) 

where  

1 1 2 2( ) ( )X YM p       = − + −         (24) 

Step3: According to the first-order condition for , yields 

  * ( ) ( )

2 2( )

r T t r T t

s

r s
e G e

vm v s 






− − − −−
= +

+
       (25) 

Observe that * is time and state-dependent since it is a function on (t, s). Plugging (25) into (23) 

derives,  

1 2

2
2 2 2 ( )1

2 2 2

2 2 ( )

1 2 1 2 1 1
,

( )

2 2

( )

2( )

inf { ( 2 ( ) ( )) ( )
2

( )} 0

r T t

t s ss

r T t

X Y X
m m

r T t

Y

v r
G rsG s G Mve

m v s

m v
pg m g m e g m

p g m ve










   

 

+ −

−

−

−
+ + − −

+

+
+ + + −

− =

     (26) 

For fixed [0, ],t T  let  

2 2 ( )

1 2 1 2 1 2 1 1 2 2( , , ) ( 2 ( ) ( )) ( ) ( )
2

r T t

X Y X Y

m v
f m m t pg m g m e g m p g m     −+

= + + − −     (27) 

To find the minimizer *

1 ( )m t  and *

2 ( )m t  of ,f we assume that ( )XF x  and ( )YF y  are 

continuous and differentiable, and ( ) ( ), ( ) ( ).X X Y YF x f x F y f y = =  According to (27) and recalling that 
2

1 1( ( ))XG m t =  and 2

2 2( ( )),YpG m t = for any [0, ],t T differentiating f with respect to 1 2,m m yields  

( )

1 1 2 1

1

( )

2 2 1 2

2

( )[( ( ))( ) ]

( )[( ( ))( ) ]

r T t

X Y

r T t

Y X

f
F m m pg m m v e

m

f
pF m m g m m v e

m

 

 

−

−


= + + −


 = + + −



 

We first consider that *( ) [0, ),i im t D then *

10 ( ( )) 1XF m t   and *

20 ( ( )) 1.YF m t   Suppose that 

there exists at least one point * *

1 2( , )m m  satisfying the following equation 

( )1

1 2

( )2

2 1

( ) 0

( ) 0

r T t

Y

r T t

X

m pg m e
m v

m g m e
m v





− −

− −


+ − = +


 + − =
 +

        (28) 

Taking * *

1 2( , )m m  into the second derivatives of f arriving at the following Hessian matrix 
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

* *
1 2

2 2

2

1 21 2 2 2 ( ) * * * *

1 2 1 22 2

2

2 1 2 ( )

( ) ( ) ( ) 1 ( ) ( ) 0r T t

X Y X Y

m m

f f

m mm
p m v e F m F m pF m F m

f f

m m m

 −

 

 
= + − 

 

  
，

 

then we know that this Hessian matrix is positive definite at the point * *

1 2( , ).m m Therefore, if the point 
* *

1 2( , )m m  is found such that (28) holds, then the point * *

1 2( , )m m  is indeed the minimizer of .f  

In order to determine the point * *

1 2( , )m m  clearly, we transform (28) into 

1 2 1

2 1 2

( )

( )

Y

X

m pg m

m g m





+
=

+
 

or equivalently, 

2 1 1 1 1 2 2 2( ) ( )X Ym g m m p g m   − = −          (29) 

Define three following auxiliary functions  

 
( )

2 1 1 2 2

1

( ) ( ), ( ) ( ), ( ) ( )
r T t

X X Y Y

x e
l x x g x l x x p g x k x

m v
    



− −

= − = − = −
+

      (30) 

For convenience, we assume that 1 2 .   It’s easy to verify that both ( )Yl x  and ( )k x  are 

strictly increasing functions for 0,x   so their inverse functions 1( )Yl x−  and 1( )k x−  exist. From (29), 

we get 1 2( ) ( ),X Yl m l m= then 

1

2 1 1 1( ( )), (0, )Y Xm l l m m D−=           (31) 

Similarly, if 1 2 ,   we can easily verify that both ( )Xl x  and ( )k x  are strictly increasing 

functions for 0,x  so their inverse functions 1( )Xl x− and 1( )k x− exist. Then  

1

1 2 2 2( ( )), (0, )X Ym l l m m D−=   

Taking (31) for example, and inserting (31) into the second equation of (28) yields 

1 ( )2

1 1( ( )) ( ) r T t

Y X Xl l m g m e
m v

− − −+ =
+

 

Let 

1 ( )2( ) ( ( )) ( ) r T t

Y X Xh x l l x g x e
m v

− − −= + −
+

        (32) 

If ( ) 0h x =  has a solution on 1[0, ],D  the solution will be indeed *

1m  we try to derive, as a result, 

we will easily determine the value of *

2m . Thus, the minimizer of 1 2( , , )f m m t in (27) are derived, which 

is the candidate robust optimal excess-of-loss reinsurance strategy for the optimal control problem 

(14). These results are summarized in the following theorem. 

Theorem 3.1. Assume that 1 2 ,  and let 

1 ( )1sup{ 0, ( ) 0}, (0) r T t

l X ka x l x a k e
m v

− − −=  = = =
+

                  (33) 
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1

0

1
ln

( ) l

t T
r m v a


= −

+
          (34) 

The candidate robust optimal excess-of-loss reinsurance strategy * *

1 2( ( ), ( ))m t m t  of the optimal 

control problem (14) is given as follows. 

(i) If 1 1
( ) lm v a




+
or 0,la = we have 0 .t T  For 0 ,t t T  we have * * * *

1 2 1 2
ˆ ˆ( ( ), ( )) ( ( ), ( )),m t m t m t m t=  

where 

*

1 0 1 1 1

* 1

2 0 1 0 2

2 1 0 2

( )2

1

( )2

1 1 2

2

2 1

ˆ ( ) ( ) { ( ) 0} { ( ) 0},

ˆ ( ) ( ( ( ))) { ( ) 0, ( ( )) ( )}

{ ( ) 0, ( ( )) ( )}

( )

{ ( ) 0, ( ) }

{ ( ) 0,

Y X X Y

X Y

r T t

X

r T t

X

r

m t x t I h D D I h D

m t l l x t I h D l x t l D

D I h D l x t l D

e g D
m v

I h D e g D D
m v

D I h D e
m v







−

− −

− −

−

=  + 

=  

+  

 
+ − 

+ 

  − 
+

+ 
+

( )

1 2( ) }T t

Xg D D−













 − 


                        (35) 

and 0 1( ) [ , ]lx t a D is the unique solution to ( ) 0h x =  if 1( ) 0h D   holds. 

For 00 ,t t  if the solution to ( ) 0h x =  exists, we have * * * *

1 2 1 2( ( ), ( )) ( ( ), ( )),m t m t m t m t=  where 

* ( ) ( ) ( )1 1 1

1 1 1 1

*

2

( ) { } { }

( ) 0

r T t r T t r T tm t e I e D D I e D
m v m v m v

m t

  − − − − − −
=  + 

+ + +
 =

         (36) 

(ii) If 1 1,
( ) lm v a




+
 we have 0 .t T  For 00 ,t T t   we have * * * *

1 2 1 2( ( ), ( )) ( ( ), ( )).m t m t m t m t=  

Proof. (i) If 0la =  or 1 1,
( ) lm v a




+
 then we have 0 .t T  

For 0 ,t t T  we have 0 .l ka a   Since ( )Yl x  and ( )k x  are increasing functions on [ , ),la +  it’s 

easy to verify that ( )h x  increases on [ , ).la +  What’s more, we can get ( ) ( ) ( ) 0l l kh a k a k a=  =  by 

the fact that ( ) 0.X ll a =  

If 1( ) 0,h D   the equation ( ) 0h x =  admits a unique solution 0 1( ) [ , ],lx t a D  thus the robust 

optimal excess-of-loss strategy is 

*

1 0( ) ( )m t x t=                              (37) 

Since 2 1( ) ,m t D we get     

* 1

2 0 1 0 2

2 1 0 2

( ) ( ( ( ))) { ( ) 0, ( ( )) ( )}

{ ( ) 0, ( ( )) ( )}

Y X X Y

X Y

m t l l x t I h D l x t l D

D I h D l x t l D

−=  

+  
              (38) 

If 1( ) 0,h D  we know that the equation ( ) 0h x = has a unique solution on 1( , ).D + Due to 

1 1( ) ,m t D we choose *

1 1( ) .m t D= At this time, substituting *

1 1( )m t D=  back into 1 2( , , )f m m t  in (27), 

and taking the first derivative of 1 2( , , )f D m t  with respect to 2m , the minimizer of 1 2( , , )f D m t  is 

derived as follows 
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*

2 ( )m t = ( )2

1( )r T t

Xe g D
m v

 − − −
+

                            (39) 

Consequently, from (36), (37) and (38), *

1 ( )m t  and *

2 ( )m t  can be expressed as *

1
ˆ ( )m t  and *

2
ˆ ( )m t  

in (35) and (36), respectively.  

For 00 ,t t  we know l ka a holds, then ( ) ( ) ( ) 0.l l kh a k a k a=  = Meanwhile, ( )h x is a strictly 

increasing function on [ , )la +  and ( ) 0, [ , ).lh x x a  +  As a result, the equation ( ) 0h x =  has no 

solution on [ , ).la +  In other words, there does not exist the solution * *

1 2( , )m m  satisfying (28) when 

1 ( , )lm a +  and 2 [0, ).m  +  However, it doesn’t mean that (28) has no solution on 1 [0, )lm a  and 

2 [0, ).m  +  It is not difficult to prove that ( )Xl x  is a convex function on [0, ).la  So for 00 ,t t   if 

the solution of the equation ( ) 0h x =  exists, it will only be obtained on [0, )lx a  which is indeed 
*

1 ( )m t  we try to derive. 

Because (0) ( ) 0,X X ll l a= = and ( )Xl x is a convex function on [0, ),la we can derive that 1( ) 0Xl m   on 

1 [0, ).lm a What’s more, 1( )Yl x−  is a strictly increasing function and 1(0) 0,Yl
− =  so we can obtain from 

(31) that 1

2 1( ( )) 0.Y Xm l l m−=   Due to 2 0,m   we get *

2 ( ) 0.m t =  Plugging *

2 ( ) 0m t =  into 1 2( , , )f m m t in 

(27) and taking the first derivative of 1( ,0, )f m t  with respect to 1m , we can derive the following 

minimizer of 1( ,0, )f m t  

* ( )1

1 ( ) r T t

k lm t e a a
m v

 − −= = 
+

 

To sum up, for the case of 00 ,t t  we derive (36). 

(ii) If 1 1,
( ) lm v a




+
 we have 0 .t T Thus for 00 ,t T t    the inequality l ka a  holds. The 

optimal problem is similar to that of 00 t t   in case (i). At this time, we can obtain the candidate 

robust optimal excess-of-loss reinsurance strategy for 0 t T   is (36). This ends the proof of 

Theorem 3.1.  
In order to give the expressions of *  and the value function ( , , ),J t x s  we first have to derive 

the expression of ( , )G t s in (25). According to (27), we can rewrite (26) as 

2
2 2 2 ( ) ( ) * *1

1 22 2 2

( )
( , , ) 0

2( )

r T t r T t

t s ss

v r
G rsG s G Mve ve f m m t

m v s










+ − −−
+ + − − + =

+
          (40) 

Now this problem should be discussed in two cases as follows: 

Case I: If 1 1,
( ) lm v a




+
 for 0 ,t t T   the candidate optimal reinsurance strategy of the problem 

(14) is (35). Denote by 1G the function G in (40), we have 

  
2

2 2 2 ( ) ( ) * *1
1 1 1 1 22 2 2

( )
ˆ ˆ( , , ) 0

2( )

r T t r T t

t s ss

v r
G rsG s G Mve ve f m m t

m v s










+ − −−
+ + − − + =

+
           (41) 

In what follows, we employ power transformation technique along with variable change method 

to solve the problem. Let 

2

1 1 1( , ) ( ) ( ) ,G t s K t L t y y s −= + =                          (42) 

with 1 1( ) 0, ( ) 0.K T L T= = Then substituting (42) into (41) leads to 

2
2 ( ) ( ) * *

1 1 1 1 1 22

( )
ˆ ˆ( ) (1 2 ) ( ) ( ) 2 ( ) ( , , ) 0

2( )

r T t r T tv r
K t L t y L t r L t Mve ve f m m t

m v


   



− − −
 + + + − − − + = 

+ 
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By matching coefficients, we derive 
2 ( ) ( ) * *

1 1 1 2

2

1 1 2

ˆ ˆ( ) (1 2 ) ( ) ( , , ) 0

( )
( ) 2 ( ) 0

2( )

r T t r T tK t L t Mve ve f m m t

v r
L t r L t

m v

  






− − + + − + =

 −

 − − =
+

        (43) 

and we have the solution of (43) 

2
2 ( )

1 2

( )
( ) (1 e )

4 ( )

r T tv r
L t

r m v





− −−
= − −

+
                      (44) 

2 ( ) ( ) * *

1 1 1 2
ˆ ˆ( ) (1 2 ) ( )d (1 ) ( ( ), ( ), )d

T T
r T t r T w

t t

Mv
K t L w w e ve f m w m w w w

r
   − −= + + − + 

  
    (45) 

Similarly, for 00 ,t t  the candidate optimal excess-of-loss strategy is (36). Denote the 

function G by 2G in (40), and let  

2

2 2 2( , ) ( ) ( ) ,G t s K t L t y y s −= + =                      (46) 

Similar to (43)–(45), we obtain 

2
2

2 12

( )
( ) e

4 ( )

r tv r
L t C

r m v





−
= − +

+
                      (47) 

and  

2 2
2 ( ) ( ) *

2 1 1 2
0

(1 2 )( ) (1 2 )
( ) ( ( ),0, )d

4 ( ) 2

t
r t r T t r T wv r t Mv

K t C e e ve f m w w w C
r m v r r

    − −+ − +
= − − − +

+     (48) 

Hence for 1 1,
( ) lm v a




+
 we have 

( ) 2

1 1 0

( ) 2

2 2 0

1
exp{ ( ) ( ) },

( , , )
1

exp{ ( ) ( ) },0

r T t

r T t

vxe K t L t s t t T
v

J t x s

vxe K t L t s t t
v





− −

− −


− − + +  

= 
− − + +  


 

Since ( , , )J t x s is continuous at 0t t= , we have 

1 0 2 0 1 0 2 0( ) ( ), ( ) ( )K t K t L t L t= =                       (49) 

and derive 

2
2

1 2

( )
e

4 ( )

r Tv r
C

r m v





−−
=

+
                        (50) 

Based on (46)–(49), it is not difficult to find that 1 2( ) ( ).L t L t=  Since 1 0 2 0( ) ( ),K t K t= we get 

0

0

2 ( ) * ( ) * *

2 1 1 1 2
0 0

ˆ ˆ(1 2 ) ( )d ( ( ),0, )d ( ( ), ( ), )d
T t T

r T w r T w

t

Mv
C L w w ve f m w w w ve f m w m w w w

r
   − −= + + + +    

(51) 

As a result, we can rewrite (48) as 

0

0

2 ( ) ( ) *

2 1 1
0

( ) * ( ) * *

1 1 2
0

( ) (1 2 ) ( )d ( 1) ( ( ),0, )d

ˆ ˆ( ( ),0, )d ( ( ), ( ), )d

T t
r T t r T w

t

t T
r T w r T w

t

M
K t L w w e ve f m w w w

r

ve f m w w w ve f m w m w w w

   − −

− −

= + − − −

+ +

 

 
   (52) 
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By (25), (42) and (44), it can easily be seen that the candidate optimal investment strategy * for 

00 t t  is the same as that for 0 ,t t T  which is  

              
2 2 ( ) ( )

*

2 2

2 ( ) ( ) (1 )

2

r T t r T tr r r e e

m vr s





 




− − − −− + − −
=

+
                     (53) 

Case II: If 1 1,
( ) lm v a




+
we have 0 .t T For 00 ,t T t   the candidate optimal excess-of-loss 

strategy is (36). Denote by 3G the function G in (40), we have 

2
2 2 2 ( ) ( ) * *1

3 3 3 1 22 2 2

( )
( , , ) 0

2( )

r T t r T t

t s ss

v r
G rsG s G Mve ve f m m t

m v s










+ − −−
+ + − − + =

+
         (54) 

with boundary condition 3 ( , ) 0.G T s =  Similar to the analysis for 0t t T   in case I, we conjecture a 

solution to (54) of the following form 

                 2

3 3 3( , ) ( ) ( )G t s K t s L t−= +                          (55) 

with 3 3( ) 0, ( ) 0.K T L T= =  Then by the same method as that in Case I and a direct calculation, we have 

3 1( ) ( ),L t L t= and 

2 ( ) ( ) *

3 1 1( ) (1 2 ) ( )d (1 ) ( ( ),0, )d
T T

r T t r T w

t t

Mv
K t L w w e ve f m w w w

r
   − −= + + − +        (56) 

Therefore, the expression of the candidate optimal investment strategy for 0 t T  can be derived, 

which is the same as (53) and the corresponding candidate value function can also be obtained.  

We summarize the above analysis in following theorem. 

Theorem3.2. Recall functions ( , )iG t s defined in (42), (46) and (55), respectively. For the 

problem (14), the candidate robust optimal investment strategy is given by 

  
2 2 ( ) ( )

*

2 2

2 ( ) ( ) (1 )
( ) ,0

2 ( )

r T t r T tr r r e e
t t T

m vr S t





 




− − − −− + − −
=  

+
        (57) 

and (i) if 1 1
( ) lm v a




+
holds, the candidate optimal value function is 

( ) 2

1 1 0

( ) 2

2 1 0

1
exp{ ( ) ( )},

( , , )
1

exp{ ( ) ( )},0

r T t

r T t

vxe K t s L t t t T
v

J t x s

vxe K t s L t t t
v





− −

− −


− − + +  

= 
− − + +  


 

(ii) if 1 1
( ) lm v a




+
holds, the candidate optimal value function is 

( ) 2

3 1

1
( , , ) exp{ ( ) ( )},0r T tJ t x s vxe K t s L t t T

v

− −= − − + +    

Remark 3. According to Theorem 3.1 and Theorem 3.2, we can see that 

(1) the candidate robust optimal reinsurance strategy in Theorem 3.1 is similar to Theorem 13 in 

Zhang and Zhao (2019). Moreover, if 0,p = we have 2 2 0, = =  then Theorem 3.1 will coincide 

with Corollary 3.6 in A and Li (2015) and A et al. (2018). 
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(2) if 0,m =  the candidate optimal investment strategy in Theorem 3.2 will be the same as 

Theorem 3.1 in Gu et al. (2012) and Theorem 3.10 in Zhang and Zhao (2020). This implies that our 

results generalize the existing results to the case of dependent risks and ambiguity. 

(3) the insurer’s wealth has no influence on the optimal strategies due to the exponential 

utility function. 

4. Verification theorem 

This section will apply the result of Kraft (2004, Corollary 1.2) to verify the candidate optimal 

strategies * *( ), , 1,2i i i im m t i = = = and *( )t = are indeed optimal, and the value function given by (20) is 

just the value function ( , , )J t x s defined by (14). The main theorem is summarized as follows.  

Theorem 4.1. For the optimal control problem (14), if there exists a function ( , , )V t x s  and a 

measurable function ˆˆ( ( , ), ( , )),u t s t s  which satisfy the HJB Equation (15) and the parameters satisfy 

( )(4 3 )4 r rv

m v r r

  



− +
 

+ −
                      (58) 

then * * ˆˆ( ( ) ( , ), ( ) ( , )),t tu t u t S t t S = = is an optimal strategy and ( , , )V t x s is the corresponding value function. 

Proof. From Kraft (2004, Corollary 1.2), the above theorem will hold if * *( , )u  and the 

corresponding candidate value function ( , , )V t x s have the following three properties: 

(1) *u is an admissible strategy and *Q is well-defined by *( )t with *

0 and *

1 ; 

(2) 
* * 4

[0, ]

sup ( , ( ), ( ))Q u

t T

E V t X t S t


 
  

 
; 

(3) 
* * 2

*

[0, ]

sup Ψ( , ( ), ( ), ( )) .Q u

t T

E t X t S t t


 
  

 
 

Next, we shall verify the properties (1)–(3), respectively. 

Proof of (1). *

1 ( )m t and *

2 ( )m t are deterministic and bounded on [0, ]T , thus condition (i) in 

Definition 2.1 is met. By Itô’s lemma and (7), we have 

2 2 2

1d ( ) [ (2 1) 2 ( )]d 2 ( )d ( )S t S t t S t W t      − − −= + − −                  (59) 

According to Zhao et al. (2017) and Jeanblanc et al. (2009), we know that (59) has a unique 

strong solution. Therefore, for 0,   (7) has a unique solution such that ( ) (0, ).S t  +  Moreover, by 

(57), condition (ii) in Definition 2.1 is met. Condition (iii) in Definition 2.1 can be obtained by 

Property (2). 

Proof of (2). Substituting * *( , )u  into (11), we have the wealth process under * *( , )u   
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*

*

*

( ) *

0 1 2
0

( ) * 2 2 * *

0 1 2 1 2
0

( ) *

1
0

( ) 2 2 * *

1 2 1 2 0
0

( )
( ) ( ( ))d

( ) 2 ( ( )) ( ( )) d

( ) ( )d ( )

2 ( ( )) ( ( ))d ( )

t
u rt r t w

t
r t w

X Y

t
r t w Q

t
r t w Q

X Y

v r
X t x e e c c w w

m v

e w pg m w g m w w

e w S w W w

e pg m w g m w W w






   

 

  

−

−

−

−

−
= + + +

+

− + +

+

+ + +









 

*

( )

0 1 2
0

( ) 2

1
0

( ) * 2 2 * *

0 1 2 1 2
0

( )

1 1
0

( )d

( )
( ) ( )d

( ) 2 ( ( )) ( ( )) d

( ) ( )d ( )

t
rt r t w

t
r T t

t
r t w

X Y

t
r T t Q

x e e c c w

v r
e B w S w w

m v

e w pg m w g m w w

e B w S w W w







   



−

− − −

−

− − −

= + +

−
+

+

− + +

+









 

*( ) 2 2 * *

1 2 1 2 0
0

2 ( ( )) ( ( ))d ( )
t

r T w Q

X Ye pg m w g m w W w  −+ + +            (60) 

where
2 2 ( )

12 2

( ) (1 )
( ) , ( ) 2 ( ).

4 ( ) ( )

r T tr e r
B t B t B t

r m v m v

 


 

− −− − −
= = +

+ +
 

Inserting (60) into (19), we obtain the following estimate with appropriate constants 1 2 ,M M  

*

*

*

*

4

( ) 2

14

( )

1

2

2 1 1 1
0 0

( ) 2 2 * *

1 2 1 2 0
0

( , ( ), ( ))

1
exp{ 4 ( ) 4 ( ) ( ) 4 ( )]}

exp{ 4 ( )}

( )
exp{ 4 ( ) ( ) 4 ( ) ( )d ( )}

exp{ 4 2 ( ( )) ( ( ))d

u

r T t u

r T t u

t t
Q

t
r T w

X Y

V t X t S t

ve X t L t S t K t
v

M ve X t

v r
M v B w S w v B w S w W w

m v

v e pg m w g m w W



 


  

− −

−

− −

−

= − + +

 −

−
 − −

+

 − + +

 


*

( )}Q w

 

4

2

1

exp{ ( )},i

i

M E t
=

=                                        (61) 

where 

1 1

1 0 2 0

1

3

( ) ( ) { 1, } ( ) { 1,0 }
( ) ( )

( ) { 1}
( )

l l

l

K t K t I t t T K t I t t
m v a m v a

K t I
m v a

 



=    +   
+ +

+ 
+

 

and  
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*

*

2 2 2 2

1 1 1 1
0 0

2 2 2 2

2 1 1
0

( ) 2 2 * *

3 1 2 1 2 0 4
0

2 2 ( ) 2 2

4 1 2
0

( ) 4 ( ) ( )d ( ) 32 ( ) ( )d ,

( ) 4 ( ) 8 ( ) ( )d ,

( ) 4 2 ( ( )) ( ( ))d ( ) ( )

( ) 32

t t
Q

t

t
r T w Q

X Y

t
r T w

E t v B w S w W w v B w S w w

r
E t v B w B w S w w

m v

E t v e pg m w g m w W w E t

E t v e

 



 




  

 

− −

−

−

−

= − −

− 
= − 

+ 

= − + + −

= + +

 





 ( )* *

1 22 ( ( )) ( ( )) dX Ypg m w g m w w












          (62) 

Because 1( )L t and ( )K t are deterministic and bounded on [0, ]T  and ( ) (0, ),S t  +  we obtain that 

the first estimate in (61) is valid. Since * * *

1 2 0( ), ( ), ( )m t m t t and ( )r T te −  are deterministic and bounded on 

[0, ],T  the second inequality holds.  

In what follows, we consider the four integrals about exp{ ( )}, 1,2,3,4.iE t i =  

Firstly, note that *

1 ( )m t  and *

2 ( )m t  are bounded on [0, ],T  it easy to check that  

*

4[exp{4 ( )}]QE E t                               (63) 

Secondly, because 1( )B t is deterministic and bounded on [0, ],T  then by the Lemma 4.3 in Zeng 

and Taksar (2013), it is easily be seen that 1exp{4 ( )}E t and 3exp{4 ( )}E t are martingales 

under * ,Q consequently, 

                 
*

1[exp{4 ( )}]QE E t  and
*

3[exp{4 ( )}]QE E t                  (64) 

Thirdly, according to Theorem5.1 in Zeng and Taksar (2013), we obtain a sufficient condition 

for  

*

2[exp{2 ( )}]QE E t                           (65) 

is 

                   
2

2 2 2 2

1 1 2
128 ( ) 16 ( )

2

r
v B w v B w

m v

 




−
− 

+
                   (66) 

for [0, ].w T   

Note that 
2 2

12 2
( ) , [0,T]

( ) 2 ( )

r r
B t t

m v r m v

 

 

− −
   

+ +
and [0, ),T   and by (58), then (66) holds 

for [0, ]t T   and [0, ),T    because of the property of quadratic function. According to (63)–(65) 

and Cauchy-Schwarz inequality, we have 
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( ) ( )

( ) ( )

* *

*

* *

* * * *

4

2 1 2 3 4

1 1

2 2

2 1 2 3 4

1 1

4 4

2 1 2 1 2

( , ( ), ( ))

[exp{ ( ) ( ) ( ) ( )}]

[exp{2 ( ) 2 ( )}] [exp{2 ( ) 2 ( )}]

[exp{4 ( )}] [exp{4 ( )}] [exp{4 ( )}] [exp{4 ( )}]

Q u

Q

Q Q

Q Q Q Q

E V t X t S t

M E E t E t E t E t

M E E t E t E E t E t

M E E t E E t E E t E E t

 + + +

 + +

   

 

                                                    (67) 

Hence, property (2) holds. 

Proof of (3). By (22), with an appropriate constant 3 ,M we get  

2 2
2

* 2

3 2 20 0

1 1 ( )
exp{ ( ) d } exp{ ( )d }

2 2 ( )

T T m r
E t t M E S w w

m v






− − 
    +   

   

2
2

3 20

1 ( )
exp{ ( )d }

2

T r
M E S w w



− −
   

 
                   (68) 

where the first estimate in (68) follows from the deterministic and bounded *

0 ( )t  on [0, ],T  and by 

(59) and Theorem 5.1 in Zeng and Taksar (2013), the last estimate is easily derived. 

Moreover, according to, we can see that *Q is well-defined. 

Inserting *( )t and * ( )u t into (13) arrives at 

* *

* *

2

22 2 2
*

2

Ψ( , ( ), ( ))

1
( , ( ), ( )) ( )

2

Q u

Q u

E t X t S t

v
E V t X t S t t

m


  
=   

   

 

* * *

1/2
42 4 2

*

2

1
( , ( ), ( )) ( )

2

Q u Qv
E V t X t S t E t

m


  
     

   

           (69) 

where the first estimate follows from the Cauchy-Schwarz inequality and the last estimate from (67) 

and (68). Thus, property (3) holds. 

With all the properties are satisfied, the result of Kraft (2004, Corollary 1.2) guarantees * *( , )u  is 

an optimal strategy and ( , , )V t x s is the corresponding value function.   

5. Special cases 

This section considers some special cases of the problem (14), such as the investment-only case 

and the case with ambiguity-neutral insurer (ANI), respectively. These results here are only provided 

without giving the proofs. 
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5.1. Investment-only case 

If there is no reinsurance, i.e., 1 1 2 2( ) , ( ) ,m t D m t D= = then
1 2, , 0,m m

i i i iX X Y Y  = = = = and (3) can be 

rewritten as  

2 2

1 2 0d ( ) ( )d 2 d ( )X Y X Y X YX t p t p p W t          = + + + +  

According to (11), the above wealth process for an AAI under the probability Q is  

2 2

1 2 0

1 1

2 2

0

d ( ) [ ( ) ( ) ( ) ( ) 2

( ) ( )]d ( )d ( )

2 d ( )

X Y X Y X Y

Q

Q

X Y X Y

X t rX t r p t p p

t S t t S t W t

p p W t

 

             

  

     

= + − + + − + +

− +

+ + +

       (70) 

and the HJB equation is given by 

 ,sup inf ( , ( ), )+Ψ( , ( ), ( )) 0
R RR

J t X t s t X t t 




 

=A                  (71) 

where J is a short notation for ( , , ),J t x s representing the optimal value function of the investment-only 

problem with the boundary condition ( , , ) ( ),J T x s U x= and 

, 2 2

1 2 0 1[ ( ) ( ) ( ) 2 ]t X Y X Y X Y xJ J rx r p t p p s J                 = + + − + + − + + −A  

2 2 2 2 2 11
12

2 2 2 2 2 11

2

[ 2 ] ( )X Y X Y xx s

ss xs

s p p J s s J

s J s J

 

 

          

 

+

+ +

+ + + + + −

+ +
                 (72) 

Theorem 5.1. For the investment-only problem (71) under exponential utility (18), 

i.e. 1 1 2 2( ) , ( )m t D m t D= = in (15), then the robust optimal investment strategy *

0 ( )t is  

2 2 ( ) ( )
*

0 2 2

2 ( ) ( ) (1 )
( ) ,0 ,

2 ( )

r T t r T tr r r e e
t t T

m vr S t





 




− − − −− + − −
=  

+
              (73) 

and the optimal value function is given by 

     ( ) 2

1 1

1
( , , ) exp{ ( ) ( )},0 ,r T tJ t x s vxe K t s L t t T

v

− −= − − + +     

where 1( )L t is given by (44),  

2 ( ) ( )

1 1 1( ) (1 2 ) ( )d (1 ) ( )d
T T

r T t r T w

t t

Mv
K t L w w e ve f w w

r
   − −= + + − +   

and 1 2X YM p    = + and 1( )f t is given by 

2 2 ( )

1 1 2( ) ( 2 )
2

r T t

X Y X Y X Y

m v
f t p p e p          −+

= + + − −  
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In addition, if 1 10, ( ) ,p m t D= =  it means that only one class of insurance business is considered, 

in other words, there are no dependent risks. 

Corollary 5.2. If 1 10, ( ) ,p m t D= =  for the investment-only problem, the robust optimal 

investment strategy is the same as (73), and the optimal value function is  

( ) 2

2 1

1
( , , ) exp{ ( ) ( )},0 ,r T tJ t x s vxe K t s L t t T

v

− −= − − + +    

where  

2 ( ) ( )1

2 1 2( ) (1 2 ) ( )d (1 ) ( )d
T T

r T t r T wX

t t

v
K t L w w e ve f w w

r

 
   − −= + + − +   

and  

2 ( )

2 1 2( )
2

r T t

X X Y

m v
f t e p     −+

= − −  

5.2. ANI case 

If ambiguity-aversion coefficient 0m = ， our model will reduce to an optimal control problem 

for an ANI. Then, the wealth process under probability measurers P is given by (8). Let the optimal 

value function be 

                 
, ,s( , , ) sup ( ( ))t x

u

J t x s E U X T


 =                            (74) 

where  1 2( ( ), ( )), ( ), [0, ] ,u m t m t t t T=   and HJB equation is 

      



1 2

2 2 2 2 21
1 2 1 2 1 22

[0, ] [0, ]

2 2 2 2 2 11

2

sup [ ( ) ] [ 2 ( ) ( )]

0

u

t x X Y xx
u D D R

s ss xs

J rx r c c J s pg m g m J

sJ s J s J



 

      

  

  

+ +

+ + − + + + + + +

+ + + =

A

 

Note that J is the short notation for ( , , )J t x s with ( , , ) ( ).J T x s U x=  Let  

( )
1 ( )1 1

2 0

1

1
( ) ( ), (0) , ln

r T t
r T t

k

l

x e
k x a k e t T

v v r va

 




− −
− − −= − = = = −  

1 ( )2( ) ( ( )) ( ) r T t

Y X Xh x l l x g x e
v

− − −= + −  

Note that, if 1 / 1lva   and 1( ) 0,h D   according to the proof of Theorem 3.1, by the similar 

analysis of that the equation ( ) 0h x =  in (32) has a unique solution 0 1( ) [ , ]lx t a D  when 1( ) 0h D  , 

it’s easy to prove that equation ( ) 0h x =  has a unique solution 0 1( ) [ , ].lx t a D  

Theorem 5.3. When 1 2 ,   for the optimal control problem (74) of an ANI who ignores 

ambiguity with utility (18), the optimal investment strategy is  
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2 2 ( ) ( )
*

1 2 2

2 ( ) ( ) (1 )
( ) 0 ,

2 ( )

r T t r T tr r r e e
t t T

vr S t





 




− − − −− + − −
=  ,       (75) 

and (i) if 0la = or 1 1,
ˆ

lva


  0t T holds. For 0 ,t t T   the optimal reinsurance strategy * *

1 2( ( ), ( ))m t m t  

is given by 

*

1 0 1 1 1
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For 00 ,t t   if the solution to ( ) 0h x = exists, the optimal reinsurance strategy * *

1 2( ( ), ( ))m t m t is 

expressed by 
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and the optimal value function is 
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(ii) if 1 1,
lva


 in this case 0 .t T  For 00 ,t T t    the optimal reinsurance strategy is expressed 

by (76), and the optimal value function is given by 
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and M is given by (24). 

Furthermore, if 0p = in Theorem 5.3, the optimal reinsurance-investment will coincide with 

Corollary 4.5 in Gu et al. (2012) and A et al. (2018). This means that our model extends the results in 

Gu et al. (2012) and A et al. (2018) to the case of robust optimal formulation under p-thinning 

dependent risks. 

6. Numerical examples and discussion 

This section investigates the impacts of parameters on the optimal strategies. Here only the 

analysis for the case of 1 / (( ) ) 1lm v a +   is taken for consideration. For drawing convenience, the 

claim sizes iX and
iY are assumed follow uniform distribution (0,1).U  Throughout this section, unless 

otherwise stated, the basic parameters are given by 1 22, 1, 0.05, 0.09, 0.5, 0.5, 10,r m v t  = = = = = = =  

20,T = 0.2,p = 5,s = 0.16, 1/ 3. = = The conclusions are drawn from Figures 1–10. 

(1) Effect of parameters m and v on the optimal reinsurance-investment strategy.  

Form Figures 1–2, we can see that both the optimal excess-of-loss reinsurance strategy *

im and 

the optimal investment strategies * decrease with m. As we know, m is the ambiguity-aversion 

coefficient representing the insurer’s attitude toward the uncertainty of the model, which is reflected 

in the claim process and the risky assets’ price process. The larger m is, the more uncertain risk 

aversion the insurer is, so the insurer tends to adopt a lower reinsurance-investment strategy. Then, 

the risk from model uncertainty is spread to the reinsurer. 

Figures 3–4 shows that * *,im  and *

1  decrease with respect to v. Note that ν represents the insurer’s 

risk aversion coefficient, the larger ν is, the more risk averse the insurer is, thus, as v increases, the insurer 

would like to reduce the investment amount to avoid risk, meanwhile, he/she prefers to reduce the 

retention level of reinsurance so as to transfer more underlying risks to a reinsurer. 

 

Figure 1. Effect of m on the optimal reinsurance strategies. 
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Figure 2. Effect of m on the optimal investment strategies. 

 

Figure 3. Effect of v on the optimal reinsurance strategies. 

 

Figure 4. Effect of v on the optimal investment strategies. 

(2) Effect of parameters , ,t r p on the optimal reinsurance strategy. 

From Figure 5, we can see that *

im increases with respect to the time t. As time passes, the insurer 

will obtain much wealth from insurance business and investment, so he/she is able to take more 

insurance risk and prefers to raise the retention level of reinsurance.  

Figure 6 demonstrates that *

im decreases with the risk-free interest rate r. The larger r is, the more 

attractive the risk-free asset is, so as r increases, the insurer prefer to invest more wealth in the 

risk-free asset rather than purchase more reinsurance.  
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Figure 7 indicates that *

im decreases with respect to p. Since a larger p implies greater values of 

two expected claim numbers, so the insurer prefers to retain a less share of each claim.  

(3) Effect of parameters , , s  on the optimal investment strategy. 

Figure 8 reports that  exerts positive effects on the optimal investment strategies * and *

1 . Note 

that  is the rates of the risky assets’ return, as  increases, the insurer will gain more from investment. 

Therefore, the insurer would like to increase the investment. 

As shown in Figure 9, * and *

1  decrease with respect to the standard volatility .  

As increases, the volatility of risky asset will fluctuate a little drastically, then the insurer prefer to 

decrease the investment so as to avoid risks.  

We see from Figure 10 that * and *

1  increase with respect to s. A larger s means higher the 

risky asset’s price, hence the insurer will wish to increase the investment in the risky asset. 

In addition, in Figure 4 and Figures 8–10, we compare that * with model uncertainty 

and *

1 without model uncertainty, and we find that *

1 is larger than *.  It means that it is necessary to 

study the robust optimal control problems which can help us make more reasonable decisions. 

 

Figure 5. Effect of t on the optimal reinsurance strategies. 

 

Figure 6. Effect of r on the optimal reinsurance strategies. 
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Figure 7. Effect of p on the optimal reinsurance strategies. 

 

      Figure 8. Effect of  on the optimal investment strategies.   

 

Figure 9. Effect of on the optimal investment strategies. 
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Figure 10. Effect of s on the optimal investment strategies. 

7. Conclusions 

This paper investigates a robust optimal excess-of-loss reinsurance and investment problem 

with p-thinning dependent risks for an AAI under CEV model. We aim to maximize the expected 

exponential utility of AAI’s terminal wealth. Applying the stochastic control theory, we obtain the 

explicit expressions of the optimal excess-of-loss reinsurance and investment strategies and provide 

some special cases. Finally, we present some numerical examples to illustrate our results.  

There are still some problems needed to be investigated in this direction. Firstly, we only deal 

with the excess-of-loss reinsurance, in fact, one can consider other reinsurance such as stop-loss 

reinsurance in our model. Secondly, other kinds of dependent risks can be taken into consideration in 

our problem, in addition, this paper assume the risky asset’s price process and wealth process are 

independent, it is more realistic to consider the correlation between the risky asset’s price process 

and wealth. Thirdly, it is meaningful to discuss other objectives such as the general utility function 

and mean-variance criterion in our model. Although these problems are challenging, they are 

meaningful and interesting to be investigated, thus we will focus on these optimal problems so as to 

enrich our research in the future.  
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