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Abstract: This paper analyzes a relatively new investment product named as constant leverage
certificate (CLC), which is designed to provide a multiple of the return of its underlying asset on a daily
basis. Based on the literature on leveraged ETFs, which have a similar design, it is well-known that
such a strategy does not reproduce the corresponding multiple of the underlying in the long run. But due
to the typically much larger leverage factors of CLCs compared to leveraged ETFs, it is questionable
whether many of the results found for leveraged ETFs can be applied to these certificates as well.
Against this background, I study the drivers of the long-term deviation of the product return from the
leveraged return of the underlying, test a generalized version of the theoretical long-term return model
originally developed for leveraged ETFs with a simulation study, and analyze the return distribution
based on the theoretical model and empirical data. In contrast to prior literature, my results indicate
that the effect of compounding is much more pronounced than the noncompounding deviation also for
short-term investment periods. The theoretical model, however, is relatively accurate despite much
larger leverage factors.

Keywords: constant leverage certificates; factor certificates; structured products; leveraged exchange-traded
funds; financial innovation

JEL Codes: G12, G17

1. Introduction

Constant leverage certificates (CLCs), also called factor certificates, rolling turbos or factor turbos,
are a relatively new type of investment product and popular mainly in Germany and Switzerland. The
worldwide first issuer of CLCs was, to the best of my knowledge, Goldman Sachs. The bank introduced
these certificates in 2004 in the German market. Today, there are more than 4 500 CLCs from 13 different
issuers listed at Euwax, Europe’s largest platform for exchange trading in securitized derivatives, and
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more than 2 000 CLCs listed at SIX Swiss Exchange. The outstanding volume in Germany varied
between EUR 200 and 500 millions in the past years (Eusipa, 2019).

CLCs enable investors to achieve overproportional gains with constant leverage on a daily basis.
For instance, a 1% daily increase of the price of the underlying asset results in a 1% times the leverage
factor increase of the CLC. Due to the constant leverage, the product is relatively easy to understand for
potential investors and appears to be an attractive investment opportunity when comparing it to other
leveraged products. Given this product design, it seems intuitive that a long-term upward trend of the
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Figure 1. Price development of randomly chosen CLCs with leverage factors 5 (left) and −5
(right) compared to their underlying assets.
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underlying results in a favorable development of the price of a CLC with a positive leverage factor. But
owing to the literature on leveraged ETFs (see Section 3), which also have a constant leverage either
on a daily or monthly basis, it is known that this expectation is not always met. There is a deviation
between the long-term product return and the leveraged cumulative return of the underlying due to
the effect of compounding, interest and issuer fees. But despite the similarity of the two investment
products, it is questionable whether many of the results from the literature on leveraged ETFs can be
transferred to CLCs because the leverage factor of leveraged ETFs (between −3 and 3) is typically
much smaller than the leverage factor of CLCs (between −15 and 15). E.g., Figure 1 shows typical
price paths of six random CLCs and their underlying assets. It is very striking that five of six products
are close to a total loss. The last product (at the bottom left) has a slightly negative return despite the
outstanding performance of its underlying. It seems that product prizes converge to zero in the long run
even though the price development of the underlying is favorable. Such extreme price developments
cannot be observed for leveraged ETFs.

This study provides a profound analysis of the most popular CLCs on the Swiss market, which helps
investors, regulators and financial advisers not only to comprehend why such a large number of products
suffers losses in the long run but to gain a thorough understanding of the risk and return characteristics
of CLCs and other products with constant leverage. The analysis contains first an investigation of the
relative importance of the different determinants on the deviation between the product return and the
leveraged cumulative return of the underlying. Second, I present a theoretical model to explain the
products’ long-term return and its determinants. It assumes a continuous stochastic process for the
underlying asset. A similar model was developed for leveraged ETFs (see Avellaneda and Zhang, 2010;
Giese, 2010; Jarrow, 2010) but it did not include a financing spread and a short selling fee, which are
often charged by issuers of CLCs. In view of the large leverage factors, this study also conducts a
more elaborate model validation using different simulation approaches with constant and time-varying
volatility and empirical data. Finally, the distribution of returns over varying holding periods is analyzed.
For this purpose, I show the theoretical distribution based on the aforementioned model and compare it
with the empirical return distribution.

The reminder of this chapter is structured as follows. Section 2 includes a detailed specification of
CLCs, followed by an illustration of the products’ hedging and pricing and the compounding effect. In
Section 3, related studies are reviewed. Then, I present the research design and data. Section 6 contains
the analysis of the return deviation. The model of the return generating process and its validation is
treated in Section 7. Subsequently, the return distribution is investigated. The last section concludes.

2. Characteristics of constant leverage certificates

2.1. Specification

CLCs are unsecured bonds and thus potentially affected by the default of their issuer. They enable
investors to participate disproportionately in price changes of the underlying asset with a constant
leverage on a daily basis. A daily price increase of the underlying of x% results in a price increase of the
CLC before interest and issuer fees of x% multiplied by the product’s constant leverage factor. Products
with positive leverage factors are referred to as “long” CLCs, while products with negative leverage
factors are labeled as “short” CLCs. Products with a leverage factor greater than or equal to −1 and
less than or equal to 1 are not classified as CLCs. (Products with a leverage factor equal to −1 or 1 are
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known as tracker certificates.) Issuers of CLCs typically use integers from −15 to −3 and from 3 to 15
as leverage factor. The price computation is based on daily closing prices of the underlying asset. There
is a large variety of underlyings available, including currency exchange rates, commodities and futures.
Stocks and stock indices, however, are most widely used.

The products can be bought through an exchange or over-the-counter. They have a potentially
endless lifetime. However, as usually specified in term sheets, issuers have a right of termination.
Investors, on the other hand, have an exercise right but can sell the products also through the exchange.
Market making is usually handled by the issuers themselves to ensure the products’ liquidity.

Due to the partially very high leverage, there is a substantial risk that the product price drops to zero.
With a leverage factor of λ, a price increase or decrease of the underlying of − 1

λ
· 100% would result in a total

loss. In order to prevent this, the products are adjusted over the course of the day to reduce the exposure to the
underlying if the price of the underlying hits, undercuts (long CLC) or exceeds (short CLC) a predefined,
one-sided barrier. The barrier is typically variable and defined as a percentage of the last closing price of
the underlying. The percentage is set between 100% and the closest possible boundary to a total loss of
λ−1
λ
· 100%. The specific adjustment approach to a barrier hit differs from issuer to issuer.
The most common approach is an intraday intervention, where a new trading day is simulated

whenever the underlying hits the barrier. The following example illustrates this approach. Assume a
long CLC with a leverage factor of 5 and a barrier of 85%. If the price of the underlying drops from 100
to 85 (−15%) before the end of the day, the price of the CLC will drop by −15% · 5 = −75% and a new
(hypothetical) closing price of the underlying will be set to 85. If the price of the underlying then drops
by another −10% to 76.5 until the end of the day, the price of the CLC will drop by another −50%. In
that case, the cumulative return of the product amounts to (1 − 75%)(1 − 50%) − 1 = −87.5%. Without
any intervention over the course of the day, the return would amount to 5 · (76.5% − 1) = −117.5%.

Due to potentially large price jumps, e.g., overnight jumps or temporary illiquidity of the underlying, the
theoretical value of CLCs can drop below zero despite the products’ embedded adjustment mechanism. In
that case, the investors would suffer a total loss of the investment but would not need to make an additional
payment to cover the negative product value. If in the above example the price of the underlying immediately
jumped from 100 to 76.5 without any possibility for the issuer to apply an intraday adjustment, the investor
would lose no more than the investment amount. The risk of negative values resulting from large price jumps
of the underlying is taken by the issuers, i.e., the issuer would need to bear the outstanding loss of 17.5%
itself. However, issuers usually set the barrier such that the (absolute) difference between the barrier and the
total loss boundary is large enough to avoid this risk or at least to keep it small.

2.2. Hedging and pricing

CLCs can be hedged with a position in the underlying asset, debt (long CLC) and a deposit with
the issuer (short CLC). To ensure a leveraged return of λ times the return of the underlying, the position
in the underlying needs to correspond λ times the investment amount or the current product price,
respectively. Accordingly, a long CLC can be mimicked with an investment in the underlying asset
where a share of 1/λ is financed with the cash contribution of the investor and a share of (λ − 1)/λ
is financed with debt. On the other hand, a short CLC can be reconstructed with an investment in a
risk-free asset where a share of −1/λ is financed with cash and a share of (λ − 1)/λ with the proceeds
from the short sale of the underlying. These ratios have to be satisfied at the end of each day to provide
a constant leverage on a daily basis. For this reason, the hedge portfolio needs to be rebalanced daily.

Quantitative Finance and Economics Volume 4, Issue 4, 693–724.



697

In addition, there is a need for rebalancing when the price of the underlying hits the barrier.
Whenever this happens, following the most common adjustment approach, the exposure to the underlying
can be reduced such that the position in the underlying corresponds to λ times the current product
price again. As indicated above, the hedging strategy can fail if the price of the underlying changes
discontinuously and crosses the barrier with a large jump such that the product value would theoretically
fall below zero.

Due to the debt component or deposit, the return of CLCs does not fully correspond to the leveraged
daily return of the underlying. It has to be adapted by subtracting (long CLC) or adding up (short CLC)
the interest incurred during the day. The interest can be computed by multiplying the debt/deposit
amount CLCt(λ − 1) with the daily interest rate rt∆t, where CLCt is the product’s last closing price, rt is
the current interest rate and ∆t corresponds to one trading day. This allows us to compute the price of a
CLC at time t + 1 as

CLCt+1 = CLCt

[
1 + λ

∆S t+1 + τDt+1

S t
− (λ − 1)rt∆t

]
(1)

The term in the squared bracket corresponds to the product’s return, where the leveraged return of
the underlying (including the tax-adjusted dividend payment τDt+1) is reduced or augmented by the
interest component. The interest component reduces the product’s return if both λ and rt are positive or
negative. In contrast, the product’s return is augmented if only one of the variables is positive and the
other negative.

Since Equation (1) leaves no room for profit, issuers apply a slightly modified price-setting formula,
which typically incorporates an index fee, a financing spread for long certificates and a short sale fee (or
“short rate”) for short certificates. The generalized equation

CLCt+1 = CLCt

[
1 + λ

∆S t+1 + τDt+1

S t
−

[
(λ − 1)

(
rt + f S P

t

)
− λ f S R

t + f I
]
∆t

]
(2)

with f S P
t being the financing spread, f S R

t being the short rate and f I being the index fee, captures most
of the price-setting formulas published by issuers for long and short certificates with an index or stock
as underlying. Note that I implicitly assume that f S P

t = 0 if λ < 0 and f S R
t = 0 if λ > 0. Both f S P

t

and f S R
t can vary over time, while f I is constant. Depending on the currency of the underlying, issuers

typically use the Eonia, the Libor or similar as interest rate.
A similar pricing formula is also applied to leveraged ETFs (see Avellaneda and Zhang, 2010;

Giese, 2010; Jarrow, 2010), which have a related product design (see Section 3). However, issuer
fees for leveraged ETFs are mostly ignored in the literature. Avellaneda and Zhang (2010) consider a
cost component that is equivalent to f I and corresponds to the funds’ expense ratio. Additional cost
components for CLCs ( f S P

t and f S R
t ) are included to better mimic the price-setting formulas of issuers,

which explicitly indicate such fees that also depend on the leverage factor.
The price-setting formula is often published in term sheets or similar documents. However, even

though most of the issuers communicate the formula openly, it is often not apparent at first sight whether
a specific CLC is attractive compared to other CLCs with similar characteristics, since the notation and
structure of the published formulas can differ widely between issuers, asset classes of the underlying
and for long and short certificates. Due to the complex and unequal structure of the formulas and the
use of many variables and parameters, investors might find it difficult to understand the price setting of
these products.
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2.3. The effect of compounding

The price-setting formula provided by issuers, along with daily returns of the underlying assets,
allows for a calculation of the products’ daily returns. However, it remains unclear how the returns of
these products over a period of multiple days are related to the cumulative returns of the underlying
assets. A naive expectation could be that the return of the products will equal the leveraged return of the
underlying also for periods longer than one trading day. As illustrated with several examples of price
paths in Section 1, this expectation is not met. CLCs do not reproduce the corresponding leveraged
return of the underlying asset over a time period of multiple days.

This return deviation cannot be explained solely with issuer fees and interest; the main reason
for the deviation is compounding. This effect is already well-known in connection with fixed income
investments, where it leads to an exponential increase in wealth if the earnings from the investment
are reinvested. In a broader context, the compounding effect refers to the process of generating or
reducing earnings or losses on an asset’s previous earnings or losses. While fixed income investments
are positively affected by compounding, this is not necessarily the case for CLCs, as I illustrate in the
following example. Consider a product with a leverage factor of 5 and assume that the price of the
underlying and the price of the product equal 100 at the beginning of the investment period and the
risk-free interest and issuer fees equal zero. If the price of the underlying increases to 110 (+10%)
on the next day and declines to 100 (−9.09%) on the subsequent day, the price of the product would
augment to 150 (10% · 5 = 50%) on the first day and drop to 81.82 (−9.09% · 5 = −45.45%) on the
second day. The product lost −18.18% in total even though the underlying has a cumulative return of
0%. This return deviation is caused solely by compounding.

In general, the return deviation due to compounding can be determined by subtracting the leveraged
cumulative return of the underlying from the target return, which I define as the cumulative product
return excluding issuer fees and interest. The target return after two days is calculated as

rT
0,2 = (1 + rT

0,1)(1 + rT
1,2) − 1 = (1 + λrS

0,1)(1 + λrS
1,2) − 1 (3)

where rS
t,t+1 is the return of the underlying in the time period from t to t + 1. On the other hand, the

leveraged cumulative return of the underlying can be expressed as

rN
0,2 = λrS

0,2 = λ
[
(1 + rS

0,1)(1 + rS
1,2) − 1

]
(4)

Note that the leveraged cumulative return is purely generic and fictitious. It is calculated by
applying the leverage factor to the cumulative return of the underlying. By subtracting Equation (4)
from Equation (3), I obtain

rT
0,2 − rN

0,2 =
[
(1 + λrS

0,1)(1 + λrS
1,2) − 1

]
− λ

[
(1 + rS

0,1)(1 + rS
1,2) − 1

]
= (λ2 − λ)rS

0,1rS
1,2 (5)

A positive (negative) return deviation can be interpreted as a favorable (unfavorable) impact of
compounding for the holder of the CLC. As Equation (5) shows, compounding is favorable if rS

0,1 and
rS

1,2 are both either positive or negative. The return deviation is further boosted by extreme values for λ,
given that none of the values rS

0,1 and rS
1,2 is zero.

The return deviation after a holding period of more than two days can be derived similarly. However,
the results and their interpretation become increasingly complex. Nonetheless, it can be concluded
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that large fluctuations in the price of the underlying negatively affect the product price in the long run.
The compounding effect is favorable in periods of monotonically increasing or decreasing prices and
unfavorable in periods of high volatility.∗

Another implication of the compounding effect is that the cumulative return of the underlying is
not sufficient to determine the price of a CLC after a holding period of multiple days. As is apparent
from Equation (5), the series of daily returns that occurred during the investment period are required
as well.† For this reason, CLCs are path-dependent and cannot be illustrated in the common payoff

diagram for structured products. Nevertheless, this is often done in practice, showing the product price
as a simple linear function of the price of the underlying, which can potentially mislead investors and
result in inaccurate expectations.

3. Literature review on related instruments

While there are, to my best knowledge, no scientific publications on CLCs, different studies with
similar research objectives have been conducted on related products. E.g., leveraged ETFs are very
similar to CLCs as they also incorporate the idea of tracking an underlying asset with constant leverage
(either on a daily or a monthly basis) and thus have similar return dynamics.

Avellaneda and Zhang (2010), Giese (2010) and Jarrow (2010) were the first to study the
implications of periodical rebalancing on the long-term risk and return characteristics of leveraged
ETFs using a mathematical framework. The authors independently derived a model to describe the
return of a leveraged ETF over any holding period as a function of the return of the underlying.
Assuming that the underlying follows a geometric Brownian motion and that the portfolio is rebalanced
continuously, the long-term return of leveraged ETFs can be calculated exactly. They found that the
logarithmic return of leveraged ETFs basically corresponds to the logarithmic return of the underlying
multiplied by the leverage factor minus a discount, which depends on the realized variance of the
underlying, the expense ratio of the fund, the interest rate and the short rate. The validity of the model
was tested by Avellaneda and Zhang (2010) and Giannetti (2017), which both found a high degree of
conformity with empirical data at least for long leveraged ETFs. Giese (2010) also analyzed the profit
and loss probability distribution derived from the model. He found that the skewness is increasing with
the leverage factor, the volatility of the underlying and the holding period. For very large values of these
three parameters, the loss probability tends to one even though the expected return tends to infinity.

Next to the above-mentioned rather theoretical studies, a lot of research has been conducted on
the empirical performance of leveraged ETFs. Murphy and Wright (2010) analyzed commodity-based
leveraged ETFs and found that they are able to track the leveraged underlying return on a daily basis.
However, there were relatively large return deviations between the actual return of leveraged ETFs from
the leveraged cumulative return of their underlyings over long-term investment horizons. Two thirds
of the funds were negatively affected by compounding over their life time of two to three years. More
than 80% of the funds underperformed their underlying. Charupat and Miu (2011) and Lu et al. (2014)
confirmed that the return of leveraged ETFs is not significantly different from the leveraged return of

∗ However, a favorable impact of the compounding effect on the performance of a CLC does not imply that the CLC achieved a positive
(cumulative) return and vice versa. E.g., if the price of the underlying decreases monotonically, the compounding effect is favorable
because it decelerates the price drop. Nonetheless, the return of the product is negative.

† As I show in Section 7, the price of a CLC can be approximately determined with the realized variance of the underlying as input
parameter instead of daily returns.

Quantitative Finance and Economics Volume 4, Issue 4, 693–724.



700

their underlyings over holding periods less than one month, but the return deviation can be significant
over longer investment horizons.

Tang and Xu (2013) studied the determinants of the return deviation. They split the return
deviation into a compounding and a noncompounding component and found that the compounding and
noncompounding deviations both increase with longer holding periods and that the noncompounding
deviation was at least as important as the compounding deviation with an investment period of up to
40 days. They further split the noncompounding deviation into two additional components. The first
component is the deviation between the funds’ closing prices and net asset values, for which they found
the Libor to be the key driver. The second component is a residual deviation, which is mainly affected
by the return of the underlying. The expense ratio of the leveraged ETFs as reported by Tang and Xu
(2013) ranges between 0.91% and 0.95% excluding variable costs.

Loviscek et al. (2014) and Bansal and Marshall (2015) analyzed the long-term performance
of hypothetical leveraged ETFs with different leverage factors and rebalancing frequencies using a
simulation approach. The returns of the funds were calculated based on real-world data, starting with
the inception of the DJIA in 1896 and the inception of the S&P 500 in 1964 respectively. Both studies
found a positive return deviation also for holding periods of one year or longer and concluded that
compounding does not negatively impact buy-and-hold investors. These findings are contradictory to
prior research. The authors argued that the other empirical studies were done a few years after the
inception of leveraged ETFs, which was a period of high market volatility associated with the financial
crisis, resulting in a negative impact of compounding. To explain the discrepancy from the theoretical
studies, Loviscek et al. (2014) showed that the distribution of real-world returns is — as opposed
to the assumed distribution in the theoretical models of Avellaneda and Zhang (2010), Giese (2010)
and Jarrow (2010) — not normal but much more leptokurtic. The higher density of the distribution
around the positive mean results in a positive impact of compounding. They also argued that the
incorporation of management fees does not change the main conclusion of their paper because the
fee-adjusted cumulative returns of leveraged ETFs are still higher than the leveraged cumulative return
of the underlying.

Another related investment product are endless leverage certificates (ELCs), sometimes also
referred to as mini futures or open-end turbos. Similar to CLCs, ELCs are (potentially) open-ended
and designed to gain a leveraged return due to low capital investment. The main difference is that the
return of ELCs is not constant on a daily basis but corresponds to the leveraged long-term return of the
underlying (before interest and issuer fees). ELCs and similar leveraged certificates were studied, e.g.,
by Entrop et al. (2009), Rossetto and Van Bommel (2009) and Harčariková and Bobriková (2019).

4. Research design

The objective of my study is to provide a thorough analysis of risk and return of CLCs with three
different approaches. The first approach in Section 6 is about the return deviation between the products’
effective returns and the leveraged cumulative returns of the underlyings. In particular, I examine
whether there is indeed a deviation to the disadvantage of investors on average based on historical data.
The second question addressed in the first approach is to what extent different determinants contribute
to this deviation. As illustrated in Section 2.3, the most striking determinant is compounding. The other
components of the return deviation are interest and issuer fees. The price-setting formula allows for an
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individual investigation of the impact of these three components of the return deviation. Furthermore,
the return deviation and its components are analyzed for varying holding periods and leverage factors.

In the second approach in Section 7, a general model is derived that explains the long-term return
of CLCs as a function of the cumulative return of the underlying and other variables. The model is based
on the groundwork of Avellaneda and Zhang (2010), Giese (2010) and Jarrow (2010) on leveraged ETFs
but is adapted due to additional components in the pricing formula of CLCs. The main assumptions
are that rebalancing takes place continuously and that the price of the underlying follows a geometric
Brownian motion.

Since these assumptions might be unrealistic in practice, the model is tested using different methods. The
first test reveals whether the assumption of continuous rebalancing leads to inaccurate model predictions. The
test is carried out by calculating discrete, daily returns of the underlying assets using a geometric Brownian
motion with constant volatility. The drift and volatility terms of the geometric Brownian motion correspond to
the mean daily return of the underlying and its volatility in the period from the product’s issuance to the end of
the investigation period. The second test checks the geometric Brownian motion assumption by introducing
time-varying volatility using a generalized autoregressive conditional heteroscedasticity (GARCH) model.
This approach results in heavier tails in the return distribution, which are characteristic of real-world stock
returns. The closest approximation to reality is, however, achieved with the last test, which is carried out with
historical returns of the underlying.

All tests undergo a regression analysis with the same regression models. These regression models
basically correspond to the theoretical model with different terms being grouped and assigned to a
regression coefficient. The last regression model measures the model error relative to the cumulative
return of the products. The regressions are performed for different investment horizons. Since in my
simulations the drift and volatility terms of the geometric Brownian motion correspond to the historical
mean daily return of the underlying and its volatility in the period from the product’s issuance to the
end of the investigation period, a better comparability of the results from the simulations and empirical
analysis is ensured.

The third approach in Section 8 addresses the question of the shape of the return distribution of
CLCs. The distribution is first analyzed theoretically under the same assumptions as in the return model.
To verify whether the theoretical distribution applies in practice, it is compared to historical return
distribution. Since the effect of compounding on the return of the certificates can vary for different
investment horizons, the return distribution after multiple holding periods is analyzed. For this purpose,
the period from the issuance of the individual products to the end of the sample period is divided into
non-overlapping intervals.

To conduct my analysis, I received daily closing prices of CLCs from the Swiss exchange. But
while there is a huge variety of CLCs on the Swiss exchange, the trading frequency of individual
products is rather low compared to other asset classes. Most of the products are not traded every day
and, as a result, the data is incomplete. Also, if price information is available on a particular day, it is
still unclear whether the close price reflects the product value at the end of the day, since the close price
corresponds to the last price traded. Given the low trading frequency of CLCs, the last trade could be
made hours before the end of the trading time when the product had a much different value (CLCs with
high leverage in particular).
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For this reason, the daily closing prices of CLCs used in all three approaches are calculated based
on the price-setting formula provided by the issuers (see Equation (2)).‡ Prices of underlying assets
required for the calculation are retrieved from Thomson Reuters Eikon. The returns of the underlying
assets are based on the total return, where dividend payments are incorporated. The daily quotes of
the reference interest rates are taken from different sources but mostly from the central bank of the
respective currency. The other parameters required to calculate the product price, namely the leverage
factor, the reference interest rate, the financing spread, the short rate and the index fee, were provided
by the Swiss exchange or retrieved from the products’ term sheets. Furthermore, I do not capture the
currency mismatch between the underlying and product, i.e., product prices are calculated as if they
were issued in the currency of the underlying. This allows us to abstract from noise in the calculation of
(the determinants of) the return deviation. Finally, for the sake of simplicity, products are excluded from
the sample if the close price of the underlying is below the barrier level at any point of time during the
investigation period. A correct implementation of the intraday adjustment approach in case of barrier
events would require to monitor the intraday price development of the underlying assets.

The calculation of product prices based on the price-setting formula has two limitations. First,
in term sheets of some products it can be found that the financing spread and short rate may change
over time without further specification of the time of the change or the new amount of the fee. In my
analysis, I assume a constant financing spread and short rate corresponding to the amount at issuance of
the product. Second, the tax rate is often not clearly communicated by issuers. In some term sheets, it is
mentioned that a tax-adjusted dividend is added to the return without specifying the tax rate. In other
term sheets, the tax rate at issuance is specified, but issuers reserve the right to change it at any time
during the product’s lifetime. Consequently, I assume a dividend tax rate of 0%, which is implicitly
applied by using the total return of the underlying assets. These limitations could be avoided by using
prices from exchanges. However, the trading frequency problem related to using these prices is much
more important such that the application of calculated prices based on the price-setting formula is much
more accurate.

5. Data

5.1. Sample selection

This research study is based on CLCs issued in Switzerland. The investigation period starts at
the beginning of 2013 and lasts until the end of 2017. I do not consider older data because the market
for CLCs was very small at that time with only few products available. In 2013, the market emerged
with 56 new CLCs issued by Commerzbank. The breakthrough came in 2014 with the market entry of
Vontobel. 332 of these certificates were launched in that year.

In my analysis, only CLCs with an equity or index as underlying asset are considered. Products
with futures, commodities, currencies or interest rates as underlying are excluded from the sample
because they have a differing pricing formula, which would require a separate analysis, and the prices of
these underlyings are often not available. Equities and indexes are also the most popular underlying
assets for CLCs. Using data provided by the Swiss exchange, I further filter the most popular CLCs
based on trading frequency, i.e., products are only included in the sample if they have at least 100 trades
during the investigation period. The final sample consists of 339 CLCs.

‡ A similar approach was applied by Entrop et al. (2009) for ELCs.
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Figure 2. Sample statistics.

Quantitative Finance and Economics Volume 4, Issue 4, 693–724.



704

5.2. Descriptive statistics

Figure 2 gives an overview of the product characteristics of the sample. One third of the products
was issued by Commerzbank and two thirds were issued by Vontobel. Long certificates, which account
for 64% (218) of the sample, are more popular than short certificates. 76% of the long certificates have
a leverage factor of either 4, 5 or 6. Among the short certificates, the leverage factors −4, −5 and −6
are most frequently chosen. Other popular leverage factors are 10 and −10. Almost all products are
traded in CHF, with a few exceptions in EUR and USD. However, that does not apply to the underlying
assets, where only 34% are listed in CHF. 43% of the underlying assets are traded in EUR and 19% are
traded in USD. Other currencies in the sample are GBP, JPY and NOK. Equities account for 72% of
the underlyings. However, the most popular single underlyings are indexes. DAX, DJIA, Euro Stoxx
50, Nasdaq 100 and S&P 500 are chosen most often and account for at least 3.2% each. The most
frequent underlying equities are Swatch, UBS and Volkswagen with a share of 2.4% to 2.6%. The
sample contains 94 different underlyings in total, none of which accounts for more than 5% of the
sample. More detailed descriptive statistics are included in Supplementary.

The index fee varies from 0.7% to 1.5% with a mean of roughly 1%. The mean financing spread and
short rate amount to 0.4% and 0.7% respectively and have relatively large fluctuations. The minimum
value of both variables is 0.1%, while the maximum financing spread is 2.5% and the maximum short
rate is 25%§. Commerzbank has a lower index fee than Vontobel on average (0.7% versus 1%). However,
products issued by Commerzbank typically have a much higher financing spread (0.97% versus 0.14%)
and short rate (1.06% versus 0.46%) than Vontobel products. Since the impact of the financing spread
and short rate is amplified by the leverage factor, differences in the index fee play a less important role.
From this perspective, Vontobel seems to have fairer conditions.¶ A table with further statistics on issuer
fees can be found in Supplementary.

6. Return deviation and its determinants

6.1. Definition of the return deviation components

I define the total return deviation, denoted by rE−N
0,t , over an investment period of length t as the difference

between the product’s return rE
0,t and the leveraged cumulative return of the underlying rN

0,t as follows.

rE−N
0,t = rE

0,t − rN
0,t (6)

Denote by rF
0,t the return if no issuer fees would occur and by rT

0,t the return if neither issuer fees
nor interest would occur. Then, the total return deviation can be decomposed into three determinants
according to

rE−N
0,t = rE−F

0,t + rF−T
0,t + rT−N

0,t (7)

with rE−F
0,t = rE

0,t − rF
0,t

rF−T
0,t = rF

0,t − rT
0,t,

§ The short rate of 25% is associated with a short certificate on the company Seadrill, which suffered a massive price decline in the period
from 2015 until 2017 when they filed for bankruptcy. The value is far above the short rate of any other product.

¶ Note that this assessment is only indicative. The products of the two issuers cannot be directly compared to each other due to different
underlyings, which may have differing borrowing and currency hedging costs.
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and rT−N
0,t = rT

0,t − rN
0,t

rE−F
0,t is the return deviation due to issuer fees, rF−T

0,t is the return deviation due to interest and rT−N
0,t is the

return deviation due to the compounding effect. The superscripts E, F, T and N stand for “effective
return”, “fair return”, “target return” and “naively expected return”. The latter term is coined by the
literature on leveraged ETFs due to the naive expectation that the products’ return corresponds to
the leveraged return of the benchmark also for long-term investment periods, which some investors
might have. The formulas are designed in a way that a negative (positive) sign of any return deviation
component can also be interpreted as a negative (positive) impact of the respective component on the
effective return. The different types of return are calculated as

rE
0,t =

CLCt −CLC0

CLC0

=

t−1∏
j=0

[
1 + λ

∆S j+1 + τD j+1

S j
−

(
(λ − 1)

(
r j + f S P

j

)
− λ f S R

j + f I
)
∆t

]
− 1 (8)

rN
0,t = λ

∑t−1
j=0 ∆S j+1 + τD j+1

S 0
(9)

rT
0,t =

t−1∏
j=0

(
1 + λ

∆S j+1 + τD j+1

S j

)
− 1 (10)

and rF
0,t =

t−1∏
j=0

[
1 + λ

∆S j+1 + τD j+1

S j
− (λ − 1)r j∆t

]
− 1 (11)

These equations are, with the exception of rN
0,t, based on the pricing formula in Equation (2).

6.2. Relative importance of the return deviation components

The return deviation and its components, as defined in the previous section, are calculated for all
CLCs in the sample and for different holding periods. An illustration of the main results is displayed
in Figure 3. The figure shows mean values for the different return types and for the return deviation
(components) over different holding periods. The mean values are displayed for the overall sample but
also for sub-samples including only products with a specified leverage factor.

The mean effective return (rE
0,t) of the overall sample over a holding period of one day is 0.1%. The

mean return increases with a larger holding period. An investment over 365 days results in a mean
return of 18.3%. Also, products with a large leverage factor perform better on average. For instance,
products with a leverage factor of −10 have a mean return of −91.1%, while products with a leverage
factor of 10 have a mean return of 167.3% after one year.‖

The total return deviation (rE−N
0,t ) is negligible for very short investment periods. After 30 days the average

of the overall sample amounts to −1.1% and increases to −20.4% for holding periods of one year. However,
these values come along with a large standard deviation, which is 4 to 10 times larger than the mean. Also,
when comparing the outcome between products with varying leverage, it is difficult to see a uniform picture.

‖ Even more extreme returns can be observed for products with a leverage factor of −15, −12, 12 or 15. However, the results for long
holding periods may not be representative due to the small sample size.
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Figure 3. Mean returns (left) and mean return deviations (right) over different holding periods.
t corresponds to the holding period including non-trading days. The error bars indicate the
standard error.
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Most of the leverage levels are attended by a negative return deviation; however, no clear trend is apparent with
increasing or decreasing leverage. The long-term return deviation and its large variance is mainly attributed to
the effect of compounding (rT−N

0,t ), which is responsible for a return deduction of 17.4% over a holding period
of one year. I conclude that the magnitude of the return deviation is boosted with increasing holding period or
leverage factor mainly due to the compounding effect, but based on empirical data, it is difficult to determine
whether compounding has a positive or negative impact on the product performance on average. In any case,
these results suggest that the compounding deviation is much more important than the noncompounding
deviation also for investment periods of only one month, which is inconsistent with the findings on leveraged
ETFs (see Tang and Xu, 2013).

A clearer picture emerges from the analysis of the return deviation due to issuer fees (rE−F
0,t ). Its

mean amounts to −3.2% after a holding period of one year for the overall sample. This value is far
above the expense ratio of leveraged ETFs of around 0.95% (see Tang and Xu, 2013) but can be partially
justified with the higher leverage in CLCs. Issuer fees seem to be high in particular for products with
very high leverage. For instance, they account for a mean return deduction of 6.4% when holding CLCs
with a leverage factor of 10 for one year. Since the short rate is amplified with an increasingly negative
leverage, one could also expect increasing issuer fees for products with extreme negative leverage.
However, this can only be confirmed for a holding period of up to 90 days. Due to the extremely
poor long-term performance of these products, the product value virtually shrinks to zero such that
the charged fees are relatively small compared to the initial investment amount. Hence, investors and
issuers have aligned interests, as a well-performing product results in enhanced earnings for issuers.

It should also be pointed out that the return deviation due to issuer fees is possibly underestimated
in our study. As indicated in Section 4, a constant financing spread and short rate corresponding to the
amount at issuance of the product is assumed. It has been reported in many studies that issuers use
their monopoly power in the secondary market for structured products to extract wealth from investors
(Wilkens et al., 2003; Stoimenov and Wilkens, 2005; Ruf, 2011). For this reason, I except that these
fees are rather increased than decreased during the products’ life cycle. Unfortunately, it is not possible
to address this limitation due to unavailable data on the development of issuer fees over time.

While increasing issuer fees always have a negative impact on the return, this is not necessarily the case
for the interest component (rF−T

0,t ). During the investigation period, the interest level was exceptionally low.
Depending on the currency of the underlying, the interest rate was slightly positive or negative. As a result,
interest contributes to a minor fraction of the total return deviation and has the smallest impact compared to
the other components in my results. The mean return deviation due to interest is 0.1% over a period of one
year for the overall sample, which implies that the debt or deposit component in CLCs increases the products’
return. Again, there is no uniform result among different leverage levels of long or short certificates, but the
magnitude is enhanced with increasing holding period.

7. Return generating process

7.1. A theoretical model

I assume that the underlying asset follows a geometric Brownian motion, i.e., the price of the
underlying S t satisfies the stochastic differential equation

dS t

S t
= µdt + σdWt (12)
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where µ is the return, σ is the return volatility and Wt is a standard Brownian motion. Ito’s lemma gives
the following solution.

d ln S t =

(
1
S t
µS t −

1
2

1
S t

2σ
2S t

2
)

dt +
1
S t
σS tdWt

=

(
µ −

1
2
σ2

)
dt + σdWt (13)

According to the pricing formula of CLCs given in Equation (2), the return of these products is
defined as

dCLCt

CLCt
= λ

dS t

S t
+

[
(1 − λ)

(
rt + f S P

t

)
+ λ f S R

t − f I
]

dt (14)

Note that the dividend term is removed because I consider the return of the underlying dS t
S t

as the
total return including dividends in the subsequent analysis. Substituting dS t

S t
according to Equation (12),

I obtain

dCLCt

CLCt
= λµdt + λσdWt +

[
(1 − λ)

(
rt + f S P

t

)
+ λ f S R

t − f I
]

dt

=
[
λµ + (1 − λ)

(
rt + f S P

t

)
+ λ f S R

t − f I
]

dt + λσdWt

= µ̃tdt + σ̃dWt (15)

with µ̃t = λµ + (1 − λ)
(
rt + f S P

t

)
+ λ f S R

t − f I

and σ̃ = λσ

The price process in Equation (15) is basically a geometric Brownian motion for the CLC with
adapted values for the return and the volatility. By applying Itô’s lemma,the following solution is
obtained.

d ln CLCt =

(
µ̃t −

1
2
σ̃2

)
dt + σ̃dWt

=

[
λµ + (1 − λ)

(
rt + f S P

t

)
+ λ f S R

t − f I −
1
2
λ2σ2

]
dt + λσdWt (16)

I multiply Equation (13) by λ and subtract it from Equation (16) to obtain

d ln CLCt − λd ln S t =

[
λ − λ2

2
σ2 + (1 − λ)

(
rt + f S P

t

)
+ λ f S R

t − f I

]
dt (17)

Considering the investment horizon [0, t], dt becomes t, d ln CLCt becomes ln CLCt − ln CLC0

and d ln S t becomes ln S t − ln S 0. By rearranging Equation (17), I obtain the following formula for the
product’s cumulative logarithmic return in integral form.
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ln CLCt − ln CLC0 = λ (ln S t − ln S 0) +
λ − λ2

2
σ2t + (1 − λ)

∫ t

0

(
rs + f S P

s

)
ds

+ λ

∫ t

0
f S R
s ds − f It (18)

This formula shows that the logarithmic return of CLCs over any investment horizon can be
modeled as the logarithmic return of the underlying over the same period multiplied by the product’s
leverage factor, adjusted by a volatility term and other terms representing interest or issuer fees. As
already highlighted in Section 2.3, volatility has a negative impact on the product’s return irrespective
of whether it is a long or short product, since for any λ larger than 1 or smaller than −1 the term λ−λ2

2 is
negative. It is also apparent from the formula that a larger interest rate rs leads to a decreased (increased)
return for long (short) certificates, while higher issuer fees generally decrease the return∗∗.

A discrete-time cumulative logarithmic return corresponding to (18) could be written as

ln CLCt − ln CLC0 ≈ λ (ln S t − ln S 0) +
λ − λ2

2
σ2t + (1 − λ)∆t

n−1∑
s=0

(
rs + f S P

s

)
+ λ∆t

n−1∑
s=0

f S R
s − f It (19)

where n corresponds to the length of the holding period in days. ∆t is required to scale parameters to
daily rates. The cumulative (non-logarithmic) return can be derived from Equation (19) as follows.

CLCt

CLC0
≈

(
S t

S 0

)λ
· exp

λ − λ2

2
σ2t + (1 − λ)∆t

n−1∑
s=0

(
rs + f S P

s

)
+ λ∆t

n−1∑
s=0

f S R
s − f It

 (20)

Equation (18) gives an exact relation between the return of a CLC and the return of its underlying.
But since the products are not rebalanced continuously and the underlying might not be log-normally
distributed, it is questionable whether the discretized version of the model in Equation (19) and Equation
(20) is appropriate in practice. For this reason, its accuracy is tested in the following three subsections
using different simulations and real-world data.

7.2. Simulation-based model validation with constant volatility

In the first simulation, I simulate daily returns of the underlying with a geometric Brownian motion
and constant volatility. This simulation is in line with the assumptions of the theoretical model except
that it takes account of the daily rebalancing frequency of CLCs. I use the historical mean and volatility
of daily returns of the underlying assets from the issuance of the respective product to the end of the
sample period for the parameters µ and σ of the geometric Brownian motion (see Equation (12)).

The accuracy of the return model is tested for holding periods of 5, 20, 100 and 250 trading days.
For each holding period and each product in the sample 100 simulation paths of the underlying asset and
random values for the interest rate, financing spread, short rate and index fee out of a continuous uniform

∗∗ Remind that f S P
s is zero for short certificates and f S R

s is zero for long certificates.
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distribution are generated. The intervals of the uniform distributions have a width of multiple percentage
points and are sufficiently large to ensure that the data has enough variability to test whether these terms
are appropriately incorporated in the model.†† Based on these simulation paths, the randomly drawn
numbers for the interest rate, financing spread, short rate and index fee, and the pricing formula of
CLCs, I calculate the products’ cumulative logarithmic return ln CLCt − ln CLC0 for each simulation
path. These returns are then used as dependent variable in the subsequent regression analyses.

I apply three regression models to test the theoretical return model. The first regression model
basically corresponds to the return model as stated in Equation (19) but with added regression coefficients.
To check whether each variable of the model contributes to the cumulative return to the extent expected,
a regression coefficient is assigned to each summand of the equation. The second regression model
is similar. As in the first one, it includes a regression coefficient for the return of the underlying, but
only one coefficient is assigned to the remainder of the equation, which is in the following referred to
as “model intercept”. I call it model intercept because if the return model in Equation (19) is seen as a
function of the cumulative logarithmic return of the underlying, it corresponds to the vertical intercept
of the model in case of ln S t − ln S 0 = 0. Formally, the first two regression models are defined as:

ln CLCt − ln CLC0 = β0 + β1λ (ln S t − ln S 0) + β2
λ − λ2

2
σ2t + β3(1 − λ)∆t

n−1∑
s=0

(rs)

+ β4(1 − λ)∆t
n∑

s=0

(
f S P
s

)
+ β5λ∆t

n∑
s

(
f S R
s

)
− β6 f It + ε, (I)

ln CLCt − ln CLC0 = β0 + β1λ (ln S t − ln S 0) + β2MI + ε, (II)

with MI =
λ − λ2

2
σ2t + (1 − λ)∆t

n−1∑
s=0

(
rs + f S P

s

)
+ λ∆t

n−1∑
s=0

f S R
s − f It (21)

β0, β1, ... are regression coefficients. MI corresponds to the model intercept if the regression coefficients
are zero. The values used for the terms ln S t − ln S 0, rs, f S P

s , f S R
s and f I correspond to the simulation

output. σ2 corresponds to the realized volatility of the simulation path of the underlying. Since the
regression models (I) and (II) are equivalent to the theoretical model, β0 would be equal to 0 and all
other coefficients would be equal to 1 in case of a perfect fit.

The third regression model is an intercept-only model to measure the relative error of the theoretical
model. The regressand is calculated as deviation between the effective product return and the product
return predicted by the model in Equation (19) divided by the effective product return. Formally, we
have

ln CLCt − ln CLC0 − [λ (ln S t − ln S 0) + MI]
ln CLCt − ln CLC0

= β0 + ε (III)

The regression coefficient β0 corresponds to the mean relative model error if the residuals are
normally distributed. It indicates whether the model is accurate, i.e., whether it is overestimating
(β0 < 0) or underestimating (β0 > 0) the effective return. The standard error of the coefficient, on the
other hand, indicates whether the predictions of the model are precise. An accurate and precise model
therefore implies that both the regression coefficient and its standard error are close to zero.

†† Another possibility would be the application of real numbers for the interest rate, financing spread, short rate and index fee. However, this
option proved to be less convenient for the subsequent regression analysis due to low variability of the data.
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The results of the regression analysis are reported in Table 1. Judging by the (adjusted) R2 measure,
the model is very accurate in explaining short- and long-term returns of CLCs. Indeed, the regression
coefficients are relatively close to the expected values, in particular for holding periods of 5 and 250
trading days. Some of the regression coefficients assigned to the financing spread, short rate or index fee
range between 0.8 and 0.9 for holding periods of 20 and 100 trading days. Contrariwise, the volatility
of the underlying seems to have a slightly larger impact on the product return than predicted. Apart
from that, all values are roughly in line with the model, i.e., the intercept coefficient is between 0 and
0.07 and the other coefficients range between 0.9 and 1.02. The model error measured by regression
model (III) ranges between −1% and 2%.
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Figure 4. Simulation of the return of four randomly chosen CLCs over a holding period of
one year. The vertical, dashed line represents the model in Equation (19). The blue dots
represent simulation outcomes.
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Figure 4 illustrates the accuracy of the model graphically. It shows the logarithmic return of four
randomly chosen CLCs over one year as a function of the logarithmic return of the underlying over the
same period based on the results of an independent but similar simulation. The only difference is that
interest rates are kept constant to obtain a constant model intercept, which enables the display of the
return model as a straight line. The blue dots represent simulation outcomes and, as anticipated in the
model, suggest that there is a strong linear relationship between the logarithmic return of CLCs and the
logarithmic return of their underlyings.

7.3. Simulation-based model validation with time-varying volatility

A property of the geometric Brownian motion is the log-normal distribution of stock returns.
However, it is well-known that stock return distributions are leptokurtic and tend to have fat tails. To
take account of this characteristic, a simulation with time-varying volatility is run using a GARCH(p, q)
model with p = q = 1. The GARCH(1, 1) model has proven to be a robust volatility model for equity
instruments and to work effectively in forecasting (see, e.g., Andersen and Bollerslev, 1998; Hansen
and Lunde, 2005). The model is specified as

σ2
t = ω + αε2

t−1 + βσ2
t−1 (22)

with εt−1 ∼ N
(
0, σ2

t−1

)
The initial value for the conditional variance σ2

0 corresponds to the historical (long-term) variance
during the investigation period σ2. As in the precedent simulation, the innovations εt are used to
calculate daily logarithmic returns of the underlying.

The simulation with time-varying volatility is performed once with predefined, fixed values for the
parameters α and β (same values for all underlyings) and once with fitted values for each underlying
using maximum likelihood estimation. The fixed parameters used in my study are 0.1 for α, 0.85 for β
and σ2(1 − α − β) for ω. These values are approximately in line with estimated parameters for equity
indexes in the literature (see, e.g., Engle, 2001; Koopman et al., 2005; Sabbatini and Linton, 1998,
which found values for α between 0.077 and 0.102 and values for β between 0.8 and 0.905). Except
for the application of time-varying volatility, the simulations and regression models in this section are
identical to the model validation approach with constant volatility.

The results of the regression analysis are given in Table 2 and Table 3. The simulation with fixed
parameters leads to a slightly better goodness of fit. Otherwise, the results of both simulations are comparable
to the results obtained with constant volatility. The beta assigned to the volatility term is again slightly above
1, ranging between 1.13 and 1.26. The beta assigned to the return of the underlying is relatively stable with
values between 1.01 and 1.04. The other regression coefficients are between 0.75 and 1.22. The simulation
with fixed parameters results in roughly the same model accuracy as the simulation with constant volatility.
However, the model accuracy for the simulation with fitted parameters is lower than before, with a mean
model error ranging between −6% and 7%. Possibly, the estimation window for fitting the parameters, which
corresponds to the investigation period of five years, is too short to obtain realistic estimates. Consequently,
the return distributions of the underlyings resulting from the short estimation window might have unrealistic
shapes and differ greatly from the log-normal distribution, which could explain the slightly worse results for
the simulation with fitted parameters.
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7.4. Model validation with empirical data

The last model validation is performed with empirical data, where the products’ returns predicted
by the theoretical model are compared to effective returns. The results are displayed in Table 4. As
the (adjusted) R2 measure shows, the goodness of fit is not worse than previously obtained values with
simulated returns. Moreover, the regression coefficient assigned to the volatility term ranges between
0.9 and 1.05 and is therefore much closer to 1. The regression coefficient assigned to the return of the
underlying is in line with previously obtained results and ranges between 1.02 and 1.03.

In contrast, the regression coefficients assigned to the interest rate, financing spread, short rate
and index fee deviate from 1, in some cases even drastically. It seems that the lack of variability of
these variables is a serious shortcoming. For instance, the index fee amounts to 0.7% for 223 products,
1% for 112 products and 1.5% for 4 products, which makes it difficult to capture its impact on the
return correctly. However, it should be added that the variables with low variability have a relatively
small effect size. This becomes apparent when comparing the beta coefficient of the model intercept
from model (II) to the beta coefficient assigned to the volatility term in model (I). These are in general
very close, which suggests that the overall predictive capability is not affected by the lack of data
variability. It appears to be difficult to prove the correct incorporation of all variables and parameters
in the model based on empirical data. But given the results obtained by the — in this regard probably
more meaningful — simulation-based validation, I believe that the theoretical model reflects real-world
data well.

The average model error ranges from −1% to 7%, with the exception of the value obtained for a
holding period of 20 days, which surprisingly amounts to 27%. This value, however, comes along with
a relatively large standard deviation. Accordingly, it is not significantly different from 0, which also
applies to average model errors obtained for the other holding periods.

Overall, I conclude that the cumulative logarithmic return of CLCs can be explained well by
the leveraged cumulative logarithmic return of the underlying, a volatility adjustment term and a fee
and interest reduction. This applies to a broad range of processes for the underlying and to empirical
data. The large goodness of fit also implies that other potential explanatory variables (such as, e.g.,
sentiment or market states) are only relevant insofar as they are reflected in the realized return series of
the underlying.

The estimated regression coefficients assigned to the volatility term (β2) is, however, mostly larger
than 1, which implies that the volatility of the underlying has a stronger effect on the return of CLCs
than predicted by the model. A possible explanation for this is that the model generally tends to predict
values that are too high, which then results in a larger regression coefficient for the volatility term to
reduce the model output.‡‡ One can show numerically that the model output is relatively large compared
to the effective cumulative product return if the latter is negative (especially if it is only slightly negative).
This explanation is therefore plausible if the cumulative product return is negative on average or —
because least squares regressions are dragged towards outliers — if a small minority of simulation paths
produces extremely large model errors. In any case, the relatively large regression coefficient for the
volatility term can be found in all simulation approaches and thus irrespective of whether returns of the
underlying are log-normally distributed or not. I thus believe that the assumption on the rebalancing
frequency is more critical for the model accuracy.

‡‡ Note that the volatility term ( λ−λ
2

2 σ2dt) is always negative.

Quantitative Finance and Economics Volume 4, Issue 4, 693–724.



717

Ta
bl

e
4.

R
es

ul
ts

of
th

e
m

od
el

va
lid

at
io

n
w

ith
em

pi
ri

ca
ld

at
a.

t=
5

t=
20

t=
10

0
t=

25
0

(I
)

(I
I)

(I
II

)
(I

)
(I

I)
(I

II
)

(I
)

(I
I)

(I
II

)
(I

)
(I

I)
(I

II
)

In
te

rc
ep

t
0.

00
1

−
0.

00
2∗
∗
∗

0.
00

4
0.

00
1

−
0.

00
2∗
∗
∗

0.
27

−
0.

01
−

0.
00

4∗
∗

0.
00

3
−

0.
06
∗
∗
−

0.
01
∗
∗
∗

0.
07

(0
.0

01
)

(0
.0

00
1)

(0
.0

1)
(0

.0
02

)
(0

.0
00

3)
(0

.2
1)

(0
.0

1)
(0

.0
02

)
(0

.0
04

)
(0

.0
3)

(0
.0

05
)

(0
.0

5)
λ

( l
n

S
t
−

ln
S

0)
1.

03
∗
∗
∗

1.
03
∗
∗
∗

1.
03
∗
∗
∗

1.
03
∗
∗
∗

1.
03
∗
∗
∗

1.
03
∗
∗
∗

1.
02
∗
∗
∗

1.
02
∗
∗
∗

(0
.0

00
4)

(0
.0

00
4)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

02
)

(0
.0

02
)

λ
−
λ

2

2
σ

2 t
0.

90
∗
∗
∗

1.
00
∗
∗
∗

1.
04
∗
∗
∗

1.
05
∗
∗
∗

(0
.0

02
)

(0
.0

02
)

(0
.0

03
)

(0
.0

04
)

(1
−
λ

)∆
t∑ n−1 s=

0
( r

s)
1.

25
∗
∗
∗

1.
22
∗
∗
∗

1.
17
∗
∗
∗

1.
13
∗
∗
∗

(0
.1

1)
(0

.1
0)

(0
.1

0)
(0

.1
4)

(1
−
λ

)∆
t∑ n−1 s=

0

( fS
P

s

)
3.

32
∗
∗
∗

2.
33
∗
∗
∗

1.
50
∗
∗
∗

1.
20
∗
∗
∗

(0
.2

7)
(0

.2
3)

(0
.2

4)
(0

.3
1)

λ
∆

t∑ n−1 s=
0

( fS
R

s

)
2.

27
∗
∗
∗

1.
02
∗
∗
∗

0.
03

−
0.

09
(0

.0
8)

(0
.0

8)
(0

.0
9)

(0
.1

0)
−

fI t
13

.6
1∗
∗
∗

4.
53
∗

−
3.

38
−

6.
47
∗
∗

(2
.7

0)
(2

.3
3)

(2
.3

5)
(2

.8
9)

M
I

0.
90
∗
∗
∗

1.
00
∗
∗
∗

1.
02
∗
∗
∗

1.
02
∗
∗
∗

(0
.0

02
)

(0
.0

02
)

(0
.0

03
)

(0
.0

04
)

O
bs

er
va

tio
ns

54
90

6
54

90
6

54
90

6
13

61
0

13
61

0
13

61
0

2
59

7
2

59
7

2
59

7
89

1
89

1
89

1
R

2
0.

99
0.

99
0.

00
1.

00
1.

00
0.

00
1.

00
1.

00
0.

00
1.

00
1.

00
0.

00
A

dj
us

te
d

R
2

0.
99

0.
99

0.
00

1.
00

1.
00

0.
00

1.
00

1.
00

0.
00

1.
00

1.
00

0.
00

N
ot

e:
T

he
de

pe
nd

en
tv

ar
ia

bl
e

of
th

e
re

gr
es

si
on

m
od

el
s

(I
)a

nd
(I

I)
is

th
e

cu
m

ul
at

iv
e

lo
ga

ri
th

m
ic

re
tu

rn
of

C
L

C
s

an
d

th
e

de
pe

nd
en

tv
ar

ia
bl

e
of

th
e

re
gr

es
si

on
m

od
el

(I
II

)i
s

th
e

re
la

tiv
e

m
od

el
er

ro
r.
∗
,∗
∗

an
d
∗
∗
∗

re
pr

es
en

tp
<

0.
1,

p<
0.

05
an

d
p<

0.
01

,r
es

pe
ct

iv
el

y.

Quantitative Finance and Economics Volume 4, Issue 4, 693–724.



718

8. Return distribution

8.1. Theoretical return distribution

The model introduced in the last section allows for an analysis of the return distribution for varying
holding periods and leverage factors. For simplicity, I assume constant interest and issuer fees in the
subsequent analysis. In that case, according to Equation (16), the logarithmic return over the investment
period [0, t] equals

ln
CLCt

CLC0
=

[
λµ + (1 − λ)

(
r + f S P

)
+ λ f S R − f I −

1
2
λ2σ2

]
t + λσWt (23)

Since Wt is the only stochastic component and normally distributed with Wt ∼ N(0, t), it follows
that

ln
CLCt

CLC0
∼ N

(
µ̂, σ̂2

)
or

CLCt

CLC0
∼ LN

(
µ̂, σ̂2

)
(24)

with µ̂ =

[
λµ + (1 − λ)

(
r + f S P

)
+ λ f S R − f I −

1
2
λ2σ2

]
t

and σ̂2 = λ2σ2t

The probability density function is thus given by

f
(

pt

p0

)
=

1
√

2πσ̂ CLCt
CLC0

· exp

−
(
ln CLCt

CLC0
− µ̂

)2

2σ̂2

 (25)

Figure 5 shows probability density functions for varying leverage factors and over holding periods
of 1, 7, 30, 90 and 365 days. All parameters correspond to average values during the investigation
period. To facilitate the comparison between different investment horizons, the density functions are
only displayed in the range of −1 to 2 (ordinary return) and −2 to 2 (logarithmic return). However, that
does not affect the overall interpretation of the diagrams.

There are two peculiarities that are particularly apparent when analyzing the distributions. First,
short certificates have a much lower performance than long certificates, which is in line with the overall
positive long-term trend of stock prices. For instance, when comparing the mean logarithmic returns
of pairs of long and short certificates, a clear difference can be observed. The difference becomes
increasingly obvious with longer holding periods.

Second, there is an increasing skewness of the distribution of ordinary returns over long-term
investment horizons. The distribution is relatively symmetrical for a holding period of 1 day but gets an
increasingly long tail on the right for holding periods of 7 days or more, in particular if the leverage
factor is extremely negative or extremely positive. The skewness of the distribution of CLCs with
leverage factors −10 and 10 over an investment period of 365 days is so large that the left tail is no
longer visible.
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Interestingly, for λ→ ∞ as well as for t → ∞ the loss probability given by

P
(

CLCt

CLC0
≤ 1

)
= Φ

(
−µ̂

σ̂

)
= Φ


−

(
µ + ( 1

λ
− 1)

(
r + f S P

)
+ f S R − 1

λ
f I − 1

2λσ
2
) √

t

σ

 (26)

with Φ(·) being the cumulative standard normal distribution, tends to 100%, since the term within the
squared brackets in Equation (26) is dominated mainly by the variance of the underlying. At the same
time, the mean return given by

E
(

CLCt

CLC0

)
= exp

(
µ̂ +

1
2
σ̂2

)
= exp

[(
λµ + (1 − λ)

(
r + f S P

)
+ λ f S R − f I

)
t
]

(27)

tends to infinity. Hence, an investment in a long CLC with extremely large leverage and/or with an
extremely long holding period has similar risk-return characteristics as the well-known St. Petersburg
lottery. For short CLCs with λ→ −∞ the loss probability tends to 100% as well, however, the expected
return converges towards a total loss. These findings also show why a lot of these products have strongly
negative returns.

8.2. Historical return distribution

Figure 6 shows histograms of ordinary and logarithmic historical returns of CLCs. For better
comparison, the same holding periods are analyzed as in the previous section.

In general, the histograms of historical returns have a similar shape as the theoretical distributions.
Logarithmic returns are relatively symmetrically distributed, while there is a clearly recognizable
positive skewness of ordinary returns over long-term investment periods. However, the theoretical
distributions seem to have a more pronounced skewness, especially for products with leverage factors
−10 and 10. The long tail on the right of the historical distribution is clearly recognizable only for
holding periods of 90 days or more.

The deviation between the theoretical and historical distributions might be explained by the fact that
80% of the products from the sample have a leverage factor between −6 and 6. As a result, the historical
distributions rather look like the theoretical distributions for the leverage factors −5 and 5. Unfortunately, the
amount of data does not allow for an isolated analysis of CLCs with different leverage factors.

Another possible driver for the greater skewness of the theoretical distributions could be the
mismatched rebalancing frequency. In contrast to the continuous rebalancing frequency assumed in
the model, CLCs are rebalanced only once a day in practice. This explanation is supported by Trainor
(2011), who studied the difference between daily and monthly rebalancing leveraged ETFs and found
that the compounding effect is more pronounced if the rebalancing frequency is high.

The historical distributions also reveal that there are more extreme negative logarithmic returns than
extreme positive ones for long-term investment horizons. This observation is in line with theoretical
distributions for short certificates. But in contrast to the theoretical analysis, historical logarithmic
returns of long certificates also seem to have a heavier tail on the left. However, the distribution of
long-term returns is much less smooth due to the smaller amount of available data, which makes a
conclusive argument based on empirical data difficult.
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9. Conclusion

CLCs are relatively new financial products, which enable a leveraged participation in the underlying
asset for risk-seeking investors. The main innovation of these certificates is the constant leverage on a
daily basis, i.e., their daily return (roughly) corresponds to the daily return of the underlying multiplied
by the product’s leverage factor. The increasing popularity of CLCs might be attributed to their
seemingly easy comprehensibility associated with this product feature. However, many investors may
not be familiar with the implications of the daily rebalancing on the long-term return. Already a brief
look at a few price paths of CLCs over a longer period of time suggests that their return prospects may
not be as good as it initially seems. Many of these products have a negative return over an investment
period of one year despite a positive development of the underlying. A substantial part of the products
suffers a price decline that is practically a total loss.

I examine this phenomenon in my study with a profound theoretical and empirical analysis of
the short- and long-term return of these certificates based on the price-setting formula communicated
in term sheets. The analysis starts with a comparison of the return of CLCs with the leveraged return
of the underlying over holding periods longer than one day. I often find a large but insignificant
deviation between these two returns, as the variance of the deviation is also relatively large. The
deviation is mainly related to the effect of compounding, which can have a positive or negative
impact on the products’ return. In general, compounding has positive (negative) effects in periods of
low (high) volatility. Due to the low interest level with partly negative rates during the investigation
period, interest does not significantly lower or increase the return despite the large debt or deposit
portion in some CLCs. Issuer fees, however, negatively affect the products’ return, especially in case
of a favorable product performance. They contribute to a return decrease of 3.2% on average over a
holding period of one year.

I thus further deepen my analysis by presenting a model that links the (long-term) return of CLCs
to the return of its underlying. It shows that the products’ logarithmic return is best predicted by the
logarithmic return of the underlying multiplied by the leverage factor minus a deduction related to the
volatility of the underlying, interest and issuer fees. A regression analysis with simulated and empirical
returns for the underlying showed that the model has a high goodness of fit also in case of time-varying
volatility. The relative model error mostly amounts to maximally a few percentage points and has a low
standard deviation, which indicates that the model predictions are accurate as well as precise.

Based on the model, I derive a theoretical return distribution and study the effects of different
holding periods and leverage factors on its shape. The findings show that the length of the holding
period and the size of the leverage factor have a negative impact on the average product return for short
certificates but not for long certificates. These two factors, however, also lead to a positively skewed
return distribution with long tails on the right. Therefore, (long) certificates held over long investment
periods are associated with an increasing loss probability (despite higher expected returns), which also
explains why a majority of the products results in a large loss in the long run. The right-skewed shape
of the return distribution can also be found in empirical product returns.

A limitation of this study is its exclusive focus on products with equities and indexes as
underlying. Other asset classes, such as futures, commodities, currencies or interest rates, might
have a differently shaped return distribution. My results suggest that the process for the underlying is
not crucial for the model accuracy. Nonetheless, a profound analysis of the implications of different
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return distributions on the long-term performance of the products in general or the compounding
effect in particular would be required to answer this question conclusively.

Investment products with constant leverage have been criticized in many scholarly articles. At the
one hand, there is concern that such a product design may attract speculators and noise traders that
could theoretically destabilize financial markets (Chen and Diaz, 2012). In practice, however, banks
limit the issuing volume of CLCs to an extend that disables a large impact on the price stability of
underlying assets. On the other hand, constant leverage products have been criticized for not being suited
as long-term investments due to their large loss probability in the long run (see, e.g., Lu et al., 2014;
Murphy and Wright, 2010; Charupat and Miu, 2011; Tang and Xu, 2013). I argue that CLCs should be
considered as an alternative to other leveraged instruments by investors that are either speculating on
a low volatility of the underlying asset or looking for lottery-like risk-return characteristics, where a
high profit potential comes along with a high loss probability. Also, it could be interesting to explore
momentum strategies because CLCs would profit even more from the continuance of an existing upward
market trend due to the compounding of prior returns. Finally, it could be interesting to explore the
implications of these certificates in a portfolio context, which could potentially improve the overall
portfolio performance as a recent study on the related leveraged ETFs suggests (Smirnov and Smirnov,
2020). A large drawback of CLC, however, is that they are relatively expensive. Consequently, large
institutional investors may find it ineffective to use CLCs for any purpose as they can reconstruct the
payoff profile of these products at a smaller price.
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