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Abstract: This article is concerned with the reachable set estimation (RSE) for delayed memristive
neural networks (MNNs). By exploiting the differential inclusion theory and inequality techniques, the
RSE problem of MNNs was investigated. A memoryless adaptive controller was designed to realize that
states of MNNs converge to a bounded region. Based on this result, an updated memoryless adaptive
controller was designed, which further removed the restriction that the delay derivative must be less
than 1, leading to a more general result. The new results were presented in the form of algebraic
criteria, which were straightforward to verify. Ultimately, the effectiveness of the proposed criteria was
demonstrated through two numerical simulations.
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1. Introduction

Neural networks, as computational models designed to mimic the information-processing
mechanisms of biological nervous systems, have become one of the core architectures in artificial
intelligence and high-efficiency computing research [1, 2]. Memristive neural networks (MNNs) have
emerged as a transformative architecture in neuromorphic computing, leveraging the unique properties
of memristors (nonlinear resistive elements with memory) to emulate synaptic behavior in artificial
neural systems [3]. The discovery of memristors at the nano-scale has enabled the development of
neural networks that closely mimic biological brain functions, offering advantages such as non-volatile
memory, analog tunability, and high density-integration. These characteristics make MNNs particularly
suitable for applications in artificial intelligence, image recognition, and personalized medicine, where
energy efficiency and compact design are critical [4–6]. Moreover, MNNs address the limitations
of von Neumann architectures by integrating memory and processing, thus overcoming latency and
energy bottlenecks. As can be seen from the above, MNNs not only provide an ideal physical carrier
for realizing spiking neural networks that more closely approximate the neurodynamic characteristics
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of biological systems, but also lay an important theoretical and hardware foundation for exploring
cutting-edge directions such as neuromorphic computing, memory-computing integrated architectures,
and edge intelligence [7]. They represent an indispensable research pathway for artificial intelligence
to move toward an efficient, adaptive, and low-power future.

The presence of time delays further complicates MNNs, as delays amplify uncertainties and may lead
to oscillatory or chaotic behaviors [8]. In general, the analysis of delayed MNNs employs methods such
as those based on linear matrix inequalities and algebraic approaches. Owing to the simpler formulation,
the algebraic methods are generally easier to verify and hence find wider application. Algebraic methods
have been effectively applied in MNNs, such as stability and stabilization analysis [9, 10], finite-time
synchronization [11, 12], as well as quasi-projective synchronization [13].

Various disturbances and uncertainties exist in practical systems, making robustness analysis
crucial [14, 15]. Reachable set estimation (RSE) is often used to quantitatively assess the robustness of
systems. RSE is a critical tool in control theory for analyzing the behavior of dynamic systems under
uncertainties and external disturbances. It involves computing a bounded set that contains all possible
system state trajectories starting from a given set of initial conditions, subject to constrained inputs or
perturbations [16]. For instance, in aircraft landing systems, reachable set analysis ensures that flight
trajectories remain within safe operational envelopes under fault conditions. The RSE problem finds
applications in many systems, such as singular systems [16, 17], Markov jump systems [18], switched
systems [19, 20], genetic regulatory networks [21, 22], etc. In the context of neural networks, RSE
helps evaluate safety margins and resilience against destabilizing factors [23, 24]. The problem of
RSE of complex-valued neural networks using an event-triggered approach and cyber-attacks was
addressed in [23]. The problem of RSE for nonlinear Markovian networked systems subject to
denial-of-service (DoS) attacks was investigated in [24].

Similarly, for MNNs, it provides guarantees about the network’s stability and convergence, which
are vital for applications like neural inference or real-time signal processing. The study of reachable
set bounding for delayed MNNs sit at the intersection of neuromorphic engineering and robust
control theory. By developing accurate bounding methods, researchers can enhance the reliability
of MNNs in applications ranging from autonomous systems to neuroprosthetics. Therefore, it has
attracted significant research interest in recent years. A nonreduced-order method was employed to
investigate the reachable set bounding problem of inertial MNNs with bounded input disturbances
in [25]. The RSE of complex-valued inertial MNNs with bounded disturbances was studied in [26].
Based on the Gronwall-Bellman inequality, the result on the states of complex-valued MNNs converging
within a sphere was derived in [27]. By employing the nonreduced-order method and reduced-order
method, novel algebraic conditions were derived to estimate the states of the considered inertial MNNs
in [28]. Reference [29] focused on reachable set bounding for MNNs with bounded input disturbances.
However, the literature [25–29] imposes relatively strict requirements on the time delay, specifically
requiring that the derivative of the time delay be less than one.

Based upon the arguments, deriving tight and computable bounds for the reachable set is crucial to
ensuring system reliability while minimizing computational conservatism. Therefore, we attempt to
investigate the RSE problem for MNNs. The main contributions of this paper are listed as follows:

i) By employing inequality techniques and differential inclusion theory, algebraic conditions are
performed to ascertain the RSE stabilization criteria of the underlying MNNs in Filippovs sense.

ii) A memoryless adaptive controller and a memory adaptive controller are proposed to ensure that
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the states of MNNs converge to a bounded region.
iii) Two new criteria for RSE are presented. One result is the condition that the derivative of the

delay is less than 1. The other removes the constraint on the delay derivative. In addition, a feature
of the proposed approach is that the resulting criteria are expressed in algebraic forms, facilitating
straightforward verification.

Notations: ℧ = {1, 2, · · · , n}. Am j denotes the maximum value of |ām j| and |am j|. Bm j is the maximum
of |b̄m j| and |bm j|. Cm j denotes the maximum of |c̄m j| and |cm j|. F̄ = max{F2

m|m ∈ ℧}, Ḡ = max{G2
m|m ∈

℧}, r(ν) = (r1(ν), r2(ν), · · · , rn(ν))T , and ψ(s) = (ψ1(s), ψ2(s), · · · , ψn(s))T .

2. Preliminaries

The delayed MNN model is described as follows:

ṙm (ν) = −dmrm (ν) +
n∑

j=1
am j (rm (ν)) f j

(
r j (ν)

)
+

n∑
j=1

bm j (rm (ν)) g j

(
r j

(
ν − ρ j(ν)

))
+

n∑
j=1

cm j(rm(ν))ϑ j (ν) + Um(ν), ν ≥ 0,m ∈ ℧,
(2.1)

where rm(ν) is the voltage of the capacitor Cm at time ν, f j(r j(ν)) and g j(r j(ν − ρ j(ν))) represent the
activation functions, and ρ j(ν) is the delay and satisfies 0 ≤ ρ j(ν) ≤ ρ. dm > 0 denotes the mth
neuron self-inhibitions at time t. am j(rm(ν)), bm j(rm(ν)), and cm j(rm(ν)) are the state-based memristors
synaptic connection weights, and am j(rm(ν)) = M f ,m j

Cm
× signm j, bm j(rm(ν)) = Mg,m j

Cm
× signm j with sign f ,m j ={

1,m , j
−1,m = j

. M f ,m j and Mg,m j are the memductances of memristors. ϑ j(ν) represents the bounded

peak disturbance and
|ϑ j(ν)| ≤ ϑ̄, (2.2)

with a constant scalar ϑ̄ > 0.
The parameters governing the memristor’s behavior, as derived from its intrinsic properties and

current-voltage relationship, are as follows:

am j (rm (ν)) =
{

a∗m j, |rm (ν)| ≤ Γm,

a∗∗m j, |rm (ν)| > Γm,
bm j (rm (ν)) =

{
b∗m j, |rm (ν)| ≤ Γm,

b∗∗m j, |rm (ν)| > Γm,
cm j (rm (ν)) =

{
c∗m j, |rm (ν)| ≤ Γm,

c∗∗m j, |rm (ν)| > Γm,

where Γm > 0 are switching jumps. a∗m j, a
∗∗
m j, b

∗
m j, b

∗∗
m j, c

∗
m, c

∗∗
m ,m, j ∈ ℧ are constants.

In the analysis of the delayed MNN (2.1), we make the following assumptions to facilitate the proof
of the main theorems.

Assumption 1. Time-varying delay ρ j(ν) satisfies ρ̇ j(ν) ≤ σ < 1, where σ is a positive constant.
Assumption 2. It is assumed that the activation functions f j and g j ( j ∈ ℧) are bounded and further,
that for all ς1, ς2 ∈ R, the following condition holds:∣∣∣∣∣ f j(ς1) − f j(ς2)

s1 − s2

∣∣∣∣∣ ≤ F j,

∣∣∣∣∣g j(ς1) − g j(ς2)
ς1 − ς2

∣∣∣∣∣ ≤ G j, (2.3)

with positive constants ς1 , ς2, F j,G j for all j ∈ ℧, and with the initial condition f j(0) = g j(0) = 0
assumed for each j ∈ ℧.

Networks and Heterogeneous Media Volume 21, Issue 1, 198–212.



201

Definition 1. [30] Let E ⊂ Rn and r 7→ F(r) is called a set-valued map from E ↪→ Rn, if for each point
r of a set E ⊂ Rn, there corresponds a nonempty set F(r) ⊂ Rn. A set-valued map F with nonempty
values is said to be upper semicontinuous at r0 ∈ E ⊂ Rn if, for any open set N containing F(r0), there
exists a neighborhood N0 of r0 such that F(N0) ⊂ N. F(r) is said to have a closed (convex, compact)
image if for each r ∈ E, F(r) is closed (convex, compact).
Definition 2. [30] For system (dr/dν) = F(r), r ∈ Rn, with discontinuous right-hand sides, a set-valued
map is defined as F(r) =

⋂
δ>0

⋂
µ(N)=0 co [F(B(r, δ) \ N)] , where co is the closure of the convex hull,

B(r, δ) = {y : ∥y − r∥ ≤ δ}, and µ(N) is the Lebesgue measure of set N.
Definition 3. [30] A function r(ν) (in Filippov’s sense) is a solution of MNN (2.1) with initial conditions
ψ(s), if r(ν) is an absolutely continuous function and satisfies the differential inclusion

ṙm (ν) ∈ −dmrm (ν) +
n∑

j=1
co[am j, ām j] f j

(
r j (ν)

)
+

n∑
j=1

co[bm j, b̄m j]g j

(
r j

(
ν − ρ j(ν)

))
+

n∑
j=1

co[cm j, c̄m j]ϑ j (ν) + Um(ν), t ≥ 0,
(2.4)

where

co
[
am j, ām j

]
=


a∗m j, if |rm(ν)| < Γm,[
am j, am j

]
, if |rm(ν)| = Γm,

a∗∗m j, if |rm(ν)| > Γm,

(2.5)

co
[
bm j, b̄m j

]
=


b∗m j, if |rm(ν)| < Γm,[
bm j, bm j

]
, if |rm(ν)| = Γm,

b∗∗m j, if |rm(ν)| > Γm,

(2.6)

co
[
cm j, c̄m j

]
=


c∗m j, if |rm(ν)| < Γm,[
cm j, cm j

]
, if |rm(ν)| = Γm,

c∗∗m j, if |rm(ν)| > Γm,

(2.7)

with
am j = max

{
a∗m j, a

∗∗
m j

}
, am j = min

{
a∗m j, a

∗∗
m j

}
,

bm j = max
{
b∗m j, b

∗∗
m j

}
, bm j = min

{
b∗m j, b

∗∗
m j

}
,

cm j = max
{
c∗m j, c

∗∗
m j

}
, cm j = min

{
c∗m j, c

∗∗
m j

}
,

for m, j ∈ ℧. Or equivalently, for m, j ∈ ℧, there exist ãm j ∈ co[am j, ām j], b̃m j ∈ co[bm j, b̄m j], and
c̃m j ∈ co[cm j, c̄m j] such that

ṙm (ν) = −dmrm (ν) +
n∑

j=1
ãm j f j

(
r j (ν)

)
+

n∑
j=1

b̃m jg j

(
r j

(
ν − ρ j(ν)

))
+

n∑
j=1

c̃m jϑ j (ν) + Um(ν), ν ≥ 0,m ∈ ℧.
(2.8)

Lemma 1. [30] Under Assumption 1, the delayed MNN model (2.1) with initial condition ψ(s) ∈
C(−ρ, 0],Rn) admits at least one local solution r(ν). Furthermore, this local solution can be extended to
the entire interval [0,+∞) in the sense of Filippov.
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The RSE problem aims to find an optimally small region such that it bounds the reachable set of the
delayed MNN (2.1) under the constraint specified in condition (2.2). Generally, the RSE of delayed
MNN (2.1) contains the following problems.

Problem 1. The objective is to bound the reachable set (or design a controller) such that all state
trajectories of the delayed MNN (2.1) are confined within an ellipsoid.

The reachable set can be formally defined as the collection of all possible system states reachable
from a given initial set under specified inputs and constraints, denoted typically by

Zr := {r(ν) ∈ Rn|r(ν), ϑ(ν) satisfy Eqs (2.1) and (2.2), ν ≥ 0}. (2.9)

Given a positive definite matrix P > 0, an ellipsoid o(P, 1) with the purpose of enclosing the
reachable set Eq (2.9) is given by

o(P, 1) := {r(ν) ∈ Rn|rT (ν)Pr(ν) ≤ 1}. (2.10)

Problem 2. The ellipsoid of RSE should be as small as possible. To minimize the size of the ellipsoid
Zr defined in Eq (2.9), we apply the optimization method from [31]. This involves maximizing ϱ

subject to ϱI ≤ P. Equivalently, the problem can be transformed to minimize ϱ̄ (where ϱ̄ = 1/ϱ)
subject to (

ϱ̄I I
I P

)
≥ 0. (2.11)

To establish the RSE of MNN (2.1), we next introduce a key mathematical tool.

Lemma 2. [32] Let V(r(ν)) be a non-negative function, V(r(ν0)) ≤ αϑ̄2

ε
, ν0 ≥ 0, ε > 0, and α > 0. If

V̇(ν) + εV(ν) − αϑ2(ν) ≤ 0, (2.12)

then V(r(ν)) ≤ αϑ̄2

ε
,∀ν ≥ 0.

3. Main results

In the following, two kinds of adaptive controllers will be proposed. Theorem 1 analyzes the RSE
problem of delayed MNN (2.1) under Assumptions 1 and 2. Theorem 2 removes the constraint on the
delay derivative in Assumption 1.

3.1. RSE for MNN (2.1) with memoryless adaptive control

Now, a memoryless adaptive controller of MNN (2.1) is considered. It is designed as follows:

Um(ν) = − βm(ν)rm(ν), (3.1)

and the update law β̇m(ν) = λmγmeεtr2
m(ν), where λm, γm, and ε are positive constants.

Theorem 1. Given positive integers σ, λm, γm, Fm,Gm,m ∈ ℧ and ε, consider the delayed MNN (2.1)
under Assumptions 1 and 2, and bounded peak disturbance (2.2). If

n∑
j=1

λmCm j

2
−
ε

ϑ̄2
< 0 (3.2)

Networks and Heterogeneous Media Volume 21, Issue 1, 198–212.



203

holds, then the ellipsoid reachable set o(P, 1) of MNN (2.1) with the adaptive scheme (3.1) can
be obtained.

Proof. Define a non-negative function

V(ν) =
n∑

m=1

Vm(ν), (3.3)

where

Vm(ν) =
1
2
λmr2

m(ν) +
e−εν

2γm
(β∗m − βm(ν))2 +

1
2(1 − σ)

n∑
j=1

∫ ν

ν−ρ j(ν)
eε(s−ν)g2

j(r j(s))ds

with β∗m as a constant to be determined.
Calculating the derivative of Vm(ν), we have

V̇m(ν) = λmrm(ν)ṙm(ν) −
εe−εν

2γm
(β∗m − βm(ν))2 −

e−εν

γm
(β∗m − βm(ν))β̇m(ν)

−
ε

2(1 − σ)

n∑
j=1

∫ ν

ν−ρ j(ν)
eε(s−ν)g2

j(r j(s))ds +
1

2(1 − σ)

n∑
j=1

g2
j(r j(ν))

−
1 − τ̇ j(ν)
2(1 − σ)

n∑
j=1

g2
j(r j(ν − ρ j(ν)))e−ερ j(ν)

= λmrm(ν)[−(dm + βm(ν))rm(ν) +
n∑

j=1

ãm j(rm(ν)) f j(r j(ν)) +
n∑

j=1

b̃m j(rm(ν))g j(r j(ν − ρ j(ν)))

+

n∑
j=1

c̃m j(rm(ν))ϑ j(ν)] −
εe−εν

2γm
(β∗m − βm(ν))2 −

e−εν

γm
(β∗m − βm(ν))β̇m(ν)

−
ε

2(1 − σ)

n∑
j=1

∫ ν

ν−ρ j(ν)
eε(s−ν)g2

j(r j(s))ds +
1

2(1 − σ)

n∑
j=1

g2
j(r j(ν))

−
1 − ˙ρ j(ν)
2(1 − σ)

n∑
j=1

g2
j(r j(ν − ρ j(ν)))e−ερ j(ν)

≤ − λm(dm + β
∗
m)r2

m(ν) +
n∑

j=1

λmAm j|rm(ν)|| f j(r j(ν))| +
n∑

j=1

λmBm j|rm(ν)||g j(r j(ν − ρ j(ν)))|

+

n∑
j=1

λmCm j|rm(ν)||ϑ j(ν)| −
εe−εν

2γm
(β∗m − βm(ν))2 −

ε

2(1 − σ)

n∑
j=1

∫ ν

ν−ρ j(ν)
eε(s−ν)g2

j(r j(s))ds

+
1

2(1 − σ)

n∑
j=1

g2
j(r j(ν)) −

1
2

n∑
j=1

g2
j(r j(ν − ρ j(ν)))e−εσ. (3.4)

According to the conditions of Assumptions 1 and 2, there are positive real constants F j and G j

such that

λmAm j|rm(ν)|| f j(r j(ν))| ≤
λ2

mA2
m j

2
r2

m(ν) +
F̄
2

r2
j (ν), (3.5)

Networks and Heterogeneous Media Volume 21, Issue 1, 198–212.
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λmBm j|rm(ν)||g j(r j(ν − ρ j(ν)))| ≤
λ2

mB2
m je

εσ

2
r2

m(ν) +
e−εσ

2
g2

j(r j(ν − ρ j(ν))), (3.6)

λmCm j|rm(ν)||ϑ j(ν)| ≤
Cm jλm

2
[r2

m(ν) + ϑ2
j(ν)], (3.7)

g2
j(r j(ν)) ≤ Ḡr2

j (ν). (3.8)

According to Eqs (2.3) and (3.5)–(3.8), we obtain

V̇(ν) + εV(ν) −
ε

ϑ̄2
ϑT (ν)ϑ(ν) ≤

n∑
m=1

−λmdm − λmβ
∗
m +

1
2
λm +

n∑
j=1

λ2
mA2

m j + λ
2
mB2

m je
εσ + λmCm j

2

 r2
m(ν)

+

n∑
m=1

n∑
j=1

[
F̄
2
+

Ḡ
2(1 − σ)

]
r2

j (ν) +
n∑

m=1

n∑
j=1

[
λmCm j

2
−
ε

ϑ̄2

]
ϑ2

j(ν). (3.9)

Let constant β∗m = −dm + max
1≤m≤n

[
n∑

j=1

λmA2
m j+λmB2

m je
εσ+Cm j

2

]
+ nF̄

2λm
+ nḠ

2λm(1−σ) + 1. Combining inequality (3.2)

with the definition of V(ν), we obtain V̇(ν)+ εV(ν)− ε
ϑ̄2ϑ

T (ν)ϑ(ν) < 0. Applying Lemma 2 to this result
yields V(r(ν)) ≤ 1. Consequently, from Eq (3.3), it follows that

n∑
m=1

1
2
λmr2

m(ν) ≤ 1,

i.e., rT (ν)Pr(ν) ≤ 1, where P = 1
2diag(λ1, λ2, · · · , λn). This implies that all state trajectories of the

MNN (2.1) originating from the origin remain confined to the ellipsoid o(P, 1). In another words, the
reachable set bounding is obtained.

Remark 1. In contrast to the state feedback control in [26, 27], the adaptive control in Theorem 1 can
automatically adjust its parameters to cope with uncertainties such as an unknown system model or
parameter variations, thereby maintaining superior control performance.

3.2. RSE for MNN (2.1) with memory adaptive control

A memory adaptive controller of MNN (2.1) is designed as follows:

Um(ν) = − β̄m(ν)rm(ν) − km(ν)
n∑

j=1

r j(ν − ρ j(ν)), (3.10)

with the update law ˙̄βm(ν) = λ̄mγ̄meε̄νr2
m(ν), k̇m(ν) = λ̄mγ̄meε̄ν

∑n
j=1 rm(ν)r j(ν− ρ j(ν)), where λ̄m, γ̄m, and ε̄

are positive constants.

Theorem 2. Under Assumption 2, the reachable set of the delayed MNN (2.1) with adaptive
controller (3.10) under disturbance (2.2) is bounded by the ellipsoid o(P, 1), if there exist positive
scalars ε̄, F̄m, Ḡm, λ̄m, and γ̄m, m ∈ ℧ satisfying

n∑
j=1

λ̄mC2
m j

2
−
ε̄

ϑ̄2
< 0. (3.11)
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Proof. Define a non-negative function

W(ν) =
n∑

m=1

Wm(ν), (3.12)

where

Wm(ν) =
1
2
λ̄mr2

m(ν) +
e−ε̄ν

2γ̄m
(β̄∗m − β̄m(ν))2 +

e−ε̄ν

2γ̄m
(k∗m − km(ν))2. (3.13)

Calculating the derivative of Wm(ν), and according to the condition of Assumption 2, there are
positive real constants F j and G j such that

Ẇm(ν) = λ̄mrm(ν)ṙm(ν) −
ε̄e−ε̄ν

2γ̄m
(β̄∗m − β̄m(ν))2 −

e−ε̄ν

γ̄m
(β̄∗m − β̄m(ν)) ˙̄βm(ν)

−
ε̄e−ε̄ν

2γ̄m
(k∗m − km(ν))2 −

e−ε̄ν

γ̄m
(k∗m − km(ν))k̇m(ν)

= λ̄mrm(ν)[−(dm + β̄m(ν))rm(ν) +
n∑

j=1

ãm j(rm(ν)) f j(r j(ν)) +
n∑

j=1

b̃m j(rm(ν))g j(r j(ν − ρ j(ν)))

+

n∑
j=1

c̃m j(rm(ν))ϑ j(ν) − km(ν)
n∑

j=1

r j(ν − ρ j(ν))] −
ε̄e−ε̄ν

2γ̄m
(β̄∗m − β̄m(ν))2

−
e−ε̄ν

γ̄m
(β̄∗m − β̄m(ν)) ˙̄βm(ν) −

ε̄e−ε̄ν

2γ̄m
(k∗m − km(ν))2 −

e−ε̄ν

γ̄m
(k∗m − km(ν))k̇m(ν)

≤ − λ̄m(dm + β̄
∗
m)r2

m(ν) +
n∑

j=1

λ̄mAm j|rm(ν)|| f j(r j(ν))| +
n∑

j=1

λ̄mBm j|rm(ν)||g j(r j(ν − ρ j(ν)))|

+

n∑
j=1

λ̄mCm j|rm(ν)||ϑ j(ν)| −
ε̄e−ε̄ν

2γ̄m
(β̄∗m − β̄m(ν))2

−
ε̄e−ε̄ν

2γ̄m
(k∗m − km(ν))2 − λ̄m

n∑
j=1

k∗mrm(ν)r j(ν − ρ j(ν)). (3.14)

By Young’s inequality and Assumption 1, we have

λ̄mAm j|rm(ν)|| f j(r j(ν))| ≤
λ̄2

mA2
m j

2
r2

m(ν) +
F̄
2

r2
j (ν),

λ̄mBm j|rm(ν)||g j(r j(ν − τ(ν)))| ≤ λ̄mBm jḠ|rm(ν)||r j(ν − τ(ν))|,

λ̄mCm j|rm(ν)||ϑ j(ν)| ≤
λ̄m

2
(C2

m jr
2
m(ν) + ϑ2

j(ν)).

According to Eq (2.3), we obtain

Ẇ(ν) + ε̄W(ν) −
ε̄

ϑ̄2
ϑT (ν)ϑ(ν) (3.15)
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≤

n∑
m=1

−λ̄mdm − λ̄mβ̄
∗
m +

1
2
λ̄m +

nF̄
2
+

n∑
j=1

λ̄2
mA2

m j + λ̄mC2
m j

2

 r2
m(ν)

+

n∑
m=1

n∑
j=1

[
λ̄mBm jḠ + λ̄mk∗m

]
|rm(ν)||r j(ν − ρ j(ν))| +

n∑
m=1

n∑
j=1

 λ̄mC2
m j

2
−
ε̄

ϑ̄2

ϑ2
j . (3.16)

Let β̄∗m = −dm + max
1≤m≤n

[
n∑

j=1

λ̄mA2
m j+C2

m j

2

]
+ nF̄

2 + 1 and k∗m = −
n∑

j=1
Bm jḠ. Combining inequality (3.11) with

the definition ofW(ν), we obtain Ẇ(ν) + ε̄W(ν) − ε̄
ϑ̄2ϑ

T (ν)ϑ(ν) < 0. Applying Lemma 2 to this result
yieldsW(r(ν)) ≤ 1. Consequently, from Eq (3.13), it follows that

n∑
m=1

1
2
λ̄mr2

m(ν) ≤ Vm(ν) ≤ 1,

i.e., rT (ν)P̄r(ν) ≤ 1, where P̄ = 1
2diag(λ̄1, λ̄2, · · · , λ̄n). This implies that all state trajectories of the

MNN (2.1) originating from the origin remain confined to the ellipsoid o(P, 1).

Remark 2. By adopting the memory adaptive controller, Theorem 2 relaxes the restriction on the time
delay. The condition that the derivative of the time delay is less than 1 has been removed. This indicates
that the result in Theorem 2 has an advantage over the literature [25–29].

4. Numerical simulations

Here, we provide a simulation example to verify the efficacy of the sufficient criteria derived in
Theorems 1 and 2.

Example 1: Consider the delayed MNN as follows:

ṙm(ν) = − dmrm(ν) +
n∑

j=1

am j(rm(ν)) f j(r j(ν))

+

n∑
j=1

bm j(rm(ν))g j(r j(ν − ρ j(ν))) +
n∑

j=1

cm j(rm(ν))ϑ j(ν), ν ≥ 0,m = 1, 2, (4.1)

where

d1 = 2.3, d2 = 4.5,

a11 (r1(ν)) =
{

1.07, |r1(ν)| ≤ 1,
1, |r1(ν)| > 1,

a12 (r1(ν)) =
{
−0.2, |r1(ν)| ≤ 1,
−0.3, |r1(ν)| > 1,

a21 (r2(ν)) =
{

2.6, |r2(ν)| ≤ 1,
2.4, |r2(ν)| > 1,

a22 (r2(ν)) =
{

1.5, |r2(ν)| ≤ 1,
0.3, |r2(ν)| > 1,

b11 (r1(ν)) =
{

1, |r1(ν)| ≤ 1,
−1, |r1(ν)| > 1,

b12 (r1(ν)) =
{
−0.08, |r1(ν)| ≤ 1,
−1, |r1(ν)| > 1,

b21 (r2(ν)) =
{
−0.15, |r2(ν)| ≤ 1,
−0.2, |r2(ν)| > 1,

b22 (r2(ν)) =
{
−2, |r2(ν)| ≤ 1,
−2.05, |r2(ν)| > 1,
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c11 (r1(ν)) =
{
−0.185, |r1(ν)| ≤ 1,
−0.13, |r1(ν)| > 1,

c12 (r1(ν)) =
{
−0.182, |r1(ν)| ≤ 1,
−0.15, |r1(ν)| > 1,

c21 (r2(ν)) =
{
−0.186, |r2(ν)| ≤ 1,
−0.12, |r2(ν)| > 1,

c22 (r2(ν)) =
{
−0.174, |r2(ν)| ≤ 1,
−0.11, |r2(ν)| > 1,

and the activation function is f j(r j) = g j(r j) = tanh(r j), j = 1, 2. Then F1 = F2 = G1 = G2 = 1. By
simple computation, we have A11 = 1.07, A12 = 0.3, A21 = 2.6, A22 = 1.5, B11 = 1, B12 = 1, B21 = 0.2,
B22 = 2,C11 = 0.185,C12 = 0.182,C21 = 0.186,C22 = 0.174.

Case (1): The derivative of the time delay is less than 1. Let ρ1(ν) = ρ2(ν) = eν
1+eν . It can be obtained

that ρ̇1(ν) = ρ̇2(ν) ≤ 0.25 < 1. We choose ε = 1.5, γ1 = γ2 = 1, ϑ j(ν) = 0.3sin(ν). Then ϑ̄ = 0.3. From
Theorem 1, using MATLAB to solve Eqs (3.11) and (3.14), we obtain λ1 = 67.0178, λ2 = 66.9786. The
state behaviors of MNN (4.1) are depicted in Figure 1. As shown in Figure 1, the states r1(ν) and r2(ν)
are bounded as time goes on. Figure 2 presents the phase diagram and reachable set of the delayed
MNN (4.1). As shown in Figure 2, the MNNs’ states are bounded within an elliptical set.

Figure 1. r1(ν) and r2(ν) of MNN (4.1) in Case (1).

Figure 2. The states phase plot of MNN (4.1) and the elliptical reachable set in Case (1).

Case (2): The derivative of the time delay is more than 1. Let ρ1(ν) = 6eν
1+eν and ρ2(ν) = 5eν

1+eν . It can
be obtained that ρ̇1(ν) ≤ 1.5, ρ̇2(ν) ≤ 1.25. So the methods in [25–29] are invalid. We choose ε̄ = 1.5,
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γ1 = γ2 = 2, ϑ j(ν) = 0.2sin(ν). Then ϑ̄ = 0.2. From Theorem 2, using MATLAB to solve Eqs (3.10)
and (3.11), we obtain λ̄1 = 38.724, λ̄2 = 38.782. The state behaviors of MNN (4.1) are depicted in
Figure 3. As shown in Figure 3, the states r1(ν) and r2(ν) are bounded as time goes on. Figure 4 presents
the phase diagram and reachable set of the delayed MNN (4.1). As shown in Figure 4, the MNNs’
states are bounded within an elliptical set.

Figure 3. r1(ν) and r2(ν) of MNN (4.1) in Case (2).

Figure 4. The states phase plot of MNN (4.1) and the reachable set in Case (2).

5. Conclusions

In this paper, the problem of RSE of a class of MNNs is investigated. By adopting the inequality
techniques in Filippov’s sense, algebraic criteria are given to guarantee the states of the addressed
MNNs are contained in an ellipsoid set by introducing a memoryless and a memory adaptive controller.
The considered models are general since they relax the conditions of time delay, so better results are
obtained. In addition, the criteria are presented in the form of algebraic conditions, and they are verified
easily. In future work, it would be meaningful to investigate event-triggered reachable set estimation,
which could reduce control update frequency and optimize communication resource utilization.
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