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Abstract: We perform a numerical study of autoencoder deep neural networks (DNNs) when the
input and the output vectors have the same dimension. Our focus is on fixed points (FPs) arising in
these DNNs. We show that the existence and the number of these FPs depend on the distribution
of randomly initialized DNNs’ weight matrices. We first consider initialization with the identically
and independently distributed (i.i.d.) light-tailed distributions of weights (e.g., Gaussian) and show
existence of a single stable FP for a wide class of DNN architectures. In contrast, for heavy-tailed
distributions (e.g., Cauchy), which typically appear after the training of DNNs, a number of stable
FPs emerge. We observe an intriguing non-monotone dependence of the number of FPs on the DNN’s
depth. Finally, we link our result for untrained DNNSs to the trained ones by showing that a number of
FPs emerge after training of DNNs with light-tailed initialization.

Keywords: autoencoder deep neural network; random initialization; fixed points; stability and basin
of attraction

1. Introduction

In recent years, a variety of new technologies based on deep neural networks (DNN5s), also known as
artificial neural networks (ANNs) have been developed. Al-based technologies have been successfully
used in physics, medicine, business and everyday life (see e.g., [1]). The two key theoretical directions
in DNN theory are the development of novel (i) types of DNNs and (ii) training algorithms.

One of the most important applications of DNNSs is the processing of visual information [2,3]. Image
transformation (also known as image-to-image translation) involves a transformation of the original
image into another image according to the goals, such as, enlarging the pictures without losing the
quality. Another important example is self-mapping transformation or autoencoder DNNs. Such DNNs
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are used e.g., for image restoration where the restored image is a fixed point (FP) of the DNN [4]. The
proximity of a DNN’s output vector to an FP can be used as a stopping criterion for DNNs’ training.

Note that the FPs of DNNs have many applications beyond image-to-image transformation. In the
modeling of the brain, FPs appear in the time evolution of networks [5-9], whereas the networks
considered here are static. In addition, most of the Firing model studies deals with nonrandom weight
matrices. Other prominent examples are Hopfield networks [10, 11], where FPs are used for memory
modeling [12]. The Hopfield model is also used in quantum physics, where FPs describe phase
transitions [13]. Note that in Hopfield networks, the FPs of loss function are considered, while we
study the FPs of DNNs.

In this work, using numerical methods, we study the dependence of the properties of FPs on random
distributions of i.i.d. weight matrices and on the network architecture.

2. The model: Image-to-image transformation and FPs

We consider a fully-connected feedforward network where layer-to-layer transformation is a
composition of the affine map with the nonlinear activation function [14]. The output vector x'*! of
the [-th layer of the DNN is

xt = ®'(x") = o(W'x' + b, 2.1)

where W! is a real-valued n,, X 1, weight matrix, b' € R™ is a bias vector, and the function @ is the
nonlinear activation function, (see e.g., [14,15]). For simplicity of presentation, we consider the square
weight matrices of hidden layers, so thatn; = N,[=1,2,...,L— 2.

DNN is then a function ® that maps the input vector x° into the output vector x'.

D) = (@ o @20 0@ 0 @) (x) = xL. (2.2)

The FPs are defined for autoencoder types of networks ®, when the input and the output vectors
have the same dimension, ny = n;. The function @ is parametrized by weights and biases that hereafter
will be denoted by a; i.e., ® = ®(x, @).

Let us consider the problem of encoding and decoding of a single picture [16,17]. Let x correspond
to the original picture. For its encoding, we use the follwoing DNN ®_: R™ — R":

D.(x) =y,

where y € R™ is the encoded picture (n, is the size of y; in autoencoder DNNs [16], n; < ng). For
picture decoding, we use another DNN ®, : R" — R™. Let ®,(y) = z, where z € R™ is the decoded
(restored) picture. Let DNN @ : R"™ — R™ be the following composition:

D(x) = (Py 0 P)(X) = z. (2.3)

Autoencoders were originally designed to learn how to represent image data x;,i = 1,2,...,Kina
compressed format y; and then restore the compressed data y; to z;. The goal of training in this case is
x; = z;. Therefore, the mean square loss is

K
L@) = ) 19, @) = x| . (2.4)
i=1
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The images x; in Eq (2.3) are FPs [18].

D(x;) = x;. (2.5)

Here, we consider the method of picture encoding/decoding based on autoencoders. The method can
be used, for example, for employees’ access control. In this case, an employee’s photo can be encoded
using DNN @, and then securely transmitted via the network to access the server for decoding using
®, and for access control. Let K be a number of employees. To perform training, we start with the
input vectors x € Ty, k = 1,2,..., K. Here, T} is the training set that contains the photos of the k-th
employee. One of these photos, x; € T}, can be considered to be the “true” photo of the employee
stored on the access control server for identification. The other photos in 7} are different photos of
the same employee (c.f., various fingerprints in a touch id, only one works). The FPs ®(x}) = x; are
obtained via training with the mean square loss

K

L@)=) ) [® ) - x;

k=1 xeTy

2

) (2.6)

The FPs x; differ essentially from Eq (2.5) because of the more complex structure of loss (c.f.
Eqgs (2.4) and (2.6)). As a result, it becomes possible to distinguish the “true” photo of one employee
x, from the “true” photo of another employee x;, and to distinguish a photo of the real employee from
a “fake” photo of the employee. If photo x is in the basin of attraction of x;, k = 1,2,... K, thenx is a
real photo of the k-th employee; otherwise, it is a fake photo.

Note 1. These FPs are also distinguish from FPs arising in the special case of a singl-layer,
deterministic, non-negative DNN [19].

Note 2. Instead of Eq (2.6), one can use, say, the cross-entropy loss function [14,20]. There are no
explicit formulas for ®, and ®, in this procedure. In order to restore a picture, one has to know all the
weights obtained in training. This is a significant protection against hacking.

3. Light- vs heavy-tailed distributions and DNN’s training

We now explain how “heavy-tailed” distributions arise in DNNs. Typical initialization of weights
and biases is done with the light-tailed (subexponential) distributions, e.g., Gaussian. Such
initializations are widely used for training via stochastic gradient descent (SGD) (see [20-26]). Note
that there are many modifications of SGD training based on random matrix theory (RMT) approaches
aimed at improving DNNs’ performance; for example, Marchenko-Pastur pruning of singular values
of random weight matrices enhances DNN’s accuracy while reducing the noise [27,28]. Numerical
studies in the seminal work showed that the initialization of the weight matrices by a “light-tailed”
distribution becomes “heavy-tailed” in the course of training. This phenomenon is known as the
heavy-tailed self-regularization [29]. Moreover, recently it was shown that the input-output Jacobian
of a trained DNN also has heavy-tailed empirical spectral distributions [30-33]. Heavy-tailed
self-regularization allows us to use the tools of RMT for studying the FP properties of untrained and
trained DNNSs.

In the model of image encoding/decoding, a FP corresponds to a “true” photo of employee, x;,
and the transition from a light-tailed to a heavy-tailed distribution during training will lead to a drastic
change in the number of these FPs, their stability, and the shapes/sizes of the basins of attractions.
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4. Fixed points and their basins of attraction

Here we describe our numerical calculations of FPs in untrained DNNs. For simplicity of
presentation, the dimension of input/output vectors x is taken as n = 2. The space of the input vectors
x was chosen as a square, namely Q = [-1,1] x [-1,1] ¢ R2 This choice of Q seems to be
reasonable because the range of values of most of activation functions ¢ is [—1, 1]. This square was
partitioned using a grid with a step 6 = 0.05. The grid points are

Yil = { ;: _ ; Igl]l] :_0(?’11, s ’Ltzz//a(jj : @D
where [...] denotes an integer part. For each x;, we run iterative procedure:

X" =®x™), m=1,2,3,..., 4.2)
where x! = x;;. For the contraction mapping ® on a domain €, Banach’s fixed-point theorem
guarantees convergence to a FP x*

lim x™!' = ®d(x™) =x*, x'eQq. 4.3)

m—00

The contraction property was checked numerically, and the existence of the limit (4.3) was checked
via the Cauchy criterion |x™*! —x™| < &, m < Ny. In our calculations, & = 10~ and N, = 50. If the limit
exists, then x™ is the numerical approximation of the FP x* corresponding to the starting grid point
x'=x ;1 defined in Eq (4.1) (for the details, see Section 5).

L]
£,

d)

Figure 1. The results of numerical simulations for input/output vectors with a size n = 2 (a)
for a normal distribution of the matrix elements and bias vector components. The number
of layers is L = 2. The same result was found for the Cauchy distribution and L = 20. (b)
Cauchy distribution for L = 2. (c) Cauchy distribution for L = 3. (d) Cauchy distribution
for L = 5. The black circles are FPs. Different colors correspond to different basins of
attraction ;.

If the domain Q contains Q > 1 FPs and Q basins of attraction Q;, € Q, k= 1,2,..., 0, then for all
grid points x' = x;; € Q, the limit (4.3) provides a numerical approximation of the FP x}.
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We start with an untrained DNN with depth L = 2. The matrix entries and the bias vector’s
components in Eq (2.1) are randomly initialized with the normal distribution N(0, ), o = (1)~
[ = 0,1, where n;, = {2,100} are the layers’ widths (i.e., the weight matrices sizes, n;; X n;, are
100 X 2 and 2 x 100). The unique fixed point x = O exists (i.e., Q@ = 1) and the corresponding basin of
attraction is the entire of Q. This result can be interpreted as follows: such untrained DNNs can not
identify “true” photos.

Next, using the approach based on heavy-tailed self-regularization (see [29, 32]), we model the
trained DNN by an untrained DNN initialized by the Cauchy distribution centered at the origin with
the scale y; = (n;)"!. The results are presented in Figure 1b—d. Figure 1b corresponds to the same
architecture as that in Figure la (L = 2, n; = {2,100, 2}), but we see two FPs, Q = 2. Figure lc
corresponds to L = 3, n; = {2,100, 100}, and Q = 3. In Figure 1d, we present the results of the
calculations for L = 5, n; = {2,100,...,100}, and Q = 5. It is important that a further increase in
depth L leads to the decrease in Q, and the result for L = 20 is the same as that for L = 2 and a normal
distribution — the only FP, Q = 1. Due to the “weak similarity” effect [32], the choice of activation
function ¢ does not change the number of FPs.

Note that the number of FPs, and the shapes/sizes of their basins of attraction Q; (k = 1,2,...,0)
are still random because of the finite size of the matrices. An interesting open question is the existence
of a deterministic limit of Q and Q; as n; — oo.

QN L)
N w B [$)]

Figure 2. The dependence of the most frequently appearing data (mode) of the number of
FPs Q(Ny, L) on the number of layers L with layer widths Ny = 100. The weights and biases
initialized by random variables with a Cauchy distribution. Q first grows with the DNN depth
L, but then decreases.

Finally, we numerically studied the dependence of the number of FPs on the DNN’s depth L. Since
this value is random for any finite matrix size Ny, we studied the dependence of the most frequently
appearing data (mode) Q(Ny, L) and observed surprising non-monotone dependence. The dependence
of Q(Ny, L) on L for DNNs with layer widths Ny = 100 and with the weights and biases initialized via
Cauchy distribution is presented in Figure 2.

The nature of such non-monotone behavior of Q(Nj, L) is intuitively clear. For fixed matrix sizes
Ny, increasing the number of layers L leads to an increase in the total number of parameters of DNN,
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1.e., the total number of weight matrices entries and bias vectors components. This, in turn, allows the
DNN to distinguish a larger number of input vectors x°, e.g., the employee’s photo in our example.

At the same time, an increase in L decreases the influence of x° on the output vectors x* = ®(x°).
In other words, the matrix entries of the input-output Jacobian

ID(x");

0
6Xj

Jij= 4.4)

tend to 0, as L — oo. For light-tailed distributions of weights and biases, this behavior of Eq (4.4)
follows from the equations describing the empirical spectra distribution (ESD) p(x) of the singular
values of Eq (4.4) [30,32]. Indeed, for L — oo, the ESD p(x) = d(x), where d(x) is the Dirac delta-
function. It means that with probability 1, the derivatives in Eq (4.4) are equal to zero. Therefore, the
influence of input x° on output x* is absent and DNN cannot distinguish different input vectors. Hence,
only one FP can exist.

The interplay of these two opposite tendencies is responsible for the non-monotonic dependence of
Q(Ny, L). Numerical simulation carried out in [32] give us reason to expect that the similar behavior
of the Jacobian at L — oo holds for heavy-tailed distributions.

5. Contraction mapping of DNNs

In Section 4 we show numerically that for the light-tailed distribution (the Gaussian distribution in
our calculations), there is a limit x* in the iterative procedure Eq (4.2) for all initial values x' from Q
(see Eq (4.1)). In Section 4, we show that x* is an FP of a DNN @, in this section we investigate the
stability and basins of attraction of such FPs. This is done by establishing numerically the contraction
property of @, c.f. the converses to the Banach’s FP theorem [34,35]. Here, we show that for the
light-tailed distribution of weight matrices, the mapping ® is a contraction. Moreover, we study the
dependence of the contraction property of the DNN on the number of layers L, the size of the weight
matrices (the number of columns, N), the choice of activation function ¢, and the variance of the
distribution of the weight matrices o2

To this end, we choose the variance o in the form
o’ =N, (5.1)
and compute the contraction constant g, defined as

(5.2)

¢ = max D(x ;@) — ®(xjp, @)

xj,ﬁxj/’,/ |xj,l — xj',[’l

2

where grid points x;; are given in Eq (4.1). Observe that g depends on S via the DNN’s parameters «
(weights and biases).

For a three-layer (L = 3) DNN with Gaussian initialization of the weight matrices W of a size
N = 400 and the tanh activation function this dependence is presented in Figure 3a. We see that the
contraction mapping property (g < 1) depends crucially on . Our simulations show the existence of a
critical value S, ~ 1/2, so that for 8 > .., the function ® is a contraction on € for the tanh activation
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function. Note that the numerical value of ., agrees with the analytical results for odd activation
functions, e.g., tanh, hardtanh.

a) b)
1.6 2.0 1
1.8 A
1.44
1.6
1.24
o o014
1.0
1.2 A
0.8+ 1.0
064 0.8
T T T T T T T T T T T
0.46 0.48 0.50 0.52 0.54 0.20 0.22 0.24 0.26 0.28 0.30
B B

Figure 3. The dependence of the contraction mapping parameter g (5.2) on the parameter
B characterizing the variance o (5.1) for Gaussian initialization of the weight matrix. The
activation function is tanh in (a) with 8., = 1/2 and sigmoid in (b) with S, = 0.27.

At the same time, for the three-layer DNN and the sigmoid activation function

1 1
= ——— = —(tanh(x/2) + 1), 5.3
P00 = oo = 3 @2+ 1 (5.3)
the critical value is 8., ~ 0.27 (see Figure 3b). The difference between the two values of S, is due to
the fact that the sigmoid is not an odd function and, in particular, ¢(0) # 0 and ¢ acts a horizontal shift
by 1; see Eq (5.3).

1~ p1=033
B>=0.66
2]

Figure 4. The dependence of the contraction constant g on the number of DNN’s layers L
for different values of 8, < ., and B, > fB,,.

The dependence of the contraction constant g on the number of layers L is presented in Figure 4.
Linear dependence in the semi-log scale log(g) vs. L means the power dependence of the contraction

constant g on the number of layers L and reflects the composition structure of the DNN in Eq (2.2).
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Indeed, if gy is a contraction constant of a single layer, the contraction constant g of the entire DNN is
given by

g = (80" (5.4)
Our computations for the heavy-tailed Cauchy distribution also show that on each basin of attraction
of @, the contraction constant is g < 1.

6. Emergence of FPs in trained DNNs

So far, we have studied the relation between randomness and FPs in untrained DNNs. However,
training is the key ingredient in DNNs’ applications. Therefore, in this section, we address similar
issues for trained DNNs and emphasize the similarities and differences. The main difference is that the
number of FPs in trained DNNs does depend on the DNN’s depth L and it is determined by the training
set T' (e.g., the number of “true” photos in the above-mentioned example).

On the other hand, training results in the formation of a number of FPs similar to a transition
from light-tailed to heavy-tailed distribution. The randomness in trained DNNs tends to vanish [36]
and direct application of the RMT is difficult [37-39]. However, the similarities between a trained
DNN and an untrained one via heavy-tailed self-regularization allows us to use RMT tools for trained
DNNs. Therefore, investigations of untrained DNNs with random initialization of the weight matrices
and investigations of trained DNNs complement each other.

We use the same architecture for trained DNNSs as for untrained ones. The number of layers is L = 3,
n; = {2,100, 100}, and activation function ¢(x) is hardtanh. The random initialization of the DNN’s
parameters is done via the Gaussian distribution N(0, o), where o> = 1/n;. DNN training is performed
for a toy model of encoding/decoding of employees’ photos. In this model, the DNN’s input/output
photos are represented by two-dimensional vectors (x°, x© C R?). It means that each employee’s photo
is represented by a point (the upper part of Figure 5). The photos of the current employee are the
points x inside the corresponding circle Ty, i.e., x € T. These points form the training set for the k-th
employee (k = 1,2, ..., K). The number of the circles is the number of employees, K = 5. The centers
of each circle are marked by solid black circle x; and represent “true” photos. The rest of points inside
a circle represent the “false” photos of the same employee. The loss function is chosen in the form of
Eq (2.6).

After training, we search for the FPs of the DNN. Similar to the case of untrained DNNs, we run
the iterative procedure (4.2) for each starting point x! of the set x i1 C Q (see Eq (4.1)). If the process
converges, then the corresponding FP is marked as = (see the lower part of Figure 5). Numerically, we
see that the positions of FPs coincide with the “true” photos x;. The different colors of the subdomains
in the lower part of Figure 5 correspond to different FPs and their basins of attractions €. In particular,
T, c ; that is, each basin of attraction is larger then the corresponding training set. This means that
this DNN can identify photos outside the training sets.

We briefly summarize the results of this section.

e The contraction mapping property of the DNN depends crucially on the parameter 8 in Eq (5.1).
There exists a critical value S, of the scaling exponent for the variance o = N which separates
the areas of contraction and non-contraction mappings.

e We observe the following universality property: 8., = 1/2 for all odd activation functions ¢.
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Figure 5. The simplified model of employee’s photo encoding/decoding. The upper part
corresponds to the untrained DNN. Each employee’s photo is represented by point in the
corresponding circle. The number of circles is the number of employers (K = 5). The solid
black circles x; correspond to the “true” photos. The lower part is the result of the numerical
calculation for trained DNN. The asterisks are the FPs. We see numerically that the positions
of the FP “*” coincide with x;. The filled areas are the corresponding basins of attraction .

7. Conclusions

We studied the relation between random distributions of weights and the properties of FPs in
autoencoder DNNs. We first considered untrained DNNs with random initialization of weight
matrices with a light-tailed probability distribution, e.g., Gaussian. For such DNNs, we show the
existence of the unique FP for DNNs with an arbitrary depth L (the number of layers) and an arbitrary
width N (the size of square weight matrices), for a wide class of S-shaped odd activation functions. In
the context of the image encoding/decoding problem, it means that for all images, there is a unique
“true” image, i.e., the DNN cannot distinguish images. In contrast, for heavy-tailed DNNs (e.g., the
Cauchy distribution), we show the existence of many FPs and, therefore, these DNNs are capable of
identifying the “true” images. Our study showed the surprising nonmonotone dependence of the
number of fixed points in the DNN, Q(N,, L), on the DNN’s depth L (Figure 2).
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Next, we studied the influence of the DNN architecture on the contraction property of the DNN
function @ and, therefore, on the formation of FPs. We showed, that for light-tailed initialization, this
property depends on the scaling exponent 3 in the variance o> = N~%. Moreover, there exists the
critical value S.,, such that if 8 > ., then the function ® is a contraction of all input vectors. Then
Banach’s FP theorem yields existence of the unique FP. Moreover, our simulations show that this FP
is stable.

For heavy-tailed initialization of the weights, the contraction property of ® depends on the input
vectors. This leads to existence of several FPs, so the set of input vectors is partitioned into basins of
attractions corresponding to each FP.

Finally, we studied the properties of trained DNNs. Because of the self-regularization
phenomenon [29], training leads to the formation of heavy-tailed distribution of the weights for any
distributions at initialization. Hence, our results on the heavy-tailed distribution for untrained DNNs
imply the emergence of a number of FPs in the course of training. We trained an autoencoder DNN
for a simple case of two-dimensional input/output vectors (see Figure 5) and observed the formation
of several FPs.

In conclusion, we note that our results can be useful in the practical design of autoencoders, because
we provide the quantitative dependence of the number of FPs on the DNN’s architecture, e.g., the
number of layers, L. In particular, the non-monotone dependence of the number of FPs Q(N,, L)
suggests the optimal autoencoder architecture.
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