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Abstract: This paper focused on an hp-version mixed discontinuous Galerkin method without penalty
terms for the biharmonic equation with Navier boundary conditions. By introducing the auxiliary
variable v = uxx, we reduced the fourth-order problem to a second-order system and derived its
penalty-free variational formulation. The analysis replaces the standard coercivity condition with a
polynomial-degree-dependent inf-sup condition for the bilinear form B(·, ·). While h-convergence rates
for both uh and vh were optimal, the p-convergence exhibited contrasting behavior: suboptimal in L2-
norm but optimal in the energy norm, regardless of the p2 scaling in the inf-sup condition. Numerical
results revealed that p-convergence order-doubling for boundary-aligned singularities significantly
enhanced the efficacy for singular solutions. Furthermore, the method was shown to extend to
nonlinear biharmonic equations, while the treatment of Dirichlet boundary conditions necessitated
the introduction of penalty terms.

Keywords: hp-version error estimate; mixed discontinuous Galerkin method; biharmonic equation;
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1. Introduction

Consider hp-version mixed discontinuous Galerkin method without penalty term to solve the
following one-dimensional biharmonic equation,

−uxxxx = f (x), inΩ, (1.1)
u(a) = α1, u(b) = α2, (1.2)

uxx(a) = β1, uxx(b) = β2, (1.3)

where f (x) is a given function in L2(Ω), Ω = {x|a < x < b; a, b ∈ R}, αi, βi ∈ R, i = 1, 2. The
systems (1.1)–(1.3) have been widely used in physics, biology, dynamic system, and other fields, such
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as the modeling of thin beams and thin plates, strain gradient elasticity, heat convection, and phase
separation in binary mixtures [1–3].

In recent years, the discontinuous Galerkin (DG) method has attracted significant attention for its
ability to handle discontinuous solutions and its inherent adaptivity (see, e.g., [4, 5]). For biharmonic
problems, DG approaches generally fall into two main categories. The first is the interior penalty DG
method, which operates directly on the original equation [6–9]. This method employs discontinuous
finite element spaces and enforces both C0- and C1-continuity conditions weakly through interior
penalties. A nonsymmetric variant was introduced in [6]. Later work [8] analyzed symmetric,
nonsymmetric, and hybrid formulations while deriving a priori error estimates.

Due to the structure of its boundary conditions, the biharmonic problem can be fully decomposed
into two Poisson equations. This observation has motivated the development of mixed methods, such as
mixed finite element methods [10] and mixed DG methods [11–13]. However, a coercive bilinear form
in the variational formulation of the mixed DG approach typically requires the introduction of penalty
terms. While penalty coefficients must be chosen sufficiently large to satisfy theoretical conditions,
their practical selection is often nontrivial and poses implementation challenges. In contrast, mixed
finite element methods for the biharmonic problem with Navier boundary conditions do not require
penalty terms [10].

To address this issue for one-dimensional Poisson equations, Burman et al. [14] proposed a
symmetric DG method without penalty terms. Rather than relying on coercivity, they established
well-posedness and derived error estimates via an inf-sup condition. Riviere and Sardar [15] applied a
penalty-free DG method to incompressible Navier-Stokes equations. Gao et al. [16] improved a
conforming DG method without interior penalty terms, enabling it to handle nonhomogeneous
Dirichlet boundary conditions. Jaśkowiec and Sukumar [17] introduced a new high-order DG method
for Poisson problem that requires neither penalty nor stabilization parameters. Liu and Yin [18, 19]
developed a mixed discontinuous Galerkin method without interior penalty for time-dependent
fourth-order problems, extending it to nonlinear Swift-Hohenberg equations [19] and a class of
fourth-order gradient fows [20]. Wang and Zhang [21] proposed an ultraweak-local discontinuous
Galerkin method for nonlinear biharmonic Schrödinger equations, demonstrating unconditional
stability without any penalty terms. In Section 4.1 of [20], a mixed DG method without interior
penalty was proposed for fourth-order elliptic partial differential equations (PDEs), and the authors
proved the existence of a unique solution to the discrete problem, though error estimates were not
provided. Inspired by these works, we extend this penalty-free mixed DG approach to biharmonic
equations.

Recent years have also seen growing interest in hp-version analyses of existing DG methods for
second-order linear elliptic PDEs [9, 22–27]. The ability to handle discontinuous finite element
functions with locally varying approximation order seven on irregular meshes with hanging nodes
offers notable flexibility and computational convenience. For smooth problems with local
singularities, for instance, hp-adaptive spaces can be tailored to the solution behavior, yielding
high-order algebraic or even exponential convergence rates [23]. Inspired by these works, we extend
this penalty-free mixed DG approach to biharmonic equations and further establish hp-version
error estimates.

In this paper, we use penalty-free mixed DG approach to biharmonic equations and further establish
hp-version error estimates. A key point of these estimates is inf-sup condition based on mesh size h
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and degree p of polynomial, i.e.,

9wh9 ≤ Ct p̂2 sup
0,qh∈V

p
h

B(wh, qh)
9qh9

, ∀wh ∈ Vp
h .

Referring to [14], we present a rigorous proof. Due to the application of the trace theorem, it is
impossible to eliminate the factor of p̂2 related to the degree of the polynomial in the coefficients.
While the h-convergence rates for both uh and vh are optimal in both the L2-norm and the energy norm,
the p-convergence is only optimal in the energy norm; it is suboptimal in the L2-norm. We also apply
the method numerically to a fourth-order problem featuring a nonlinear reaction term. The results show
convergence rates consistent without the reaction term case. It is also observed that under Dirichlet
boundary conditions, the discrete scheme must be supplemented with a penalty term on the boundary.

The structure of this paper is as follows: In Section 2, the variational problem of the mixed DG
method without penalty terms is obtained, inf-sup condition dependent on the polynomial degree p
are presented, and the well-posedness of the variational problem is proved. In Section 3, the error
estimates under the energy norm and L2 norm concerned with the mesh size h and polynomial degree
p are analyzed. Finally, in Section 4, numerical examples are provided.

2. Mixed DG method without penalty terms and its variation

We apply an hp-version mixed DG method without penalty terms for the biharmonic
equations (1.1)–(1.3). Rewrite the problems (1.1)–(1.3) into the following second-order system by
introducing an auxiliary variable v = uxx, i.e.,

−uxx + v = 0, in Ω, (2.1)
−vxx = f (x), in Ω, (2.2)

u(a) = α1, u(b) = α2, (2.3)
v(a) = β1, v(b) = β2, (2.4)

where Ω = {x|a < x < b}. If f (x) ∈ L2(Ω), there exists a unique solution u ∈ H4(Ω) to Eqs (1.1)–(1.3)
and then v ∈ H2(Ω) (see [28]).

2.1. Finite element spaces

Let a = x0 < x1 < · · · < xN = b be a partition of the interval (a, b). Denote In = (xn−1, xn), hn =

xn − xn−1, h = max
1≤n≤N

hn. Assume that there exist two positive constants κ1, κ2 such that

κ2 ≤ hi/hn ≤ κ1, i, n = 1, 2, · · · ,N.

Denote the set of all intervals In, n = 1, 2, · · · ,N by Th, the set of all nodes xn, n = 0, 1, · · · ,N by
Nh, and the set of all interior nodes xn, n = 1, 2, · · · ,N − 1 by N i

h. Define the broken Sobolev space

H s(Ω,Th) = {w ∈ L2(Ω) : w|In ∈ H s(In), ∀In ∈ Th},

and the discontinuous finite element space

Vp
h = {w ∈ L2(Ω) : w|In ∈ Ppn(In), ∀In ∈ Th},
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where Ppn(In) denotes the polynomial space of degree at most pn on element In. Set p = (pn : In ∈ Th),
p̂ = max

1≤n≤N
pn, p̌ = min

1≤n≤N
pn. Assume that there exist positive constants σ1, σ2 such that

σ2 ≤ pi/pn ≤ σ1, i, n = 1, 2, · · · ,N.

In order to facilitate numerical analysis, during this article, we denote ∥ · ∥E as the L2 norm and (·, ·)E

as its inner product. We set ∥ · ∥s,E and | · |s,E as the norm and seminorm of classical Sobolev space
H s(E), s > 0, respectively. For any function w ∈ H s(Ω,Th), s ≥ 1, define its jump and average at
interior nodes

JwKn = w(x−n ) − w(x+n ), {{w}}n =
1
2

(
w(x−n ) + w(x+n )

)
.

On boundary nodes, we set JwK0 = −w(a), {{w}}0 = w(a), JwKN = w(b), {{w}}N = w(b). For any
w ∈ H s(Ω,Th), define

9w9h :=

∑
In∈Th

∥w′∥2In
+

∑
xn∈Nh

{{p}}2n
{{h}}n

JwK2
n


1/2

, (2.5)

where {{h}}n = (hn + hn+1)/2 and {{p}}n = (pn + pn+1)/2. It can be proven that this is a norm in H1(Ω).

2.2. Weak variational form of the model

Multiplying Eqs (2.1) and (2.2) by any sufficiently smooth functions w, q, respectively, integrating
over the interval In, using integration by parts, and summing up over all intervals In, we obtain∑

In∈Th

∫
In

uxwxdx −
∑

xn∈Nh

{{ux}}nJwKn−
∑

xn∈N
i
h

JuxKn{{w}}n + (v,w)Ω = 0, (2.6)

∑
In∈Th

∫
In

vxqxdx −
∑

xn∈Nh

{{vx}}nJqKn−
∑

xn∈N
i
h

JvxKn{{q}}n = ( f , q)Ω. (2.7)

If u, v ∈ H2(Ω), then

JuKn = 0, JuxKn = 0, JvKn = 0, JvxKn = 0, ∀xn ∈ N
i
h. (2.8)

In order to keep the symmetry of the elliptic equation, adding two items −
∑

xn∈Nh
JuKn{{wx}}n and

−
∑

xn∈Nh
JvKn{{qx}}n to Eqs (2.6) and (2.7), respectively, then using Eq (2.8) and boundary

conditions (2.3) and (2.4), we have the following problem, i.e., find u, v ∈ H s(Ω,Th) such that

B(w, u) + (v,w)Ω = L1(w), ∀w ∈ H s(Ω,Th), (2.9)
B(v, q) = L2(q), ∀q ∈ H s(Ω,Th), (2.10)

where bilinear form B(w, q) and L1(w), L2(q) are given by

B(w, q) =
∑
In∈Th

∫
In

wxqxdx −
∑

xn∈Nh

(
{{wx}}nJqKn + JwKn{{qx}}n

)
, (2.11)

Networks and Heterogeneous Media Volume 21, Issue 1, 147–169.



151

and

L1(w) = α1wx(a) − α2wx(b), L2(q) =
∫
Ω

f qdx + β1qx(a) − β2qx(b). (2.12)

Hence, the discrete variational form of the original problem, i.e., find uh, vh ∈ Vp
h such that

B(wh, uh) + (vh,wh)Ω = L1(wh), ∀wh ∈ Vp
h , (2.13)

B(vh, qh) = L2(qh), ∀qh ∈ Vp
h . (2.14)

Following the inference above, we may obtain the following orthogonality of the solution (u, v) and
(uh, vh).

Theorem 2.1. Assume that u is the exact solution of the problems (1.1)–(1.3) such that u ∈ H s(Ω), s ≥
4. Let v = uxx. Assume that (uh, vh) ∈ Vp

h × Vp
h is the solution of the problems (2.13) and (2.14). We

have the following orthogonality equations

B(wh, u − uh) + (v − vh,wh)Ω = 0, ∀wh ∈ Vp
h , (2.15)

B(v − vh, qh) = 0, ∀qh ∈ Vp
h . (2.16)

2.3. Well-posedness of the discrete variational problem

In this section, we will present the well-posedness of the discrete variational problems (2.13) and
(2.14). We first list the trace inequality and inverse inequality of the space Vp

h and H s(Ω,Th) referred
to [29, 30], then prove the continuity and inf-sup condition of the bilinear form B(·, ·), and finally
provide well-posedness of the discrete variational problem.

Lemma 2.1. For w ∈ H s(Ω,Th), s ≥ 1, there exists a positive constant Ca independent of hn and w
such that

|w(x)|2 ≤ Ca

(
1
hn
∥w∥2In

+ ∥w∥In∥wx∥In

)
, ∀x ∈ {xn−1, xn}.

Lemma 2.2. For w ∈ Ppn(In), there exist positive constants Cb,Cd independent of hn and pn such that

|w(x)| ≤ Cb pnh−1/2
n ∥w∥In , ∀x ∈ {xn−1, xn},

∥wx∥In ≤ Cd p2
nh−1

n ∥w∥In .

In the following, we give the inf-sup condition of the bilinear form B(·, ·). The inf-sup condition is
crucial for the well-posed of the discrete variational problem and error estimates. However, different
from the inf-sup condition [14], the condition we provide is related to the degree p̂ of polynomials.
The idea of the proof comes from [14].

Lemma 2.3. Assumed that pn ≥ 2. There exists a positive constant Ct independent of all hn and
pn, n = 1, 2, · · · ,N such that

9wh9 ≤ Ct p̂2 sup
0,qh∈V

p
h

B(wh, qh)
9qh9

, ∀wh ∈ Vp
h . (2.17)
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Proof. The proof proceeds by constructing, for any given wh, a function of the form qh = wh − λyh

such that
B(wh, qh)
9qh9

≥ C 9 wh 9 . (2.18)

We first construct a suitable yh satisfying 9yh9 ≤ C 9 wh9, and then select an appropriate constant
λ to ensure that inequality 9qh9 ≤ C 9 wh9 holds.

Assume that yh ∈ Vp
h satisfies

(yh, zh)Ω = 0, ∀zh ∈ Vp−2
h ,

{{(yh)x}}n =
{{p}}n
{{h}}n

JwhKn, ∀n ∈ {0, 1, · · · ,N},
{{yh}}n = 0, ∀n ∈ {1, · · · ,N − 1},

(2.19)

where p − 2 = (pn − 2 : n = 1, 2, · · · ,N). Now we prove that Eq (2.19) has a unique solution yh

such that 9yh9 ≤ C 9 wh9. Because the problem (2.19) is actually a linear system of equations
with a square coefficient matrix, the existence of its solution is equivalent to uniqueness. Letting
zh = 1, x ∈ In; zh = 0, x < In in the first equation of Eq (2.19), we have

∫
In

yhdx = 0, i.e., yh has zero
mean in every interval In. Hence, yh has at least one zero point in In and denote one of the zeros as ξn.
Then, the Cauchy-Schwarz inequality implies that

|yh(x)|2 = |yh(x) − yh(ξn)|2 =

∣∣∣∣∣∣
∫ x

ξn

(yh)xdt

∣∣∣∣∣∣2 ≤ hn∥(yh)x∥
2
In
, ∀x ∈ In.

Thus, we have ∑
xn∈Nh

1
{{h}}n

JyhK2
n ≤ 8

∑
In∈Th

∥(yh)x∥
2
In
. (2.20)

Integration by parts and Eq (2.19) satisfies∑
In∈Th

∥(yh)x∥
2
In
= −

∑
In∈Th

(yh, (yh)xx)In +
∑

xn∈Nh

{{(yh)x}}nJyhKn +
∑

xn∈N
i
h

{{yh}}nJ(yh)xKn

=
∑

xn∈Nh

{{p}}n
{{h}}n

JwhKnJ(yh)xKn ≤

 ∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n

∑
xn∈Nh

1
{{h}}n

JyhK2
n


1/2

≤ 2
√

2

 ∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n

∑
In∈Th

∥(yh)x∥
2
In


1/2

,

i.e., ∑
In∈Th

∥(yh)x∥
2
In
≤ 8

∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n. (2.21)

From Eqs (2.21) and (2.20), we know yh ≡ 0 if JwhKn = 0, n = 0, 1, · · · ,N, i.e., the solution of the
problem (2.19) is unique. Therefore, we obtain the existence of the solution yh in Eq (2.19). Combining
Eqs (2.21) and (2.20), then we can obtain

9yh92 ≤ (8p̂2 + 1)
∑
In∈Th

∥(yh)x∥
2
In
≤ 8(8 p̂2 + 1)

∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n ≤ 8(8 p̂2 + 1) 9 wh 92 . (2.22)
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Similarly, we have ∑
In∈Th

∫
In

(yh)x(wh)xdx =
∑

xn∈Nh

{{(wh)x}}nJyhKn.

Thus, we can obtain

B(wh,−yh) =
∑

xn∈Nh

{{(yh)x}}nJwhKn =
∑

xn∈Nh

{{p}}n
{{h}}n

JwhK2
n.

According to bilinear form Eq (2.11), it can be concluded that

B(wh,wh) =
∑
In∈Th

∫
In

(wh)x
2dx − 2

∑
xn∈Nh

(
{{(wh)x}}nJwhKn

)
.

Next, we will estimate the last term of the above equation. Using Lemma 2.2, we obtain
√
{{h}}n
{{p}}n

|{{(wh)x}}n| ≤ Cb
√
κ1

(
∥(wh)x∥In + ∥(wh)x∥In+1

)
≤ Cb

√
2κ1∥(wh)x∥In∪In+1 . (2.23)

Young’s inequality satisfies∑
xn∈Nh

JwhKn{{(wh)x}}n ≤ εC2
bκ1

∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n +

1
ε

∑
In∈Th

∥(wh)x∥
2
In
.

Set ε = 2 and C0 = 4C2
bκ1, then it follows:

B(wh,wh) ≥
1
2

∑
In∈Th

∥(wh)x∥
2
In
−C0

∑
xn∈Nh

{{p}}2n
{{h}}n

JwhK2
n.

Using the above inequality, choosing λ = ( 1
2 +C0) p̂, we obtain

B(wh,wh − λyh) ≥
1
2

9 wh 92 .

Triangle inequality and Eq (2.22) implies that

9wh − λyh9 ≤ (1 + λ(8p̂ + 3)) 9 wh9 ≤ 6(1 +C0)p̂2 9 wh 9 .

Therefore, we have

sup
0,qh∈V

p
h

B(wh, qh)
9qh9

≥
B(wh,wh − λyh)
9wh − λyh9

≥
1

Ct p̂2 9 wh9,

where Ct = 12(1 +C0). It completes the proof of Lemma 2.3.

Remark. In Eq (2.17), the coefficient p̂2 arises from applying the trace theorem in Eq (2.23).
Notably, the polynomial of degree pn does not appear in the estimate given in Eq (2.20).

Networks and Heterogeneous Media Volume 21, Issue 1, 147–169.



154

Theorem 2.2. Under the assumption that pn ≥ 2, n = 1, · · · ,N, problems (2.13) and (2.14) possess a
unique solution (uh,wh) ∈ Vp

h .

Proof. Because the existence of the solution of the problems (2.13) and (2.14) is equivalent to
uniqueness, we only prove that the following homogeneous equation has only the trivial solution

B(wh, uh) + (vh,wh)Ω = 0, ∀wh ∈ Vp
h , (2.24)

B(vh, qh) = 0, ∀qh ∈ Vp
h . (2.25)

From Eqs (2.25) and (2.17), we can obtain vh ≡ 0. Substituting vh into Eq (2.25) and combining
Eq (2.17) and the symmetry of the bilinear form B(·, ·), we have uh ≡ 0.

3. hp-version prior error estimates

In this section, we carry out error estimates of the approximate solution (uh, vh) under the norm
L2(Ω) and the norm 9 ·9. We first list approximation properties of piecewise polynomials in the space
Vk

h according to [31], then establish error estimates under all the norm.

Lemma 3.1. For w ∈ H s(Ω,Th) and s ≥ 1, there exist a polynomial Πn
hw ∈ Ppn(In) and a positive

constant CI independent of hn and pn such that

∥w − Πn
hw∥i,In ≤ CI

hµn−i
n

ps−i
n
|w|s,In , for 0 ≤ i ≤ s, (3.1)

where µn = min{pn + 1, s}.

As w ∈ H s(Ω), define Πh : H s(Ω)→ Vp
h ,Πhw|In = Π

n
hw.

Lemma 3.2. Assume that w ∈ H s(Ω), s ≥ 1, then there exists a positive constant Ch independent of hn

and pn such that

9w − Πhw9 ≤ Ch

∑
In∈Th

h2µn−2
n

p2s−3
n
|w|2s,In


1/2

, (3.2)

with µn = min{pn + 1, s}.

Proof. Applying Lemmas 2.1 and 3.1, we have

|w − Πhw|21,In
≤ C2

I
h2µn−2

n

p2s−2
n
|w|2s,In

,

Jw − ΠhwK2
n ≤ 4CaC2

I
h2µn−1

n

p2s−1
n
|w|2s,In

+ 4CaC2
I

h2µn+1−1
n+1

p2s−1
n+1

|w|2s,In+1
,

where µn = min{pn + 1, s}. Summing up over all elements, we have

∑
In∈Th

∥(w − Πhw)x∥
2
In
≤ C2

I

∑
In∈Th

h2µn−2
n

p2s−2
n
|w|2s,In

, (3.3)
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∑
xn∈Nh

{{p}}2n
{{h}}n

Jw − ΠhwK2
n ≤

∑
xn∈Nh

4CaC2
I

h2µn−2
n

p2s−1
n
|w|2s,In

+
h2µn+1−2

n+1

p2s−1
n+1

|w|2s,In+1

 {{p}}2n
≤ 16CaC2

Iσ
2
1

∑
In∈Th

h2µn−2
n

p2s−3
n
|w|2s,In

. (3.4)

Taking Ch = CI max{1, 4
√

Caσ1}, we obtain the result (3.2).

Lemma 3.3. Assume that w ∈ H s(Ω), s ≥ 2 and qh ∈ Vp
h . Then, there exists a positive constant C f

independent of hn and pn such that

|B(Πhw − w, qh)| ≤ C f

∑
In∈Th

h2µn−2
n

p2s−3
n
|w|2s,In


1/2

9 qh 9 . (3.5)

Proof. Let χ = Πhw − w. Based on the definition of B(·, ·), Cauchy-Schwarz inequality, and Young’s
inequality, we have ∣∣∣∣∣∣∣∑In∈Th

(χx, (qh)x)In

∣∣∣∣∣∣∣ ≤
∑

In∈Th

∥χx∥
2
In


1/2 ∑

In∈Th

∥(qh)x∥
2
In


1/2

,

∣∣∣∣∣∣∣ ∑xn∈Nh

JχKn{{(qh)x}}n

∣∣∣∣∣∣∣ ≤
 ∑

xn∈Nh

{{p}}2n
{{h}}n

JχK2
n


1/2  ∑

xn∈Nh

{{h}}n
{{p}}2n

{{(qh)x}}
2
n


1/2

,

∣∣∣∣∣∣∣ ∑xn∈Nh

{{χx}}nJqhKn

∣∣∣∣∣∣∣ ≤
 ∑

xn∈Nh

{{h}}n
{{p}}2n

{{χx}}
2
n


1/2  ∑

xn∈Nh

{{p}}2n
{{h}}n

JqhK2
n


1/2

.

According to the trace inequality of Lemmas 2.1 and 2.2, and the interpolation polynomial
approximation of Lemma 3.1, it can be obtained that

{{(qh)x}}
2
n ≤

1
2

C2
b p2

nh−1
n ∥(qh)x∥

2
In
+

1
2

C2
b p2

n+1h−1
n+1∥(qh)x∥

2
In+1
,

{{χx}}
2
n ≤ CaC2

I

h2µn−3
n

p2s−3
n
|w|2s,In

+
h2µn+1−3

n+1

p2s−3
n+1

|w|2s,In+1

 .
Based on the above estimates and Eqs (3.3) and (3.4), we have

|B(χ, qh)| =

∣∣∣∣∣∣∣∑In∈Th

(χx, (qh)x)In
−

∑
xn∈Nh

(
JχKn{{(qh)x}}n + {{χx}}nJqhKn

)∣∣∣∣∣∣∣
≤ C f

∑
In∈Th

h2µn−2
n

p2s−3
n
|w|2s,In


1/2

9 qh9,

where C f = CI max{1 + 8
√

Caκ1Cbσ1, 2
√

2Caκ1}.

Next, we derive a priori error estimates.

Networks and Heterogeneous Media Volume 21, Issue 1, 147–169.



156

Theorem 3.1. Assume that u is the exact solution of the problems (1.1)–(1.3) such that u ∈ H s(Ω), s ≥
4. Let v = uxx. Assume that (uh, vh) ∈ Vp

h × Vp
h is the solution of the problems (2.13) and (2.14) and

pn ≥ 2 for n = 1, 2, · · · ,N. Then, there is a positive constant Cg independent of hn and pn such that

9v − vh9 ≤ Cg p̂2

∑
In∈Th

h2µ̄n−2
n

p2s̄−3
n
|v|2s̄,In


1/2

, (3.6)

where µ̄n = min{pn + 1, s̄}, s̄ = s − 2.

Proof. Let v − vh = (v − Πhv) + (Πhv − vh). First, consider the estimate of 9Πhv − vh9. According to
Lemma 2.3 and orthogonality (2.16), it can be obtained that

9Πhv − vh9 ≤ Ct p̂2 sup
0,wh∈V

p
h

B(Πhv − vh,wh)
9wh9

≤ Ct p̂2 sup
0,wh∈V

p
h

B(Πhv − v,wh) + B(v − vh,wh)
9wh9

≤ Ct p̂2 sup
0,wh∈V

p
h

B(Πhv − v,wh)
9wh9

. (3.7)

With Eqs (3.5) and (3.2) and the triangle inequality, we obtain the estimate Eq (3.6) with Cg =

2 max{1,CtC f }.

Next, we carry out the optimal L2 norm error estimate of v with the standard duality argument. We
define auxiliary function φ to be the solution of the following adjoint problem:

−φxx = v − vh � ev, in Ω, (3.8)
φ(a) = 0, φ(b) = 0. (3.9)

According to solution regularity, φ ∈ H2(Ω) such that

∥φ∥2,Ω ≤ Cg∥v − vh∥Ω. (3.10)

Theorem 3.2. Under the same assumption as Theorem 3.1, there is a positive constant Ci independent
of hn and pn such that

∥v − vh∥Ω ≤ Cih

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|v|2s̄,In


1/2

, (3.11)

where µ̄n = min{pn + 1, s̄}, s̄ = s − 2.

Proof. Let φ be the solution of Eqs (3.8) and (3.9) and Πhφ ∈ Vp
h be such that the estimate Eq (3.1).

Because φ ∈ H2(Ω), then we have JφxKn = 0 for xn ∈ N
i
h and JφKn = 0 for xn ∈ Nh. Now multiplying

the adjoint problem (3.8) with v − vh and integrating over Ω, using integration by parts and Eqs (3.9)
and (2.16), we obtain

∥v − vh∥
2
Ω =

∑
In∈Th

∫
In

φx(v − vh)xdx −
∑

xn∈Nh

{{φx}}nJv − vhKn
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=
∑
In∈Th

∫
In

φx(v − vh)xdx −
∑

xn∈Nh

(
{{φx}}nJv − vhKn + JφKn{{(v − vh)x}}n

)
= B(φ, v − vh) = B(φ − Πhφ, v − vh).

Applying the similar inferences in Lemma 3.3, we have∑
In∈Th

∫
In

(φ − Πhφ)x(v − vh)xdx −
∑

xn∈Nh

{{(φ − Πhφ)x}}nJv − vhKn ≤ C f
h
p̌
|φ|2,Ω 9 v − vh 9 .

∣∣∣∣∣∣∣ ∑xn∈Nh

Jφ − ΠhφKn{{(v − Πhv)x}}n

∣∣∣∣∣∣∣ ≤ 4C2
aC2

I
h3/2

p̌3/2

∑
In∈Th

h2µ̄n−3
n

p2s̄−3
n
|v|2s̄,In


1/2

|φ|2,Ω,

and ∣∣∣∣∣∣∣ ∑xn∈Nh

Jφ − ΠhφKn{{(vh − Πhv)x}}n

∣∣∣∣∣∣∣ ≤ 4CbCaCIκ1σ1
h√
p̌
|φ|2,Ω∥(vh − Πhv)x∥Ω.

Also, since

Jφ − ΠhφKn{{(v − vh)x}}n = Jφ − ΠhφKn{{(v − Πhv)x + (Πhv − vh)x}}n,

thus, we have

B(φ − Πhφ, v − vh) ≤ Cs
h

p̌1/2 9 v − Πhv 9 |φ|2,Ω + 4C2
aC2

I
h3/2

p̌3/2 |φ|2,Ω

∑
In∈Th

h2µ̄n−3
n

p2s̄−3
n
|v|2s̄,In


1/2

≤ 2 max{CsCh
√
σ1, 4C2

aC2
I }h

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|v|2s̄,In


1/2

|φ|2,Ω, (3.12)

where Cs = max{C f , 4C2
bC2

aC2
I κ1σ1}. Taking Ci = 2Cg max{CsCh

√
σ1, 4C2

aC2
I } and using Eq (3.10), we

obtain the estimate Eq (3.11).

Further, for the convenience of proving the next theorem, we will proceed to estimate (v − vh,wh).
Multiplying the problem (3.8) by wh, then integrating over Ω and using Eq (3.9), we can obtain

(v − vh,wh)Ω =
∑
In∈Th

∫
In

φx(wh)xdx −
∑

xn∈Nh

{{φx}}nJwhKn. (3.13)

Using Cauchy-Schwarz inequality and Lemma 2.1, we have

|(v − vh,wh)| ≤ CD∥v − vh∥Ω 9 wh9, (3.14)

where CD = 1 +Ca
√
κ1.
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Theorem 3.3. Under the same assumption as Theorem 3.1, there is a positive constant Cm independent
of hn and pn such that

9u − uh9 ≤ Cm p̂2

∑
In∈Th

h2µn−2
n

p2s−3
n
|u|2s,In


1/2

+Cmhp̂2

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|u|2s̄+2,In


1/2

, (3.15)

where µn = min{pn + 1, s}, µ̄n = min{pn + 1, s̄}, s̄ = s − 2.

Proof. First we consider 9Πhu − uh9. According to Lemma 2.3 and orthogonality (2.16), it can be
obtained that

9Πhu − uh9 ≤ Ct p̂2 sup
0,wh∈V

p
h

B(Πhu − u,wh) − (v − vh,wh)
9wh9

. (3.16)

The estimate (3.5) implies that

|B(Πhu − u,wh)| ≤ C f

∑
In∈Th

h2µn−2
n

p2s−3
n
|u|2s,In


1/2

9 wh 9 . (3.17)

Inserting Eqs (3.14) and (3.17) into Eq (3.16), we obtain

9Πhu − uh9 ≤ Ct p̂2

C f

∑
In∈Th

h2µn−2
n

p2s−3
n
|u|2s,In


1/2

+CD∥v − vh∥Ω

 . (3.18)

Taking Cm = max{CtCDCi,Ch + CtC f }, combining the L2 norm result of (v − vh) in Theorem 3.2,
and the triangle inequality, we may obtain the result (3.15).

Next, we carry out the optimal L2 norm error estimate of u with the standard duality argument. We
define auxiliary function ϕ and ψ to be the solution of the following dual problem,

−ϕxx + ψ = 0, in Ω, (3.19)
−ψxx = u − uh, in Ω, (3.20)

ϕ(a) = 0, ϕ(b) = 0, (3.21)
ψ(a) = 0, ψ(b) = 0. (3.22)

Letting (ϕ, ψ) be the solution of the problems (3.19)–(3.22), we have ϕ ∈ H4(Ω), ψ ∈ H2(Ω)
such that

∥ϕ∥4,Ω + ∥ψ∥2,Ω ≤ CH∥u − uh∥Ω. (3.23)

Theorem 3.4. Under the same assumption as Theorem 3.1 and pn ≥ 3, n = 1, 2, · · · ,N, there is a
positive constant CM independent of hn and pn such that

∥u − uh∥Ω ≤ CMh

∑
In∈Th

h2µn−2
n

p2s−2
n
|u|2s,In


1/2

+CM
h3

p̌2

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|u|2s̄+2,In


1/2

, (3.24)

where µ = min{pn + 1, s}, µ̄ = min{pn + 1, s̄}, s̄ = s − 2.
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Proof. Let ϕ, ψ be the exact solution of the dual problems (3.19)–(3.22), and let Πhψ, Πhϕ ∈ Vp
h satisfy

the estimate (3.1). Since ψ ∈ H2(Ω), ϕ ∈ H4(Ω), we have JψKn = 0, JϕKn = 0 for xn ∈ Nh. Multiplying
two-sided of Eq (3.20) by u − uh and integrating over Ω, integrating by parts over each element In,
we obtain

∥u − uh∥
2
Ω =

∑
In∈Th

∫
In

ψx(u − uh)xdx −
∑

xn∈Nh

{{ψx}}nJ(u − uh)Kn

=
∑
In∈Th

∫
In

ψx(u − uh)xdx −
∑

xn∈Nh

(
{{ψx}}nJ(u − uh)Kn + JψKn{{(u − uh)x}}n

)
= B(ψ, u − uh).

Similarly, we obtain
B(ϕ, v − vh) + (ψ, v − vh)Ω = 0. (3.25)

Using the two equations above and the orthogonality of Eqs (2.15) and (2.16), we obtain

∥u − uh∥
2
Ω = B(ψ − Πhψ, u − uh) + (ψ − Πhψ, v − vh)Ω + B(ϕ − Πhϕ, v − vh). (3.26)

With the estimate (3.12), we have

|B(ψ − Πhψ, u − uh)| ≤ Cih

∑
In∈Th

h2µn−2
n

p2s−2
n
|u|2s,In


1/2

|ψ|2,Ω, (3.27)

|B(ϕ − Πhϕ, v − vh)| ≤ Ci
h3

p̌2

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|v|2s̄,In


1/2

|ϕ|4,Ω, (3.28)

and

|(ψ − Πhψ, v − vh)Ω| ≤ CICi
h3

p̌2

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|v|2s̄,In


1/2

|ψ|2,Ω. (3.29)

Finally inserting Eqs (3.27)–(3.29) into Eq (3.26), using the estimate (3.23), and taking CM =

CHCICi, we obtain the estimate (3.24).

Remark. When pn = 2, n = 1, 2, · · · ,N, the estimate (3.28) becomes

B(ϕ − Πhϕ, v − vh) ≤ Ci
h2

p̌

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|v|2s̄,In


1/2

|ϕ|3,Ω.

Then, the estimate (3.24) will be

∥u − uh∥Ω ≤ CMh

∑
In∈Th

h2µn−2
n

p2s−2
n
|u|2s,In


1/2

+CM
h2

p̌

∑
In∈Th

h2µ̄n−2
n

p2s̄−2
n
|u|2s̄+2,In


1/2

. (3.30)
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4. Numerical examples

The following examples are divided into two parts. Examples 4.1 and 4.2 serve as primary
verification of the proposed method and the theoretical convergence rates established in Section 3.
Furthermore, in response to suggestions received during the review process, we include Examples 4.3
and 4.4 as preliminary numerical investigations. These examples explore the method’s performance
with a nonlinear reaction term and under mixed boundary conditions, respectively. A comprehensive
theoretical analysis for these extended cases is reserved for future work.

Noticing that for all problems presented in this section we have an analytical solution available such
that the righthand function f and boundary conditions can be calculated. Let the polynomial degree
pn = p, n = 1, 2, · · · ,N. We use the following notations to denote the errors between exact solution
and approximate solution

∥eu∥∞ := ∥u − uh∥∞, ∥eu∥Ω := ∥u − uh∥Ω, 9eu9 := 9u − uh9,
∥ev∥∞ := ∥v − vh∥∞, ∥ev∥Ω := ∥v − vh∥Ω, 9ev9 := 9v − vh9,

and use order to denote the convergent order of the mesh size h. Let r(p) denote the convergent order
of the polynomial degree and let r(p) be defined by

r(p) = −
log(ep+1) − log(ep)
log(p + 1) − log(p)

,

where ep is three norms of eu or ev for the polynomial degree p.

Example 4.1. We consider problems (1.1)–(1.3) with Ω = (0, 1). Boundary conditions and the right-
hand function f are given from the solution u(x) = sin(12x)exp(1.5x). The numerical results are shown
in Tables 1 and 2.

In Example 4.1, the order of convergence with respect to the mesh size h is checked. Tables 1 and 2
show the convergence orders of the error of uh and vh under the L2 norm and energy norm with respect
to the mesh size h are all p + 1 and p, respectively.

Table 1. Errors and orders of eu for given polynomial degree p in Example 4.1.

p h ∥eu∥∞ order ∥eu∥Ω order 9eu9 order
2 1/40 3.9425e-03 1.2802e-03 3.2743e-01

1/80 5.0031e-04 2.98 1.6532e-04 2.95 8.5788e-02 1.93
1/160 6.2343e-05 3.00 2.0857e-05 2.98 2.1753e-02 1.98

3 1/40 3.3250e-05 5.8485e-06 2.1214e-03
1/80 2.0417e-06 4.02 3.4465e-07 4.08 2.5518e-04 3.05
1/160 1.2642e-07 4.01 2.0947e-08 4.04 3.1389e-05 3.02

4 1/40 4.2878e-07 1.3791e-07 8.4598e-05
1/80 1.3660e-08 4.97 4.3698e-09 4.98 5.3781e-06 3.97
1/160 4.2889e-10 4.99 1.3706e-10 4.99 3.3782e-07 3.99
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Table 2. Errors and orders of ev for given polynomial degree p in Example 4.1.

p h ∥ev∥∞ order ∥ev∥Ω order 9ev9 order
2 1/40 5.6419e-01 1.8925e-01 4.9496e+01

1/80 7.3404e-02 2.94 2.4543e-02 2.94 1.2831e+01 1.95
1/160 9.2698e-03 2.98 3.0993e-03 2.98 3.2418e+00 1.98

3 1/40 5.2497e-03 8.5629e-04 3.0852e-01
1/80 3.2609e-04 4.01 5.0060e-05 4.09 3.6871e-02 3.06
1/160 2.0317e-05 4.00 3.0257e-06 4.05 4.5196e-03 3.03

4 1/40 6.4624e-05 2.0794e-05 1.2786e-02
1/80 2.0585e-06 4.97 6.5766e-07 4.98 8.1062e-04 3.98
1/160 6.4732e-08 4.99 2.0618e-08 4.99 5.0860e-05 3.99

Example 4.2. Assuming that the exact solution is u(x) = x9/2 cos(3x) andΩ = (0, 1). Then, the function
f (x) and boundary conditions can be calculated from u(x). Since the solution u(x) ∈ H5−ϵ(Ω), ϵ > 0,
we use the solution to check the convergence orders of the polynomial degree p under three norms. The
corresponding results are put in Tables 3–5 and Figures 1 and 2.

In Example 4.2, the exact solution is u(x) ∈ H s(Ω), s = 5 − ϵ, and then the singular x = 0 is the end
point of an element. Tables 3 and 4 demonstrate that, for a given polynomial degree p, the approximate
solution uh exhibits convergence orders of min{p+1, 5} and min{p+1, 5}−1 in the L2-norm and energy
norm, respectively, under h-refinement. Similarly, for vh, the corresponding convergence orders are
min{p + 1, 3} and min{p + 1, 3} − 1. Table 5 shows the convergence orders of polynomial degree p
for uh under the L2 norm and energy norm are more than 9 and 8, where h = 1/40, and those about
p for vh under the L2 norm and energy norm are 5 and 4, respectively. However, if we ignore p2 in
inf-sup condition in theory, the convergence orders of p for uh under the L2 norm and energy norm are
approximately 4 and 3.5, and those for vh are approximately 2 and 1.5, respectively. The numerical
results with respect to p have the order-doubling phenomenon [32].

Table 3. Errors and orders of eu for given polynomial degree p in Example 4.2.

p h ∥eu∥∞ order ∥eu∥Ω order 9eu9 order
2 1/40 3.3733e-05 1.0581e-05 2.6900e-03

1/80 4.7357e-06 2.83 1.3438e-06 2.98 6.9241e-04 1.96
1/160 6.2636e-07 2.92 1.6874e-07 2.99 1.7520e-04 1.98

3 1/40 2.6358e-07 3.5828e-08 1.2556e-05
1/80 1.6668e-08 3.98 2.0643e-09 4.12 1.4948e-06 3.07
1/160 1.0478e-09 3.99 1.2310e-10 4.07 1.8210e-07 3.04

4 1/40 1.2160e-09 4.2805e-10 2.6111e-07
1/80 3.8138e-11 4.99 1.3392e-11 4.99 1.6436e-08 3.98
1/160 1.1933e-12 5.00 4.1867e-13 5.00 1.0304e-09 3.99

5 1/40 6.9358e-12 9.5536e-13 5.8920e-10
1/80 2.9660e-13 4.55 1.9870e-14 5.58 2.5028e-11 4.56
1/160 1.2999e-14 4.51 5.3576e-16 5.21 1.3245e-12 4.24
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Table 4. Errors and orders of ev for given polynomial degree p in Example 4.2.

p h ∥ev∥∞ order ∥ev∥Ω order 9ev9 order
2 1/40 1.6370e-03 6.0461e-04 1.5607e-01

1/80 2.0617e-04 2.99 7.5828e-05 2.99 3.9434e-02 1.98
1/160 2.5829e-05 3.00 9.4879e-06 3.00 9.9013e-03 1.99

3 1/40 9.6014e-06 1.0333e-06 3.5785e-04
1/80 1.6538e-06 2.54 1.0347e-07 3.32 6.9566e-05 2.36
1/160 2.9043e-07 2.51 1.2050e-08 3.10 1.5966e-05 2.12

4 1/40 1.7747e-06 1.3222e-07 6.3330e-05
1/80 3.1650e-07 2.48 1.6668e-08 2.98 1.5946e-05 1.98
1/160 5.6073e-08 2.49 2.0895e-09 2.99 3.9984e-06 1.99

5 1/40 5.2183e-07 3.6445e-08 2.2842e-05
1/80 9.2363e-08 2.49 4.5631e-09 2.99 5.7191e-06 1.99
1/160 1.6333e-08 2.50 5.7062e-10 3.00 1.4303e-06 2.00

Table 5. Errors and orders about polynomial degree p for given h = 1/40 in Example 4.2.

p ∥eu∥Ω r(p) 9eu9 r(p) ∥ev∥Ω r(p) 9ev9 r(p)
2 1.0581e-05 2.6900e-03 6.0461e-04 1.5607e-01
3 3.5828e-08 14.03 1.2556e-05 13.23 1.0333e-06 15.71 3.5785e-04 14.99
4 4.2805e-10 15.39 2.6111e-07 13.46 1.3222e-07 7.15 6.3330e-05 6.02
5 9.5536e-13 27.36 5.8920e-10 27.31 3.6445e-08 5.77 2.2842e-05 4.57
6 6.0288e-14 15.15 5.1156e-11 13.40 1.3117e-08 5.60 1.0328e-05 4.35
7 1.1813e-14 10.57 1.2178e-11 9.31 5.5870e-09 5.54 5.3351e-06 4.28
8 3.1966e-15 9.79 3.8648e-12 8.59 2.6851e-09 5.49 3.0268e-06 4.24
9 1.1028e-15 9.03 1.4634e-12 8.24 1.4104e-09 5.46 1.8594e-06 4.13
10 - - - - 7.9554e-10 5.43 1.1965e-06 4.18
11 - - - - 4.7701e-10 5.36 8.0752e-07 4.12

Figure 1. Error for ∥eu∥Ω (left) and 9eu9 (right) with respect to p in Example 4.2.
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Figure 2. Error for ∥ev∥Ω (left) and 9ev9 (right) with respect to p in Example 4.2.

Example 4.3. With a nonlinear reaction term. Assuming that the equation is

−uxxxx − u − u3 = f (x),

and the exact solution is u(x) = sin(πx)exp(x) and Ω = (0, 1). Then, the function f (x) and boundary
conditions can be calculated from u(x). The corresponding results are put in Tables 6 and 7 and
Figures 3 and 4.

In Example 4.3, we check the performance of our method for solving the equation with a nonlinear
reaction term. For the resulting discrete nonlinear system, we employ Newton-Raphson iteration
method to obtain the solution.

From Tables 6 and 7, we know that the approximate solution uh, vh produced by our method for the
fourth order equation with a nonlinear reaction term exhibits optimal-order convergence with respect
to the L2-norm, L∞-norm, and energy norm. Figure 3 and Figure 4 show that the approximate solution
uh, vh both achieve the exponential convergence with respect to polynomial degree in L2-norm and
energy norm.

Table 6. Errors and orders of eu for given polynomial degree p in Example 4.3.

p h ∥eu∥∞ order ∥eu∥Ω order 9eu9 order
2 1/40 3.4206e-05 1.7042e-05 4.4102e-03

1/80 4.5237e-06 2.91 2.1406e-06 2.99 1.1138e-03 1.98
1/160 5.8103e-07 2.96 2.6792e-07 3.00 2.7963e-04 1.99

3 1/40 1.1612e-07 2.3539e-08 8.5850e-06
1/80 7.2553e-09 4.00 1.4137e-09 4.05 1.0505e-06 3.03
1/160 4.5338e-10 4.00 8.6525e-11 4.03 1.2991e-07 3.01

4 1/40 3.2174e-10 1.4865e-10 9.1680e-08
1/80 1.0076e-11 4.99 4.6495e-12 4.99 5.7362e-09 3.99
1/160 3.1545e-13 4.99 1.4533e-13 5.00 3.5862e-10 4.00
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Table 7. Errors and orders of ev for given polynomial degree p in Example 4.3.

p h ∥ev∥∞ order ∥ev∥Ω order 9ev9 order
2 1/40 4.3331e-04 2.1012e-04 5.5003e-02

1/80 5.4358e-05 2.99 2.6330e-05 2.99 1.3784e-02 1.99
1/160 6.7989e-06 3.00 3.2934e-06 3.00 3.4483e-03 2.00

3 1/40 1.2671e-06 2.2623e-07 8.1529e-05
1/80 7.9774e-08 3.98 1.3420e-08 4.07 9.8983e-06 3.04
1/160 5.0039e-09 3.99 8.1525e-10 4.04 1.2190e-06 3.02

4 1/40 4.2565e-09 1.9003e-09 1.1658e-06
1/80 1.3325e-10 4.99 5.9412e-11 4.99 7.3109e-08 3.99
1/160 4.1772e-12 4.99 1.8569e-12 5.00 4.5761e-09 3.99

Figure 3. Error for ∥eu∥Ω (left) and 9eu9 (right) with respect to p in Example 4.3.

Figure 4. Error for ∥ev∥Ω (left) and 9ev9 (right) with respect to p in Example 4.3.
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Example 4.4. Dirichlet boundary condition. Assuming that the equation is

−uxxxx = f (x), inΩ,

u(a) = α1, u(b) = α2, (4.1)
ux(a) = γ1, ux(b) = γ2.

Let the exact solution be u(x) = sin(πx)exp(x) andΩ = (0, 1). Then, the function f (x) and boundary
conditions can be calculated from u(x).

Let
B̃(w, q) =

∑
In∈Th

∫
In

wxqxdx −
∑

xn∈Nh

{{wx}}nJqKn −
∑

xn∈N
i
h

JwKn{{qx}}n. (4.2)

The discrete form of the problem (4.1) is as follows: find uh, vh ∈ Vp
h such that

B̃(wh, uh) + (vh,wh)Ω = L̃1(wh), ∀wh ∈ Vp
h , (4.3)

B̃(vh, qh) = L̃2(qh), ∀qh ∈ Vp
h , (4.4)

where L̃1(·) and L̃2(·) are defined

L1(w) = α1wx(a) − α2wx(b) + γ2w(b) − γ1w(a), L2(q) =
∫
Ω

f qdx.

We can prove that if a solution to the discrete problems (4.3) and (4.4) exists, then the component
vh is uniquely determined whereas uh is not. These findings are supported by the numerical results
presented in Table 8.

Table 8. Errors and orders of eu for given polynomial degree p in Example 4.4.

p h ∥eu∥∞ ∥eu∥Ω 9eu9 ∥ev∥∞ ∥ev∥Ω 9ev9
2 1/40 2.8762e+13 1.9903e+12 4.1479e+14 2.0114e+00 8.8837e-01 3.0486e+00

1/80 9.8131e+12 4.6767e+11 1.9493e+14 9.5204e-02 4.3703e-02 1.6692e-01
1/160 6.9612e+12 2.3459e+11 1.9556e+14 1.6416e-02 8.9685e-03 2.9953e-02

3 1/40 5.8346e+09 3.0323e+08 1.2117e+11 2.3970e-04 5.2132e-05 7.4077e-04
1/80 1.2690e+16 4.6629e+14 3.7266e+17 1.4546e+02 8.3452e+01 2.8915e+02
1/160 1.2533e+15 3.2564e+13 5.2050e+16 1.3679e+01 7.4783e+00 2.5756e+01

4 1/40 8.4842e+09 3.8917e+08 2.4347e+11 2.9533e-04 1.5720e-04 3.6463e-04
1/80 2.4965e+05 8.0974e+03 1.0131e+07 5.3561e-07 2.6803e-07 8.0955e-07
1/160 6.9471e+03 1.5933e+02 3.9871e+05 2.3919e-08 1.2063e-08 3.6875e-08

If we introduce a penalty term into Eq (4.4), the discrete problems (4.3) and (4.4) become as follows:
Find uh, vh ∈ Vp

h such that

B̃(wh, uh) + (vh,wh)Ω = L̃1(wh), ∀wh ∈ Vp
h ,

B̃(vh, qh) − uh(a)qh(a)/h − uh(b)qh(b)/h = L̃2(qh) − α1qh(a)/h − α2qh(b)/h, ∀qh ∈ Vp
h .

Tables 9 and 10 demonstrate that the numerical solutions of the above discrete problem with a
penalty term on the boundary achieve the optimal convergence order, even without tuning the penalty
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parameter. This observation aligns with the findings reported in [18, Section 4.2] for time-dependent
fourth-order problems.

Table 9. Errors and orders of eu for given polynomial degree p in Example 4.4.

p h ∥eu∥∞ order ∥eu∥Ω order 9eu9 order
2 1/40 4.0845e-05 1.7054e-05 4.4116e-03

1/80 4.1138e-06 3.31 2.1051e-06 3.01 1.1022e-03 2.00
1/160 5.2231e-07 298 2.6501e-07 2.99 2.7774e-04 1.99

3 1/40 5.0689e-06 2.7900e-07 1.1299e-04
1/80 3.1912e-07 3.99 1.2436e-08 4.48 1.0068e-05 3.49
1/160 2.0017e-08 3.99 5.5434e-10 4.48 8.9696e-07 3.49

4 1/40 2.2554e-08 1.0986e-09 6.8712e-07
1/80 6.8758e-10 5.03 2.4069e-11 5.51 3.0092e-08 4.51
1/160 2.1186e-11 5.02 5.3639e-13 5.48 1.3404e-09 4.49

Table 10. Errors and orders of ev for given polynomial degree p in Example 4.4.

p h ∥ev∥∞ order ∥ev∥Ω order 9ev9 order
2 1/40 4.3465e-04 2.1001e-04 5.4985e-02

1/80 5.4431e-05 2.99 2.6327e-05 2.99 1.3784e-02 1.99
1.160 6.8035e-06 3.00 3.2933e-06 3.99 3.4483e-03 2.00

3 1/40 6.2681e-07 2.0282e-07 7.7008e-05
1/80 3.9447e-08 3.99 1.2661e-08 4.00 9.6105e-06 3.00
1/160 2.4741e-09 3.99 7.9108e-10 4.00 1.2008e-06 3.00

4 1/40 4.2565e-09 1.8816e-09 1.1590e-06
1/80 1.3328e-10 4.99 5.9132e-11 4.99 7.2908e-08 3.99
1/160 4.4032e-12 4.92 1.8547e-12 4.99 4.5712e-09 3.99

5. Conclusions

This paper presents an analysis of the hp-version DG method without penalty for solving one-
dimensional biharmonic equations. The proposed method replaces the standard coercivity requirement
of the bilinear form B(·, ·) with a polynomial-degree-dependent inf-sup condition. We establish a priori
error estimates in both the energy norm and L2-norm, explicitly tracking their dependence on the mesh
size h and polynomial degree p. Theoretical analysis and numerical experiments confirm that the
approximate solutions uh and vh achieve optimal convergence rates with respect to h in both norms.

For p-convergence, we prove suboptimal rates in the L2-norm and a two-order reduction in the
energy norm due to the p2-dependence of the inf-sup condition. However, for solutions with boundary
singularities that coincide with element endpoints, our numerical results demonstrate an unexpected
order-doubling phenomenon in the p-convergence rates, consistent with prior observations in [32].

A key finding of this work is that adding a penalty term on the boundary is necessary to guarantee
stability and optimal convergence for this equation with Dirichlet boundary conditions, which aligns
with the earlier results for time-dependent equations in [18, Section 4.2]. The method is also validated
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on fourth-order equations with a nonlinear reaction term, where it achieves optimal-order convergence
in the L2-, L∞-, and energy norms. The theoretical analysis of these extended scenarios is reserved for
future study.
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17. Jan Jaśkowiec, N. Sukumar, Penalty-free discontinuous Galerkin method, Int. J. Numer. Methods
Eng., 125 (2024), e7472. https://doi.org/10.1002/nme.7472

18. H. L. Liu, P. M. Yin, A mixed discontinuous Galerkin method without interior
penalty for time-dependent fourth order problems, J. Sci. Comput., 77 (2018), 467–501.
https://doi.org/10.1007/s10915-018-0756-0

19. H. L. Liu, P. M. Yin, Unconditionally energy stable DG schemes for the Swift-Hohenberg
equation, J. Sci. Comput., 81 (2019), 789–819. https://doi.org/10.1007/s10915-019-01038-6

20. H. L. Liu, P. M. Yin, On the SAV-DG method for a class of fourth order gradient flows, Numer.
Methods Partial Differ. Equ., 39 (2023), 1185–1200. https://doi.org/10.1002/num.22929

Networks and Heterogeneous Media Volume 21, Issue 1, 147–169.

https://dx.doi.org/https://doi.org/10.2478/CMAM-2003-0037
https://dx.doi.org/https://doi.org/10.1007/s10915-006-9100-1
https://dx.doi.org/https://doi.org/10.1016/j.cma.2006.06.014
https://dx.doi.org/https://doi.org/10.1007/s10915-023-02253-y
https://dx.doi.org/https://doi.org/10.1093/imanum/drac026
https://dx.doi.org/https://doi.org/10.1007/s10915-008-9200-1
https://dx.doi.org/https://doi.org/10.1007/s10915-008-9200-1
https://dx.doi.org/https://doi.org/10.1002/num.22090
https://dx.doi.org/https://doi.org/10.1016/j.amc.2023.127969
https://dx.doi.org/https://doi.org/10.1016/j.crma.2007.10.028
https://dx.doi.org/https://doi.org/10.1142/S0218202513500826
https://dx.doi.org/https://doi.org/10.4208/aamm.OA-2020-0247
https://dx.doi.org/https://doi.org/10.4208/aamm.OA-2020-0247
https://dx.doi.org/https://doi.org/10.1002/nme.7472
https://dx.doi.org/https://doi.org/10.1007/s10915-018-0756-0
https://dx.doi.org/https://doi.org/10.1007/s10915-019-01038-6
https://dx.doi.org/https://doi.org/10.1002/num.22929


169

21. Q. Wang, L. Zhang, An ultraweak-local discontinuous Galerkin method for nonlinear
biharmonic Schrödinger equations, ESAIM Math. Model. Numer. Anal., 58 (2024), 1725–1754.
https://doi.org/10.1051/m2an/2024023
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29. B. Rivière, M. F. Wheeler, V. Girault, A priori error estimates for finite element methods based
on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39 (2001),
902–931. https://doi.org/10.1137/S003614290037174X

30. C. Schwab, p-and hp-Finite Element Methods, Oxford University Press, Oxford, 1998.
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