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Abstract: Nonlinear stochastic [tdo—Volterra integral equations (NSIVIEs) represent systems whose
current state is influenced by random fluctuations and is dependent on previous information. These
equations appear in many real-world scenarios, including engineering systems, biological processes,
financial markets, heterogeneous media, complex transport phenomena, and viscoelastic materials.
Strong numerical frameworks are required because analytical solutions for these equations are rarely
available, particularly when nonlinearities and random fluctuations are present. To effectively solve
NSIVIEs, in this study we propose a new hybrid numerical framework that combines Monte Carlo
simulation and Legendre spectral collocation. By using orthogonal polynomial basis functions to
approximate the solution, this method provides spectral accuracy while handling the hereditary memory
component of the Volterra equation through a high-order Legendre spectral collocation method. A
precise statistical treatment of the random fluctuations is made possible by simultaneously addressing
the stochastic 1t6 noise through Monte Carlo sampling across numerous independent realizations. We
perform a thorough convergence analysis and obtain explicit error bounds that measure the decrease
in approximation error with increasing spectral resolution and Monte Carlo sample count. Numerical
experiments show that the method can accurately reproduce complex stochastic behaviors and validate
theoretical predictions.
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1. Introduction

Many biological, engineering, and physical systems evolve in heterogeneous, nonlinear environments
that display memory effects and random fluctuations. Stochastic differential or integral equations that
incorporate noise-driven dynamics and hereditary kernels are frequently used to model such systems.
SIVIEs are a powerful mathematical framework for describing non-Markovian stochastic systems, in
which the current state is determined by the cumulative influence of random perturbations and past events.
Diffusion in heterogeneous media, viscoelastic and thermodynamic systems with after-effects, random
transport and reaction processes, neural and biological networks, and uncertain financial markets are just
a few of the many applications for which these equations offer a natural modeling basis. The complex
interplay between stochastic forcing and deterministic hereditary dynamics is captured by combining
[t6 stochastic integrals with Volterra-type memory kernels. However, these equations’ nonlinearity
and random structure make analytical solutions unfeasible, underscoring the necessity of effective and
reliable numerical techniques. Solutions can be studied using classical theory if these random functions
are sufficiently regular. The classical theory cannot be applied to irregular random functions, like white
noise, and the theory of stochastic differential equations (SDE) emerged as a result [1]. SDEs have
become an essential tool in modeling various phenomena in fields such as physics, finance, biology, and
engineering. Among them, the It6-Volterra integral equations (IVIEs) play a crucial role in capturing the
dynamics of systems where both stochasticity and memory effects are significant. The nonlinearity in
these equations adds complexity, making analytical solutions challenging or even impossible to obtain.
As a result, numerical methods have emerged as a powerful approach to solving these SDE and IVIEs.

Stochastic integral equations, especially nonlinear stochastic I[to—Volterra integral equations, are very
important for modeling complicated systems that have both memory effects and random dynamics. These
equations offer a coherent mathematical structure for characterizing non-Markovian processes where the
current state is contingent upon the aggregate impact of preceding events and stochastic disturbances.
Fundamental theoretical investigations have delineated the analytical framework of stochastic Volterra
equations, and underscored their inherent mathematical intricacy [2,3]. In mathematical finance, these
equations are commonly used to model asset prices, interest rates, and risk measures, with historical
data and random fluctuations working together to shape the system’s evolution. In biological systems,
they manifest in population dynamics and neural network modeling, encapsulating hereditary influences
and environmental noise. Also, viscoelastic materials, signal processing, and control systems are used
in physics and engineering. In control systems, the system’s responses depend on past inputs and
random disturbances. The existence of singular kernels and irregular stochastic forcing complicates
the analytical treatment of these equations, frequently making closed-form solutions unattainable [4].
Because of this, it is now necessary to create reliable numerical methods, and different approximation
methods, like collocation-based schemes, have been suggested to find accurate numerical solutions for
nonlinear stochastic Ito—Volterra integral equations [5]. These challenges and applications highlight
the necessity of effective numerical methods for analyzing such equations in various scientific and
engineering fields.

The general form of a NSIVIEs can be expressed as:

FO) = fo+ fo ki(x ) by () dy + fo ()0, f0)) dBG),  xeD, (L)
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where f(x) is the unknown function, f is the initial condition, k;(x,y) and k,(x,y) are given kernel
functions, and b(y, f(y)) and r(y, f(y)) are deterministic coefficient functions. The stochasticity of the
model is introduced exclusively through the Itd integral with respect to the Brownian motion B(y).
This formulation captures the memory-dependent nature of the process through the Volterra kernel
ki(x,y) and introduces stochastic effects via the It6 integral involving k;(x, y) and the Brownian motion.
The numerical solution is very sensitive to the diffusion function r(-, -) in Eq (1.1), since this function
directly controls how strong the Itd stochastic forcing is. The Itd isometry states that the mean-square
contribution of the stochastic term is based on the expected value of the squared product of the kernel
k>(x,y) and the diffusion function r(y, f(y)). This shows that if you scale the diffusion function by a
factor of «, the variance of the noise-driven response will go up by about a. Even small changes in
r can make a big difference in the spread and pathwise irregularity of the numerical solution. This is
especially true when there is multiplicative noise, which means that the diffusion term depends on how
the system is changing.

Over the years, significant progress has been made in both the theoretical and numerical aspects of
solving Eq (1.1). Theoretical advancements have addressed issues such as the existence, uniqueness,
and stability of solutions, particularly for equations with singular kernels or non-Lipschitz conditions.
These studies have laid a solid foundation for developing numerical techniques tailored to these complex
equations, and as a result one has to use a numerical solution for the approximate solution [6,7]. Among
the various numerical methods proposed, collocation techniques have emerged as a particularly effective
approach for handling stochastic Ito—Volterra integral equations. By discretizing the problem and
reducing it to a system of algebraic equations, collocation methods offer a practical solution that is
both computationally feasible and capable of yielding high-accuracy results. These methods have
been further enhanced with the use operational matrices and special function approximations, such as
delta functions and triangular functions, which improve both the efficiency and the convergence of the
numerical solution [8]. Stochastic differential, Volterra, and integro-differential equations have been
extensively studied, with emphasis on mean-square formulations, robustness, and reliable numerical
techniques that provide a strong foundation for stochastic dynamical analysis [9—12]. In addition,
mean-square schemes, simulation methods, and orthogonal function bases have enabled accurate and
efficient approximation of random dynamical and variational problems [13—16]. Furthermore, nonlinear
Volterra—Fredholm and multidimensional integral equations have been efficiently solved with high
accuracy and low computational cost using direct methods, triangular functions, spectral polynomial
expansions, and more recently, collocation-based approximation techniques for nonlinear backward
stochastic Volterra integral equations [17-20]. The use of fractional modeling combined with artificial
intelligence techniques to study and characterize nonlinear dynamics in complex systems arising in
chaos theory is explored in [21]. A spectral representation of iterated 1t6 and Stratonovich stochastic
integrals, particularly in the context of modeling nonlinear stochastic dynamics, is used in [22]. The
author presents theoretical results and numerical methods designed to improve the mean-square and
strong convergence of stochastic differential equations, essential for accurate simulations in various
applications. By using the spectral method, they derive matrix-based representations of these integrals,
which allow for more efficient numerical solution techniques. The work also integrates Taylor—It6
and Taylor—Stratonovich expansions, highlighting their utility in approximating solutions to complex
stochastic differential equations. A computational technique for solving three-dimensional mixed
Volterra—Fredholm integral equations is introduced in [23], where the author utilizes the use of Lucas
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polynomials to approximate the solutions to these equations, which are then transformed into a system
of linear algebraic equations. The method is evaluated through error analysis and is implemented in
several numerical examples, demonstrating its effectiveness compared to other numerical techniques.
The results indicate that the Lucas polynomial method provides accurate solutions, with the numerical
errors being minimal, especially when the exact solutions involve polynomial forms.

Recent years have seen significant progress in numerical methods for NSIVIEs. Spectral collocation
methods that utilize orthogonal polynomials have demonstrated significant accuracy by transforming
NSIVIEs into deterministic algebraic systems. A shifted Jacobi polynomial operational matrix method
is utilized to address SIVIEs [24]. Subsequently, this approach is expanded to multi-dimensional
issues employing Lucas polynomials [25]. The versatility of these methods is underscored by using
polynomial collocation to stochastic differential equations driven by fractional Brownian motion [26].
Legendre—Gauss collocation method for stochastic Volterra—Fredholm equations, thereby improving
spectral accuracy [27]. Second-kind Chebyshev wavelets in conjunction with a parallel computing
scheme to effectively address multi-dimensional Itd—Volterra system is used in [28]. Although they
require a lot of sampling for convergence, Monte Carlo simulations have been employed as a direct
method of handling the stochastic components of such integrals.

Researchers have also created hybrid approaches that combine deterministic solvers with iterative
or interpolation techniques to increase stability and efficiency. A combined successive approximation
algorithm with bilinear spline interpolation for two-dimensional stochastic integral equations is utilized
in [29]. A moving least-squares collocation scheme for stochastic Volterra equations, which is later
generalized into a fully two-dimensional meshless collocation framework, presented in [30,31]. However,
none of the existing works combine spectral collocation with Monte Carlo sampling, leaving a gap
that the present study addresses by integrating Legendre polynomial-based spectral collocation with
Monte Carlo simulation. This hybrid approach leverages the high accuracy of spectral methods and the
statistical power of Monte Carlo to more effectively solve NSIVIEs. Higher-order statistical measures
such as skewness and kurtosis can be employed to assess asymmetry and tail behavior in the stochastic
response, which is particularly relevant when interface defects or material heterogeneities induce non-
Gaussian effects [32]. Some very recent work on numerical solution involve stochastic equations can be
found in [33-36].

This paper aims to enhance the existing literature through the introduction of an improved numerical
method for solving nonlinear stochastic [t6—Volterra integral equations. The method incorporates
the Legendre spectral collocation technique for the integral component and employs Monte Carlo
simulation to model the stochastic component. Monte Carlo methods provide a classical and well-
established framework for approximating expectations in stochastic models, with rigorous convergence
theory and extensive applications in science and engineering [37,38]. These sampling methods have
been successfully combined with high-order spectral and pseudospectral discretization in the last
few years to solve a wide range of stochastic differential and integro-differential equations, such as
fractional, Volterra-type, delay, and epidemiological models [39—42]. The theoretical foundations,
stability properties, and spectral convergence of such methods are well documented in the spectral
methods literature [43,44]. These results show that spectral collocation methods can get very accurate
results with polynomials of low degree. This makes them especially useful for stochastic problems
when used with standard Monte Carlo sampling.

The rest of the paper is structured as follows: Section 2 includes some basic definitions and properties.
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Section 3 provides the description of the proposed scheme, followed by error analysis in Section 4. To
confirm the theoretical results, some numerical examples are given in Section 5. Finally, Section 6
concludes the paper.

2. Some preliminaries
In this section, we review the basic definitions and properties required for the subsequent analysis [45—47].

2.1. Approximation of function

Definition 1. The weighted inner product and its corresponding norm in the weighted space L*(I) are
defined as follows:

b
(u,v), = f u(tyv(w(t)dt, forallu,ve Lfv(l), 2.1

where w(t) is a weight function, and I = [a, b] denotes the interval of interest. The corresponding norm

is given as:
llullzz = V<u, 1)y, (2.2)

Definition 2. For any function u € L? (/) and any natural number m € N, there exists a unique polynomial
q,, € P, (where P, is the space of polynomials of degree up to m) such that:

e = gpllzz = inf flu = gullzz. (2.3)

mS<L'm

where the best approximation polynomial g}, (x) is given by:

m

Gn(x) = Z i), (2.4)
k=0
with coefficients i, defined as:
<I/£, ¢k>w
e = : (2.5)
C gl
Here, {¢:};., forms an L2 -orthogonal basis for P,,.

In particular, this best approximation polynomial g is denoted by m,u, representing the
L2 -orthogonal projection of u onto the space of polynomials of degree up to m.

2.2. Standard Brownian motion and its properties

Definition 3. A stochastic process {W(¢), ¢ > 0} defined on a probability space (Q, 7, P) is said to be a
Brownian motion with variance parameter o (o~ > 0) if the following conditions hold:

e P(W(W0)=0)=1.

e For all t; > 1y > 0, the increment W(#;) — W(ty) is normally distributed, i.e., W(#;) — W(t) ~
N, O'z(tl —1p)).

e The process W(#) has independent increments.

In particular, when o = 1, the process {W(?),t > 0} is referred to as standard Brownian motion (SBM).
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Definition 4. Consider the process {W(t),# > 0}, which is a standard Brownian motion. It has the
following path properties:

e Continuity: Almost all sample paths of the SBM are continuous.
¢ Non-differentiability: For any @ > % almost all sample paths of the SBM satisfy

W) = W)l
imsup ——— =

1 —1t |tl - tOla ’

particularly when e = 1, almost all sample paths of the SBM are nowhere differentiable.
o Asymptotic behavior: The SBM almost surely satisfies the law of the iterated logarithm:

W(t W(t
limsup# =1, and liminf ® =-1.

1»o  4[2tloglogt t—00 ,/2tloglogt_

2.3. Ito integral and its properties

Definition 5. The space for the It6 integral is defined as:

T
L2, (Q; L*([0,T])) = { £.(W) | f,(W)is F,-measurable and E [ f frdt
0

<ooh.

Definition 6 (Properties of the Itd Integral). Let f, g € L2,(Q; L*([0,T1)) for 0 < s < T. The Itd integral
satisfies the following properties:

e Linearity: For any scalars u, v € R,

fo(ﬂg(t)+Vf(t))dW(t)=,ufo g(t)dW(t)+Vf0 J@) dW(@).

A 2 S
E[( f g(r)dW(t))]: f Elg* (1] dt.
0 0

e It6 Isometry:

e Generalized Ito Isometry:
EU; g(t)a’W(t)f0 f(t)dW(t)]=f0 E[g(®) f(D]d:.

o M = fos g(t)dW(?) is a continuous martingale process. The quadratic variation of M is given by

[M], = [} ¢*(t)dt, and
S 2 S
El sup ( f g(®) dW(t)) ] <4E [ f E[g*(1)] dt].
0<s<T 0 0
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3. Spectral method with Monte Carlo simulation

In order to solve Eq (1.1) more efficiently and fully use the properties of orthogonal polynomials, we
transform Eq (1.1) from [0, x] to [—1, 1] by using the transformation y = %“) where ¢ € [-1, 1] and
dy = 5d§. This changes the integrals involved in Eq (1.1) as follows:

X 1
ﬁhmwmﬂm@=3ﬁh@““”ﬁﬁ“”¢ﬁ®”%%, 3.1

2 2 2

X 1
fo ). £ dB() = %fl b (x, x(&+ 1))r(x(§+ 1)’f(x(§+ 1)))dB(x(§2+ 1)

> > > ) (3.2)

Let {Qk}g: o be the Gauss-Legendre points on [—1, 1], and {wk}kN:0 be the corresponding weights. Then,
the integrals involve in Eq (3.1) and Eq (3.2) are approximated as follows:

N
! f g(&)d¢ ~ gz Wig(6). (3.3)

We then approximate the unknown function f(x) using Lagrange interpolation polynomials at the
Gauss-Legendre collocation points {tj}?': o> Where 7; = X0*D The function f(x) is expressed as:

N
fo~ D YLi), (3.4)
j=0

where L;(x) are the Lagrange polynomials, and Y; = f(¢;) are the unknown coefficients to be determined.
Substituting the Lagrange interpolation approximation into the transformed equation, we obtain:

N N
@)~ fo+ ’5 > w [kl (t_ ti(6k2+ 1)) b (n(ek; b Sy, ( L;l) )] (3.5)
k=0 j=0

1O+ D\ (60 +1) < 16 + 1)
+k2 (ti, ) ) r[ ) 5 ]Z:(; YJL/ (T)) ABk

where AB;, = B (t’(ek“)) B (”' (ek_21+1)) are the increments of the Brownian motion at the quadrature points.

Since Eq (3.5) involves stochastic terms, Monte Carlo simulations are used to approximate the
solution. For each Monte Carlo simulation m = 1,2, ..., M, generate a sample path for the Brownian
motion B(y) at the quadrature points {6} o» and calculate the corresponding increments AB}" for each
simulation m. For each sample path m, we get the system of nonlinear equations

N N
S, ( ;(9k+1)) [t,-(ek; 1)’ZY;nLJ_(@)) (3.6)

k=0 =0

(0, + 1 L6, + 1 460, + 1
+k2(ti, (kz )) ((" )ZY’"L (—( "2 ))]ABZ’

j=0

b

l\)l“

b
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where Y!" represents the solution at the ith collocation point for the mth simulation. Due to the nonlinear
nature of the Eq (3.6), an iterative method such as Newton’s method or fixed-point iteration is used to
solve for the coefficients {Y }”}?’: o in each simulation. The iterative method continues until the coefficients
converge within a specified tolerance. After solving the system for all M Monte Carlo simulations,
compute the average of the solutions:

1 M
Vm T 3.7)
m=1

to approximate the expected value of Y;. The final approximate solution f(x) over the domain D is
reconstructed using the averaged coefficients {Y j}?’: o

4. Error analysis

In order to provide a complete theoretical error analysis for our proposed scheme, in this section we
state and prove some basic lemmas concerning polynomial approximation by Legendre polynomials
and provide some useful definitions, which are essential for the analysis.

Lemma 1. [48] (Integration error from Gauss quadrature) Consider an (N + 1)-point Gauss-Legendre,
Gauss-Radau, or Gauss-Lobatto quadrature formula associated with the Legendre weights, used to
integrate the product yp, where y € H™(I) with I := (-1, 1) and some m > 1, and ¢ € Py. Then, there
exists a constant C, independent of N, such that

fy(x)cp(x) dx — (y,o)n| < CN_m|)’|H,,1,N(1)||90||L2(1),
I

where

m 1/2
k)12
M) = ( > )||L2<,)] ,

k=min(m,N+1)
N
0Py = ) o (x)P(x).
k=0

Lemma 2. (Estimates for interpolation error) Assume that y € H™(I), and denote by Iyy the
interpolation polynomial corresponding to the (N + 1) Gauss-Legendre, Gauss-Radau, or
Gauss-Lobatto points {xk}szo. Then,

ly = Inyllzzay < CN7"Ilg, v 4.1)
Iy = Ivyllzeay < CNY>"lylg, var- 4.2)

Proof. Estimate (4.1) can be found on p. 289 of [48]. The estimate
Iy = Inylla gy < CNl_m|)’|F1m_N(1), l<s<m,

is also available in [48]. By applying the above estimate along with the inequality,

1 1/2 1/2 1
Vil < \/E + 20l 52, My v € H'(a,b),
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we readily arrive at Eq (4.2).
From reference [49], we have the following result concerning the Lebesgue constant for Lagrange
interpolation based on the zeros of the Legendre polynomials.

Lemma 3. (Lebesgue constant for the Legendre series) Assume that {7—”j(x)}7: o are the Lagrange

interpolation polynomials with respect to the Gauss-Legendre, Gauss-Radau, or Gauss-Lobatto points
{x;}. Then

N
Ml := max 120 F5(0] = O(VN). 43)

Lemma 4. (Gronwall inequality for integro-stochastic differential equations) Let E : [0,T] — [0, c0)
be a nonnegative function satisfying

X X 2
E(x) < C f EQy)dy + sz E[(fy EWw) dB(v)) ]dy, x€[0,T], “4.4)
0 0 0

where C{,C, > 0 are constants and B(-) is a standard Brownian motion. Additionally assume that
E € L=(0,T). Then, there exists a constant C > O such that

Ex) < Cfx E(y)dy, x€[0,T].
0

Proof. Using the It6 isometry, we have

y 2 y
]E[( f E(v)dB(v))]: f E()* dv.
0 0

Substituting this into Eq (4.4) yields
X X "y
E(x) < C, f Ey)dy + C, f f EW)? dvdy. 4.5)
0 0 0
Since E(v)? > 0, Tonelli’s theorem allows us to rewrite the double integral as

f ) f ' EW) dvdy = f x(x —V)EW)?dv < x f ) EW)* dv.
0 0 0 0

Because £ € L*(0,T) and x < T, we further obtain

X

X f EW)* dv < M|E|lz=@.1) f EW)dv < T|E||z=0.1) f E®v)dv.
0 0 0

X Yy X
f f EY dvdy < T||Ell~o1) f E(v)dv.
0 0 0

Substituting this estimate into Eq (4.5), we arrive at

Therefore,

E() < (C1 + CTIE=0) f E(y)dy,
0
which completes the proof.
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Theorem 1. Consider the stochastic It6-Volterra integral Eq (1.1) and its spectral approximation
method given by Eq (3.6). If F is an approximate solution and f denotes the exact solution, then

IF = fllzopy < CN'*™(D; + D,) 1 f 1D
+ CN~1Em (||f||H,,LN(D) + &y f e 0y + ||k2f||H,,,,N(D)) , (4.6)

where C, Dy, and D,, are constants which do not dependent on N.
Proof. Let [Fly and [[F ] N’V]N _denote the second and third terms on the right-hand side of Eq (3.5).
Then, the spectral approximation scheme gives

F(x;) = fo+ [kiFlys + [k Flys + G(x;) = 1y — Iin,

where )
Xi

Xi
=3[k (5(9+ 1))b(

Xi

@+ 1).F (%(9 ; 1))) d6 — [y Flvs,

o= _i k(30+ D)r(F0+ 0.7 (50 + D))do - e[ tFIv]

It follows from Eqs (1.1) and (3.1) that:
F(x) = fo+ fﬂ ki(s,V)F(v)dv + in ky(s,VYF(vV)dB() — I;1 — I;» + G(x;). 4.7)
0 0

Using Lemma 1 for the approximation, we have:

i1l < CN""kilg,, o) IF 20y < CN_mlklllflmiN(D) (||€||L°°(D) + ||f||L2(D)) )

Ii2l < CN""kalg,, v I1F ll2ipy < CN"1k2l g, w0y (||€||L°°(D) + I/ ||L2(D))-
Multiplying by Fi(x) on both sides of Eq (4.7) and summing from 0 to N gives:

F(x) =1y (fx ki(s,MF() dv) + Iy (fx kry(s, V)F(v) dB(v))
0

0
+ Fo+G(x)+ Ji(x),

where N
D) = > (T + L) Fi(0).
i=0

Let e(x) denote the error between the approximate and exact solution given by e(x) = f(x) — Fy(x).
Then,

e(x) = fo ki (x, D(y, () dy + fo ko (x, Y)r(y, f() dB(y) + Ji(x) + Jo(x). (4.8)

where J,(x) represents additional approximation errors. Applying the Gronwall inequality given in
Lemma 4 yields

llellz=py < C (Iillz=oy + IV2llom)) - (4.9)
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Next, we estimate ||J,||~p) and ||J2||~p). First,

111|220y < CN'27 (llellz=y + If =) (D1 + D2),

where Dy and D, are constants depending on the given functions ki, k,, and the stochastic process. For
1V2llzp), we have

_1/2— —1/2-
I2llz=py < CN~* 1| fllg,, vy + CNT2 1K fll g, v
—1/2- -1/2 172
+ CN" K fllg, o) + CNPlellis + CNT2IIK ()l

where we have used Lemmas 2 and 3. Combining these estimates with Eq (4.9), we obtain the
desired result:

1/2- Y.
llellz=py < CN'>7™(Dy + Dy) (llellz=m) + | fllz=py) + CN™ "1 (D)

Remark 1. The aforementioned error analysis mainly quantifies the deterministic error resulting from the
Legendre spectral discretization in relation to the polynomial degree N. The Monte Carlo approximation
of stochastic expectations introduces an additional statistical sampling error of order O(M~'/?), where
M denotes the number of Monte Carlo samples. Throughout the theoretical analysis, it is assumed that
M is chosen sufficiently large so that the Monte Carlo sampling error is negligible compared to the
spectral discretization error. Consequently, the error bounds in Theorem 1 are stated explicitly in terms
of N only.

5. Numerical illustrations

In this section, we perform some numerical experiments to confirm the theoretical justifications
provided in Section 3. These numerical examples further enhance the efficiency of our proposed
numerical scheme.

Example 1. In our first example, we consider a nonlinear stochastic [to—Volterra integral equation for
the function f(x) defined as

" 1
fo =1+ [ |-sit o - i

dy + f T VZcos (F() dWE),
0

with the exact solution expressed as

f(x) = arctan [tan(l) exp(—x) + V2 f ) exp(y — x) dW(y)] .
0

The comparison between the exact solution and the approximate solution is made for different values
of collocation points. Figure 1 shows the comparison for N = 300 and N = 500 collocation points,
while Figure 2 is plotted for N = 1000 and N = 1200 collocation points. In order to further enhance the
efficiency of our scheme and for justification of theoretical analysis, the error between the exact and
approximate solution at different nodes for N = 500 collocation points is given in Table 1.
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Figure 1. Example 1: Comparison of exact and approximate solutions (left) at N = 300 and
(right) at N = 500 collocation points.
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Figure 2. Example 1: Comparison of exact and approximate solutions (left) at N = 1000 and
(right) at N = 1200 collocation points.
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Table 1. Example 1: Error between present method and exact solution for N = 500
collocation points.

X; Exact solution Present method Absolute error
0.0 1.000000 1.000000 0.000000
0.1 1.184766 1.185251 0.000485
0.2 1.155841 1.158570 0.002729
0.3 1.126984 1.126859 0.000125
04 1.167631 1.167471 0.000160
0.5 0.973467 0.975968 0.002501
0.6 0.978691 0.977299 0.001391
0.7 0.923261 0.917613 0.005648
0.8 0.792293 0.775928 0.016365
0.9 0.844495 0.828011 0.016485
1.0 0.705072 0.673711 0.031360

Example 2. Consider the nonlinear stochastic [td—Volterra integral Eq [50]

J(x) =05+ fo JOA = f)dy + fo 0.25f(y) dB(), (GRY)

with the exact solution given by

0.5exp(0.96875x + 0.25B(x))

= - , (5.2)
1+0.5 [ exp(0.96875y + 0.25B(y)) dy

f(x)

where f(x) is a known stochastic process defined on the probability space (X, ¥ ,P), and B(x) is a
Brownian motion process.

Figure 3 illustrates the comparison of exact and approximate solutions at N = 300 and N = 500
collocation points. Furthermore, Figure 4 presents the error metrics associated with a larger configuration
of collocation points, N = 1000 and N = 1200. We also provide the error between the exact solution
and the approximate method for N = 500 collocation points shown in Table 2. This extensive evaluation
highlights not only the precision of our method, but also its comparative performance against other
established methods.
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Table 2. Example 2: Error between present method and exact solution for N = 500 collocation

points.

X; Exact solution Present method Absolute error
0.0 1.000000 1.000000 0.000000
0.1 1.184766 1.185251 0.000485
0.2 1.155841 1.158570 0.002729
0.3 1.126984 1.126859 0.000125
0.4 1.167631 1.167471 0.000160
0.5 0.973467 0.975968 0.002501
0.6 0.978691 0.977299 0.001392
0.7 0.923261 0.917613 0.005648
0.8 0.792293 0.775928 0.016365
0.9 0.844495 0.828011 0.016484
1.0 0.705072 0.673711 0.031361
0.85 w T w w ‘ ‘ 08 ‘ ‘ ‘ = Approximate Solution ‘

= Approximate Solution

== = Exact Solution == = Exact Solution

081 075

0.7

071
065

()

Zoest
06
06f
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0.5
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09 1 0 01 02 03 04 05 06 07 08 09 1

X

0.45
0 01 02 03 04 05 06 07 08

Figure 3. Example 2: Comparison of exact and approximate solutions (left) at N = 300 and
(right) at N = 500 collocation points.

Example 3. Consider

X 1 X
f(x)=1+f0 f(y)(3—2—f2(y))dy+fo 0.25f(y)dB(y), (5.3)

with the exact solution given by reference [50]:

f(x) = exp(0.25B(x)) \/1 +2 fx exp(0.5B(y)) dy, 5.4
0
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m— Approximate Solution
== = Exact Solution

T
= Anproximate Solution

== = Exact Solution

(%)

04 1 1 1 1 1 1 1 1 1 0'45 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

X X
Figure 4. Example 2: Comparison of exact and approximate solutions (left) at N = 1000 and
(right) at N = 1200 collocation points.

where f(x) is a known stochastic process defined on the probability space (X, ¥ ,P), and B(x) is a
Brownian motion process. Figures 5 and 6 illustrate the comparison of the exact solution with the
approximation solution for different collocation points. Table 3 provides an error analysis of the present
method with an exact solution for different nodes.

1.05 T T 1
= Approximate Solution

== = Exact Solution

T
== Approximate Solution
== =Exact Solution

1 0.95
0.95 09t
09 085
Zosst Z o8
08} 075
075 ¢ 07
07t 0.65
0fp—t—t—t—— el
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

Figure S. Example 3: Comparison of exact and approximate solutions (left) at N = 300 and
(right) at N = 500 collocation points.
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1
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== = Exact Solution
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Figure 6. Example 3: Comparison of exact and approximate solutions (left) at N = 1000 and

0.1

0.2

03 04 05 06 07 08 09 1
X

(right) at N = 1200 collocation points.

Table 3. Example 3: Error between the present method and the exact solution for N = 500

collocation points.

11

09

071

0.6

0.5

T T
== Approximate Solution
== = Exact Solution

Il Il Il Il Il Il Il Il Il
0 01 02 03 04 05 06 07 08 09 1
X

Xi

Exact solution

Present method

Absolute error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000 1.000000 0.000000
0.844178 0.843029 0.001149
0.758599 0.757349 0.001250
0.788945 0.787936 0.001009
0.704230 0.703617 0.000613
0.820997 0.821043 0.000046
0.801945 0.802320 0.000375
0.756991 0.757379 0.000388
0.723725 0.723902 0.000177
0.721783 0.722562 0.000779
0.719056 0.720009 0.000953

6. Conclusions

In this work, we developed a novel numerical method for solving NSIVIEs efficiently. This method
combines Monte Carlo simulations with the Legendre spectral collocation method. The proposed
approach transforms complex integral equations into a more computationally feasible system of algebraic
equations by considering the characteristics of orthogonal polynomials. We show through extensive
error analysis that the approach achieves excellent precision, especially when it comes to capturing
the complex dynamics of systems that are affected by stochastic processes and memory effects. The
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numerical examples further validate the effectiveness of the proposed method, showing that our scheme
performs well when compared to existing techniques, especially in terms of accuracy and efficiency.
The proposed Legendre spectral-Monte Carlo method demonstrates significant accuracy and efficiency
for the given NSIVIEs, however there are certain limitations; for example, the spectral accuracy of the
Legendre collocation component depends on how smooth the exact solution is. If the solution is not
very regular, the convergence rates may be lower. While the Monte Carlo simulation is an excellent
method for estimating statistical information, its computational cost may increase for large sample sizes.
Our future work is to extend this technique to integro-differential systems in heterogeneous media and
to nonlinear stochastic partial differential equations.
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