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Abstract: The heterogeneity of neuronal networks plays a crucial role in shaping emergent dynamics.
In this work, we introduced a kinetic modeling approach to describe the activity of heterogeneous
neuronal networks through transition probabilities and adjacency matrices. The model explicitly
accounts for both structural and functional heterogeneity by considering two interacting neuronal
populations—excitatory pyramidal neurons and inhibitory interneurons—distributed across network
slices. The transition probabilities encode the binary stochastic interactions between neurons, capturing
both the neuronal types involved (excitatory or inhibitory) and the connectivity structure within and
between slices. Complementarily, adjacency matrices define the weighted connections among neurons,
specifying the structural organization of each slice and the interactions across slices. Together, these
two components characterize the functional and the structural heterogeneity of the system. From this
framework, we derived a system of nonlinear ordinary differential equations describing the mesoscopic
dynamics of the network. First, for the one-slice model, we provided analytical results on the existence
and stability of equilibrium states. Then, we presented numerical simulations for two- and four-slice
networks to investigate the role of functional and structural heterogeneity. In particular, after defining
the excitatory-, inhibitory-, and balanced count regimes and introducing an a priori criterion for their
identification, we demonstrated how heterogeneity influences both the short- and long-term dynamics
of the network. Our findings revealed that increasing heterogeneity not only alters the proportion of
active neurons but also induces more complex dynamical behaviors, potentially driving shifts between
excitatory-count- and inhibitory-count-dominated regimes.
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1. Introduction

The brain can be modeled as a complex network composed of billions of interacting neurons. The
result of such non-linear interactions is the emergence of intricate spatio-temporal patterns of neuronal
activity, which underlie fundamental processes such as cognition, perception, action, and behavior
(see [1] and the references therein). Furthermore, these networks exhibit significant neuron-to-neuron
heterogeneity in their physiological properties, firing dynamics, and connectivity structure, contributing
to the diversity and adaptability of brain function.

Over the past decades, mathematical modeling has become an essential tool for investigating
large-scale brain dynamics and uncovering potential critical phenomena underlying brain activity [1].
The main sources of variability among these models emerge at the microscopic level, reflecting
differences both in the biophysical description of single-neuron dynamics and in the structural
organization of neuronal connectivity. In the brain, neurons exhibit complex and highly variable firing
patterns that critically shape network dynamics. Morphologically and biophysically detailed
Hodgkin-Huxley-type models can accurately reproduce these patterns [2–4], but they incur substantial
computational costs, making them impractical for large-scale network implementations. Therefore,
simplified neuron models, such as integrate-and-fire [5–9] or Izhikevich neurons [10, 11], are widely
adopted to simulate extended networks across multiple brain regions. A relevant question concerns how
these simplified models can capture neuron-to-neuron heterogeneity and still generate biologically
realistic dynamics, especially since most of them are not constrained by experimental data. In this
context, a notable approach is provided by adaptive generalized leaky integrate-and-fire (A-GLIF)
models, which overcome these limitations by accurately reproducing experimental spike timing under
both constant and variable current inputs, while enabling the generation of large populations of CA1
pyramidal neurons and interneurons that capture the full range of observed firing dynamics for
large-scale network simulations [12–14]. Overall, the literature often reproduces only a limited
neuron-to-neuron heterogeneity; for instance, in [11] a network of 90,000 neurons is modeled using
only eight distinct Izhikevich neuron models. Nevertheless, this level of simplification is often sufficient
to capture relevant macroscopic network dynamics.

Another relevant line of research focuses on spiking-network models based on kinetic and mean-field
approaches [7, 8, 15–19]. In these models, neuron-to-neuron heterogeneity is generally introduced
through variability in spike thresholds [20], synaptic conductances [5, 6], or adaptation and excitability
parameters [7, 21–23], among others. When the focus is on collective network dynamics, it is therefore
reasonable to adopt minimal models with simplified forms of population heterogeneity which, despite
lacking detailed microscopic realism, are still able to capture the essential macroscopic behaviors.

In this work, we adopt this perspective and investigate the collective neuronal dynamics emerging
from the intrinsic properties of the network. In particular, rather than employing biophysically detailed
neuron models, we use a (simplified) kinetic framework that reproduces macroscopic behavior driven
solely by intrinsic network properties, such as the topology of the connectivity structure and microscopic
interactions governed within a probabilistic framework. This modeling strategy is well-established in the
literature, as models incorporating basic properties of biological neuronal networks have been employed
to investigate collective oscillations [24], metastability [25], multistability [20], asynchronous states and
Griffiths phases [26, 27], and other related phenomena. For instance, in [24], a network consisting of
both excitatory and inhibitory neurons was considered, with the adjacency matrix employed to define

Networks and Heterogeneous Media Volume 20, Issue 4, 1292–1332.



1294

the connectivity of the network. Furthermore, the oscillatory collective dynamics were analyzed in
the presence of an external stimulus train, representing inputs from either other regions of the nervous
system or external sources. Specifically, at each time step, a fraction of neurons fires randomly and
the study explored the temporal evolution of active neuron density and the emergence of network
oscillations, also accounting for structural variations. However, the brain is spontaneously active even
in the absence of external inputs (see [28], and the references therein), whereas, this model is unable to
capture the spontaneous network activity that reflects intrinsic properties, such as local connectivity
and the individual characteristics of neurons. Other models, ranging from simple rate-based models of
binary neurons, where activation is probabilistically determined by a transfer function dependent on
weighted inputs [26, 29], to mean-field models [20, 30], investigate the collective dynamics of neuronal
heterogeneous networks.

As previously discussed, network heterogeneity encompasses both neuronal populations (primarily
excitatory and inhibitory neurons) and the connectivity structure. In neuronal populations, heterogeneity
can arise from differences in electrophysiological properties among neurons of the same type, as well
as from variations in the relative proportions of excitatory and inhibitory neurons [11], both of which
affect the overall excitation-inhibition balance. To explore the effects of within-type heterogeneity on
network dynamics, it is common to assume all-to-all connectivity [20]. However, the connectivity
architecture of a heterogeneous network is at least as important as the heterogeneity within and between
neuronal populations in shaping network dynamics [16,17]. Nevertheless, the cumulative effects of these
heterogeneous characteristics influence macroscopic network dynamics in an unpredictable manner. For
these reasons, the structure of network connectivity has been extensively studied and developed for
several aims. For instance, in the context of neuronal synchronization, as explored in [31], connectivity
patterns have been designed based on the well-known Watts-Strogatz small-world network model [32],
which interpolates between nearest-neighbor and random connectivity. Network heterogeneity is also
manifested through varying densities of excitatory and inhibitory neurons, which leads to the emergence
of a spatial architecture where certain regions become more or less prone to generating firing activity
due to a locally increased or decreased excitatory/inhibitory ratio [26]. Other influential approaches
include models based on graph theory (see [33–35], and the references therein) and scale-free networks
characterized by highly connected hub cells [36]. Over the years, these studies have underscored the
significant impact of connectivity structure on the complex dynamics of the brain (see [31, 33], and the
references therein). To provide a comprehensive mathematical description of connectivity, adjacency
matrices are commonly used [24, 37]. These matrices offer a compact and structured representation
of node connections [38, 39], and allow the use of linear algebra and spectral methods to extract key
network features such as connectivity, centrality, and community structure [40].

The kinetic theory approach employed in this work to model the evolution of a neuronal network has
gained considerable attention in recent years, due to its versatility in providing a multiscale description
of the phenomenon under investigation, encompassing the microscale, mesoscale, and macroscale,
see, e.g., [41, pp. 3–9] and the references therein. In particular, we refer to the active particles
method [42], following its established applications in biological contexts [43, 44], and we focus here on
binary interactions rather than multiple ones. This choice is further supported by recent advances in
neuroscience modeling based on kinetic theory [5, 6, 9, 45, 46] and the mean-field approach [7, 8, 15–19].

First, the overall system is divided into functional subsystems, which implicitly describe both the
spatial structure of the network and its functional specialization. In particular, we consider a layered
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organization, where each functional subsystem—referred to as a slice—includes both inhibitory and
excitatory neuron populations, each characterized by similar electrophysiological properties [47–51],
while also implicitly defining the spatial extent of the network. This organization can reflect specific
anatomical or functional structures, such as longitudinal or transverse slices of variable thickness
supporting signal propagation along preferential pathways [14], or the grouping of homogeneous
neuronal subtypes—e.g., interneuron classes (AA, BP, BS, CCKBC, IVY, NGF, etc.) [52] and pyramidal
neurons with similar firing characteristics. At the microscopic level, each unit is modeled as an active
particle [42], where the activity is assumed to be discrete [53], representing either firing or silent
neurons within the inhibitory and excitatory populations. The evolution of the system is then governed
by stochastic binary interactions, consisting of four types of asymmetrical interactions: pyramidal-to-
pyramidal, pyramidal-to-interneuron, interneuron-to-interneuron, and interneuron-to-pyramidal. To
provide a more realistic description of the phenomenon, specific weights are introduced, as the activity
of the neurons and the evolution of the whole network depend on the connections of each neuron.
These weights mimic the role of adjacency matrices, which are commonly employed in more general
kinetic frameworks. At the mesoscopic scale, we then describe the evolution of the discrete distribution
functions associated with the functional subsystems. Since the microscopic state variable is discrete in
each functional subsystem, the kinetic formulation naturally leads to a finite system of nonlinear ordinary
differential equations, each governing the time evolution of the corresponding discrete distribution
function, as first shown in [53], and later applied to real-world cases, e.g., [54]. This constitutes the
kinetic level of the description. At the macroscopic level, the system is considered in its entirety,
focusing on the moments of the distributions. The derivation of macroscopic models directly from the
underlying kinetic description represents a significant and challenging problem (see [55, 56], and the
references therein). Therefore, a kinetic modeling framework is adopted to describe a network composed
of interneurons and pyramidal neurons, where adjacency matrices are used to model the weights between
pairs of connections. As in [26, 30, 37], we analyze how homogeneous and heterogeneous connectivity
structures, along with the heterogeneity of inhibitory and excitatory neuron populations, affect network
dynamics in terms of the number of active interneurons and pyramidal neurons over time, both globally
and within each slice.

Despite the general description of network activity provided by this kinetic framework, a
mathematical analysis of the model can only be performed when the activity of the entire network is
considered. Furthermore, designing, simulating, and analyzing large heterogeneous networks with a
focus on architectural complexity is not straightforward, even in a numerical simulation environment.
Then, in this paper, we restrict our numerical investigations to models composed of one, two, and four
slices, defining interactions between neurons either within the same slice (within-type) or across
different slices (between-type) using simplified adjacency matrices, which provide a concise
representation of the network connectivity. Specifically, these matrices do not explicitly determine each
individual connection but instead offer a statistical description of the connectivity in terms of
percentages. Nevertheless, even within this simplified version of the kinetic model, we are able to
highlight the role of connectivity structure and neuronal population heterogeneity in shaping network
dynamics, both at a global scale and within individual slices. In this context, we introduce the concepts
of inhibitory-count-dominated and excitatory-count-dominated regimes, referring to network states in
which inhibitory (interneurons) or excitatory (pyramidal) neurons, respectively, constitute the
predominant fraction of active neurons over a given time interval. We further introduce the
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inhibition-count and excitation-count rates and propose a method to determine a priori whether the
network operates in an inhibitory- or excitatory-count-dominated regime, based on the relative
magnitudes of these rates. Although this result is analytically proven only for the one-slice model, it is
fully supported by all numerical simulations presented in this work. Notably, both the inhibition- and
excitation-count rates are intrinsic network properties of the network, i.e., they are independent of
external inputs and depend solely on the connectivity structure and the functional properties of the
neuronal populations. A related notion is proposed in [57], where a network of excitatory and inhibitory
neurons—each in either an active or inactive state—is considered, and activation and deactivation rates
are defined as functions of the surrounding neighborhood.

Overall, introducing heterogeneity into the connectivity structure leads to more intricate dynamical
behavior and enhances the phenomenological richness of the system, compared to homogeneous or fully
connected (all-to-all) network configurations. Moreover, as connectivity heterogeneity increases, the
network activity involves a smaller number of active neurons and may potentially drive a transition from
an excitatory-count-dominated to an inhibitory-count-dominated regime, and vice versa. Although the
present study focuses on the intrinsic dynamics of the network, we also perform numerical simulations in
which a fraction of neurons—either across the whole network or confined to a single slice—is activated
by external inputs representing signals from other brain regions. Under this condition, the network
dynamics exhibit oscillatory patterns driven by the frequencies and strength of the external inputs.

The number (or fraction) of active neurons analyzed in this work is a widely used metric for
characterizing global network activity and emergent collective phenomena [24, 58–66]. This measure
has been employed to quantify avalanche sizes during pattern recognition [58], assess inhibitory effects
on network dynamics [59], and describe steady states, oscillations, and avalanches in stochastic models
of active and inactive neuron populations [60], including formulations based on Langevin-type
Wilson–Cowan equations [61]. Such a coarse-grained representation enables scalable analyses of large
neuronal populations, facilitating the analysis of network stability [62], oscillatory regimes [63], and
pathological conditions such as seizures [64] and Huntington’s disease [65]. It also allows quantifying
the storage capacity of neural networks [66], where neurons are either active or inactive and memory
performance depends on the number of active units. Furthermore, the number of active neurons can be
directly inferred from experimental recordings using techniques such as calcium imaging,
electroencephalogram (EEG), or functional magnetic resonance imaging (fMRI), which capture
population-level activity rather than single-neuron dynamics. For instance, calcium imaging detects
neuronal activation by monitoring fluorescent signals associated with transient increases in intracellular
calcium [67], while EEG and fMRI measure aggregate activity over large populations and extended
time windows, reflecting global network states rather than individual spikes [68]. Consequently,
quantifying the number or fraction of active neurons improves correspondence with experimental data,
enabling robust model–data integration.

The paper is structured as follows. After the introduction, Section 2 discusses the kinetic approach
for modeling heterogeneous neuronal networks, composed of S slices containing both interneurons and
pyramidal neurons. Section 3 examines a simplified version of the model, where connections within
and between slices are described in percentage terms. Specifically, the first subsection analyzes the
one-slice model and provides a stability analysis of the equilibria. The two subsequent subsections
address the two-slice and four-slice models, respectively, where network properties are investigated
through numerical simulations. The final subsection of Section 3 addresses the case of external input.
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We conclude with some remarks and perspectives for future research.

2. A kinetic approach for a heterogeneous neuronal network

This section is devoted to the derivation of the kinetic model for a heterogeneous neuronal network.
We adopt the discrete kinetic approach of [53, 69], introducing some novel extensions tailored to
the present modeling framework. In particular, we address network heterogeneity in terms of both
neuron populations, which refers to the functionality, and of connectivity structure. First, we assume
two populations of interacting cells: interneurons, which have an inhibitory effect, and pyramidal
neurons, which have an excitatory effect. From a kinetic modeling perspective, these two populations
constitute the fundamental units of every functional subsystem. For the purposes of this paper, the total
number of neurons (interneurons and pyramidal neurons) N is assumed to remain constant over time, as
nonconservative events do not occur.

The overall network is divided into S slices, S ∈ N. The introduction of slices serves a dual purpose
introducing heterogeneity into the network. On one hand, slices can group neuron populations by cell
types [47–51] or by similar firing dynamics, such as adapting, non-adapting, and bursting neurons [70].
On the other hand, slices can represent the spatial extension of the network, at least in a discrete
formulation, where each slice acts as a small specialized region within a neuronal area.

Therefore, each neuron belongs to a specific slice, and each slice may contain both interneurons and
pyramidal neurons. For each slice h ∈ {1, 2, . . . , S }, there is a certain number of neurons, denoted as nh.
Moreover, the neurons from 1 to ĥ are interneurons, whereas neurons from ĥ + 1 to nh are pyramidal
neurons. If nh,int and nh,pyr represent the number of interneurons and pyramidal neurons, respectively, in
slice h, then

nh,int = ĥ, nh,pyr = nh − ĥ.

Bearing all the above in mind, for each slice h, with h ∈ {1, 2, . . . , S }, each neuron can be
characterized by the integer r, where r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh}, which refers to both the
position within the slice and the functional subsystem. Specifically, if the neuron is an interneuron,
1 ≤ r ≤ ĥ, and if it is a pyramidal neuron, ĥ + 1 ≤ r ≤ nh. Hereafter, we will refer to r as the label of the
neuron for each slice. Thus, the pair (h, r) provides a preliminary spatial-functional characterization of
each neuron in the network specifying its slice, position, and functional class (either interneuron or
pyramidal neuron). It is worth noting that the label (h, r) does not change during the evolution of the
network since the overall structure is conservative, i.e., proliferative or destructive events do not occur.

Neuronal subtypes and their positions within the slices provide an initial description of the network
at the microscopic level. Now, we introduce the activity variable for this model, represented by neuronal
subtypes and the somatic membrane potential v of each neuron. In general, this latter quantity may
take values in a continuous subset of R. A neuron fires an action potential, i.e., a spike event occurs,
when the membrane potential v reaches a threshold value vth. For the purposes of this paper, we are only
interested in whether the membrane potential exceeds this threshold or not. Therefore, we assume that v
can only take two possible values, i.e.,

v ∈ {v0, v1} = {0, 1}.

Specifically, if v = v0 = 0, the membrane potential of the neuron is below the threshold and no spike
event occurs; in this case, we say that the neuron is inactive. Conversely, if v = v1 = 1, the membrane
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potential exceeds the threshold, triggering a spike event; in this case, we say that the neuron is active.
Although the binary state {0, 1} might suggest that this assumption applies only to neuronal populations
exhibiting bistable membrane potentials, such as striatal projection neurons, it is employed here instead
as a general coarse-grained representation of neuronal activity, distinguishing neurons that are active
(i.e., have emitted at least one spike within the considered time window) from those that are inactive
(i.e., whose membrane potential remains below a threshold). This modeling choice is well-established
and has been widely adopted in the literature on stochastic network models [59–61, 66, 71].

Finally, bearing all the above in mind, at the microscopic scale, a neuron is characterized by the
discrete triplet (h, r, vl). It is worth pointing out that the potential vl is the only quantity that can change
during the evolution of the system, as position and functionality cannot. Then, we assume that the
microscopic dynamics follow a kinetic binary scheme. A neuron in the microscopic state (h, r, vn)
(where h ∈ {1, 2, . . . , S } is the slice, r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh} is the label, and vn ∈ {0, 1}
is the potential) passes into the state (h, r, vl) after interacting with a neuron in the microscopic state
(k, s, vm). Due to these interactions, a neuron can only change the value of its potential. To model the
microscopic dynamics, we introduce the transition probability Crs

hk(vl, vn, vm), where h, k ∈ {1, 2, . . . , S },
r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh}, s ∈ {1, 2, . . . , k̂ − 1, k̂, k̂ + 1, . . . , nk}, and l, n,m ∈ {0, 1}. In
particular, Crs

hk(vl, vn, vm) provides the probability that a neuron in the microscopic state (h, r, vn) passes
into the state (h, r, vl) after interacting with a neuron in the microscopic state (k, s, vm), as depicted in
Figure 1. Hereafter, we refer to the neuron in the microscopic state (h, r, vn) as the first neuron, and to
the neuron in the microscopic state (k, s, vm) as the second neuron. The second neuron acts on the first
neuron according to its functionality.

Figure 1. Binary microscopic interaction. A neuron in the microscopic state (h, r, vn)
undergoes a transition to the state (h, r, vl) after interacting with a neuron in the microscopic
state (k, s, vm), with a transition probability Crs

hk(vl, vn, vm).

Since a probability structure is assumed, the following assumption holds true:

H1. For all h, k ∈ {1, 2, . . . , S }, r ∈ {1, 2, . . . , ĥ−1, ĥ, ĥ+1, . . . , nh}, s ∈ {1, 2, . . . , k̂−1, k̂, k̂+1, . . . , nk},
and n,m, l ∈ {0, 1},

1∑
l=0

Crs
hk(vl, vn, vm) = Crs

hk(0, vn, vm) +Crs
hk(1, vn, vm) = 1. (2.1)

Furthermore, the transition probability Crs
hk(vl, vn, vm) can be further specified as follows:

H2. Let (vn, vm) = (0, 0), i.e., the two interacting neurons are both inactive. Then, for all h, k ∈
{1, 2, . . . , S }, r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh}, and s ∈ {1, 2, . . . , k̂ − 1, k̂, k̂ + 1, . . . , nk}, such
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that (h, r) , (k, s), we have

Crs
hk(vl, 0, 0) =

1 vl = 0,
0 vl = 1.

(2.2)

H3. Let (vn, vm) = (1, 0), i.e., the second neuron (which could either inhibit or excite the first neuron)
is inactive. In this case, no change occurs, and the first neuron remains active. Then, for all
h, k ∈ {1, 2, . . . , S }, r ∈ {1, 2, . . . , ĥ− 1, ĥ, ĥ+ 1, . . . , nh}, and s ∈ {1, 2, . . . , k̂− 1, k̂, k̂+ 1, . . . , nk},
such that (h, r) , (k, s), we obtain

Crs
hk(vl, 1, 0) =

0 vl = 0,
1 vl = 1.

(2.3)

H4. Let (vn, vm) = (0, 1). In this case, the first neuron, which can change its potential state due to
the binary interaction, is inactive, while the second neuron is active. In general, the transition
probability follows this scheme, for all h, k ∈ {1, 2, . . . , S }, r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh},
and s ∈ {1, 2, . . . , k̂ − 1, k̂, k̂ + 1, . . . , nk}, such that (h, r) , (k, s):

Crs
hk(vl, 0, 1) =

1 − prs
hk vl = 0,

prs
hk vl = 1,

(2.4)

where prs
hk ∈ [0, 1].

The general scheme in Eq (2.4) can be further refined (see Figure 2) by considering functionalities
of the involved neurons. In what follows, we simplify the notation by using x-to-y to highlight the
directional interaction from neuron x to neuron y. Specifically, we have:

int-to-int In this case, the first neuron remains inactive since interneurons, being inhibitory, do
not directly excite one another. Then, for r ∈ {1, 2, . . . , ĥ} and s ∈ {1, 2, . . . , k̂}:

Crs
hk(vl, 0, 1) =

1 vl = 0,
0 vl = 1.

(2.5)

pyr-to-int An active pyramidal neuron can excite an inactive interneuron. Then, for
r ∈ {1, 2, . . . , ĥ} and s ∈ {k̂ + 1, k̂ + 2, . . . , nk}:

Crs
hk(vl, 0, 1) =

1 − prs
1,hk vl = 0,

prs
1,hk vl = 1.

(2.6)

int-to-pyr An active interneuron cannot excite an inactive pyramidal neuron, as interneurons
primarily have an inhibitory role. Then, for r ∈ {ĥ + 1, ĥ + 2, . . . , nh} and s ∈ {1, 2, . . . , k̂}:

Crs
hk(vl, 0, 1) =

1 vl = 0,
0 vl = 1.

(2.7)
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pyr-to-pyr: An active pyramidal neuron can depolarize another pyramidal neuron and trigger its
activation. Then, for r ∈ {ĥ + 1, ĥ + 2, . . . , nh} and s ∈ {k̂ + 1, k̂ + 2, . . . , nk}:

Crs
hk(vl, 0, 1) =

1 − prs
2,hk vl = 0,

prs
2,hk vl = 1.

(2.8)

H5. Let (vn, vm) = (1, 1), such that (h, r) , (k, s), i.e., the two interacting neurons are both active (see
Figure 2). By using the same approach of the assumption H3, we distinguish the following cases:

int-to-int Two active interneurons can influence each other; if inhibition is strong enough, the
first neuron can turn off (vl = 0); otherwise, it remains active. Then, for r ∈ {1, 2, . . . , ĥ} and
s ∈ {1, 2, . . . , k̂}:

Crs
hk(vl, 1, 1) =

qrs
1,hk vl = 0,

1 − qrs
1,hk vl = 1.

(2.9)

pyr-to-int A pyramidal neuron cannot deactivate an active interneuron; this reflects the fact that
pyramidal neurons release excitatory neurotransmitters, which do not have a direct inhibitory
effect on interneurons. Then, for r ∈ {1, 2, . . . , ĥ} and s ∈ {k̂ + 1, k̂ + 2, . . . , nk}:

Crs
hk(vl, 1, 1) =

0 vl = 0
1 vl = 1.

(2.10)

int-to-pyr An active interneuron can deactivate a pyramidal neuron. This can represent a feedback
inhibition mechanism, where an active interneuron inhibits a pyramidal neuron, reducing
the overall excitatory activity in the network. Then, for r ∈ {ĥ + 1, ĥ + 2, . . . , nh} and
s ∈ {1, 2, . . . , k̂}:

Crs
hk(vl, 1, 1) =

qrs
2,hk vl = 0,

1 − qrs
2,hk vl = 1.

(2.11)

pyr-to-pyr Two active pyramidal neurons do not directly influence each other in terms of
deactivation. This reflects the nature of pyramidal-to-pyramidal connections, which are
primarily excitatory and do not typically lead to direct inhibition in a single interaction. Then,
for r ∈ {ĥ + 1, ĥ + 2, . . . , nh} and s ∈ {k̂ + 1, k̂ + 2, . . . , nk}:

Crs
hk(vl, 1, 1) =

0 vl = 0,
1 vl = 1.

(2.12)

H6. The resting case corresponds to (h, r) = (k, s) which represents self-interactions. A neuron in the
microscopic state (h, r, vn) cannot change its potential state vn, meaning it does not interact with
itself. Specifically, for all h ∈ {1, 2, . . . , S }, r ∈ {1, 2, . . . , ĥ − 1, ĥ, ĥ + 1, . . . , nh}, and vn ∈ {0, 1}:

Crr
hh(vl, vn, vn) =

1 vl = vn,

0 vl , vn.
(2.13)
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Remark 1. The above construction of the transition probability Crs
hk(vl, vn, vm) models the level of

inhibitory and excitatory activity of the overall network. In particular, the excitatory level is modulated
by prs

1,hk and prs
2,hk, whereas the inhibitory level is modulated by qrs

1,hk and qrs
2,hk.

Remark 2. In general, the transition probability Crs
hk(vl, vn, vm) is time-dependent to accurately model

neuronal dynamics in a network. However, for the aim of this study, we assume it to be time-independent,
and leave the investigation of time-dependent probabilities for future work.

Remark 3. As defined, the transition probability Crs
hk(vl, vn, vm) may be such that

Crs
hk(vl1 , vn, vm) , 0, vl1 , vn, C sr

kh(vl2 , vm, vn) = 0, vl2 , vn, (2.14)

i.e., the neuron (h, r, vn) can change its potential state due to the interaction with the neuron (k, s, vm),
but the reverse cannot occur. This property reflects the asymmetry and heterogeneity of the network.
Specifically, the transition probability values prs

1,hk, prs
2,hk, qrs

1,hk, and qrs
2,hk vary depending on the slices

h, k, labels r, s, and the potential states vn, vm, vl. This captures the network heterogeneity with respect
to functional organization, i.e., interneurons and pyramidal neurons (see Figure 2).

Figure 2. Heterogeneous network. The network heterogeneity with respect to both interneuron
(circles) and pyramidal neuron (triangles) populations is highlighted through the transition
probability values prs

1,hk, prs
2,hk, qrs

1,hk, and qrs
2,hk (top, left) and the neuron distribution in each

slice (colored circles and triangles on the right). The heterogeneous connectivity structure of
the network is determined by the weights wrs

hk (bottom, left) and is graphically represented by
the arrows within (solid lines) and between (dashed lines) slices (right). All-to-all connectivity
occurs when all weights wrs

hk are non-zero.

Up to this point, we have provided a description that does not yet take into account the connectivity
structure of the network. Typically, neuronal connectivity is defined by specific rules, ranging from
random sparse to all-to-all connections. However, the brain comprises complex networks of interacting
neurons that exhibit significant heterogeneity in both spiking dynamics and connectivity patterns. In
particular, regions like the hippocampus display structured and directional connectivity, reflecting the
functional specialization of neuronal populations [1, 52, 72]. These heterogeneous and anisotropic
connection profiles critically shape neural dynamics and need to be incorporated into accurate network
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models. To account for this, we introduce weights that describe the microscopic connectivity through
some matrices. Therefore, for all h, k ∈ {1, 2, . . . , S }, r ∈ {1, 2, . . . , nh}, and s ∈ {1, 2, . . . , nk}, let
0 ≤ wrs

hk ≤ 1 be the weight that provides the connection between the neuron (h, r) and the neuron (k, s)
(see Figure 2). For each pair of slices h and k, the weights wrs

hk form a matrix also known in literature as
an adjacency matrix. Specifically, an adjacency matrix is a matrix A = (ai j) whose entry ai j ∈ {0, 1}
encodes the presence of a connection from node i to node j in the network, i.e., ai j = 1 [73]. More
generally, a weight can be assigned to each connection, so that ai j ∈ [0, 1]; in this case, one refers to a
weighted adjacency matrix [40]. The latter is the type of structure adopted in the general framework
considered in this study. Given the interpretation of the transition probabilities Crs

hk(vl, vn, vm), the weight
wrs

hk models the connectivity from neuron (k, s) to neuron (h, r). According to the graph theory, this
quantity represents the connectivity structure of the network: if wrs

hk = 0, the two neurons are not
connected, at least in one direction (see Figure 2, bottom, left).

In order to derive the mesoscopic evolution from the microscopic description, we have to introduce
mesoscopic quantities that incorporate the information provided by the transition probabilities,
Crs

hk(vl, vn, vm), and the connection weights, wrs
hk. This latter component, associated with the weighted

connectivity, represents the main novelty of the present framework compared to that proposed in [69].
Specifically, we introduce the following four quantities, which act as averages over each neuron type
and each slice of the pointwise quantities previously introduced, for all h, k ∈ {1, 2, . . . , S } and
l, n,m ∈ {0, 1}:

Dint-to-int
hk (vl, vn, vm) :=

ĥ∑
r=1

k̂∑
s=1

wrs
hkC

rs
hk(vl, vn, vm),

Dpyr-to-int
hk (vl, vn, vm) :=

ĥ∑
r=1

nk∑
s=k̂+1

wrs
hk Crs

hk(vl, vn, vm),

Dint-to-pyr
hk (vl, vn, vm) :=

nh∑
r=ĥ+1

k̂∑
s=1

wrs
hk Crs

hk(vl, vn, vm),

Dpyr-to-pyr
hk (vl, vn, vm) :=

nh∑
r=ĥ+1

nk∑
s=k̂+1

wrs
hk Crs

hk(vl, vn, vm).

(2.15)

The above quantities (2.15) can be interpreted as averages of transition probabilities, Crs
hk(vl, vn, vm),

over the network, weighted by wrs
hk, for each slice and for each type of binary interaction. Due to the

assumption (2.1), one has

1∑
l=0

Dint-to-int
hk (vl, vn, vm) =

ĥ∑
r=1

k̂∑
s=1

wrs
hk,

1∑
l=0

Dpyr-to-int
hk (vl, vn, vm) =

ĥ∑
r=1

nk∑
s=k̂+1

wrs
hk,

1∑
l=0

Dint-to-pyr
hk (vl, vn, vm) =

nh∑
r=ĥ+1

k̂∑
s=1

wrs
hk,

1∑
l=0

Dpyr-to-pyr
hk (vl, vn, vm) =

nh∑
r=ĥ+1

nk∑
s=k̂+1

wrs
hk. (2.16)

The modeling choices at the microscopic level ensure that the neuronal network remains inherently
heterogeneous in its functionality, and both anisotropic and heterogeneous in its connectivity structure.
Specifically, the network is partitioned into S slices, each containing both interneurons and pyramidal
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neurons. These neurons are interconnected through the weights wrs
hk, which shape the connectivity in

different ways and, along with the transition probabilities Crs
hk(vl, vn, vm), determine the evolution of

the network.
In order to describe the mesoscopic evolution of the system, we introduce the following two

distribution functions:

Nh,int(t, vl) : [0, T ] × {0, 1} → R+, Nh,pyr(t, vl) : [0, T ] × {0, 1} → R+,

which represent the number of interneurons and pyramidal neurons in the slice h with potential vl, at
time t > 0, for h ∈ {1, 2, . . . , S } and l ∈ {0, 1}, respectively.

Specifically, Nh,int(t, 0) and Nh,int(t, 1) denote the total number of inactive and active interneurons of
the hth slice at time t > 0, respectively. Similarly, Nh,pyr(t, 0) and Nh,pyr(t, 1) represent the active and
inactive pyramidal neurons, respectively. Therefore, the total number of interneurons and pyramidal
neurons in the whole network with potential vl at time t > 0, for l ∈ {0, 1}, is given by the
following quantities:

Nint(t, vl) :=
S∑

h=1

N int
h (t, vl), Npyr(t, vl) :=

S∑
h=1

Npyr
h (t, vl).

Finally, the overall number of neurons is

N :=
S∑

h=1

1∑
l=0

[
Nh,int(t, vl) + Nh,pyr(t, vl)

]
, ∀t ≥ 0.

Then, integrating the additional parameters introduced above, and assuming spatial homogeneity
within each slice in accordance with the adopted modeling framework, at the mesoscopic level, the
discrete kinetic model that describes the evolution of interneurons and pyramidal neurons, respectively,
in slice h, with potential vl, for h ∈ {1, 2, . . . , S } and l ∈ {0, 1}, is [53, 69]

d
dt

Nh,int(t, vl) =
S∑

k=1

1∑
n,m=0

Dint-to-int
hk (vl, vn, vm)Nh,int(t, vn)Nk,int(t, vm)

+

S∑
k=1

1∑
n,m=0

Dpyr-to-int
hk (vl, vn, vm)Nh,int(t, vn)Nk,pyr(t, vm)

−

S∑
k=1

1∑
m=0

[ ĥ∑
r=1

k̂∑
s=1

wrs
hkNh,int(t, vl)Nk,int(t, vm)

+

ĥ∑
r=1

nk∑
s=k̂+1

wrs
hkNh,int(t, vl)Nk,pyr(t, vm)

]
,

(2.17)
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d
dt

Nh,pyr(t, vl) =
S∑

k=1

1∑
n,m=0

Dint-to-pyr
hk (vl, vn, vm)Nh,pyr(t, vn)Nk,int(t, vm)

+

S∑
k=1

1∑
n,m=0

Dpyr-to-pyr
hk (vl, vn, vm)Nh,pyr(t, vn)Nk,pyr(t, vm)

−

S∑
k=1

1∑
m=0

[ nh∑
r=ĥ+1

k̂∑
s=1

wrs
hkNh,pyr(t, vl)Nk,int(t, vm)

+

nh∑
r=ĥ+1

nk∑
s=k̂+1

wrs
hkNh,pyr(t, vl)Nk,pyr(t, vm)

]
.

(2.18)

Equation (2.17) describes the evolution of the number of interneurons in slice h with potential vl,
denoted as Nh,int(t, vl). In particular, the first two terms on the right-hand side represent the number of
interneurons that acquire the potential vl due to binary interaction with other neurons. Conversely, the
third term represents the number of interneurons that lose the potential vl due to binary interaction. The
same reasoning applies to pyramidal neurons. Notably, for vl = 1, the kinetic equations provide the
evolution of active neurons, whereas for vl = 0, they describe the evolution of inactive neurons.

The model described in Eqs (2.17) and (2.18) is a system of nonlinear ordinary differential equations,
with quadratic nonlinearity. The positive initial data N0 to be assigned to the systems (2.17) and (2.18) is

N0 =
[
Nh,int,0(vl), Nh,pyr,0(vl)

]
h∈{1,2,...,S }

l∈{0,1}
.

In particular, Nh,int,0(0) and Nh,int,0(1) represent the total number of inactive and active interneurons,
respectively, at the initial time t = 0; whereas, Nh,pyr,0(0) and Nh,pyr,0(1) play the same role for pyramidal
neurons. Then, N int

h,0(1) + Npyr
h,0 (1) is the total number of active neurons in the network at the initial time,

whereas N int
h,0(0) + Npyr

h,0 (0) is the total number of inactive neurons at the initial time. Moreover,

S∑
h=1

1∑
l=0

Nh,int,0(vl) +
S∑

h=1

1∑
l=0

Nh,pyr,0(vl) = N,

and, for all h ∈ {1, 2, . . . , S },

nh,int = ĥ = Nh,int,0(0) + Nh,int,0(1), nh,pyr = nh − ĥ = Nh,pyr,0(0) + Nh,pyr,0(1). (2.19)

Therefore, once the initial data N0 is assigned, the initial value problem related to the kinetic
systems (2.17) and (2.18) is well-defined, according to the arguments provided in [69]. Indeed, let us
consider a positive initial condition N0, as stated above. As all coefficients of kinetic equations (2.17)
and (2.18) are constant in time, along with assumption H1, the right-hand side of the systems (2.17)
and (2.18) is C1 (see for further details, for instance, [69]), and then locally Lipschitz continuous.
Therefore, by the Picard–Lindelöf theorem, the initial value problem admits a unique solution N(t).
Moreover, the positivity of the initial data guarantees that the solution N(t) remains positive for all t.
Indeed, systems (2.17) and (2.18) can be written as

d
dt

Nh,int(t, vl) = Γh,int(t, vl) − Nh,int(t, vl)Θh,int(t),

d
dt

Nh,pyr(t, vl) = Γh,pyr(t, vl) − Nh,pyr(t, vl)Θh,pyr(t),
(2.20)
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where

Γh,int(t, vl) :=
S∑

k=1

1∑
n,m=0

Dint-to-int
hk (vl, vn, vm)Nh,int(t, vn)Nk,int(t, vm)

+

S∑
k=1

1∑
n,m=0

Dpyr-to-int
hk (vl, vn, vm)Nh,int(t, vn)Nk,pyr(t, vm),

Θh,int(t) :=
S∑

k=1

1∑
m=0

[ ĥ∑
r=1

k̂∑
s=1

wrs
hkNk,int(t, vm) +

ĥ∑
r=1

nk∑
s=k̂+1

wrs
hkNk,pyr(t, vm)

]
,

(2.21)

Γh,pyr(t, vl) :=
S∑

k=1

1∑
n,m=0

Dint-to-pyr
hk (vl, vn, vm)Nh,pyr(t, vn)Nk,int(t, vm)

+

S∑
k=1

1∑
n,m=0

Dpyr-to-pyr
hk (vl, vn, vm)Nh,pyr(t, vn)Nk,pyr(t, vm),

Θh,pyr(t) :=
S∑

k=1

1∑
m=0

[ nh∑
r=ĥ+1

k̂∑
s=1

wrs
hkNk,int(t, vm) +

nh∑
r=ĥ+1

nk∑
s=k̂+1

wrs
hkNk,pyr(t, vm)

]
.

(2.22)

Due to the positivity of transition probabilities and adjacency matrices, we have that

Γh,int(t, vl), Γh,pyr(t, vl), Θh,int(t), Θh,pyr(t) ≥ 0.

Straightforward calculations show that system (2.20) becomes

Nh,int(t, vl) = e
−

∫ t

0
Θh,int(s) ds

Nh,int,0(vl) +
∫ t

0
Γh,int(s, vl) e

∫ s

0
Θh,int(τ) dτ

ds

 ,
Nh,pyr(t, vl) = e

−

∫ t

0
Θh,pyr(s) ds

Nh,pyr,0(vl) +
∫ t

0
Γh,pyr(s, vl) e

∫ s

0
Θh,pyr(τ) dτ

ds

 ,
(2.23)

which ensures that the solution remains positive.
In particular, the total number of neurons, both active and inactive, is conserved within each slice.

Therefore, by using the kinetic framework (2.17) and (2.18) along with the assumption H1, it follows
that for all h ∈ {1, 2, . . . , S } and for all t ≥ 0,

1∑
l=0

Nh,int(t, vl) = Nh,int,0(0) + Nh,int,0(1),
1∑

l=0

Nh,pyr(t, vl) = Nh,pyr,0(0) + Nh,pyr,0(1). (2.24)

Finally, the global-in-time existence of the solution could fail only if |Nh,int| → +∞ and/or |Nh,pyr| →

+∞ as t → t̂ for some t̂ < +∞. However, for the solution here obtained, this eventuality is excluded by
Eq (2.24). Therefore, there exists a unique positive solution N(t), global in time, which preserves the
total number of the involved neurons.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292–1332.



1306

Recall that nh,int and nh,pyr represent the total number of interneurons and pyramidal neurons,
respectively, in the slice h. Then, by using the conservation law Eq (2.24), one has the following first
integral for each slice h, for h ∈ {1, 2, . . . , S },

Nh,int(t, 0) = nh,int − Nh,int(t, 1), Nh,pyr(t, 0) = nh,pyr − Nh,pyr(t, 1). (2.25)

Therefore, solving the initial value problem associated with Eqs (2.17) and (2.18), even from a
numerical perspective, requires solving only half of the 2 × 2 × S ordinary differential equations.
Specifically, the system can be solved with respect to, for instance, active interneurons and pyramidal
neurons, i.e., for vl = 1. It is worth noting that the condition (2.25) allows the entire system to be written
in closed form as a function of N int

h (t, 1) and Npyr
h (t, 1).

3. Simplified network model with slice-specific heterogeneity in connectivity and transition
probabilities

This section is devoted to a specialization of the kinetic models (2.17) and (2.18) focusing on a
network comprising multiple slices, under simplified assumptions regarding both the connectivity
structure and transition probabilities (see Figure 3). Specifically, we consider S interacting slices
composed of nh,int interneurons and nh,pyr pyramidal neurons, for h = 1, . . . , S , and assume that the
interactions between pairs of neurons depend solely on their type (interneurons or pyramidal neurons)
and the slice to which they belong. Therefore, the adjacency matrices, wrs

hk∈ {0, 1}, and the transition
probabilities, Crs

hk(vl, vn, vm), depend only on whether the neurons belong to the same slice or not, which
allows us to simplify the notation of the parameters involved in the system with respect to the more
general framework introduced in the previous section. It is worth emphasizing that the discrete kinetic
systems (2.17) and (2.18) can be applied to a network of neurons, each characterized by its own
functionality and spatial properties. When h = k we refer to within-group interactions, while for h , k,
we refer to between-group interactions. For the former, we will use the superscript w, while for the
latter, b. Assuming that only a fraction of neurons are connected, we consider that αwh , βwh , γwh , δwh , for
h ∈ {1, .., S }, refer to within-group connections (i.e., wrs

hh), while αbhk , βbhk , γbhk , δbhk , for h, k ∈ {1, .., S }
with h , k, refer to between-group connections (i.e., wrs

hk) as follows:

nh,int∑
r,s=1

wrs
hh = α

wh n2
h,int,

nh,pyr∑
r,s=1

wrs
hh = β

wh n2
h,pyr,

nh,pyr∑
r=1

nh,int∑
s=1

wrs
hh = δ

wh nh,pyrnh,int,

nh,int∑
r=1

nh,pyr∑
s=1

wrs
hh = γ

wh nh,intnh,pyr,

nh,int∑
r=1

nk,int∑
s=1

wrs
hk = α

bkh nh,intnk,int,

nh,pyr∑
r=1

nk,pyr∑
s=1

wrs
hk = β

bkh nh,pyrnk,pyr,

nh,pyr∑
r=1

nk,int∑
s=1

wrs
hk = δ

bkh nh,pyrnk,int,

nh,int∑
r=1

nk,pyr∑
s=1

wrs
hk = γ

bkh nh,intnk,pyr.

(3.1)

In particular, for each slice h ∈ {1, . . . , S }, the coefficients αwh , βwh , γwh , δwh denote the fractions of
connections within the same slice, corresponding respectively to interneuron-to-interneuron, pyramidal-
to-pyramidal, pyramidal-to-interneuron, and interneuron-to-pyramidal connections. Analogously, for
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h, k ∈ {1, . . . , S } with h , k, the coefficients αbhk , βbhk , γbhk , δbhk represent the corresponding fractions
of connections between neurons belonging to different slices (Figure 3, left panel). Furthermore,
homogeneous connectivity arises if and only if

αwh = αbhk = α, βwh = βbhk = β, γwh = γbhk = γ, δwh = δbhk = δ, ∀h, k , h, (3.2)

whereas all-to-all connectivity occurs when α = β = γ = δ = 1. Similarly, the transition probabilities
are determined based on whether the interactions occur between neurons (interneurons or pyramidal
neurons) within the same slice (i.e., pwh

1 , p
wh
2 , q

wh
1 , q

wh
2 ) or across different slices (i.e., pbhk

1 , p
bhk
2 , q

bhk
1 , q

bhk
2 ),

introducing functional heterogeneity only between slices (see Figure 3, right panel). Likewise, functional
homogeneity arises if and only if

pwh
1 = pbhk

1 = p1, pwh
2 = pbhk

2 = p2, qwh
1 = qbhk

1 = q1, qwh
2 = qbhk

2 = q2, ∀h, k , h, (3.3)

whereas heterogeneity in the proportions of excitatory and inhibitory neurons across slices and
throughout the network is explicitly encoded in the network structure via the total number of
interneurons (nh,int) and pyramidal neurons (nh,pyr) in each slice.

Figure 3. Simplified network model with slice-specific heterogeneity. When neurons within
the same slice interact, the transition probabilities pwh

1 , p
wh
2 , q

wh
1 , q

wh
2 remain homogeneous for

each interaction type (pyr-to-int, pyr-to-pyr, int-to-int, and int-to-pyr) (top left). When the
interacting neurons belong to different slices, these probabilities may vary (pbhk

1 , p
bhk
2 , q

bhk
1 , q

bhk
2 ,

bottom left). The heterogeneous connectivity structure of the network is defined by the
fractions αwh , βwh , γwh , δwh (within-slice) and αbhk , βbhk , γbhk , δbhk (between-slice), represented by
solid and dashed lines (right). Variations in the relative numbers of excitatory and inhibitory
neurons across slices are captured by the total number of interneurons (nh,int) and pyramidal
neurons (nh,pyr) in each slice.

In view of the first integrals (2.25), the kinetic systems (2.17) and (2.18), under the assumptions of
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this section, can be written as follows:

d
dt

Nh,int(1) = −
S∑

k=1,k,h

αbkhqbkh
1 nh,intnk,intNh,int(1)Nk,int(1) − αwhqwh

1 n2
h,intN

2
h,int(1)

+

S∑
k=1,k,h

γbkh pbkh
1 nk,pyrnh,intNh,int(0)Nk,pyr(1) + γwh pwh

1 nh,pyrnh,intNh,int(0)Nh,pyr(1),

d
dt

Nh,pyr(1) = −
S∑

k=1,k,h

δbkhqbkh
2 nk,intnh,pyrNh,pyr(1)Nk,int(1) − δwhqwh

2 nh,intnh,pyrNh,pyr(1)Nh,int(1)

+

S∑
k=1,k,h

βbkh pbkh
2 nh,pyrnk,pyrNh,pyr(0)Nk,pyr(1) + βwh pwh

2 n2
h,pyrNh,pyr(0)Nh,pyr(1),

(3.4)

for each slice h, for h ∈ {1, 2, . . . , S }.
Furthermore, for any initial condition, the Cauchy problem associated with system (3.4) is well-

defined and admits a unique global solution.
The dynamics of active interneurons are modulated by the network interactions: inhibitory rates

γbkh pbkh
1 nk,pyrnh,int and γwh pwh

1 nh,pyrnh,int promote activation, whereas excitatory rates αbkhqbkh
1 nh,intnk,int and

αwhqwh
1 n2

h,int lead to deactivation. Similarly, the dynamics of active pyramidal neurons are governed by
the network interactions, where the excitatory rates pbkh

2 nh,pyrnk,pyr and βwh pwh
2 n2

h,pyr enhance activation,
while the inhibitory rates δbkhqbkh

2 nk,intnh,pyr and δwhqwh
2 nh,intnh,pyr reduce it. In this framework, a network is

said to operate in an inhibitory-count-dominated or excitatory-count-dominated regime when inhibitory
(interneurons) or excitatory (pyramidal) neurons, respectively, constitute the larger fraction of active
neurons over a given time interval. Numerical results suggest how to determine a priori whether the
network operates in an inhibitory-count-dominated or excitatory-count-dominated regime, based on the
relative magnitudes of the following overall inhibition-count and excitation-count rates

ΦE :=
[ S∑

h=1

( S∑
k=1
k,h

αbkhqbkh
1 nh,intnk,int + α

whqwh
1 n2

h,int

)]

×

[ S∑
h=1

( S∑
k=1
k,h

βbkh pbkh
2 nh,pyrnk,pyr + β

wh pwh
2 n2

h,pyr

)]
,

ΦI :=
[ S∑

h=1

( S∑
k=1
k,h

δbkhqbkh
2 nk,intnh,pyr + δ

whqwh
2 nh,intnh,pyr

)]

×

[ S∑
h=1

( S∑
k=1
k,h

γbkh pbkh
1 nk,pyrnh,int + γ

wh pwh
1 nh,pyrnh,int

)]
. (3.5)

In detail, we obtain the results summarized in Table 1. It can be easily observed that heterogeneous
connections, or functional heterogeneity among neuron populations, can shift a network from an
excitatory-count-dominated to an inhibitory-count-dominated regime, or vice versa.
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In the following, we analyze the simplified network model in the cases S = 1, S = 2, and S = 4.
Specifically, for S = 1, we consider the entire network, where the transition probabilities remain
homogeneous for each interaction type (pyr-to-pyr, int-to-pyr, pyr-to-int, and int-to-int), while the
connectivity structure remains heterogeneous according to Eq (3.1). In this case, a stability analysis
identifies, in all cases, the presence of a locally asymptotically stable coexistence equilibrium. This
result allows us to conclude that the presence of homogeneous transition probabilities ensures that the
network remains active if it was initially active, and, over a long period, this activity is characterized by
a constant number of active interneurons and pyramidal neurons. In this case, the results reported in
Table 1 are analytically demonstrated. When S = 2, we analyze a network with two interacting slices,
where the transition probabilities remain homogeneous for each type of interaction (pyr-to-pyr, int-to-pyr,
pyr-to-int, and int-to-int), but they may vary when the interacting neurons belong to different slices. In
particular, we examine the local dynamics of the slices when the overall dynamics of the network can
also be effectively described using the one-slice model. Finally, we perform some interesting numerical
simulations for S = 1, 2, 4, highlighting differences and similarities in the network dynamics with
respect to different levels of heterogeneity in terms of transition probabilities and connectivity structure.

Table 1. Network regimes are determined by the balance between the excitatory-count rate
ΦE and the inhibitory-count rate ΦI .

Condition Network regime
ΦE > ΦI excitation-count-dominated
ΦE < ΦI inhibition-count-dominated
ΦE = ΦI balanced count

3.1. One-slice model

In this section, we specialize the kinetic model to the entire network, i.e., S = 1. Therefore,
system (3.4) can be written in the following form:

d
dt

Nint(1) = −q1αn2
intN

2
int(1) + p1γ nintnpyrNpyr(1)Nint(0),

d
dt

Npyr(1) = −q2δnpyrnintNpyr(1)Nint(1) + p2βn2
pyrNpyr(1)Npyr(0),

(3.6)

where nint and npyr represent the total number of interneurons and pyramidal neurons in the network,
respectively. The adjacency matrices are given by

nint∑
r,s=1

wrs = α n2
int,

npyr∑
r,s=1

wrs = β n2
pyr,

nint∑
r=1

npyr∑
s=1

wrs = γ nintnpyr,

npyr∑
r=1

nint∑
s=1

wrs = δ npyrnint, (3.7)

and the transition probabilities p1, p2, q1, q2 refer to the homogeneous interactions of pyr-to-int, pyr-
to-pyr, int-to-int, and int-to-pyr type, respectively. System (3.6) is not in closed form, allowing a clear
identification of pairwise interactions between neurons of the same or different types. The contributions
of the four terms in the differential equations can be explicitly distinguished: (q1α n2

int, p2β n2
pyr) govern

excitation, forming the excitatory-count rate ΦE, while (p1γ nintnpyr, q2δ npyrnint) govern inhibition,
forming the inhibitory-count rate ΦI (see Eq (3.5)). When both ΦE and ΦI are nonzero, the ratio
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ΦE/ΦI does not depend on nint or npyr, and the network operates in an inhibitory-count-dominated or
excitatory-count-dominated regime when ΦE/ΦI < 1 or ΦE/ΦI > 1, respectively. These results can be
analytically verified via a stability analysis of the system, together with the case in which ΦE = ΦI,
when the network is count-balanced, as will be done in the following part of this section. For now, it is
worth examining the limiting cases in which ΦE = 0 or ΦI = 0. In detail, we obtain:

• For p1γ = 0 or q2δ = 0, i.e., ΦI = 0, system (3.6) becomes decoupled, since interneurons do
not interact with pyramidal neurons or vice versa. This results in logistic growth for the active
pyramidal neurons and an exponential decay to zero for the interneurons, respectively.
• For p2β = 0 or q1α = 0, i.e., ΦE = 0, the dynamics of pyramidal neurons are no longer sustained

by mutual activation, so their number can only decrease due to the action of active interneurons,
while interneurons, in the absence of self-inhibition, can only be activated by pyramidal neurons.

To perform the stability analysis, we consider the following closed form of system (3.4):

d
dt

Nint(1) = −q1αn2
intN

2
int(1) + p1γ n2

intnpyrNpyr(1) − p1γnintnpyrNint(1)Npyr(1),

d
dt

Npyr(1) = −q2δnpyrnintNpyr(1)Nint(1) + p2βn3
pyrNpyr(1) − p2βn2

pyrN
2
pyr(1).

(3.8)

We introduce the following dimensionless variables:

Ñint(1) =
N1,int(1)
Ω

, Ñpyr(1) =
N1,pyr(1)
Ψ

, t̃int =
t
τ
, t̃pyr =

t
Γ
, (3.9)

where

Ω = nint, Ψ = npyr, τ =
1

nintn2
pyr p1γ

, Γ =
1

n3
pyr p2β

. (3.10)

Equation (3.8) becomes

d
dtint

Nint(1) = −LN2
int(1) + Npyr(1) − Nint(1)Npyr(1),

d
dtpyr

Npyr(1) = Npyr(1) − HNint(1)Npyr(1) − N2
pyr(1),

(3.11)

with

L =
n2

intq1α

n2
pyr p1γ

, H =
n2

intq2δ

n2
pyr p2β

, (3.12)

where, for simplicity, we omitted the tildes.
We remark that L/H = ΦE/ΦI. Furthermore, since system (3.11) describes the dynamics of the

fractions of active interneurons and pyramidal neurons, the ensuing stability analysis can be directly
used to rigorously establish the results reported in Table 1.

System (3.11) always admits the trivial equilibrium E0 = (0, 0), whereas it exhibits three positive
coexistence equilibrium configurations Ei = (N∗int,i,N

∗
pyr,i), i = 1, 2, 3, whose existence depends on the

relative magnitudes of the parameters L and H as follows:
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• For H > 0 and 0 < L < H, i.e., ΦE/ΦI < 1,

E1 =

1
2

 H + 1
H − L

−

√
(H − 1)2 + 4L

(H − L)2

 , 1
2

2 + H(H + 1)
L − H

+ H

√
(H − 1)2 + 4L

(H − L)2


 . (3.13)

• For H > 0 and L = H, i.e., ΦE = ΦI ,

E2 =

(
1

1 + H
,

1
1 + H

)
. (3.14)

• For H > 0 and L > H, i.e., ΦE/ΦI > 1,

E3 =

1
2

 H + 1
H − L

+

√
(H − 1)2 + 4L

(H − L)2

 , 1
2

2 + H(H + 1)
L − H

− H

√
(H − 1)2 + 4L

(H − L)2


 . (3.15)

To analyze the linear stability of the equilibria, we consider the Jacobian matrix of the system (3.11):

J =
(
−2LN∗int − N∗pyr 1 − N∗int
−HN∗pyr 1 − HN∗int − 2N∗pyr

)
, (3.16)

which has the following eigenvalues:

λ1,2 =
1
2

(
1 − (H + 2L)N∗int − 3N∗pyr ±

√
(−1 + (H − 2L)N∗int + N∗pyr)2 + 4H(N∗int − 1)N∗pyr

)
.

Figure 4. Plot of the equilibria as functions of H and L. The components of equilibrium
E1 = (N∗int,1,N

∗
pyr,1) are shown in red, those of E3 in black, while the components of E2 are

located at the boundary between the surfaces representing E1 and E3.

Therefore, we have the following results:

• The equilibrium E0 is always locally unstable. In fact, the Jacobian matrix evaluated at E0 has the
eigenvalues λ1 = 1, λ2 = 0.
• The equilibria E1, E2, E3, if they exist, are locally asymptotically stable without any additional

conditions. In particular, we have:
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– The eigenvalues of the Jacobian matrix evaluated at E1 are complex conjugates with a negative
real part. Therefore, the system exhibits damped oscillatory dynamics around this steady-state.

– The Jacobian matrix evaluated at E2 has the eigenvalues λ1,2 = −1.
– The eigenvalues of the Jacobian matrix evaluated at E3 are real, distinct, and negative.

These mathematical results highlight that all count-dominated regimes, as well as the non-trivial
balanced count regimes, can be realized, whereas the balanced count regime in which no interneurons
or pyramidal neurons are active can never be observed.

Furthermore, in view of Eqs (3.13)–(3.15), the components of the coexistence equilibria, when they
exist, exhibit specific monotonic properties, as shown in Figure 4:

• The equilibrium E1, which corresponds to an inhibitory-count-dominated network regime,
decreases with H for both components, while it increases with L for the second component and
decreases for the first.
• The equilibrium E2, which corresponds to a balanced count network regime, decreases with H.
• The equilibrium E3, which corresponds to an excitatory-count-dominated network regime,

decreases with H for both components; the second component increases with L, while the first
decreases with L.

Finally, at the equilibrium E3, the number of interneurons, i.e., the first component, is always smaller
then the number of pyramidal neurons, i.e., the second component, as expected in an excitatory-count-
dominated network regime. Conversely, at the equilibrium E1, the number of interneurons is always
larger than the number of pyramidal neurons, reflecting an inhibitory-count-dominated regime. The
ratio ΦE/ΦI serves as a macroscopic indicator of whether the network operates in a count-dominated or
count-balanced regime. This balance is particularly significant, as small variations in the connectivity
structure and/or in the interaction probabilities affecting ΦE/ΦI can shift the system between regimes,
leading to qualitatively different collective network dynamics.

In the remaining part of this section, we report numerical simulations that highlight the influence of
connectivity and population heterogeneity on the global network dynamics and their role in inducing
transitions between count-dominated regimes.

Figure 5. Network activity dynamics. The one-slice model (3.8) is numerically integrated
by setting nint = 320, npyr = 1600, p1 = 0.7, p2 = 0.045, q1 = 0.1, q2 = 0.99, and assuming
a homogeneous connectivity structure with α = β = δ = γ = 1 (left), and a heterogeneous
connectivity structure with α = 0.07, β = 0.12, δ = 0.15, γ = 0.1 (right). In both cases we set
the initial conditions as N0

int(1) = 100 and N0
pyr(1) = 5.
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Figure 6. Network activity dynamics. System (3.8) is numerically integrated using the same
parameter values as in Figure 5, except for p1 which is set to 0.3.

Figure 5 illustrates the network activity dynamics in terms of the number of active interneurons
and pyramidal neurons, for a homogeneous (Figure 5, left) and a heterogeneous (Figure 5, right)
connectivity structure. Consistent with the model, for fixed transition probabilities and a given total
number of interneurons and pyramidal neurons in the network, the connectivity structure influences
both the network dynamics and the equilibrium values of active interneurons and pyramidal neurons.
Furthermore, in the homogeneous case, the equilibrium values of active interneurons and pyramidal
neurons are reached in a shorter time.

To highlight the role of transition probabilities in network dynamics, we perform a new simulation
of the model, as shown in Figure 6. Specifically, we set all parameter values as in Figure 5, except
for the transition probability p1, which governs the activation of interneurons due to interactions with
pyramidal neurons. By setting p1 = 0.3 instead of p1 = 0.7, we observe, in both the homogeneous case
(Figure 6, left) and the heterogeneous case (Figure 6, right), a lower number of active interneurons and
a higher number of active pyramidal neurons, consistent with the lower activation probability of the
interneuron compared to the previous case.

Figure 7. Effects of the connectivity structure. Different dynamics can be observed by varying
the network connectivity structure in terms of the parameters α, β, γ, δ, which represent the
fractions of int-to-int, pyr-to-pyr, pyr-to-int, and int-to-pyr connections, respectively. All other
numerical parameter values are set as in Figure 6.
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Figure 8. Effects of the balance between excitatory and inhibitory neurons. The figure
illustrates how, starting from nint = 320, varying the ratio npyr/nint to values of 3 (left),
5 (middle), and 6 (right) affects the network dynamics in both homogeneous (top) and
heterogeneous (bottom) connectivity. All other numerical parameter values are set as in
Figure 6.

In Figure 7, we illustrate the role of the parameters α, β, γ, δ, which represent the fraction of int-to-
int, pyr-to-pyr, pyr-to-int, and int-to-pyr connections, respectively, in the dynamics of active interneurons
and pyramidal neurons. An increase in the values of the parameters α (int-to-int connections) or β (pyr-
to-pyr connections) results in enhanced excitatory activity in the network, at the expense of inhibitory
activity. In contrast, the opposite effect is observed for the parameters δ and γ.

Figure 9. Dominated regime shift. Transition from an excitatory- (ΦE/ΦI = 102) to an
inhibitory-count-dominated regime (ΦE/ΦI = 0.25), induced by heterogeneous connectivity,
is illustrated. The one-slice model is numerically integrated assuming an all-to-all connectivity
structure (left), and a heterogeneous connectivity (right) with α = 0.04, β = 0.04, δ = γ = 0.8.
Other parameters are nint = 320, npyr = 1600, p1 = 0.05, p2 = 0.5, q1 = 0.5, q2 = 0.05, and
the initial conditions are N0

int(1) = 100 and N0
pyr(1) = 5.

Finally, Figure 8 explores how the balance between excitation and inhibition affects the network
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dynamics. In particular, under the assumption that interneurons exert a significantly stronger modulatory
effect compared to pyramidal neurons, we consider a network composed of N = nint + npyr neurons,
with npyr/nint = 3, 5, 6. Significantly, we observe that for npyr/nint = 3 or 5, the equilibrium value of
pyramidal neurons is lower than that of interneurons. However, when npyr/nint = 6, the opposite occurs,
with pyramidal neurons exhibiting a higher equilibrium value than interneurons, in both homogeneous
(Figure 8, top) and heterogeneous (Figure 8, bottom) connectivity structures. In Figure 9, we report a
case of the transition from an excitatory- (ΦE/ΦI > 1) to an inhibitory-count-dominated (ΦE/ΦI < 1)
regime produced by modifying only the connectivity structure of the network. These simulations
illustrate the activity of the entire network, composed of two populations of interneurons and pyramidal
neurons, each characterized by fixed firing and excitability properties (i.e., p1, p2, q1, q2), and a
connectivity structure defined as a percentage by the parameters α, β, γ, δ. Moreover, within this
framework, the heterogeneity in both excitability and connectivity structure remains relatively limited.
In the following section, we demonstrate how a constrained version of the two-slice model can reproduce
the same overall network dynamics while also providing insights into the local dynamics within each
slice. Finally, we will present more general dynamics of the sliced network that cannot be inferred from
the one-slice model.

3.2. Two-slice model

In this section, we analyze the outcomes of the kinetic model (3.4), assuming the network consists of
two interacting slices, i.e., S = 2. In this case, system (3.4), in view of Eq (2.25), reduces to

d
dt

N1,int(1) = −αw1qw1
1 n2

1,intN
2
1,int(1) − αb21qb21

1 n1,intn2,intN1,int(1)N2,int(1)

+ γw1 pw1
1 n1,pyrn2

1,intN1,pyr(1) − γw1 pw1
1 n1,pyrn1,intN1,pyr(1)N1,int(1)

+ γb21 pb21
1 n2,pyrn2

1,intN2,pyr(1) − γb21 pb21
1 n2,pyrn1,intN2,pyr(1)N1,int(1),

d
dt

N1,pyr(1) = −δw1qw1
2 n1,intn1,pyrN1,pyr(1)N1,int(1) − δb21qb21

2 n1,pyrn2,intN1,pyr(1)N2,int(1)

+ βw1 pw1
2 n3

1,pyrN1,pyr(1) − βw1 pw1
2 n2

1,pyrN
2
1,pyr(1)

+ βb21 pb21
2 n2,pyrn2

1,pyrN2,pyr(1) − βb21 pb21
2 n2,pyrn1,pyrN1,pyr(1)N2,pyr(1),

d
dt

N2,int(1) = −αb12qb12
1 n1,intn2,intN2,int(1)N1,int(1) − αw2qw2

1 n2
2,intN

2
2,int(1)

+ γb12 pb12
1 n1,pyrn2

2,intN1,pyr(1) − γb12 pb12
1 n1,pyrn2,intN1,pyr(1)N2,int(1)

+ γw2 pw2
1 n2,pyrn2

2,intN2,pyr(1) − γw2 pw2
1 n2,pyrn2,intN2,pyr(1)N2,int(1),

d
dt

N2,pyr(1) = −δb12qb12
2 n1,intn2,pyrN2,pyr(1)N1,int(1) − δw2qw2

2 n2,intn2,pyrN2,pyr(1)N2,int(1)

+ βb12 pb12
2 n1,pyrn2

2,pyrN1,pyr(1) − βb12 pb12
2 n1,pyrn2,pyrN1,pyr(1)N2,pyr(1)

+ βw2 pw2
2 n3

2,pyrN2,pyr(1) − βw2 pw2
2 n2

2,pyrN
2
2,pyr(1).

(3.17)

A straightforward calculation allows us to establish a complete equivalence between system (3.8)
and a constrained version of system (3.17). Specifically, by assuming ni,int = nint/Ai, ni,pyr = npyr/Bi, for
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i = 1, 2, and imposing the following conditions for all i, j = 1, 2:

pwi
1 = pbi j

1 = pb ji

1 = p1, pwi
2 = pbi j

2 = pb ji

2 = p2, qwi
1 = qbi j

1 = qb ji

1 = q1, qwi
2 = qbi j

2 = qb ji

2 = q2. (3.18)

Figure 10. Constrained two-slice network activity dynamics. The two-slice model (3.17)
is numerically integrated under the constraints (3.18) and (3.19), and the overall network
dynamics are compared with the dynamics of each slice. We set A1 = 8, A2 = 8/7, B1 = 5,
and B2 = 5/4, while all the remaining parameters are fixed as in Figure 6. In both cases we
set the initial conditions as N0

1,int(1) = 100,N0
1,pyr(1) = 5, and N0

2,int(1) = N0
2,pyr(1) = 0.

Equation (3.17) reduces to Eq (3.8) provided that, for all i, j = 1, 2, the following constraints hold:

αwi = A2
i α, α

bi j = AiA jα, βwi = B2
i β, β

bi j = BiB jβ,

δwi = AiBiδ, δ
bi j = AiB jδ, γwi = AiBiγ, γ

bi j = A jBiγ.
(3.19)

Figure 11. Constrained two-slice network activity dynamics. The two-slice model (3.17) is
numerically integrated under the constraints (3.18) and (3.19), by setting nint = 400, 320, npyr =

1600, A1 = 4, A2 = 4/3, B1 = 8, B2 = 8/7, p1 = 0.6, p2 = 0.1, q1 = 0.3, q2 = 0.8, and assuming
a homogeneous connectivity structure with α = β = δ = γ = 1 (left), and a heterogeneous
connectivity structure with α = 0.9, β = 0.3, δ = 0.9, γ = 0.1 (right). In both cases we set the
initial conditions as N0

1,int(1) = N0
1,pyr(1) = 0, and N0

2,int(1) = 100, and N0
2,pyr(1) = 5.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292–1332.



1317

Figure 12. Two-slice network activity dynamics. System (3.17) is numerically integrated
by setting n1,int = n2,int = 240, n1,pyr = n2,pyr = 1200, pw1

1 = 0.01, pw1
2 = 0.045, qw1

1 = 0.1,
qw1

2 = 0.01, pw2
1 = 0.9, pw2

2 = 0.1, qw2
1 = 0.1, qw2

2 = 0.9, pb12
1 = 0.1, pb21

1 = 0.9, qb12
1 = 0.1,

qb12
2 = 0.99, pb21

2 = 0.1, pb12
2 = 0.045, qb21

1 = 0.1, and qb21
2 = 0.9, the within-slice connectivity

structure αw1 = 0.07, βw1 = 0.05, γw1 = 0.1, δw1 = 0.15, αw2 = 0.9, βw2 = 0.12, γw2 = 0.1,
δw2 = 0.6, and the between-slice connectivity αb21 = 0.5, γb21 = 0.5, δb21 = 0.15. Additionally,
we set βb21 = 0.01 for the left panel and βb21 = 0.25 for the right panel. In both cases we set
the initial conditions as N0

1,int(1) = N0
1,pyr(1) = 0, and N0

2,int(1) = 50, and N0
2,pyr(1) = 5.

In Figure 10, we examine the overall network dynamics when the network is composed of two
different slices. We assume that slice 1 consists of only 1/8 of the total interneurons and 1/5 of the total
pyramidal neurons. System (3.17) is numerically integrated under the constraints (3.18) and (3.19),
with the numerical values of parameters as set in Figure 6. Initially, only interneurons and pyramidal
neurons belonging to slice 1 are activated. Although the transition probabilities remain homogeneous
for each type of interaction (pyr-to-pyr, int-to-pyr, pyr-to-int, and int-to-int) in both slices, it is possible
to observe how the connectivity structure affects both the dynamics within each slice and the overall
network dynamics. Moreover, when a homogeneous connectivity structure is assumed, the overall
dynamics differ slightly from those of each individual slice (Figure 10, left). In particular, the long-term
values of the total number of active pyramidal neurons are slightly lower compared to the interneurons
(black and red dashed lines in Figure 10, left), but this property is observed only in slice 2 (gray and
orange lines in Figure 10, left), and not in slice 1 (black and red lines in Figure 10, left), where the
behavior is opposite.

Another comparison between the one-slice and constrained two-slice models is presented in Figure 11.
In particular, we highlight the influence of the connectivity structure on network dynamics, both
globally and locally within each slice. Under homogeneous connectivity, both interneurons and
pyramidal neurons exhibit a classical S-shaped growth pattern (Figure 11, left). In contrast, with
heterogeneous connectivity, the dynamics are no longer monotonically increasing, leading to more
complex interactions between the two neuronal populations, both at the global network level (black
and red dashed lines in Figure 11, right) and within each slice (colored continuous lines in Figure 11,
right). The section concludes with a two-slice model simulation where the overall network dynamics
cannot be inferred from the one-slice model, as conditions (3.18) and (3.19) are not satisfied (see
Figure 12). We consider a network composed of two slices that are identical only in terms of the
number of interneurons and pyramidal neurons, i.e., n1,int = n2,int = 1200 and n1,pyr = n2,pyr = 240,

Networks and Heterogeneous Media Volume 20, Issue 4, 1292–1332.



1318

but are characterized by neuronal populations that inherently differ in both their firing and excitability
properties, as well as in their connectivity structure. We focus on a heterogeneous and asymmetrical
network connectivity structure, where slice 2 is (heterogeneously) connected to slice 1, but not vice
versa, i.e., αb12 = βb12 = γb12 = δb12 = 0 (Figure 12, left). First, we examine the case where the pyramidal
neurons of slice 2 are weakly connected to the pyramidal neurons of slice 1, i.e., βb21 = 0.01 (Figure 12,
right), and then we increase this type of connectivity by setting βb21 = 0.25. As expected, the increase in
the parameter βb21 affects only the dynamics of slice 1 (Figure 12, red and black continuous lines) and,
consequently, the overall network dynamics (Figure 12, black and red dot-dashed lines). In particular,
this modification of the connectivity structure results in a higher number of active pyramidal neurons
compared to both the previous case and the number of active interneurons in both scenarios. This
highlights how a modification in the connectivity structure can unbalance the overall excitation or
inhibition of the network.

3.3. Four-slice model

In this section, we consider the four-slice model, which can be derived from Eq (3.4) by setting
S = 4. As the number of slices increases, predicting a priori the dynamics of active interneurons and
pyramidal neurons becomes increasingly challenging due to the complex cumulative effects of the
model parameters on both local and global network dynamics.

To address this, we perform numerical simulations exclusively on the four-slice model to highlight
the fundamental role of connectivity structure in shaping network dynamics. Specifically, we fix firing,
excitability, and inhibition properties of the four neuronal populations and analyze both local and
global network behaviors solely as a function of the connectivity structure, distinguishing between
homogeneous and heterogeneous cases. Given the high dimensionality of the input parameters in these
simulations, we summarize them in tables (see Table 2), which serve as the fundamental reference for the
input data to be associated with the Python code* provided with the paper (see Supplementary). For both
simulations, we first consider a network with homogeneous connectivity, resulting in strongly excitatory
network dynamics (Figure 13, left panels). Then, we demonstrate how introducing a heterogeneous
and asymmetrical connectivity structure may not only modify local and global network dynamics (see
Figure 13, right panels) but, in a specific case, even transform the excitatory-count-dominated nature of
the network into a predominantly inhibitory-count one (Figure 13, lower right panel).

Specifically, to highlight the impact of connectivity structure on network dynamics, we first consider
a homogeneous connectivity setup for four identical excitatory and inhibitory neuronal populations in
terms of neuron count, introducing only slight heterogeneity in transition probabilities pwh

1 , pwh
2 , qwh

1 , qwh
2

(within-slice) and pbhk
1 , pbhk

2 , qbhk
1 , qbhk

2 (between-slice). For this purpose, we set all model parameters as in
Table 2, except for the connectivity parameters—αwh , βwh , γwh , δwh (within-slice) and αbhk , βbhk , γbhk , δbhk

(between-slice)—which are all fixed at 1 (i.e., 100% in percentage terms) for panel A of Figure 13,
and with αwh = αbhk = 1, βwh = βbhk = 1, γwh = γbhk = 0.1, δwh = δbhk = 0.2 for panel B of Figure
13. As expected, interneurons and pyramidal neurons within each slice exhibit similar dynamic trends
(Figure 13, middle panels). In particular, the activity of pyramidal neurons in each slice undergoes a
slight decline after an initial peak, coinciding with an increase in the number of active interneurons
within the slices (Figure 13, middle panels). However, in case A with all-to-all connectivity, the network
is inhibitory-count-dominated (ΦE/ΦI = 0.63), whereas in case B with homogeneous connectivity, it

*Python code is available at the ModelDB section of the Senselab database (https://modeldb.science/2020339).
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operates in an excitatory-count-dominated regime (ΦE/ΦI = 1.28) (Figure 13 left panels, continuous
curves), but only in case A the network activity remains excitatory-count-dominated (ΦE/ΦI = 0.18).
Introducing a heterogeneous and asymmetric connectivity structure significantly alters the dynamics of
the network (Figure 13, middle panels). Notably, in case B (middle pane) the initial peak in pyramidal
neuron activity is followed by a sharp decline accompanied by damped oscillations, in contrast to the
sustained excitatory response observed in the homogeneous condition (Figure 13, bottom right panel).

Figure 13. Four-slice network activity dynamics. Dynamics of active interneurons and
pyramidal neurons in a four-slice networks with homogeneous (left) and heterogeneous
(middle) connectivity structures. Panel A: Homogeneous connectivity results in a rapid
increase in neuronal activity for both interneurons and pyramidal neurons, followed by
a plateau, reflecting an inhibitory-count-dominated regime. Although heterogeneous
connectivity (middle panel) induces an initial peak in pyramidal neurons activity followed by
a sharp decline highlighting the impact of connectivity structure on network dynamics, the
inhibitory-count-dominated regime persists (left). Panel B: Under homogeneous connectivity
(left), all four slices exhibit similar activity patterns, with a stabilization after an initial
rise. In the heterogeneous network (middle), the introduction of asymmetric connection
strengths leads to substantial variability across slices, with pronounced oscillatory behavior
and a shift toward a predominantly inhibitory-count-dominated network state (lower middle
panel). The inset further emphasizes the sustained suppression of the pyramidal neurons
activity, and how an increased heterogeneity on the connectivity structure may drive the
network toward an inhibitory-count-dominated regime. The input parameters used for these
numerical simulations are reported in Table 2, with the exception of parameters related to the
homogeneous connectivity structure (αwh , βwh , γwh , δwh (within-slice) and αbhk , βbhk , γbhk , δbhk

(between-slice)), which need to be set to 100% for the dynamics reported in the top right panel
and with αwh = αbhk = βwh = βbhk = 100%, γwh = γbhk = 10%, δwh = δbhk = 20% for panel B.
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Table 2. Input parameters for the four-slice network model of Figure 13. The table summarizes
the input parameters used for the numerical simulations of the four-slice network model shown
in Figure 13 (right panels), including neuron counts (panels A and B, top left), initial conditions
(panels A and B, top right), connectivity structures (panels A and B, middle), and transition
probabilities (panels A and B, bottom) for the neuronal populations within and between the
four slices. For the simulations involving homogeneous network connectivity (Figure 13,
left panels), all parameters related to the connectivity structure of panel A (panels A and
B, middle) need to be set to 100% and to αwh = αbhk = βwh = βbhk = 100%, γwh = γbhk =

10%, δwh = δbhk = 20% for panel B. Due to the asymmetrical properties of the network, the
red arrows indicate the direction of the interactions, which are organized row-wise from left
to right.

This effect is particularly evident in the lower middle panel, where the introduction of heterogeneity
results in a predominantly inhibitory-count-dominated network state (ΦE/ΦI = 0.0032), characterized
by prolonged suppression of pyramidal neuron activity and a relative increase in oscillatory interneuron
activity. The inset in the lower middle panel further highlights this shift, showing a sustained inhibition
of pyramidal neuron activity over time.

These findings highlight the crucial role of connectivity structure in shaping network dynamics, with
increased heterogeneity potentially driving a transition from an excitatory-count-dominated to an
inhibitory-count-dominated regime. In the final simulation of the four-slice network, we show that,
starting from an all-to-all connectivity structure in an inhibitory-count-dominated network
(ΦE/ΦI = 0.07), a heterogeneous configuration can either preserve the inhibitory-count-dominated
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regime (ΦE/ΦI = 0.1, panel B of Figure 14) or shift the network to an excitatory-count-dominated
regime (ΦE/ΦI = 1.27, panel C of Figure 14). A similar finding is observed for a network with the
same heterogeneous connectivity as in panel C when the interaction probabilities are modified
(ΦE/ΦI = 0.24, panel D of Figure 14). This illustrates how modifications in connectivity and/or
transition probabilities—potentially associated with pathological conditions—can drive transitions
between distinct count-dominated network regimes. All parameters used in the four-slice network
simulations of Figure 14 are set according to Table 3.

Table 3. Input parameters for the four-slice network model of Figure 14. The table reports
neuron counts and initial conditions (top left), transition probabilities (bottom left), and
connectivity structures (right) of the network. For simulations with homogeneous connectivity
(panel A of Figure 14), all connectivity-related parameters are set to 100%.
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Figure 14. Count-dominated regime shift in a four-slice network. Starting from an all-to-all
connectivity structure in an inhibitory-count-dominated network (panel A), a heterogeneous
connectivity configuration can either preserve the inhibitory-count-dominated regime (panel
B) or shift the network to an excitatory-count-dominated regime (panel C). Moreover, the
network in panel D becomes inhibitory-count-dominated when the transition probabilities are
altered compared to panel C, while the connectivity structure remains identical.

3.4. External inputs

In this section, we report some numerical simulations for one- and four-slice models in the presence
of external inputs, representing input from other regions of the nervous system. As shown in the previous
sections, for any fixed input, the one-slice model exhibits internal attractor dynamics, each characterized
by its own basin of attraction. In particular, when a fixed initial number of active neurons lies within
a given basin, the dynamics converge to the corresponding attractor in the absence of external inputs
(Figures 5–14). However, in the presence of external inputs, the dynamics may alternate between
attractors, generating oscillatory patterns of active neurons, which can also persist around asymptotically
stable equilibria.

Compatible with our framework, and for simplicity considering the one-slice model, we model
external input arriving at the network neurons at time th − ∆ by imposing that, at time th, a fraction
ηE(th) Npyr(th, 0) and ηI(th) Nint(th, 0) of inactive interneurons and pyramidal neurons become active,
respectively. To model time-varying input intensities, we set ηi(th) for i = I, E, as either a constant value
or a time-dependent function. In detail, we define ηi(th) = fi, i = I, E, or according to the following law:

ηi(th) = fi

[
sin (ai tsi

h )
]2ri
, i = I, E, (3.20)

where fi represents the maximum percentage of involved inactive neurons, and the parameters ai, si,
and ri are all positive. Moreover, the sequence of times th at which each external input arrives can be
generated either periodically (with one or multiple frequencies) or randomly.

Then, the network dynamics over the interval [t0,T ], in the presence of external inputs arriving at
times t1 − ∆, . . . , tM − ∆, is computed by solving a sequence of M Cauchy problems on the subintervals
[t0, t1), [t1, t2), . . . , [tM,T ]. At each input time th, the initial data for active interneurons Nint(th, 1) and
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pyramidal neurons Npyr(th, 1) are updated to account for the external stimulation as follows:

Nint(th, 1) = Nint(t−h , 1) + ηI(th) Nint(t−h , 0), h = 1, · · · ,M,
Npyr(th, 1) = Npyr(t−h , 1) + ηE(th) Npyr(t−h , 0),

(3.21)

where t−h = th − ∆, Nint(t−h , 0) = nint − Nint(t−h , 1), and Npyr(t−h , 0) = npyr − Npyr(t−h , 1) denote the number of
inactive interneurons and pyramidal neurons, respectively.

Figure 15. Oscillatory network dynamics induced by external inputs in the one-slice model.
Different collective and oscillatory dynamics emerge when external inputs are applied, ranging
from periodic oscillations (panels A and B) to regular and intermittent bursting activity (panels
C and D). The external input parameters used in all panels are summarized in Table 4. Each
inset highlights the network dynamics within a shorter time interval.

It should be evident that, within each of the above time intervals, all the qualitative and quantitative
results concerning the solutions and equilibria still hold. Similarly, the same procedure can be applied
when the number S of slices is greater than one. However, in this case, it is also possible to simulate
scenarios in which only the neurons of one or more specific slices are affected by external inputs, for
example, when such inputs originate from brain regions connected exclusively to those slices.

In the rest of this section, we report two sets of numerical simulations with external inputs for the
one- and four-slice models. First, we consider the one-slice model previously analyzed in Figure 6,
and additionally assume that a series of external inputs arrive at times th − ∆, activating fractions
ηE(th) Npyr(th, 0) and ηI(th) Nint(th, 0) of inactive pyramidal neurons and interneurons, respectively, as
summarized in Table 4, which applies to all panels of Figure 15.

The inclusion of different external inputs generates a variety of network oscillations resembling those
observed in various brain areas. In particular, external stimulation governs transitions among distinct
dynamical states of the network, ranging from constant and time-varying periodic oscillations (panels A
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and B, respectively) to periodic constant and randomly time-varying bursting activity (panels C and D,
respectively). It is evident that the emergence of these oscillatory dynamics critically depends on the
duration and strength of the external inputs, as well as on the intrinsic dynamical regime of the network
in absence of external stimulations. In particular, the network dynamics shown in Figure 6 (right panel)
exhibit an asymptotically persistent state. Consequently, the oscillatory patterns observed in Figure 15,
induced by external inputs, tend to persist around these asymptotically stable equilibria. Following
any external perturbation, the system rapidly relaxes back to equilibrium, unless further inputs are
delivered (see Figure S1). A systematic investigation of how specific collective dynamics arise as a
function of input duration and strength, as well as functional and connectivity heterogeneity, will be
addressed in a future study. We then focus on the four-slice model to show that comparable oscillatory
dynamics emerge even when external inputs target only a single slice, as expected for anatomically
defined network subdivisions. To this end, we consider the heterogeneous four-slice network shown in
Figure 13, panel A (middle), and restrict the external inputs to slice 1, as detailed in Table 4.

Figure 16. Oscillatory network dynamics induced by external inputs in the four-slice model.
Oscillatory dynamics emerge when external inputs are applied only to slice 1. Due to the
connectivity and interaction probabilities, these oscillations propagate to all other slices.
Depending on the external inputs, the dynamics of all slices are characterized by periodic
oscillations (panels A and B) or by regular and intermittent bursting activity (panels C and D).
The external input parameters used in all panels, applied only to slice 1, are summarized in
Table 4.

The network dynamics shown in Figure 13 (panel A, middle) exhibit an initial transient oscillatory
regime in the number of active pyramidal neurons across all slices, which eventually converges toward
asymptotically persistent states. In contrast, the number of active interneurons in each slice rapidly
reaches a stable equilibrium. As shown in Figure 16, after a short transient state, the activity of all
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slices becomes influenced by the external stimulation, even though only slice 1 is directly targeted (see
Figures S2–S5, middle and right panels). The dynamics arising in slices 2, 3, and 4 are thus entirely
mediated by their connectivity with slice 1, as specified in Table 2 (top left). Oscillatory patterns persist
around the asymptotically stable equilibria both at the whole-network scale (see Figures S2–S5, left
panels) and within each individual slice (see Figures S2–S5, middle and right panels). However, in
slices 3 and 4 the oscillations in the number of active interneurons appear markedly attenuated. This
attenuation is due, on the one hand, to the weaker connectivity of slices 3 and 4 with slice 1 and,
on the other hand, to the fact that during the transient state of the unperturbed dynamics the number
of active interneurons has already reached its asymptotic value and is therefore less susceptible to
significant variations.

Table 4. External inputs. The table reports the parameters used to simulate the arrival of
external inputs in both the one- and four-slice network models (see Figures 15, 16, and S1–S5).

Panel th ηI(th) ηE(th)
A 0.8 h, h ∈ N 0.15 0.15

B 0.8 h, h ∈ N 0.3
[
sin (107 th)

]12
0.3

[
sin (107 th)

]12

C t0 = 1, th =

th−1 + 0.5 h mod 4 , 0,

th−1 + 1 h mod 4 = 0,
h > 0 0.15 0.15

D random 0.3
[
sin (107 th)

]12
0.3

[
sin (107 th)

]12

In all scenarios, Figures S2–S5 show the dynamics of both the whole network and each individual
slice, and additionally compare the intrinsic dynamics (dashed lines, no external input) with the externally
driven dynamics (solid lines), in terms of the fraction of active interneurons and pyramidal neurons.

4. Conclusions and research perspectives

In this paper, we have employed a kinetic modeling approach to describe the evolution of a
heterogeneous neuronal network composed of interneurons and pyramidal neurons. Specifically, the
connectivity of the network— structured into S slices— is modeled through adjacency matrices, which
act as weight functions, while neuronal interactions are described by transition probabilities.

This framework captures both intra-slice and inter-slice interactions, thus accounting for network
heterogeneity in terms of connectivity structure and functionality. After deriving the general
models (2.17) and (2.18), we analyzed three specific quasi-heterogeneous networks in which adjacency
matrices and transition probabilities depend solely on whether neurons belong to the same slice or
different ones. For the one-slice network, we also carried out an analytical investigation of coexistence
equilibria and their stability properties. We then examined the two-slice and four-slice networks. Even
within this simplified framework, the adjacency matrices and transition probabilities account for
different dynamical behaviors driven by network heterogeneity. Furthermore, we introduced the
inhibitory-count-dominated and excitatory-count-dominated regimes and proposed a criterion — based
on inhibition- and excitation-count rates — to determine a priori which regime a network operates in.
Although analytically proven only for the one-slice network, this regime identification is consistently
confirmed by all numerical simulations. Our results demonstrate that increasing heterogeneity in the
network modulates the fraction of active neurons and promotes the emergence of more complex
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dynamical behaviors. This heterogeneity may potentially drive regime shifts between excitatory-count
and inhibitory-count dominance. Finally, we investigated the effect of external inputs, modeled by
redefining the initial state of the network during its time evolution and selectively activating fractions of
interneurons and/or pyramidal neurons at specific time steps. This analysis revealed the emergence of
distinct network regimes and oscillatory behaviors, while preserving the mathematical well-posedness
of the system.

As future research directions, we aim to extend the framework (2.17) and (2.18) to a more general
case, where the transition probabilities follow suitable distributions to account for the firing dynamics
of adapting, non-adapting, and bursting neurons. Additionally, we plan to implement adjacency
matrices that reproduce the biophysical connectivity reported in the literature [14, 52, 72]. Moreover,
including external inputs directly in the model equations may complement the preliminary analysis
presented in Subsection 3.4. Furthermore, we plan to perform mathematical and numerical analyses to
characterize the dynamical behavior of neuronal networks, accounting for phenomena such as traveling
waves, oscillations, and other emergent dynamics. Introducing time-dependent transition probabilities,
accounting for synaptic plasticity, represents a future challenge for this framework. However, this
extension may compromise some of the mathematical properties of the current model. We plan to
introduce a continuous activity variable v representing the membrane potential and taking values in a
continuous subset of R. This would lead to a continuous kinetic framework, in which the system evolves
according to a system of nonlinear partial-integro-differential equations. Beyond the mathematical
challenge, this extension would enable the explicit modeling of membrane potential dynamics, providing
a more physiologically realistic description of neuronal activity. In this context, a Fokker–Planck-type
system could be derived under a quasi-invariant collision regime [74]. Furthermore, by extending
the model to continuous membrane potential variables, we also aim to establish conceptual links
with seminal mean-field theories by Amari [75, 76] on random analog networks and self-organizing
binary threshold systems, which, like our framework, adopt a mesoscopic perspective to describe
emergent collective dynamics. This extension would also facilitate the inclusion of synaptic plasticity
or Hebbian-like adaptations of transition probabilities, thereby enabling the modeling of associative-
memory mechanisms.

Finally, in line with the spatially structured slices considered in this study, we aim to introduce a
continuous spatial variable representing the position of each neuron within the network. As with the
continuous activity variable, this extension is expected to pose additional mathematically
demanding challenges.
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