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Abstract: In this research, we advanced the optimal control theory for queuing systems that are
characterized by integro-differential equations. Our primary goal was to identify an optimal service rate
that minimizes a performance criterion, which is a composite of the system state at the final time and
the cost associated with the optimal service rate. The optimal service rate was defined by an optimality
system, and this formulation essentially translated the problem into a bilinear control problem within
a nonreflexive Banach space, utilizing L!'-optimization techniques. We provided a rigorous proof of
the existence of an optimal controller and offered a detailed characterization of the optimal control.
Additionally, a comparison was made with traditional steady-state results to highlight the differences
and improvements. Finally, numerical analysis was conducted on the theoretical results.
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1. Introduction

Queuing systems are extensively employed across sectors, including the service industry,
transportation, manufacturing, entertainment and leisure, online services, distribution services, and
many others (see, e.g., [1,2]). However, these systems may encounter numerous challenges such as
long queues, inconsistent service quality, suboptimal queuing strategies, lack of real-time information,
customer behavior issues, system malfunctions, seasonal demand fluctuations, and service capacity
constraints, among others [3]. To address these challenges effectively, it is essential to delve into the
optimal design and optimal control of queuing systems.

Optimal control theory focuses on identifying control laws for a given system to achieve optimality
criteria, and it has extensive applications in science and engineering. In the context of queuing systems,
optimal design and optimal control are two distinct yet complementary approaches. Optimal design
of queuing models, also known as economic models or static models, involves setting the parameters
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of a queuing system before it is put into operation. This process aims to establish the most efficient
and cost-effective configuration based on predefined performance metrics. On the other hand, optimal
control of queuing models, referred to as rate-control models or dynamic models, treats the parameters
as control variables. These variables can be adjusted dynamically in response to changes in the system’s
state. This flexibility enables the system to adapt to varying conditions in real-time, thereby optimizing
performance and resource utilization throughout its operation.

Scholars have extensively explored the optimal design and optimal control problems of queuing
models. For instance, Miller employed a dynamic programming approach to derive the explicit form
of the optimal control in scenarios where the cost function is a combination of average queue length,
number of lost jobs, and service resources [4]. Yiannis et al. investigated the optimal strategy for a
queuing system with exponentially distributed time periods, focusing on an M/M/1 queue. The authors
derived the optimal decision-making strategies for arriving customers on whether to join the queue
and for waiting customers on whether to remain in the queue [5]. Shekhar et al. examined a cost
optimization problem for a finite-buffer M/M/1/N queuing model with an emergency vacation policy for
the server. The authors applied the bat algorithm to determine the optimal steady-state performance
indicators at the minimum cost [6]. Wang et al. analyzed the strategic behavior of customers and social
optimization in an M/M/1 constant retrial queue with an N-policy. They conducted a sensitivity analysis
of equilibrium/optimal rates and corresponding social welfare with respect to steady-state indicators [7].
Xu et al. [8] discussed how to optimize the management and control of queuing systems with complex
features, such as two-stage heterogeneous services, retries, conflicts, and delayed vacations. For a
comprehensive overview of the optimal design and optimal control problems in queuing models, the
monograph by Stidham provides a detailed reference [9]. These aforementioned queuing models are
typically formulated using a set of high-dimensional ordinary differential equations (ODEs).

The M/G/1 queuing models are constructed by defining state variables that depend on service
time and waiting time. As a result, these models are typically formulated using partial differential
equations (PDEs) rather than ordinary differential equations (ODEs). A review of the history of queuing
theory reveals that a significant number of M/G/1 queuing systems have been described by PDEs, as
documented in monographs such as [10, 11]. Many scholars have investigated the steady-state indices,
dynamic indices, and steady-state optimal problems of M/G/1 queuing systems described by PDEs
(see for example [12-16]). However, research on the dynamic optimal control of queuing models from
the perspective of PDE control remains limited. The optimal control theory for systems governed by
PDEs has been a central research topic in the field of distributed parameter systems control since the
1960s. From a practical standpoint, optimal control problems involving state and control constraints are
significant and natural, as highlighted in studies such as [17-19]. For a comprehensive overview of the
optimal control of PDEs, the monograph by Troltzsch [20] provides an in-depth reference.

In this paper, we address real-time service-rate control in M/G/1 queues with optional service,
modeled by hyperbolic integro-differential equations. Unlike static designs that fix rates beforehand, we
treat the service rate as a dynamic control variable in L!—based nonreflexive Banach space and derive
its optimal, implementable feedback law. In this context, the service rate functions as the control input
of the system. Fortunately, in the realm of optimal control, several researchers have made significant
contributions to the study of age-structured population models [21,22], pest-pathogen systems [23], and
reliable systems [24,25], all within L!—based nonreflexive Banach spaces. Our primary objective of
this article is to design the optimal service rate for a queuing system described by hyperbolic PDEs by
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leveraging the methods and insights from [21-23,25]. This approach aims to minimize unnecessary
service waste in dynamic queuing systems. The result may transform traditional static personnel
configuration or speed decisions into dynamic knobs that respond to observed workload, eliminating
the need for large safety margins and enabling cost-effective, delay sensitive operations in call centers,
hospital testing laboratories, and on-demand production lines. To the best of our knowledge, this
represents the first application of this method to the design of optimal service rates in queuing systems.

The remainder of this paper is structured as follows. In Section 2, we provide a rigorous
mathematical proof for the existence of an optimal solution. In Section 3, we characterize the optimal
control. To illustrate the relationship between the optimal service rate and the system state, in section 4,
we present a simplified example. Specifically, we consider a system with no additional optional service
and a constant regular service rate, demonstrating that our results encompass the static optimal problem.
In section 6, we conduct some numerical analysis on the above results.

2. Mathematical model and optimal design
In this paper, we consider the optimal control of the M/G/1 queuing system with additional optional

service and no waiting capacity [13,26]. The mathematical model of this system can be described by
the following integro-differential equations

d ° o
p;t(t) = —Apo(t) + fo ruy(x)pr(x, H)dx + fo U (xX)pa(x, )ydx, te€ (0,00), (2.1a)
opi(x,1) N opi(x, 1) D). = 1.2, (1) € (0.00) X (0, 00), 2.1b)
ox ot
pl(o, l) = /lp()(l)’ pZ(O’ t) = f (1 - r)lul(x)pl(x’ t)dx7 re (Oa 00)7 (21C)
0
po0) =1, pi(x,00=0,i=1,2, xe€(0,0c). (2.1d)

Here, po(?) represent the probability that the server is idle at time ¢, while p;(x, f) (i = 1,2) denote
the probability that, at time z, the server is providing the i-th service with an elapsed service time falling
within the interval (x, x + dx). Additionally, A signifies the arrival rate of customers. The probability
that customers opt for the second service after receiving the regular service is denoted by 1 — r, while r
represents the probability that customers depart from the system immediately after receiving the regular
service. Last, u;(x)dx represents the first-order probability that the i-th service will be completed within
the time interval (x, x + dx), given that it has not been completed up to time x. This quantity satisfies the
conditions y;(x) > 0 and fooo Ui(x)dx = oo.

In [26], the mathematical model (2.1a)—(2.1d) were first established using the supplementary
variable technique, and optimization is not addressed. Subsequently, the author derived the time-
dependent solution of the system (2.1a)—(2.1d) in terms of the Laplace transform and obtained the
expression for the steady-state solution under the steady-state assumption. The well-posedness and
asymptotic behavior of the system (2.1a)—(2.1d) have been further explored in [12, 13,27], utilizing
Cy-semigroup theory and spectral analysis, but never consider y;(-) a control variable.

In this paper, we are interested in minimizing the costs associated with time-dependent states
po(0), pi(-, 1) (i = 1,2) and service rates y;(-) of dynamic system described by Eq (2.1a)—(2.1d) on the
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domain (0, L) X (0, T), where L and T are positive real numbers:

dpo(1) L L
7 —Apo(t) +f ru(x)pr(x, t)dx+f w(xX)p2(x,)dx, te€(0,7T), (2.2a)
0 0

Opix D) | IpilxD) _ P, i=1,2, (610 €(0,L)x(0,T), (2.2b)

ox ot

L

p1(0,2) = Apo(®), p2(0,1) = ](; (I -rumx)pi(x,)dx, te€(,7), (2.2¢)
2O =1, pix,0)=0,i=12, xe(O,L). (2.2d)

We take the service rate u(-) := (u;(-), u2(+)), as the control, consider the set of admissible control as

Uaid = {1 € (L¥(0,L))* | 0 < pi(x) < sup pi(x) := iy, i = 1,2}, (2.3)
x€(0,L)

and the corresponding solution, p(:,-, u) = p(u), of system (2.2a)—(2.2d) as the state variable, where
p = (po, p1, p2). Moreover, our performance cost functional is a combination of the final time state and
the cost of the applying the control. Our goal is to seek an u* € U4, such that

J(*) = min{J () | 4 € Uaa}, 2.4)

where J is the cost functional as

2 L
J(w) = agpo(T) + Z f [ipi(x, T) + Biti(x) + yitt; (x)]dx
=1 V0 (2.5)

L
- f [ap(x, T) + Bu(x) + v ()dx
0

subject to the govering system (2.2a)—(2.2d), here @ = (oL}, a1, @2),8 = (B1,52),Y = (v1,72), and
parameters «; (i = 0,1,2) and S3;,y; (i = 1,2) are nonnegative constants and stand for the states and
control weights, respectively. The choice of the cost functional J(u) in Eq (2.5) is motivated by the
need to balance operational efficiency and economic expenditure in service systems. The terminal-state
terms weighted by «, @; penalize any residual workload (idle probability or unfinished services) at
the end of the planning horizon T, reflecting customer-dissatisfaction or late-delivery costs. The terms
Biui(r) + y,-,uf(r) quantify the instantaneous cost of deploying the service rates y;(r). The linear part
represents direct operating expenses (energy, staff wages), while the quadratic part discourages overly
aggressive service acceleration, which would incur additional wear, overtime premiums, or equipment
degradation. Minimizing J(u) therefore yields a control strategy that simultaneously reduces unfinished
work and avoids prohibitively expensive service intensification, guaranteeing a physically realizable
and economically viable operation. The quadratic term penalization in Eq (2.5) generally enhances
regularity for Eq (2.4).
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3. Existence of optimal control
Establishing optimal control existence for problem (2.4) requires analyzing solution regularity for

Eq (2.2a)—(2.2d).

Lemma 3.1. If p(-,-) = (po(-), p1(:, ), p2(:, ) is the solution to Eq (2.2a)—(2.2d), then p(-,-) satisfies

e+ [T (i (X)p1 (X, 1) + pa(x)pax, D]dxdT

Apo(t — x)e” Jy m@adr Coa<r
(1-r) _I(;Lp1(X, - x),ul(x)dxe—foxﬂz(r)dr

plx,1) = t 3.1
e+ [[ e [TTru(x)pi(x, 1) + pa(x)pa(x, HldxdT
0 , x>t
0
Moreover, p(x,t) > 0, for any x,t > 0,
L L
po(t) + f pi(x, Ddx + f p2(x, Ddx =1, (3.2)
0 0
and

po € Wh(0,T), p; € L*(0,T; W"'(0,L)) n W"=(0,T;L'(0,L)), i=1,2. (3.3)

Proof. Step 1: Solution p(-, -) satisfies Eq (3.1) and is positive. Let £ = x — r and Q;(¢) = p;(é + 1, 1).
Then, by Eq (2.1b), we have

dQ; opi(x, opi(x, .
%’t(t) - pa(;c = p(gf D -+ 000, i = 1.2, 34

For £ <0, 1.e., x < t, by integrating Eq (3.4) from —¢ to ¢ and using Q;(—¢) = p:(0, t — x) to obtain

pie.1) = Qi) = Q=) FeH T = p(0, 1 — e k=12, (3.5)
For & > 0, i.e., x > ¢, integrating Eq (3.4) from O to ¢ and using Q;(0) = p;(¢,0) = 0, we have
pilx.1) = Q1) = Qi0)e” bHE D =0 =12, (3.6)
where p;(£,0) = 0 due to the initial condition (2.1d). Since Eq (3.6) and
L ¢
f pi(x)pi(x, Ndx = f pi(x)pi(x, N)dx
0 0
in Eq (2.1a), we obtain
! T
po(t) = e + f e f [rpn (0)p1(x, 1) + pa(x) pa(x, 1) ldxd. (3.7)
0 0
Hence, by using boundary conditions (2.1¢) and Egs (3.5)—(3.7), we see that p(-, -) is the solution
of Eq (3.1). The positivity of p(-,-) is due to the positivity of the corresponding semigroup of system

(2.1a)—(2.1d) by Theorem 3 of [27].
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Step 2: System (2.1a)—(2.1d) is conservative. Integrating Eq (2.1b) from O to L and using
boundary condition (2.1c), we have

d L L
Ef pi(x, dx = Apo(1) — f i1 (x)p1(x, Hdx,
0 0

d (t L L (3.8)
—f p2(x, ndx = (1 - l”)f H1(x)p1(x, Hdx — f u1(x)p1(x, H)dx.
dt Jo 0 0
Hence, Egs (2.1a) and (3.8) give
d (t)+de (x,t)d +de (x,t)dx =0, forall t € (0,T) 3.9)
. . X, X . X, X =V, ) ) .
dtl?o dar J, P1 i J, P2
which implies
L L
po(t) +f pi(x, t)dx+f p2(x,Hdx = 1. (3.10)
0 0
Therefore, system (2.1a)—(2.1d) are conservative.
Step 3: We prove that Eq (3.3) holds. By Eq (3.10), it is easy to see that
L
sup po(r) <1, sup f pilx,ndx <1, i=1,2. 3.11)
t€[0,T] t€[0,T]1 JO

With Egs (2.1a) and (3.11), the Holder inequality, and w;(-) € L*(0, L), u;(-) < f1; (i = 1,2), we have

sup
1€[0,7]

d L L
ﬂ| < A sup po(t) +r sup f 1 (x)pi(x, )dx + sup f Ha(x)pa(x, t)dx
dt 1€[0.7] (0,71 Jo 110,71 Jo

(3.12)
< A+ + .

Thus, Eqgs (3.11) and (3.12) imply that py(-) € W'*(0, T). Moreover, for x < t, using Egs (2.1b),
(2.1c), and (3.5), we derive

opi1(x,1) _ Adpo(t - x)e_ 1 m@ar

ot dt
(3.13)
UL _ QP o ot o e b0
X

This, together with inequality (3.12) and fOL py(x)e™ b 1@ < fooo iy (x)e b m®dT = 1 it is easy to
calculate that

L
0
sup f % dx
te[0,71 Jo X
L L
dpo(t — x x
< A sup f 2ot~ %) e b M@ gx 4 up f At () po(t — x)e~ b 1OdT g
1e10.71 Jo dt re10.71 Jo (3.14)
d Lo L
< A4 sup ad f e~ hm@drgy 4 a sup po(t) ,u](x)e_fo POAT g 5
o, dt | Jo 1€[0,T] 0

S AL(A+ rjay + jip) + A
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Then, combining inequalities (3.11) with Eq (3.14), we derive that p;(-,-) € L*(0, T; W"'(0, L)).
In addition, using Eqgs (2.1b), (3.11), (3.14) and the Holder inequality, we obtain

L L
sup f dx < sup f
1€[0,71 Jo eio,r1 Jo | 0x

S AL(A+ rjay + i) + A + 1.
This, together with inequality (3.11), we see that p,(-,-) € W>(0, T; L'(0, L)). For x < t, using
Eqgs (2.1b), (2.1c) and (3.5), we obtain

opr(x,t L opi(x,t—x [ (e
LD (1= [ )P e o

L — X
9p2(x, 1) =—(1- r)f ,Ul(X)—apl(xa’tt x)dxe_fo pa(r)d (3.16)
0

I Op:

L
wmwfmmmmw
ot o

te[0,T]

(3.15)

ox

L
—(1 - r),uz(X)f m(xX)pi(x,t — x)dxe” Iy we@dr
0

Thus, combining Eq (3.16) with inequalities (3.11), (3.15) and using the Holder inequality
and inequality

L 00
f (e b < f pa(x)e b0 = 1,
0

0
we obtain

f t op>
sup —_—
te[0,7] JO

L Ap(x,t —
dx <(1-r) supfu](x)‘M
(9)6 0

L
dx f e‘fOX’Q(T)dex
1€[0,T] ot 0

L L
+(1 =) sup f m(0)pi(x, 1 = x)dxf pio(x)e b 12T g
0 0

t€[0,T]

(3.17)

L1ap,
<(1-nmlL -1
< -r)a L sup ‘[0 5

L
dx+ (1 =r)i; sup f pi(x, H)dx
1€[0,T] 0

< (1 = {LIALA + rigy + i) + A+ 1y ] + 1}

t€[0,T]

Therefore, using inequalities (3.11) and (3.17), we obtain that p,(-,-) € L0, T; W"(0, L)). In
addition, using Eqgs (2.1b), (3.11), and (3.17) and the Holder inequality, we have

L L
sup f dx < sup f
1€[0,T] Jo wefo.r1Jo | 0x

<= {LALA + rjgy + o) + A+ ] + 1} + s,
That is, p,(-,+) € Wh*(0, T; L'(0, L)). Therefore, Eq (3.3) holds.

O Op:

L
dx+ sup f Ha(X)pa(x, )dx
ot o

t€[0,T]

(3.18)

Lemma 3.2. Let F : Uyy — L¥(0,T) x (L(0,T; L'(0,L)))* := X; by (F(Hu)(x) = p(x, 1) for (x,t) €
[0, L) X [0, T). Then, the embedding Range(F) — C[0,T] x (C([0, T1; L'(0, L)))? is compact.
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Proof. Using lemma 3.1, we obtain that the range of F', which satisfies

)= . . . . Lo
R(F)C{p(_’_)exl‘ P = (o). prs ). Pl ). pol) € WH(0,T), }

piC-,) € L0, T; WH(0, L)), 282 € [°(0,T; L(0, L)), i = 1,2
By the Sobolev imbedding theorem [28, p. 85], it is easy to see that
W'*(0,T) < C[0,T] and W"'(0,L) — L'(0, L)
are compact for 0 < L, T < oo. Moreover, by Aubin-Lions-Simon lemma [29, p. 102] the embedding
L*(0,T; W-'[0,L)) n W0, T; L'[0, L)) < C(0,T; L' (0, L))
is compact. This instantaneously produces the required outcome.

Theorem 3.1. There exists an optimal pair (p*, u*) € C[0, T] % (C(0, T; L'(0, L)))> X U,q such that p* is
the solution of system (2.1a)—(2.1d) and u* is an optimal control that minimizes the objective functional
J(u) over U 4.

Proof. Using Lemma 3.1 and u € U,, we have

2 L
0060 =aupD+ Y, [ laip(e 1)+ B0 + v ol
i=1
(3.19)

2
<ap+ Z[a/i + (Bifl; + yifr)L].
-1

The set {J(u) | 4 € U,q} is non-empty and bounded from below. Let the minimizing sequence
{/'ln(')} = {(/'ll,n(')’ #2,71(.))}1121 be SllCh that

J(*) = lim J(u,) = inf J(u).
n—oo HEU 4

Since 0 < w;, () < f;,i = 1,2;n > 1, {u,} is uniformly bounded in (L*(0, L))* and (L*(0, L))*.
Thus, there exists a convergence subsequence, denoted by {1, }(-), such that

() = (a()s () = 1 = (u,p3)  weakly starin  (L™(0, L)%,

(3.20)
() = (1a()s () = p° = (i, i) weakly in - (L*(0, L))",

Denote by {p,(-, )} = {(pos(*), P1.2(*, "), P2.a(-, *))} the state sequence corresponding to {u,(-)} with
identical initial data

Pu(,0) = (Pon(0), p1,a(:, 0), p2,a(,0)) = (1,0,0).

Then, by Lemma 3.2, choose a subsequence denoted {p,}, there exists p*, such that
Pn = (Poss Pras P2n) = P* = (P4, P} P3)  strongly in - C[0,T]x (C(0,T;L'(0,L)))>.  (3.21)
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In the following, we verify that p* is the solution of system (2.1a)—(2.1d) corresponding to u*. It
suffices to show that sup,.; 7} 1Po.(?) — po(H] — 0 and sup,cio 7y 1Pin(> 1) = piC. Dllzio) = Oasn — 0.
Using Eqgs (3.1), (3.20) and (3.21), we have

sup |pon(t) — py(H)] < r sup
1€[0.T] 1€[0,T]

! T
f et f W ()[Ppra(x, 7) = pi(x, T)]dxdr
0 0

! T
+ sup f et f P Dpa(x) — 1 (0)]dxdr
0 0

t€[0,T]

! T
+ sup f e f U2 (X[ prn(x, T) — p3(x, T)]dxdT
0 0

te[0,T]

! T
+ sup f e f P36 D2 (%) — 5 (X)]dxdr
0 0

t€[0,T]

<rft; sup |[p1a(,1) — pT("t)”Ll[O,L)

1€[0.71
L T
+ sup f (11 (%) — (1 (X)] f e p*(x, T)drdx
10,71 |Jo .
+itz sup [|p2n(, 1) = p5C¢, Ollio.n
1€[0.7]
L T
+ sup f [12,0(%) — 5 (x)] f e pi(x, T)drdx| - 0 as n— 0, (3.22)
wef0.71|Jo .

L L
sup f |P1a(x, 1) = pi(x,Dldx < A sup f Dot = X) = py(t — x)le™ b #ogx
110,71 Jo (0,71 Jo

L

+A sup f PS(I _ X) ‘e_ fox/ll,n(T)d‘r e Jgfﬂfi(r)d‘r a’x

t€[0,7] JO

L X

< A sup |pon(t) = pi(o)] | e bma®drgy

r€[0.7] 0

L i !

+A sup pz;(t)f ‘e‘fo Hip(T)dT _ e—fo wi(n)dr dr >0 as 71— 0’ (323)

1€[0,T] 0

L
sup f |Pan(x, 1) = P3(x, Dldx
1J0

te[0,T

L L
<(l—r) sup f 12 (0| p1a(x, 1) — pi(x, 1)|dx f e Jo ma@dr g
0 0

t€[0,T]

L L
+(1 = r) sup f P1(x, Dl a(x) — pi(x0)ldx f e b 12a®idr g
0 0

1€[0,T]
L X L X
f e do p2a T f e b KT gy
0 0
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-0 as n—-0. (3.24)

Hence, by Eqs (3.23) and (3.24), we obtain that p* is the solution of system (2.1a)—(2.1d)
corresponding to . Last, for the quadratic term of the control in the objective functional, the lower
semi-continuity of the L?> norm with respect to weak convergence of control sequence gives

L L
f () dx < lim | (i (x)dx, i=1,2.
0

n—oo J0

Therefore, by using Eq (3.20) and (3.21), we obtain

L
) = fo [ap* (e, T) + B (x) + (' (D)) Jdx

< lim J(u,) = inf J(w).
00 HEUaa

n—0o0o

This means that ¢ is an optimal control.
4. Characterization of an optimal control

To obtain a characterization of an optimal control, we need to derive an optimality system that
consists of the original state system coupled with an adjoint system. To obtain the necessary conditions
for the optimality system, we will need to differentiate the objective functional J(u) with respect to
control p.

Lemma 4.1. The map up € Uy — p = p(u) € C[0,T] x (C(0,T;L'(0,L)))* is differentiable in
following sense

po(u + gh) — po(u) R
E

pi(u + €h) — pi() N
£

720 weaklyin C[0,T],

z weaklyin C(0,T;L'0,L)), i=1,2,

as & — 0, for small & > 0, where yu+&h € U,y and h = (hy, hy) € (L*(0, L))>. Moreover, z = (z0,21,22) =
Z(p, h) satisfies

dzo(1)
dt

L
= —Azo(t) + r f (1021 (x, 1) + By (X)p1(x, )]dx
0

L
- f [2(x)22(x, 1) + ha(x) pa(x, D)dx,
0

Oule.t) Ou6t) _ ety = h(pin, 0, i = 1,2, “-1)
ox ot

L
21(0,0) = Azo(1),  22(0,1) = (1 - r)f (1 ()21 (x, 1) + hy ()1 (x, D)]dx,
0

20(0) =0, z(x0)=0,i=12.
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Proof. We vary the control from u to y + eh, where h € (L*(0, L)) is an arbitrary variation. For

simplicity, we will use po(t, ) = po(), pi(x, t, 1) = pi(), ui(x) = p; and hi(x) = h;, i = 1,2 for
(x,1) € (0,L) x (0,T). By Eq (3.1), it is easy to see that

pou + gh) — po(u) = fo €A(H)f0 {ria[pi(u + €h) — py()] + rehyp(u + €h)

(4.2a)

+Haolpa(u + gh) — p2(W)] + ehypa(u + eh)]}dxdr,

pi(u+eh) —pi(u) = Apo(u + eh,t — x) — po(u, t — x)]e‘foxwf‘ghl)dT

. . (4.2b)

+Apo(u, t — X) (e—fo Gu+ehdr _ - | yld‘r) ,

L
pZ(/J + 8h) _pZ(/l) = (1 - r)f {,ul[pl(;u + gh,x,t— )C) _pl(/l’x’t_ X)]
0

+&hy pi(u + eh, x, t — X))dxe™ b arehde (4.2¢)

L
_(1 — r)f pl(l-l5 X, t— x)#ldx (e_j(\) (up+ehy)dt _ e—fo ,UZdT) ,
0

Then, from the convergence of p;(u + €h) to p;(u) as € — 0 and differentiability of p;, we can pass
the limit in the right hand side of Eq (4.2a)—(4.2c) and get the weak convergence of the M to the
desired sensitivities z; (i = 0, 1,2) as € — 0, which satisfies system (4.1). In fact, by Eq (4.2a)—(4.2c¢),
the boundary condition (2.1c) and the initial condition (2.1d), we directly calculate that

_ lim LdPou + &h) — dpo()
e—0 & dt

1 L
= lir% - [—xlpo(,u + &h) + rf (uy + ehy)p(u + eh)dx
E— 0

dzo(t)
dt

L L L
+ f (2 + ) pa(yt + shydx + o) — f jpr (i — f ,uzpz(u)dX]
0 0 0

po + &h) — po(w) b pi(u+gh) — pi(p)
+r Hy lim dx
&—0 & 0 =0 £

= —/10 lim
(4.3a)

L h) — |
+ f o lim pau+ h) pZ('u)dx + f lim gehlpl(/l + eh)dx
0 0

e—0 E e—0

L
+ f lim la‘thz(,u + eh)dx
o 0¢&
L
= —Azo(0) + rf [p1 ()21 (x, 1) + hi(x)p1(x, D)]dx
0
L
+ f [2(0)z2(x, 1) + ha(X)pa(x, D]dx, 1€ (0,T),
0
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0zi(x,1) N 0zi(x,1) lim 11 0pi(u+ gh) - dpi() N Opi(u + gh) — dpi(u)
dx At e0e dx ot
i 1 [Opi(u+eh)  Opu+eh) (Opi(w) Opiw)
= lim - + - +
>0 & 0x ot ox ot
= tim [~ + )Pt + o)+ pp ()
e—0 &
= lim P EN TP L+ e
-0 & e—0 &

= —Hi(0)zi(x, 1) = hi()pi(x, 1), i = 1,2, (x,0) €(0,L) x(0,T),

ha()’t - ,O,t . /l h _/1
21(0,1) = tim LT RO Z DD _ i APolitt = Apolh)
E— & PN &

P2 +€h,0,1) — pr(u, 0, 1)
£

Azo(1),

22(0,1) = lim

U= [+ ehop e = (L= [ npid

e—0 E

L _ L
:(l—r)f mnnépl(””}: pl(”)dx+(1—r)f i lim py  + eh)dx
O E— 0 E—

L
= (1 - r)f [j.ll(X)Z](x, t) + hl(x)Pl(x, t)]dx’ re [09 T]’
0

h,0) — 0 -
-0 Foi -0 &
i ha $0 - D 90 . O_O .
z,-(x,O):lir%p(ﬂJrg x0) = polgt: x ):llr%—:O,z:I,Z, xe[0, L.
£— & Foad &

Hence, by combining Eq (4.3a)—(4.3f), we obtain that z = z(p, u) satisfies system (4.1).

(4.3b)

(4.3¢)

(4.3d)

(4.3e)

(4.3)

To proceed with the optimal control characterization, we need to introduce the Lagrangian
functional (see [20, p. 85]) for the three adjoint variables gy, g1, g> corresponding to py, pi, p>. The

Lagrangian functional is given by:

L(p,u,q)

dt

S Opm(x, 1) Opu(x,1)
+;f0 fo qm(x’t)[ ot ox +ﬂm(X)pm(x,t)]dtdx

T T L
+f vi(0) [p1(0,7) = Apo(D)] dt + f V(1) [Pz(O, 1 - f (1 = N ()p1(x, 1) dx] dt
0 0 0

’ dpo() - t
=J(w) + f qo(1) [ + Apo(t) — f ru(x)pi(x, 1) dx — f Ha(X)pa(x, 1) dx] dt
0 0 0

L L
+§0[P0(0)—1]+£ fl(x)Pl(X,O)dX"‘L H(x)pa(x, 0)dx,

where ¢;, {;,i = 1,2,3 and v,,, m = 1,2 are Lagrange multipliers.
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We are ready to characterize the optimal control using the above Lagrangian functional and deriving
the optimality system by differentiating J(u) with respect to y at an optimal control.

Theorem 4.1. Given an optimal control u* = (uj, u5) € U,q and the corresponding solution p(-,-) to Eq
(2.1a)—(2.1d), then there exists adjoint variables q(-,-) = (qo(:), q1(:, ), q2(, -)), satisfying this system

d
28 = Ao - qu(0.0) 1€ ©.7),
dq, 0
L S @l (1) = rgo(6) = (1= 12001, (x.1) € (0.L) X (0. T), w
8, 0
L 2L @l - a0 (0 € O.0)x (0.7,

X ot
qo(T) = ao, qi(x, T) =, i=1,2, x€[0,L]

Furthermore, u* = (uj, u5) can be explicitly characterized as

. (1T B

H#i(x) = max{0,min{=— | pi(x,0)[qi(x, 1) = rqo(H)dt — =—, iy and
2y Jo 2y, .5)

1 T
/l;(X) = max {O’ min {_ f p2(xa l)[QZ(X, t) - CIO(Z)]dl - &7[12}} .
2y> Jo 2y,

In particular, when there is no additional optional service, the optimal control becomes

1 T
11 (x) = max {0, min {— f p1(x, D[q1(x, 1) — qo(t)]dt — ﬁ—l,ﬂl}} .
2y1 Jo 2y,

Proof. Consider u € U,; and h € (L*(0, L))?, such that u + gh € U,, for small & > 0. Then, the
derivative of J(u) with respect to in the direction 4 satisfies

J(u + &h) — J(w)
&

0 <J'Goh = lim

L _ 3 ~
o [ty AT D)y [ 1O 0,
0 &0 & o &0 o
Lo [u(x) + eh(0)] - k(%)
o & . (4.6)
0

L L L
=a f zZ(x, T)dx + f h(x)dx +vy f u(x)h(x)dx
0 0 0
2 L 2 L
= T ; (x, T)d D+ 2vil; h(x)dx.
@o2o0( )+;af0 zi(x )X+;f0[ﬂ+ Yiri(x)1hi(x)d x

First, we focus just on the terms azo(T) + 21-2: | @ fOL zi(x, T)dx of Eq (4.6). Substituting from the
adjoint system (4.4), integrating by parts and using system (4.1), we obtain

2 L 2 L
ao2o(T) + Z a’z‘f zi(x, T)dx = zo(T)qo(T) + Z f zi(x, T)qi(x, T)dx
i=1 0 i=1 <0
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_j; (qu-i-ZO—)dt-i-lZlf f ( qi +z7; )dtdx
T d(]
= —Azp +r (,U1Z1 + hip)dx + (,Uzzz + hypo)dx | qo + - dt
az, 0q;
+ ,Z: f f [( — WiZi — h,p,) qi +72i— Ey ]dtdx

= f zO(t)(— — Aqo(t) + A1 (0, t)) dt
f f a(x, r)[ a ——m(x)ql(x 0+ o) + (1 = N0, t)]dtdx

; f f (%) [— " % () +l12(x)610(f)] drdx
0

L
+ f f {hi()p1(x, Dlrqo(t) — q1(x, D] + ha(X)p2(x, Dl qo(?) — g2(x, H)]}drdx
0o Jo
L T
= f f {1 () p1(x, Dlrqo(t) — q1(x, D)dtdx + ha(X)p2(x, Dlqo(1) — qo(x, D]}dxdt.  (4.7)
0 Jo

Then, using the last expression Zle fOL[ﬁi + 2yiui(x))hi(x)dx of Eq (4.6), we obtain

L T
0<J'(wh = f hi(x) [f p1(x, Drqo(®) — q1(x, D]dt + B + 2)’1/11()6)] dx
0 0 (4.8)

L T
+ f hy(x) [f P2(x,D[qo(t) — g2(x, D]dt + B> + 27’2#2(36)] dx.
0 0

Hence, by the arbitrary variation of & = (hy, h,) € (L*(0, L))?, and bounds on the control set U,
we obtain

T
M;(x) = max {0, min{L f P1(x, Dlq1(x, 1) — rqo(t)]dr — b /_11}} and
2y1 Jo 27’
# . 1 ’ ,32 —
H5(x) = max { 0, min —f P2(x, O[qa(x, 1) — qo(O)]dt — —, o ¢ ¢ .
2y> Jo 2y,

In particular, if there is no additional optional service, i.e., r = 1, then the system (2.1a)—(2.1d)
become

L
D — o+ [ i, 1€ O.7)
0

D OPIRD L pien), (6.0 € O.L) X (0,T), @9

p1(0,1) = Apo(®), po(0) = 1, p1(x,0) =0, x€[0,L],1 €[0,T].
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By using the similar approach as Eqs (4.6)—(4.8), we have

1 T
4 (%) = max {0, min {— f 1 DL (6 1) — qo(D)]dt — ﬂ,m}} |
2y1 Jo 2y,

5. Optimal service rate of M/M/1/1 queuing system

To illustrate the state-dependent relationship of optimal service rate, we examine system (2.2a)—
(2.2d) with constant regular service and no optional service. That is, we consider the situation r = 1

and () = u; := u as a constant. Let p(-) = fOL p1(x, -)dx. Then, system (2.2a)—(2.2d) becomes the
M/M/1/1 queuing system given by [11, p. 121], which can be rewritten as the following differential

difference equations:
po(t) = =Apo(t) + up1 (), 1€(0,7),

P = Apo(t) — upi(t), t€(0,7), (5.1
po(0) =1, pi(0) = 0.

The cost functional J of system (5.1) can be written as
J(w) = aopo(T) + a1 pi(T) + Pup + yi.

Given an optimal control y* and the corresponding solution p(:) = (po(-), p1(+)) to system (5.1),
there exists adjoint variables g(-) = (qo(+), g1(+)), satisfying the following system

qo(®) = Aqo(t) —q:1(®)], t€(0,T),
q1(t) = —ulqo(®) — (D], 1 €(0,T), (5.2)
g(T)=a:, i=1,2.

By using the similar approach as Theorem 4.1, the optimal control is obtained as follows:

1 T
M = max {O, min {— f P1(0(q1(1) — qo(0))dt — 'B—], ﬁ}}
2y1 Jo 2y,

Moreover, solve system (5.1) and using p(-) = 1 — po(+), we obtain

A —(A+p)t
pl(t)zm(l—e () te(0,T). (5.3)

In addition, by system (5.2), it is easy to calculate that

Al — al)e(/Hy)(T—t) n Hay + Aa;

1) = ’
b . L 5.4)
A+pu S
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Hence, using Eqs (5.3) and (5.4), the arbitrary of ¢, and 0 < u < [, it is easy to calculate that the
optimality condition becomes

v _ . @ —ay [4 W+T (AT A+T B _
M —maX{O,mm{m[E(e e H )—I—,Ll(e H —1)]—2—71,/1 .

Static optimal problem: In the following, we consider the optimal control problem in the steady-state
for system (5.1) by [9, p. 4]. Since the well-posedness and asymptotic behavior results in [12,27], the

steady-state assumption p; = lim,, p;(¢) (i = 0, 1) given by [26] holds true. Our static optimization
problem would be to choose u; € [0, j1;] to minimize

J(uy) = aipr + By (5.5
From Eq (5.3), together with the fact py + p; = 1, we have
A
= . 5.6
P1 1+ (5.6)

Then, using Eq (5.6) and taking the first and second order derivatives of J(u;), we obtain

, —/lCY] ’ 2/1(!1
+ Py ] = + ’ J = *
B (k1) —(/1+,u])2 B (k1) A+ 1)

Notice that J”(u;) > 0 for A, uy, @y > 0, so that J(u,) is convex (see, e.g., [9, p. 5]). Moreover,
J(uy) — oo as u; — oo. Hence, we can solve this problem by differentiating J(u) and setting J'(u;) = 0.
This yields the following expression for the unique optimal value of the service rate (see e.g., [9, p. 5]):

N e 2
ENB T

The optimal value of the objective function (5.5) is thus given by

J(,UT) = 2\//1781(1’1 - /lﬁl

This is similar to the result in [30].

J() =

nd 57
Fryn (5.7)

6. Numerical analysis results description

In this section, we conduct numerical analysis on the results in Section 5 and obtain the following
results using Matlab. The following figures illustrate that the results obtained in this paper are correct.

Figure 1(a) shows the time evolution of the state probability p;(¢) under different control intensities
u. In this figure, we take A = 0.8, T = 5, and all curves start from p;(¢) = 0 and exhibit exponential
growth over time, gradually approaching their respective steady-state values ﬁ When the u value
is small (e.g., u = 0.1), the system converges slowly but reaches a higher steady-state probability. In
contrast, when u is large (e.g., u = 3), the convergence rate increases significantly, but the steady-state
probability decreases accordingly. This visually demonstrates the critical trade-off between the system’s
convergence speed and its final state distribution, which is fundamental for understanding system
dynamics and designing control strategies.
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State Probability p1(t) under Different Controls Adjoint Variables q(t) and g, (t)
0.7 6000

— (1)
0.6 0

—
4000 %

0.5

0.4 2000

State probability p1(t)
Adjoint variable value

-2000

u=0.7
u=1.0
0 -4000

pu=3.0

Time t Time t
(a) (b)
Figure 1. The time evolution of p(¢) (left) and ¢;(¢) (right).

Figure 1(b) illustrates the time evolution of the adjoint variables ¢g((¢) and g;(¢). In this figure, we
take A =0.8,u= 1,09 = 1,y = 2,and T = 5. Both curves exhibit exponential trends and satisfy the
terminal conditions ¢;(T) = «;. The adjoint variables show significant values and notable variations
during the initial phase of the system, gradually stabilizing over time. The difference between g ()
and ¢, (?) directly influences optimal control decisions, reflecting the dynamic changes in the marginal
value of the system across different states. As co-state variables, these adjoint variables provide crucial
gradient information for optimal control, and their evolutionary patterns verify the applicability of
Pontryagin’s Maximum Principle in the system.

Cost Function vs Control Parameter

min J=1.784
6L at p=0.424

Cost function J(p)

0 0.5 1 1.5 2 25 3
Control parameter p

Figure 2. The relationship between the cost function J(u) and the control parameter p.

Figure 2 illustrates the relationship between the cost function J(u) (see Section 5) and the control
parameter yu, revealing the trade-off between control intensity and total cost in the system. In this figure,
we take 4 = 0.8,a¢0 = 1,a; = 2,8, = 0.1, = 0.5,and T = 5. The curve exhibits a typical convex
shape with a clear global minimum point, confirming the mathematical well-posedness of the optimal
control problem. In terms of the curve’s morphology, when control parameter u is small, the cost
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function value remains high. This is primarily because the system cannot effectively regulate the state
transition process, leading to a terminal state distribution that deviates from the ideal configuration,
with terminal costs dominating. As u gradually increases to the optimal value u* = 0.424, the system
achieves better state regulation at a reasonable control cost, causing the total cost J(u) to continuously
decrease to the minimum value of 1.784.

To the right of the optimal control point, the curve shows an upward trend, indicating diminishing
marginal returns of control cost. At this stage, the increase in control costs (including the linear term
Biu and the quadratic term y;u?) outweighs the reduction in terminal costs, resulting in an increase in
total cost. This phenomenon highlights the critical balance between control investment and performance
benefits in the system. The explicitly marked optimal point (1 = 0.424, J = 1.784) provides an important
reference for practical control system design. The existence of this point confirms that, under the given
parameter configuration, there exists a unique optimal control strategy that ensures system performance
while avoiding excessive consumption of control resources.

Furthermore, the convexity of the curve ensures the reliability of numerical optimization algorithms,
as any gradient-based optimization method can effectively converge to this global optimum. This
characteristic is of significant importance for engineering practice, providing a theoretical basis for
online optimization and adaptive control.

0.45 Sensitivity of Optimal Control to A Sensitivity of Optimal Contrel to Terminal Time
. 0.45
g 1
0.4
0.4
L -, 035
° ]
= £ 03
8035 8
£ Zo2s
B |
o o
0.3 0.2
b 0.15
0.25 0.1
0 0.5 1 1.5 2 0 2 4 6 8 10
Parameter A Terminal time T

(@ (b)
Figure 3. The impact of A (left) and T (right) on the optimal service rate u*.

Figure 3(a) illustrates the impact of the arrival rate A on the optimal service rate ¢*. In this figure,
we take @p = 1,1 = 2,68, = 0.1, = 0.5, and T = 5. As shown in the graph, as A increases from 0
to 2, the optimal control y* exhibits a clear monotonic upward trend, indicating a significant positive
correlation between the two variables. When the arrival rate A is low, the system load is light, and a
high service rate is not required to maintain good performance, so the optimal ¢* remains at a relatively
low level. As A increases, the number of “tasks” or “customers” arriving in the system rises. To reduce
queueing delays or state accumulation, the service rate u* must be correspondingly increased to match
the higher load, thereby optimizing the total cost (including terminal performance costs and control
costs). This demonstrates the fundamental balance that must be maintained between the external load
on the system and its internal service capacity.
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Figure 3(b) reveals the impact of the terminal time 7 on the optimal control x*. In this figure, we
take 1 = 0.8, a9 = 1,a; = 2,B; = 0.1, and y; = 0.5. As shown, as T increases from 1 to 10, the optimal
service rate u* exhibits a monotonic decreasing trend. When the operating time is short, the system
requires a more aggressive service strategy (higher u*) to rapidly optimize the terminal state, leading to
increased control costs but significantly reduced terminal costs. As the time horizon extends, the system
can achieve the same terminal objectives through a more moderate service strategy (lower u*), thereby
achieving a better balance between control costs and terminal costs. This demonstrates the critical role
of time scale in control strategy formulation: Short-term operations emphasize a rapid response, while
long-term operations favor economic efficiency.

Effect of a0 on Cost Function

Effect of a1 on Cost Function

i al=05 zgf?‘g
al=2.0 I )
6 a1=4.0 7 a0=3.0

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Control p Control p

(a) (b)
Figure 4. The impact of @, (left) and « (right) for states 1 and 0 on J(u).

Figure 4(a) illustrates the impact of the terminal cost coefficient @, for state 1 on the cost function
J(w). In this figure, we take 4 = 0.8, @9 = 1,8, = 0.1,7; =0.5,and T = 5. As «; increases from 0.5 to
4.0, the cost curves shift upward overall, and their minimum points gradually move to the right. This
indicates that higher a; values increase the total cost but simultaneously drive the optimal control u*
toward higher levels. The underlying mechanism is that an increase in @ enhances the marginal value
of state 1, raising the benefits of maintaining the system in state 1, thereby incentivizing a higher service
rate investment. This verifies the guiding role of the terminal cost parameter on the control strategy, and
designers can effectively adjust the optimal service intensity of the system by modifying a;.

Figure 4(b) illustrates the impact of the terminal cost coefficient ¢ for state O on the cost function
J(w). In this figure, we take 1 = 0.8,y = 2,8, = 0.1,y; =0.5,and T = 5. As « increases from 0.5
to 3.0, the cost curves shift upward overall, and their minimum points gradually move to the left. This
indicates that higher a values increase the total cost but simultaneously drive the optimal control u*
toward lower levels. The underlying mechanism is that an increase in @, enhances the marginal value
of state 0, raising the benefits of maintaining the system in state 0, thereby suppressing the investment
in service rates for transitioning to state 1. This demonstrates the regulatory role of the terminal cost
parameter on the control strategy, and designers can balance resource allocation between state 0 and
state 1 by adjusting «.

Networks and Heterogeneous Media Volume 20, Issue 4, 1269-1291.



1288

Effect of B1 (Linear Cost) on Cost Function Effect of y1 (Quadratic Cost) on Cost Function
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(@) (b)
Figure 5. The impact of 8; (left) and y; (right) on the cost function.

Figure 5(a) illustrates the impact of the linear cost coefficient 8; on the cost function J(u). In this
figure, we take 4 = 0.8, @9 = 1,y = 2,y; = 0.5, and T = 5. As B increases from 0.01 to 2.00, the
cost curves shift upward uniformly, indicating that the total control cost rises with 8;. The minimum
point of each curve (i.e., the optimal control *) moves leftward as §; increases, demonstrating that
higher linear costs reduce the optimal control intensity. Unlike the quadratic cost coefficient y;, which
primarily affects the curvature of the curves, changes in §; proportionally penalize all control levels,
reflecting the uniform penalty characteristic of linear costs. All curves maintain convexity, ensuring the
existence and uniqueness of the optimal solution.

Figure 5(b) illustrates how the quadratic cost coeflicient y; influences the cost function J(u) and
optimal control selection. In this figure, we take 4 = 0.8, 9 = 1,y = 2,8, = 0.1,and T = 5. As
v1 increases from 0.1 to 2.0, the cost curves become steeper and shift upward, particularly at higher
control levels, reflecting the stronger penalty on control effort. The minimum point of each curve
(optimal ¢*) moves leftward with increasing y;, demonstrating reduced optimal control intensity under
higher quadratic costs. The convexity of all curves confirms well-posed optimization problems. This
shows vy, ’s role as the primary parameter for preventing excessive control, as even moderate increases
significantly suppress optimal service rates while maintaining mathematical tractability.

7. Conclusions

In this work, we address the real-time control of an M/G/1 queue with optional service by treating
the service rates y;(-) as dynamic, state-dependent controls. By embedding the system in an L!-based,
non-reflexive Banach space, we prove existence of an optimal control pair (p*, 4*) and derive an explicit,
implementable feedback law that continuously adjusts y;(-) in response to current queue densities. The
resulting controller bridges the gap between steady-state economic design and on-line operation, offering
a practical tool for reducing both service cost and queue length in rapidly changing environments such
as call centers and hospital labs. Finally, to verify the correctness of the theoretical results, we conduct
some numerical analysis.
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It is worth noting that the results of this paper are obtained on bounded domains, that is, the
results of this paper are valid when L and T are less than or equal to bounded constants. Our results
do not hold for the case where L and T are equal to positive infinity. This is because we cannot use
the Aubin-Lions-Simon lemma for the case where L and T are equal to positive infinity, that is, the
conclusion of Lemma 3.2 may not hold. The method presented in this paper is suitable for queuing
models described by a finite number of equations [16], but it is not applicable to other types of queuing
models [14,31,32].
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