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Abstract: In this paper, we present a review of some results concerning the inverse problem of
detecting a prey in a spider orb web. First, an overview of the discrete and numerical models in
the literature is provided to understand the mechanics of the orb web and a descriiption of their
structural features is presented. Then, a continuous model was introduced in which the orb web
was described as a membrane with a specific fibrous structure and subject to tensile prestress in the
referential configuration. The prey’s impact was modeled as a pressure field acting on the orb web with
magnitude of the form g(7) f(x), where g(¢) is a known function of the time and f(x) is the unknown
spatial term that depends on the position variable x. Next, for axially symmetric orb webs supported
at the boundary and undergoing infinitesimal deformations, a uniqueness results for f(x) was proven
in terms of dynamic displacement measurements taken on an arbitrarily small and thin ring centered at
the origin of the web, for a sufficiently large interval of time. A reconstruction algorithm suggested by
the uniqueness result was implemented for f(x), and how the results of identification are affected by
the key geometric and mechanical parameters were studied. The results, obtained on a realistic family
of orb webs, revealed that the dynamic signals propagating through the web immediately after impact
contained enough information for the spider to capture the prey. In the final part of the paper, we
discuss an alternative method for prey localization and include some extension to account for different
boundary conditions. A short list of open problems is proposed in the conclusions section. This paper
is dedicated to Professor Emilio Turco for his 60th Birthday.
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1. Introduction

Spider orb webs serve two major functions: The first is to capture insects on the fly, and the second is
to serve as a waveguide to provide the spider with vibrational information. Spiders, through 180 million
years of evolution, have created not only a material —silk— with exceptional mechanical properties, but
also a structural typology that fulfills both functions masterfully with a reduced weight, thus energy
cost. Structurally, the web can be defined as a highly hierarchical 2D arrangement of fine silk threads,
with decreasing stiffness and pretension in the following order: Mooring, frame, radials, and spirals
(Figure 1a). The first three are composed of stiff and strong dragline silk, while the last one of “sticky”
viscid silk, much less stiff but with higher toughness. Overall the structure presents a high degree of
static indeterminacy.
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Figure 1. (a) Structure of an Araneus diadematus orb web [1]. (b) Stress-strain curves
and dissipated energy (enclosed area) in a loading-unloading cycle of Araneus diadematus
dragline [2] and viscid [3] silks.

The study of the static and dynamic structural response of the orb web has been revealing its secrets
over the last decades. As in other fields of science, this process has relied on two complementary
methodologies: The experimental one and that linked to the development of models. Here, we focuse
on a review of the work related to the second methodology. After presenting the models developed in
recent decades, we review the works that treat the discrete thread network as a membrane-like, which
have resulted from nearly a decade of work by the authors. The continuous model proves to be a very
valuable tool for obtaining general properties of the biological structure, and for the study of both direct
problems (calculation of the deformation due to static or dynamic load, out-of-plane or in-plane), and
inverse problems related to the sensory function that the orb web fulfills (determination of the spatial
distribution of load as a function of the out-of-plane or in-plane displacement signal received by the
spider), or to the identification of the prestress forces in the web threads.

The paper 1s organized as follows: In Section 2 is an overview of the mechanical and numerical
models of orb webs available in the literature. In Section 3, a continuum membrane model for small
deformation of an orb web is introduced, together with some background on the construction process

Networks and Heterogeneous Media Volume 20, Issue 1, 286-323.



288

(Section 3.1) and the analysis of out-of-plane (Section 3.3) and in-plane (Section 3.4) forced motion.
A formulation of the inverse prey detection problem and the main uniqueness result, with a new proof,
are presented in Section 4. In Section 5, a reconstruction algorithm for the spatial component of
the pressure field based on transverse and in-plane dynamic responses is provided, with applications.
Some extensions of the above results are discussed in Section 6. These concern prey detection in an
elastically supported orb web, an alternative eco-localization method for prey detection, and prestress
identification using spectral data. Some concluding remarks and a proposal for open problems are
shared in Section 7.

2. State of the art

Models facilitate the explanation of observed phenomena and the comprehension of underlying
principles, unveil new insights and encourage further exploration of physical laws, and predict the
behavior of physical systems under diverse conditions. Thus, it is not surprising that during the last
decades several models have been developed to reach a more detailed understanding of the mechanics
of the orb web. The first satisfactory attempt to explore the importance of web geometry (and not
only of silk strength) to web function using a simplified mechanical model, developed in a computer
program for structural analysis, was due to Craig [4], who focused on the effects of number of radials
and spirals on the ability of the web to absorb energy under a point load, thus looking at one of its major
functions: Prey interception. Interestingly, this work highlights the remarkable influence of pretension
on the structural response, and considers an effect largely neglected in almost all subsequent models:
The potential sliding of spiral-radial junctions. Despite analyzing an essentially dynamic event —the
impact of the prey— the model ignores inertial and also aerodynamic effects, something that is later
taken into consideration by Lin et al. [5], thanks to advances in structural modeling methods. The
availability of new simulation tools made it possible to highlight the relevance of aerodynamic effects as
an element of energy dissipation during impact. In the same way, the ability of the model used by these
authors to consider non-linear behavior of the material highlighted the role of the hysteretic behavior
of silk in energy dissipation. Subsequently, Lin and Sobek [1] studied, using the same finite element
code, how the hierarchy of stiffness and pretension in the different silk threads affects the structural
response of the orb web, resulting in a more regular stress distribution in the face of a load whose
position is always random. In addition, the failure of the system is progressive and local, affecting the
threads of lesser structural responsibility earlier. This is the first time that damage tolerance analysis,
well known in the field of structural mechanics, is applied to the web. Considering the significant
energetic expenditure incurred by the spider during the construction of the web, it is imperative that
the web maintains its functional efficacy in prey capture. This study is later completed by Alam and
coworkers [6,7], again using a finite element model, extending the analysis to the differences observed
in the small-amplitude vibrational response of the damaged structure. The web thus begins to be
modeled also as a vibrating system, which potentially serves as a waveguide for the transmission of
information to the spider. Beginning in the 2010s, the study of the damage tolerance of orb webs
continues to arouse great interest, in the hope that the clues found may be applicable to the field of
structural engineering. Thus, Aoyanagi and Okumura [8] developed a simplified model of a web, which
enables a closed-form solution of an undamaged structure, and numerical solution for the damaged one,
considering linear behavior of the material and static equilibrium. Here, the characteristic geometry
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of the web seems to reduce the stress concentration in the presence of damage. Also, the high ratio
between radial and spiral thread stiffnesses seems to play a relevant role in enhancing the damage
tolerance of the web. Delving into the influence of silk behavior on the overall structural response,
Cranford et al. [9] reported simulation results that identify the nonlinear response of silk threads, with
softening at a yield point and subsequent stiffening at large strain, as crucial for localizing damage to
sacrificial threads, resulting in robust webs.

The full development of finite element codes for the modeling of large deformations in dynamic
processes, non-linear behavior of materials, or contact between solids also enables progress in the
study of what can be considered the main function of the orb web: The capture of prey on the fly.
Thus, Ko and Jovicic [10] reproduced the impact of an insect —idealized as a sphere— against a web
formed by the different types of silk thread, each with its specific nonlinear response. This work also
fulfills the objective of showing the remarkable capacity of these models as tools for investigation.
Incorporating the aerodynamic drag of silk threads into a finite element model, Zaera et al. [11]
elucidated how the spider can more effectively exploit drag dissipation and underscored the necessity
of considering aerodynamics as an additional driving force in the evolutionary development of the orb
web. Later, Soler and Zaera [12] showed how slight variation in the web geometry, in particular in the
frame, markedly affects the prey-capture ability of spider orb webs. In the same period, Yu et al. [13]
and Zheng et al. [14] developed finite element models to elucidate the relative contribution of the
main energy dissipation mechanisms, namely deformation of dragline silk, deformation of viscid silk,
and aerodynamic dissipation, as well as of thread pretension and stiffness, to arrest the prey. In the
context of the orb web as a means of transmitting vibrational signals, the works of Mortimer and
collaborators [15, 16] explored the links between silk material properties, propagation of transverse
and longitudinal waves within webs, and the ability of the spider to control web function through
changes in dragline silk stiffness and web tension, and to determine direction and distance of the
source of vibration. In parallel, Otto et al. [17] analyzed how web architecture modifies the web’s
transverse vibration spectral energy at the placement of each leg, thus affecting the information
available to the spider.

A common aspect for all works is the consideration of the web as a discrete system formed by
tensile threads, which reproduce with greater or lesser realism the real geometry of the structure, but
are not suitable for the identification of its general properties. It is generally recognized that
theoretical methods are suitable to obtain some closed-form solutions that allow a direct interpretation
of the effect of the parameters of the system on its response, and to obtain general properties of the
system and extract useful insights from them. While the discrete nature of the orb web suggests
developing a discrete theoretical model, the relatively high spatial density of threads inspires the
alternative approach of a continuous theoretical model, provided that the length scale of the analyzed
phenomenon is larger than that of the discrete structure of the medium, i.e. the distance between silk
threads. The treatment of the system as a medium with spatial continuity opens the possibility of
using a spectrum of mathematical tools that enable obtaining solutions to a variety of problems. To
the authors’ knowledge, the first and only (to date) continuous model of the mechanical behavior of
the orb web is the one proposed by them in their work [18]. Its differential equations are amenable to
solution and have been resolved for specific categories of direct problems such as the static transverse
or in-plane deformation of the web [18, 19], the free [18] and forced [20] transverse vibration of the
web, the free [18, 21, 22] and forced [21, 22] in-plane vibration of the web, or to simulate the
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prey-impact event, demonstrating that the web’s efficacy as a sensory mechanism is enhanced through
alterations in the topology of the silk mesh as well as the proper choice of the spider’s sit-and-wait
predation position [23]. In the same way, it has enabled us to solve inverse problems related to the
function of the web as a vibrating sensor for the spider, such as the determination of the prey impact
region in a spider orb web from transverse [20,24,25] or in-plane [21,22] vibration signals, or the no
less significant problem of determining the pretension field in radial threads on the basis of one
eigenfrequency and its corresponding vibration mode [23]. Undoubtedly, discrete models based on
the finite element method are useful for the treatment complex of problems in large deformations,
nonlinear behavior of silk, or irregular web geometries or with damaged regions, and their results
keep providing relevant insights in the analysis of the dynamic response of spider orb webs subject to
prey impact [26-29], the vibration of damaged webs [30,31], or the effect of spider’s weight on signal
transmittance in vertical orb webs [32]. However, our work, based on a continuum model, offers an
integrative perspective for most of the problems of interest in the field of orb web spider mechanics.
The following sections contain a review of this model, as well as of the problems it has been able to
address and of the achieved results.

3. A continuum membrane model

In this section, we briefly recall the continuous membrane model introduced in [18] to describe the
small deformation of a spider orb web. Before embarking on the technical aspects of the analysis, we
believe it is useful to provide some general information on the methods adopted by the spider species
Araneus diadematus in building an orb web.

3.1. The orb web as a structure: Materials, construction process, prestress, and service loads

According to Denny [33], the synthesis of silk to be used in web construction is the major energy
drain on the orb-weaving spider. Thus, the optimization of overall energy expenditure in silk to enhance
the energy acquisition confers ecological and evolutionary benefits to the spider. Spiders therefore
produce high performance fibers that compare favorably with the best manmade fibers in strength and
toughness. The orb-web spiders belonging to the ecribellate families Araneoidea or Tetragnathidae,
produce two major types of silk to build the web: The viscid that sticks to the prey and holds it until the
spider reaches it, and the dragline silk used for the structural framework. For this reason, its stiffness
and strength reach much higher values than those of viscid silk, although the tenacity of the latter far
exceeds that of the former (see Figure 1b). In addition, the mechanical response of both types of silk
shows a hysteretic behavior which, together with the aerodynamic forces [11], contributes to dissipate
the energy of the prey impact and avoid its rebound. Orb-web spiders belonging to the cribellate
families Ulboridae and Deinopidae use “wooly” silk to retain the prey. In any case, webs built by the
four mentioned families are strikingly similar [34]. By building a web in a vertical plane the spider
minimizes the chance of accidental destruction by falling objects while maintaning a large projected
area with which to intercept prey, which fly with a primarily horizontal motion. Intra- and inter-species
orb webs show a very similar geometry in their central area, formed by radial and circumferential
threads, while the frame and mooring threads in their periphery show a great variability to adapt to the
arrangement of the surrounding objects to which they are anchored. The central part of the web, called
the hub, is formed by a set of short threads with a dispersed orientation, and the spider sits on it waiting
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for prey. Finally, there is a region in the area near the hub where the circumferential threads are absent
(see Figure 1a), enabling the spider to easily switch from one side of the web to the other.

During the construction of the web, the spider adjusts the pretension of the different threads to
optimize their structural and waveguiding functions. The pretension values follow the same structural
hierarchy as the threads, with decreasing values for mooring, frame and radial threads (typical ratio
being 10:7:1 [35]), all spun with dragline silk. Radial tensions are higher in the upper half due to the
higher density of radial threads in the lower part of the web, on the one hand, and to the weight of the
spider [32], on the other hand, resulting in force ratios of 2:1 to 3:1 [35]. As for the spiral threads, the
tension should not be high to avoid breakage during impact (especially when the segment distance is
small), but not too low either because it cannot sag and become entangled, creating holes in the capture
surface [36]. The curvature of the taut spiral threads towards the hub creates a gradient in the radial
prestress, with higher values at the periphery of the hub.

The orb web, once constructed, must fulfill functions that contribute to the survival of the spider,
and which are essentially related to its structural response to mechanical loads. Some of these loads
compromise the integrity of the web, and can generate damage that reduces prey capture and implies
an extra cost of repair or rebuilding behaviours. Wind, specifically, is one of the major causes of
damage, since it imposes aerodynamic loads that can break structural threads (mooring, frame, or
radial) and result in a partial or total collapse of the web [37]. For the purpose of its consideration in
a structural model, the wind load is calculated in the corresponding works [5, 11] using the Morison
formula [38] for fluid forces acting on non-stationary slender elements, considering a circular cross
section for the silk thread, which results in a drag force with nonlinear proportionality to the relative
velocity between thread and air. The aerodynamic drag should not only be accounted for the wind load
modeling, is also for the prey impact, in which case it has the advantage of dissipating a relevant part of
the kinetic energy of the prey, thus decreasing the stresses in the web [11,27]. As for the consideration
of the force produced by the impact of the prey, several possibilities have been examined. The most
realistic ones consider the coupled dynamics of the prey-web system, from which the contact force
results; in these cases the prey is represented by a sphere with equivalent dimensions and mass, thus
reproducing the spatial distribution of the force on a finite set of silk threads [10-12,29], while in
others, the prey is treated as a lumped mass linked to a specific point of the web [27,28]. In other
works, the effect of the prey is represented by a force distributed over a circular domain; the spatial
part of the force is modulated by a time function, both being defined to be representative of an impulsive
loading process [23], or of the vibration generated by a prey once it has become attached to the sticky
web [20,22]. More simpler ways to mimic the impact load are to apply a point force on a node, in the
case of discrete models [6,7,9,26].

3.2. A mechanical model

We considered the spider orb web sketched in Figure 2 as a network formed by two intersecting
families of threads which, in a referential configuration By, coincide with radial directions of a disk
centered at the origin O of a Cartesian reference system (radial threads), and with coaxial circles
centered at O (circumferential threads). No slippage between the threads belonging to the two
families is allowed, and the threads are supposed to be close enough so that the cable net forms a
continuous membrane. The two families of threads are considered as coordinate lines on the surface
of the membrane, both in the referential and current configuration.

Networks and Heterogeneous Media Volume 20, Issue 1, 286-323.



292

X2

l/Cp\ / %

-~ JITTTTIRLS 117K A3 s R

il
A
i

Ml
i
L

it
\“ \\\&\\QQ\\\{:Sl \\\\

1|
iy, ” X1

T ‘
il

Figure 2. Geometry of the referential configuration By of the orb web.

The position vector of a point in the referential configuration By is denoted by
X = X(t, ) = P (costhE; + sinthE,), (3.1)

where the polar coordinates are #; = p € (0,R), ¥, = ¥ € [0,2n], and {E{,E;, E; = E; A E,} is the
canonical basis of R3, e.g., Ei-E; =06;,1i,j=1,2,3, where - is the scalar product and A is the vectorial
product in R?. Note that B, = By \ {0}, where By, is the open disk of radius R centered at the origin O
and belonging to the plane spanned by E; and E,.

The actual placement x of the particle X € By at time ¢ is defined as

x=xX,n=X+ulX,1), (3.2)

where y : By X [0, +00) — R? is the deformation map and the displacement field u : By X [0, +00) —

R3 is
2

uX,f) = Z u(X, HA, + (X, HAs. (3.3)
a=1
The functions u', i = 1,2,3, are the contravariant components of u on the (orthogonal) covariant
basis {A;} | at X:

A =X, =cosIE| +sindE,;, A, =X,;=p(-sinIE; + cos 7E,),

" (3.4)
Az = A ANAGJA ANALT (= E).

Herein, the comma notation indicates partial derivatives with respect to the coordinates ¢,, @ = 1, 2.
The covariant basis {a,'}?:1 in a point x of the actual configuration 8 = (B, t) of the membrane is

given by
A, =X, Q@@= 1,2, ay =a; A azlal A azl_l, (35)

where a, is the tangent vector to the threads of the ath family in the actual configuration. The
corresponding contravariant basis {a’}? | is defined such that a® - ag = S5, a’ = a;, where &g is the
Kronecker symbol, a,8 =1, 2.
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Our analysis will be developed under the assumption of infinitesimal deformation, that is

(Iu(X, ] ‘Ou(X, 1)
sup +

m X ') <€, forevery X € By, t € [0, +00), (3.6)

where € is a given number belonging to (0, 1), and all the quantities of order O(e") with 7 > 1
are neglected.

It is assumed that the contact actions inside the membrane are such that the internal force on a
material element taken along a coordinate line is a tensile force acting in the tangent plane to the
membrane surface, and having direction coincident with the tangent to the other coordinate curve
passing through that element. The controvariant components of the membrane stress tensor defined in
the actual configuration B are denoted by N*?, with N'2 = N?! = 0.

We indicate with q(x,7) = 2(21:1 g*a, + ¢’as the surface force density field acting on the deformed
membrane, inertia forces included. The differential equations of equilibrium can be obtained by
imposing the balance of linear momentum for any portion of the actual configuration 8, using
Cauchy’s Lemma and the Divergence Theorem. Under the assumption of smooth tensor and vector

fields, we have
2

DN"l+@ =0, y=12, i3,

a=1

B 3.7)
D Nbg, +4' =0, in8,
a,f=1
where
2 2
Nl = N0+ Y NPT5, + > NT7,, (3.8)
o0=1 o=1
2
[ =a0p -’ bpo = Z byays, ayp=ay-ag, by =-a3,-a’. (3.9)

v=1
The threads have vanishing shear/bending rigidity, and the magnitude of the tensile force acting on
the threads of the a-family is assumed to depend on the initial tensile prestress and on the elongation
in the direction of the @ coordinate curve only. In case of linearly elastic material, the no-vanishing
membrane stress components in B are given by
11|% ’ . | azzl%
Pl N = dy (T, + Ay Ere)) s (3.10)

la

]V11 = dl (T] + ﬂ]Elfl)

where the functions A, = A;(p) > 0, A, = constant > 0 are the area of the cross-section of a single
radial and circumferential thread, respectively, and E, > 0, E, = constant, is the Young’s modulus of
the material. The quantity ¢, is the elongation measure of the threads belonging to the ath family:

Uglo
Aaa ’

a=1,2, (3.11)

€ =

where Ay = Ap-Ag and ttgly = ttga—32, Toglts, @ = 1,2, T, = Aq. A’ being the Christoffel symbols

defined on Bg. Moreover, T, > 0 is the tensile prestress force acting on a single thread belonging to
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the ath coordinate curve in the referential configuration Bx. The quantity d,,, expresses the number of
threads per unit length crossing the coordinate curve ¥, = const in 8 and having direction coinciding
with the vector a,, @ = 1, 2. Hereafter, the radial and the circumferential threads in B4 are assumed to

be equally spaced both in the plane angle 27 and along the radial direction, respectively, e.g., d; = %

and c_iz = Cy, where the two positive constants C,,, Cy are the number of radial threads per unit plane
angle and the number of circumferential threads per unit length along the radial direction, respectively.
Within the approximation of infinitesimal deformation, it it possible to prove that

— 1 —
d, = d, (1 - (u2,2 +”;)), dy=d(1-u'). (3.12)

By inserting Eq (3.12) in Eq (3.10), and neglecting higher order terms, we obtain the linearized
constitutive equations of the membrane stresses

—_—— —_—— 1 p—
N” = d]T] - d]T] (2141,1 +l/l2,2 +%) + d]ﬂ]E]M],] , (313)
d,T, doT N\ AE (a2 +
N2 = 222 B 222 (u1,1+2u2,2 +2”_)+ 2 Ay 2(M422 Pul)' (3.14)
> P p

We conclude with a comment on a key aspect of the model, the definition of the prestress of the
orb web. We first notice that the expressions of the membrane stresses Eqs (3.13) and (3.14) reduce to
prestress acting on the referential configuration By for vanishing displacement field. More precisely,
since the entries of the second fundamental form of the web surface, Eﬁa’s, evaluated on By vanish,
and the loads are absent, the equilibrium equation (3.7), is identically satisfied, and Eq (3.7); imply

Ty =Top), T,,=ETs(p), (3.15)

with & = % where we have defined Tp =T, 7,9 = T,. By the axial symmetry of By, we are led
P
to assume

T,(0, M=k = o = constant >0, T, =T,(p). (3.16)

Now, we recall that the analysis of the initial prestress is strictly connected with the process
followed by spiders in creating their webs (see [18] for details). In brief, in the first stage of orb web
construction, the web configuration is called unfinished web, which includes the auxiliary spiral, and
the experimental observations by Wirth and Barth [35] support the hypothesis of proportionality
between the circumferential, Tﬁ, and radial, Tp, prestress, namely Tﬁ(p) = kTp(p), where £k > 0 is a
suitable constant. Assuming axially-symmetric referential configuration and writing the equilibrium
equations on By, we obtain

T,(p) = T exp(kép), p € [0,R], (3.17)

where the radial tensile prestress at the center of the web, T, is strictly positive.

In the analysis of the inverse problem of detecting a prey developed in Section 4, and from now
on, we are concerned with the subsequent stage of the orb web, the so-called finished web, which is
obtained by the spider by removing the auxiliary spiral and replacing it by the capture - or sticky - spiral,
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which represent the final configuration of the orb web for prey catching. Uniform tensile prestress in
the circumferential threads of the finished web can be assumed in this stage (see [18]), namely

Tﬂ(p) =7 = constant >0, p€[0,R], (3.18)

which implies

Typ) =T +&Tp, (3.19)
where T > 0.

We can now write the equations governing the infinitesimal spatial forced vibrations of the finished
orb web. In doing this, we find it convenient to write the motion equations in terms of physical
coordinates on the basis {A%” = A,/|A,|, A~ = Ay/|Agl, A’ = E*}, where, to simplify the notation,
we use the indexes p, ¥ in place of 1,2, respectively. Moreover, we remove the upper brackets on the
displacement components, namely u**> us” = pu’, u=*> = u, and analogous for the physical
components of the surface forces. By replacing the Eq (3.10) in Eq (3.7), after linearization, the
motion of the membrane is governed by the following system of three partial differential equations:

= ul,

1 1 1 =
;(CpﬂpEp”p,p )sp _p_zcﬁﬂﬁEﬁ(uﬁaﬁ +u”) + ECﬁTﬁ(”p,ﬁﬁ —u’ ) =y +p° =0, (3.20)
1 1 - 1 1 1 =
EcﬁﬂﬂEﬂ(uﬁ’ﬁﬂ +u 9 ) + ;CﬁTﬁ u’,, —;Mﬁ + ;Mp,ﬁ + ;Cpruﬁ’pp —yu’ 4 +p” =0, (3.21)
| R ) -
; pru’pp +EC19T19(M,1919 +puap ) — YU,y +tp = 07 (322)

for every (¢, p, 1) € [0,27] X (0, R) X [0, +00). The surface mass density v is given by

1
Y() = ;Cpmp(p) + Cymy, (3.23)

where m,(p) = A,(p)ps, my = HAyps is the mass density per unit length of the radial and
circumferential threads, respectively, ps = constant > 0 being the volume mass density of the silk.
The functions p?, p”, p are the physical components of the continuous external force density field per
unit area, e.g., p = p°(p, 9, DA, + p’ (0,3, Ay + p(p, 3, HE;. The prestress tensile state is assumed to
satisfy Eqgs (3.18) and (3.19).

The mathematical description of the orb web model requires the specification of the boundary
conditions at p = R and at the origin p = 0. The external support is assumed to be fixed, namely

uw’ (o, I, )|p=r = u’(p, 9, Dlp=r = u(p, ¥, D|p=r =0, (3,1) € [0,27] X [0, +00). (3.24)

To obtain the condition at the origin, let us first recall that for the spider species of interest to us, the
spider typically rests in the center of the web waiting to capture its prey. Since the spider’s mass M is
much larger than the mass of the whole orb web, as a first approximation, the spider is modeled with
a material point of mass M attached to the origin of the web. It is implicitly assumed that the effect
of the spider on the stiffness properties of the orb web is negligible. By imposing the force balance
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on ¥(B,), where B, is a small disc with radius r centered at the origin of the referential configuration,
assuming u sufficiently smooth near p = 0, and taking the limit as r — 0, we obtain

1 _
lim= [ (CoAEu, A +C,T u", A”)dS+
r—0 r aBr

1 —
+ lim — ( f C,T i,y dS)E3 = Mu,, (p=0,1), 1€][0,+c0).
0B,

r—0 r

(3.25)

The motion problem is completed by assigning the initial conditions at ¢+ = 0, which we always
assume correspond to zero displacement and velocity.

Before passing to the analysis of the forced vibration problem, it is appropriate to make some
remarks on the equations governing the motion of the orb web. First, we note that the transverse
motion is decoupled from the in-plane motion. The latter, in fact, is controlled by the system formed
by the two coupled equations (3.20) and (3.21) in the unknowns #*, u”, and the boundary conditions are
separated. Second, the stiffness coeflicients in the equations of motion include both terms that take into
account the elasticity of the threads and the tensile prestress acting in the referential configuration. In
particular, the transverse motion equation depends only on the initial prestress and not on the elasticity
of the threads. Furthermore, the intensification of the radial threads towards the center of the orb web
gives rise to a singularity at p = 0, both in the stiffness coefficients and in the surface mass density. It is
important to say that this peculiar feature of the mechanical model characterizes the dynamic response
of the system.

Finally, we recall that the uniqueness results for the catching prey problem shown in section 4 hold
for a forcing term of the type

P =g f (.9, p’=g0f’ D, p=gt)f(p,P, (3.26)

where g = g(1), g € C'([0, +0)), is a function of the time variable only and f*, f”, f € L*(Bg). For this
reason, in the analysis of the motion problem we will limit ourselves to considering only forcing terms
as in Eq (3.26).

3.3. Out-of-plane forced motion

The proof of the main uniqueness result presented in Section 4 (Theorem 1) strongly relies on the
eigenfunction series representation of the solution to the forced dynamical problem for the spider orb
web. Therefore, in this and the next sections, we consider the forced motion for the out-of-plane and
in-plane problem, respectively.

Under the above assumptions, there exists a unique solution of the out-of-plane forced motion
u € C'([0, +00), L*(Bg)) and it can be expressed in Duhamel’s convolution form as

u(p, 9, 1) = f gt — DU, 9, 7) dr, (3.27)
0

where

.= 370 o )
m=1
30 N (7 ostu 7 sint)sin (Ve

n=1 m=1

(3.28)
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Here, uﬁ,?) = uﬁ,?)(p) and, for every givenn > 1, uf,',l) = uﬁ,'f)(p) are the principal modes of vibration of

the following eigenvalue problems in the radial variable [20]:

(Cpru(o)/)’ + 2190y =0, p€(0,R),
27C, T, (0)u’ (0) = =22 Mu'©(0), (3.29)
u®@R) =0,

— N 1 _
(CPTP”(H) ) + A" pyu™ = ;nzcﬂTﬂu("), p € (O,R),

90) = 0. (3.30)

u™(R) = 0.

It should be noted that a Coulomb-like singularity appears at o = 0 when n > 1. The eigensolutions
are normalized as follows:

O O

0 0 mi mi .

<ulu? >, = o < W, u™ > = i,mn>1, (3.31)
i i

where the scalar products < -,- >, y, < -,- >, are defined as

R
M
<hi,hy >y m= f PY(P)()h(p)dp + =i (0)h2(0), (3.32)
0

R
<l >= [ v, (3:33)

for every smooth function 4; : [0, R] — R, i = 1,2. The quantities
| 1
Fo = — f ful cos(nMdQ, F == | fu®sin(n$)dQ, (3.34)
T Bg T Bg

are the Fourier coefficients of the force field y~! f evaluated on the functions {u,(ff) cos(n), uf,’f) sin(n)},

n>0,m>1.
For both problems (3.29) and (3.30) there exists an infinite countable sequence of real, simple
eigenvalues (/15,’,’));’;:] such that lim,_,,e A% = +oco0, n > 0. Moreover, the following asymptotic

eigenvalue estimates hold:

n=0: A9 =COmr+0m™), asm— +oo, (3.35)
n>1: A" = CPr + O(m™'*¢), asm — +oo, (3.36)

where C™_ n > 0, and € € (0, 1) are suitable constants independent of .
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3.4. In-plane forced motion

Similarly to the out-of-plane problem, the solution u”(p, %, 1), u”(p, 9, ) € (C'([0, +0), L*(Bg)))* of
the in-plane forced motion can be expressed as

! t
Mma0=j}m—wwmﬁnMn ﬁman:j}m—ﬁwvﬁnMn (3.37)
0 0
where
U(p,9,71) = Y \AFL sin ( \//lﬁf]r) el (p)+
=l (3.38)
£ ) A (F cos(nd) + F sin(nd)) sin(\//l,g'j)r) (),
m,n>1
Uip.9.1)= Y 0TI sin ( . /a;z}fr) WU o)+
=l (3.39)
+ 3 AR (F sind) - F” cos(n)) sin(\//lﬁ,’f)r) b (p).
m,n>1
The numbers
1
Frvo = — | furldQ, (3.40)
2 Jp,
1
Fuu = — | ulaQ, (3.41)
21 Jp,
1
Fo+r = f (/7 cos(kd) + frul™® sin(k)) dQ. (3.42)
T Bg
1
Fh- = = f (™ sin(kd) — f'ul® cos(k)) dQ, (3.43)
T Bg
form > 1, i,k > 1, are the Fourier coefficients of the force field
7=y F =y (3.44)

The eigenfunctions of the in-plane motion of the orb web can be grouped in three families [21].
The uncoupled radial eigenfunctions (upU(p), u’l = O) have vanishing angular motion and the radial
component u*Y satisfies the one-dimensional eigenvalue problem

- (CpﬂpEp (upu),)l + écl‘}ﬂﬂEﬁupU = /l”prupU, p€(0,R),

upU(O) — 0’ (345)
u"’(R) =0,
with a Coulomb-like singularity at p = 0 on the lower order term. The uncoupled angular

eigenfunctions (upU =0, uﬂU(p)) have vanishing radial motion, and the angular component u’Y
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satisfies a one-dimensional eigenvalue problem analogous to Eq (3.45):

- (CPTP (uﬁU),)/ + f—l)CﬂTqu = /l’wypuﬁu, p€(0,R),

U(0) = 0. (3.46)

u”Y(R) = 0.

For both problems (3.45) and (3.46) there exists an infinite countable sequence of positive
eigenvalues Yy (A2U)>_ respectively, with asymptotic behavior as m — oo

m=1> m=1°
AV = CPmr + O (m_HEp) ’ AV =C’mn + 0 (m_lm) ’ (3.47)

where C? > 0, C? > 0, €& € (0,1), & € (0, 1) are suitable constants independent of m.
Finally, the coupled eigenfunctions (up("), uﬂ(”)), n > 1, are of the form

(3.48)

(o, 9 = u’"(p) (A, cos(n?) + B, sin(n?)),
u?™@(p, ) = u’™(p) (A, sin(n?) — B, cos(n)),

where A,, B, are real constants, A2 + B> > 0. For n > 2, the eigenvalue problem for (up("), uﬁ(”)) is

LOW,u") = A"ypu, p € (O,R),
LY u”y = A"ypu”, o€ (0,R), (3.49)

w(0) = u”(0) = ’(R) = u”(R) = 0,

whereas for n = 1 the eigenvalue problem is

LYW, u"y = ADypu, p € (O,R),
LY, u”y = A Pypu”, p € (0,R),
C, A 0)E, () (0) — C,T,(0)(u”) (0) = AV Ma~"u(0), (3.50)

w(0) + u’(0) = 0,
wW@R) =0, u’(R) =0.

(1)

s » 1> 1, are defined as follows

In above expressions, the operators Ll(,"), L
LOW,u") =~ (CoAE, @)) + Le, A, (nd” + u) + Le T, (n*u + nu),
p p
B o1 1 (3.51)
Lg')(up, u’y = - (Cpr (uﬂ) ) + ECﬁﬂﬁEﬁ (nzul9 + nup) + /—)CﬂTﬁ (u'9 + nup) .
As in the case of out-of-plane vibration, the eigenfunctions of the problems above are normalized
so that the corresponding strain energy takes the unit value.
To obtain an asymptotic formula for the eigenvalues of the coupled motions, we introduce the
assumption of proportionality between the radial prestress Tp and the cross-sectional area of radial
threads A,,:

AP)E, =nT,(p) p € [0,R], (3.52)
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where 7 > 0 is a constant. Then, the eigenvalue problems (3.49) and (3.50) admit an infinite countable
sequence of positive eigenvalues (4,,)"_,, with asymptotic behavior as m — oo given by

m=1°

VA = By + O(m™), (3.53)

where either w,, = amnn'’? or w,, = bmn, with €. € (0,1) and a > 0, b > 0 are constants depending
only on the parameters of the physical model.

4. Inverse problem: Uniqueness results

In many orb weavers, more than half of the impacting prey escape [39], so the spider needs to
quickly orient itself to it. The capture function of the web is useless if the spider is not able to detect
the position of the impact and the prey finally escapes. Thus, the spider is positioned in the hub
to have a quick access to any region of the web, but also to have a directional information through
the radial threads [33]. The natural process leading to this identification of the prey position, named
ecological localization (eco-localization), is of great relevance from both a biological and technological
perspective, in view of the large number of articles related to this problem.

In this section, we present a mathematical result stated as a theorem with a proof that justifies why
the identification of loads of a certain type is possible.

4.1. Main results

Theorem 1. For a given g € C'([0,+00)), with g(0) # 0, let (u’,u’ u);, W, u’ u), be the
displacement field given by Egqs (3.27) and (3.37) corresponding to the distributed force fields
(f°, 10, O, (f°, £, 2 € (LA(Bg))?, respectively. Then, there exists Ty > 0 such that if

9 )
(up’ u' ’ M)] |0 = (up, u' s I/l)zl(),

where O is any set of the type (p — €,p + €) X [0,27] X [0,79) with 79 > T, 0 < € < p < §, then

(fp’fe’f)l = (fp’fg’f)Z in BR~

4.2. Proof of Theorem 1

Before we prove the theorem that concerns the identification of loads generated by the prey, it is
necessary to state some definitions regarding sequences of numbers. Consider a sequence (4,,),en C R.
We will say that this sequence is uniformly discrete if there isa ¢ > O such thati # j, 4; # 4; =
|4, = 4| > 6.

Definition 2. The upper uniform density of the uniformly discrete sequence A = (A,),en is defined
to be

uud(A) = lim max FAN[x Xt r])'

r—+o0o0 xeR r

Definition 3. Given a bounded set U C R" with positive measure, the Paley-Wiener space is defined
to be
PW, = (F | F € L*(R"), supp(F) c U} c L*(R"),

where £ stands for the Fourier transform of F.
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Definition 4. The uniformly discrete sequence A = (4,),en C R is an interpolating set of PWy, if
for every square summable sequence (d,,),ew, i.€., (d,)nen € €2, there is a ¢ € PWy, such that ¢(4,,) =
d,, Yn € N.

The property of being uniformly discrete is relevant because not all interpolation is possible when
the sequence (u,),en C R is not uniformly discrete, as the following theorem [40, Proposition 3] shows.

Theorem 5. Let (1), C C lie in a strip parallel to the real axis. If the equations

f(u,) =cn, VYneN,

admit at least one solution f € PW_,, for each sequence (c,)nen € 2, then (Up)pery IS
uniformly discrete.

There is a result due to Kahane [41] that states that

uud(A) < (azz;al) = A is an interpolating set of PW,, 4,).
Vs

We recall that the space
{@leeClU)}c L'®),

is dense in PW, because, except for the multiplicative constant, 27, the transformation F : L>(R) —
L?*(R) is a surjective isometry and C2(U) < L*(U) densely.

Using interpolation and functions in Paley-Wiener space, we can prove the following theorem
regarding almost periodic distributions of the type

Z a,ett e S, (4.1)

neN

with (a,).en € ', where s is the space of slow growing sequences and .7’ is the Schwartz space of
tempered distributions. The details can be found in [42].

Theorem 6. Let the sequence A = (A,)nen in Eq (4.1) be uniformly discrete. Then if there are C > 0
and ny € N such that |1,| > Cn®, for n > ny with a > 1, then for any T > 0,

u|[—‘r,‘r] =0 = u=0.
If A = O(n), then there exists Ty > 0 such that if T > 7, then
I/t|[_-,7-r] =0 = u=0.

However, in this problem of identification of the loading produced by the prey on a spider orb-web,
we need a version of this result to take into account the possibility that the union of the eigenvalues
presented in the precedent section is a non-uniformly discrete sequence (see Eqs (3.35), (3.36) and
(3.53)). The conclusions of Theorem 6 remain the same if the sequence A = (4,,),en in Eq (4.1), with
|4, > Cn®, for some C > 0 and @ > 1, can be written as a rearrangement of the union of a finite
number of uniformly discrete sequences, Ay = (Agn)nen, kK = 1,..., K. However, to our needs, we need
only the following simplified result.
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Corollary 7. Suppose that the series

y = Z a, sin(A,7), 4.2)

neN

is a distribution in which (a,),en € 8" and for each n € N, |4,| > Cn, for some C > 0. Suppose that
the sequence A = (1,),en C Ry can be written as a rearrangement of the union of a finite number of
uniformly discrete sequences, Ay = (A nen, kK = 1,..., K. Then, there exists 7y > 0, such that

Ve =0, 7270 = v=0.

Proof. Each sequence Ay, k = 1,..., K, is uniformly discrete. Associated to each of them there is an
upper uniform density uud(Ay). Let Uy = [—7, 7] with 7, = mruud; and U = [-7,7] C R, with 7 > 7,
where

K
7o =7 ) uud(Ay). (4.3)
k=1

In Eq (4.2), take an arbitrary n, € N and consider the corresponding coefficient a,, and exponent
An,. Take the first derivative of Eq (4.2) to obtain the even distribution

Z b, cos(A,t), 4.4)
neN
where (bynenw € §'. For each sequence (Aknen, kK = 1,..., K, there is a (ZZ\O € PWy such that

(+/lkn) = 0, for all A4, # A,, and ¢Z°(+/lk,,) # 0. This function ¢k can be assumed to be even,

because if it is not, we can always construct another function in PWy,, ¢Z°(/l) + ¢Z°( A) which is even
and satisfies all the required properties.
Now, we observe that .7 (¢° - - - ¢°) is compactly supported function in L2, because

T B =G e 4

by the Theorem of Supports for convolutions (see for instance [43]), the right-hand side of the last
equation is compactly supported.

To prove that b,, = 0 (and consequently a,, = 0) if u|_.; = 0, T > 7, we apply the distribution u
given in Eq (4.4) to the test function .7 (¢’ - - - ¢,°) to obtain

W T $0) = B 6 =270 () G () = A (y) -+ B (Ayy) = 0

neN

which implies that a,, = 0.
Since ny € N is arbitrary, the proof of the corollary is complete.

Now, we can prove Theorem 1.

Proof of Theorem 1. Since the operator (L2 > (f*, f%, ) — @”,u’,u)lo is linear, it suffices to
prove that
W, u’,wlo = (0,0,0) = (f*, f*, f) = (0,0,0).
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It is clear that since 7", 7" given in Eq (3.34) and 75", 72V, 7O and 7~ given by Egs
(3.40)—(3.43) are the Fourier coefficients of Yy 'f, ¥ f# and y~! 9, the proof of the theorem will be
finished as soon as we prove that all these coeflicients are null for all n € N, m € N U {0}.

We start with the equation u(p, 3, t) = 0, Y(p, ¥, 1) € O, where u is given by Eq (3.27). Take the first
derivative of this equation with respect to ¢ to obtain a Volterra integral equation of the second kind to
conclude that U(p, 3, 7) = 0 for (o, #, 7) € O, where U is given by Eq (3.28). The same procedure can
be done to u” and u” given by Eq (3.37) to conclude that ¢* = 0 and U’ = 0 in O.

Consider UP given by Eq (3.38). In turn, multiply it by the functions ¢ — 1, ¥ +— sin(ni) and
? +— cos(ni), integrate it in the unit circle [0,27] and apply the result to a test function

€ C2((p — €,p + €)) to obtain, respectively,

Zwmvsm( Vg )<ufn",som>:0, 4.5)
meN
Z\M" Fomt sm( A% )<ug,<">,¢m>:o, (4.6)
meN
D NAVTF sin( aw )<uf,f">,¢m>:o. (4.7)
neN

Noting that since the restriction of any eigenfunction 1., i, ™, for any n € N and m € NU {0},
cannot be the null function in the interval (o—¢, p+€), by using Corollary 7 with the estimates Eqs (3.47)
and (3.53) leads to the conclusion that

FLU = F = F07 = 0, Vn e N,Vm € N U {0},

Taking U” given by Eq (3.39) and U(p, ¥, 7) given by Eq (3.28) and applying the same procedure
as above with estimates Eqs (3.35), (3.36), (3.47) and (3.53), we conclude that

FO=F = 7-;(’,2_, Vn e N, Vm e NU {0},
FU =0, VmeNU/{0l.

m

Since these are the Fourier coefficients of y~! f*, y~! 7 and y~' f, we conclude that (f*, f, f) =
(0,0,0).

5. A reconstruction algorithm

The geometrical and material properties of the spider orb-web shown in Table 1 are the same as
in [18,20]. The spider mass, placed at the center of the orb-web, is equal to 50 times the total mass of
the web. The temporal function that composes the loading is g(¢) = cos(a 1), @; = 27 100 Hz.

The one dimensional eigenvalue problems in the radial direction, Eqgs (3.29), (3.30), (3.45), (3.46),
(3.49), and (3.50) are discretized to obtain the finite elements used to model the spider web as described
in [20,21]. The nodes of the finite elements are equally spaced and the spline functions are continuous
and piecewise linear.

From the finite element simulations, we obtain the natural frequencies, which have a direct
correspondence to the eigenvalues of the problem. Some are shown in Table 2.
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Table 1. Geometrical and material properties.

Observation

Parameter Value

R 0.12m

Cy 308 m™!

C, 32/(2n)

0Os 1098 kg - m™>
oy 35-10°%m
oy 23-10°%m
E, 11.0 GPa

Ey 50.0 MPa

T 125- 106N
T 10-10°°N
T 14-100°N
k& 32.2m™!

M 50 times the orb-web mass

Radius of the orb-web

Number of circumferential threads per unitary radial
length

Number of radial threads per radian

Mass per unit volume of the silk

Diameter of the radial threads

Diameter of the circumferential threads

Young’s modulus of the radial threads

Young’s modulus of the circumferential threads

Tensile force in a radial thread at the center of the orb-web
(finished web)

Tensile force in the circumferential threads (finished web)
Tensile force in a radial thread at the center of the orb-web
(unfinished web)

Exponential parameter (unfinished web)

Spider mass at the origin

Table 2. Some natural frequencies (in Hz) of the spider orb-web as in Table 1, with the
presence of the spider at the origin.

Out-of-plane movement

n m=1 m=2 m=23 m=4 m=35 m=~6 m="7
0 69.7 321.4 653.8 986.8 1322.1 1661.0 2004.4
1 338.4 666.1 996.7 1330.5 1668.2 2010.9 2359.3
2 381.7 700.4 1025.0 1354.7 1689.5 2029.9 2376.5
3 438.3 750.2 1068.3 1392.8 1723.5 2060.6 2404.5
4 499.7 808.7 1122.0 1441.7 1768.2 2101.6 2442 .4
Coupled in-plane movement
n m=1 m=2 m=23 m=4 m=235 m=6 m="7
1 259.3 541.0 848.6 156.85 1468.6 1783.7 2101.7
2 821.1 1138.1 1445.0 1750.4 2057.0 2365.5 2676.1
3 1097.3 1428.0 1740.5 2047.8 2353.7 2659.9 2967.1
4 1369.2 1713.5 2033.4 23447 2652.6 2959.3 3266.1
Uncoupled radial in-plane movement.
— m= m=2 m=23 m=4 m=>5 m=6 m="7
8245.2 16729.4 25188.6 33642.0 42097.7 50560.7 59034.5
Uncoupled angular in-plane movement.
— m=1 m=2 m=23 m=4 m=>5 m=6 m="7
338.3 665.0 992.9 1321.4 1650.4 1980.0 2310.2
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Take the functions that describe the displacement field of the spider orb-web given in Eqs (3.27)
and (3.37) and integrate each of them over the interval [0, 2r], in turn, against the functions ¢ +— 1,
¥ — cos(n?), ¢ — sin(ni) to obtain nine functions of (p, ).

It should be noted that the index n > 1 can be linked to the number of legs of the spider that
measure the displacement field, as discussed in [20]. In the simulations, n = 1, ..., Ny, Where 2Ny,
is the number of legs of the spider. In this review we fix Ny, = 4, because it corresponds to spiders
commonly found in nature with 8 legs.

Since the numerical procedure to recover the coefficients Tnfu, Fou, T,,(l")Jr, 7:,,(1")_, T,f,o), TC('Z TS(’,Z are
essentially the same, we show only some representative steps in this review. The results of the above
mentioned integration concerning u* are

2 +00
f W (0,9, 1) do = 2nz XVFPUOY Y (p), (5.1)
0 m=1
27 +00
f u’(p, 9, 1) cos(nd) d = ﬂZ AWDF D DAD | Huf™ (p), (5.2)
0 m=1
4 +00
f w (o, 0, £) sin(n?) d = Z AFD-DAD, ™ (p), (5.3)
0 m=1

where ®(4, 1) = (cos(a;1) — cos( VAN = (a;)?)~". In the simulations, p corresponds to a point x, for
which the eigenfunctions in the finite element mesh are not zero.

Since the reconstruction procedure is the same for all above equations, we describe it only for
Eq (5.1). We rewrite Eq (5.1) as

= T N ) = F N ) 1o
2%
> cos (arf) = ). cos(\//lfn t)_E j; w(p, 0,1 dd. (5.4)

4 U
m=1 /llf’l)’l _(all)2 m=1 /lfn - (a’l)z
=2A0m=2A2m+1 =W(t)
=2A0=2A,
Substituting p, = \//lfnU, tomst = —J A form > 1, gy = py = @y, and putting 7 — cos(f) in the

Euler identity cos(f) = (e’ + e7)/2, we get from Eq (5.4)
+00
D At = W,
m=0

Following [42], we use a family of functions

¢1,4-() = [sin((n — ,uq)r)]z(n - uq)_27_2, for every g € N, for every 7 > 0.

Define now V(g) = (W(.), (15’1; - and P.(g,m) = ¢y 4(u,,). Consider the operator Q : ? — s, given
(Ap)menugoy = (V(g))genujo;- Due to the fact that we are using the finite element method, this operator
is naturally approximated by a truncated version. In fact, m ranges from 1 to (Ng,, — 1), where N,
is the number of finite elements used to discretize the model. However, we further reduce the order of
the discretized system to N7, < Ngiem — 1, to obtain a regularized solution.
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V(0) P-(0,0) P0.1) ... P:0.Npwu) |[ Ao
: = : : : : : . (5.5)
V(NTrunc) PT(NTrunc’ O) PT(NTrunc, 1) s PT(NTrunm NTrunc) XNT,MC
We write Eq (5.5) as [V] = [QNTmnC][Zl By solving Eq (5.5) we obtain an approximation A, to the
unknown coefficients A,, n =0, ..., Nrj. From these, we recover T,ﬁU by the formula
pU 2
%yﬁU /1m _ (a/ ) XZm,
471 (o)

where p corresponds to a point x, in the finite element mesh for which the eigenvectors are not null.
The same procedure is done to set up systems of linear equations for the coefficients FrY, Fou,
Fat Fa= 0, TC('Z TS('Z In this way we can recover their approximation and determine the spatial
loading distribution, which is the unknown of our inverse problem.
We show a simple numerical example to illustrate the recovery of the in-plane load components
(radial, f*, and angular, f”) and the out-of-plane component f. The spatial load components are
given by

(0, 9) = Psin(;—r)cos (g)cosz (;—r’;) (H) - H(r=1,)), (5.6)

7" (0, 9) = Psin (g) sin(;—r)cosz (;—:q) (H» -H(r-7)). (5.7)

Fp,0) = Pcos(g)cosz (5—:) (H»-H(r-7r)). (5.8)
q

5
where P = 9.8§Mweb, H is the Heaviside function, and r = r(p, 1) is the Euclidean distance from (p, 1})

to the center of the load support located at the point (R/2, /4). Finally, r, = R/4.

In the simulations, we took Ng,, = 60, N7, = 30. The measurement error was emulated by
inserting a normally distributed random variable N(0, o(x)) with zero mean and standard deviation
o(x) = 0.01x, where x is the deterministic value to which is to be attached the error. Each value V()
in Eq (5.5) was multiplied by a factor (1 + N(0,0.01 X V())), j =0, ..., Nrrunc-

By using Eq (4.3), we get an estimate of the minimum required time interval length for in-plane and
out-of-plane identification problems, which are 0.00260 and 0.000082 s, respectively. For the recovery
of force components that follow, we employ an observation time length of 0.1 s.

Figure 3 shows the recovered transverse force with the respective target load. Note that this target
is unattainable by the algorithm, because the algorithm described above seeks the Fourier coeflicients
of the Fourier representation of the load, which is necessarily truncated, in this numerical simulation.
Moreover, the spider has only 8 legs, that is N,,. = 4, which limits the spatial resolution for the
recovery process. In this case, the relative error, measured with the L? norm, when the recovered load
i1s compared to the target is of 2.6%. The effect of the discretization of the finite element mesh has
two opposing effects. The first is to improve the solution of the direct problem, and consequently the
accuracy of the numerical eigenbasis. On the other hand, the second effect is to decrease the quality of
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the overall recovery process. As is known, discretization works as a regularization factor for inverse
problems [44]. For instance, when the number of elements per radial thread is doubled (Ngg,, = 120),
the reported error becomes 3.1% with respect to the target loads. That is, the error with reference to
the attainable target increases. Several factors are analyzed parametrically in [24], for instance, the
position and size of the prey, the recording time, the presence of external disturbances, the density
of the radial and circumferential threads, and the time-dependent function that expresses the temporal

variation of the excitation.

J1x10®

J5x1077 N

(a) (b)

Figure 3. (a) Target load for the transverse component. (b) Recovered transverse load f for
NMax = 4

Figure 4 shows the recovered component forces in the plane of the spider web, for Ny, = 4,
Nrrune = 30 and Ng,,, = 50. We observe that the quality in the recovery process is different for each
component. In fact, the error levels are 24.6 and 1.3% when the norm L? is applied, with relation to
the attainable target. One possible reason is the difference in the order of magnitudes of the Young

modulus £, and Ey.

15x10®
71.0x108
75.0x1077
o

. J-5.0x107
N

0.1 —04

(a) (b)

Figure 4. Recovered in-plane force components when Ny, = 4. (a) In-plane force
component f*. (b) In-plane force component f7.

The center of the recovered transverse load is at the correct place, whereas the results for the
in-plane components f” and f* obtained by the algorithm are slightly rotated clockwise and
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anticlockwise respectively. Increasing Nysax, N7rune, and Ngg,,,, respectively to Ny, = 64, Nrpyne = 60
and N, = 100 tends to decrease both these clockwise and anticlockwise rotations, as shown in
Figure 5, as it was analyzed in [22]. Increasing only the number of finite elements in the radial threads
does not improve the results because the regularization effect of discretization loses its effectivity. In
fact, keeping all others factors fixed, the increase in N, to Ngi,, = 70 results in errors of the order
of 75 and 1.9% for the radial and angular components, respectively.

72x1076

< /1x1076
1o 0.1

0.1

0.0

-0.1 =041

(a) (b)

Figure 5. Recovered in-plane force components when Ny, = 64. (a) In-plane force
component f*. (b) In-plane force component f7.

We note that these findings are limited only to the specific numerical algorithm used in our
investigations, as the mathematical result asserts us that identification of the position of the prey is
possible and unique, and there are many ways to devise algorithms to perform this identification.

We obtain the results shown in Figure 6 for the modulus of the force applied to the spider orb-web
evaluated as /f2 + (f*)? + (f7)2.

/2x1078

01X 0.1° J1x1076

0.1

04

(b)
Figure 6. Recovered forcing function modulus. (a) Ny, = 4. (b) Ny = 64.
Despite the different quality in the recovery process depending on the component and the general
discretization level of the models used in this section, the results for the identification of the direction

of the applied force in space are good and almost independent of that discretization level. In [22], the
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effect of the discretization of the finite element mesh for the radial threads, the angular discretization,
the length of observation time, observation error level, the level of tension of the fibers, and the spider
mass among other factors are analyzed. By using standard polar coordinates, it is possible to estimate
the angles 6, and ¢ shown in Figure 7 by the formulas

i 7

where the values ]‘_'9, f7 and f are the mean values of the identified components over the spider-orb
web, that is,

—
FFD == [ (00700 50.0) d0
R Jg,

Figure 7. Local system of coordinates and relevant angles.

For Nyax = 64, we obtained 6, = 1.04108, ¢, = 1.04808 and for Ny, = 4, we obtained
0; = 1.04674, ¢, = 1.0472, which are values close to the target 7/3 = 1.0472 (see Eqs (5.6)—(5.8)).

6. Some extensions

6.1. Prey detection in an elastically supported orb web

The orb web model introduced in Section 3.2 and the related prey detection problems considered
in Sections 4 and 5, have been formulated under the assumption of null displacement at the boundary.
However, the substrate (e.g., leaves) to which spiders anchor their web may introduce not negligible
flexibility in the system. This aspect has been investigated in the case of small transverse vibrations
in [25]. In the present section we briefly report the major results obtained.

As a first approximation, the effect of the framing threads connecting the orb web with the
environment is described by inserting at the boundary of the orb web a continuous line-distribution of
elastic springs reacting along the transverse direction to the web plane and having uniform stiffness «
(per unit length). By using the notation of Section 3.2, the small transverse vibration u = u(p, ¥, t) of
the orb web with the catching spiral is governed by the following boundary value problem with
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initial data

1 = |

;Cpru’pp +EC79T19 (u»ﬁﬂ +puap) - 7u9tt = _g(t)f(p9 ﬁ)’ (ﬂ9p9 t) € [09 271.] X (O’ R) X [O’ +OO),
1 —

lim — CoTpu,,dS = Mu,, (p =0,1), t € [0, +o0),

r=01 Jos,

1 —

ECPTP(R)u,p (R,9,1) = —ku(R, 9, 1), 1) € [0,2r] X [0, +0),

u(p$ ﬁ$ t)lt:O = Oa Uy (ps ﬁ$ t)|t=0 = 05 (ﬂ,p) € [Oa 2”] X (O’ R)

6.1)

For the inverse problem of determining the spatial component f = f(p,®) of the forcing term

simulating the impact of the prey on the orb web, we have the following uniqueness result, which is
analogous to that obtained in Theorem 1 of Section 4.1 for fixed boundary.

Theorem 8. For a given g € C'([0, +0)), with g(0) # 0, let u;, u, be the solution to Eq (6.1)
corresponding to the distributed force field f; € L*(Bg), f» € L*(Bg), respectively. There exists Ty > 0
such that, if u\(t,p,0) = ux(t,p,0) in O, where O = (p — €,p + €) X [0,2n] X [0, 7¢), with Ty < 19 and
O<e<p< g, then fi = f> in Bg.

The proof follows the lines of the proof of Theorem 1 and will not be repeated here. Instead, in
the remaining part of the section, we comment on some peculiarities that emerge in the application
of the reconstruction method and illustrate the specific strategy that is adopted with respect to the
fixed-boundary case.

Referring to [25] for a comprehensive analysis of the problem, we state that our method highlights
instabilities when the stiffness of the elastic support is too high or when it is too low. Their origin lies
on the presence of a large ratio between the maximum and minimum value of the eigenvalues involved
in the reconstruction of the Fourier coefficients of the spatial load. To be more precise, let us define
the reference value k of the stiffness of the border as xy = %—%b - 10%, where g = 9.8 ms™2 and M,,,, is
the mass of the web silk. That is, « is the force per unit length at the boundary that corresponds to a

situation where the weight of the spider web of Table 1 produces a displacement of 1075 m.

0.1

(b)

Figure 8. (a) Theoretical target load. (b) Realistic target load for flexible border case.
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Figure 9. Cases of successful recovery. (a) k = Ko, Nryune = 20. (b) k = 1072k, Nrpune = 20.

In the simulations, we assume g(f) = cos(27100¢), and the target spatial load to be identified is
shown in Figure 8b. It is obtained by projecting the theoretical exact load in Figure 8a on the eigenspace
of the problem with Ny, = 4 (spider with eight legs) and Ng,, = Nrjume = 30 (number of equally
sized finite elements along the radial direction, without truncation). The time of registration is 79 = 0.1
s and the transverse deflection of the orb web is measured on a circle centered at the origin and with
radius equal to R/30.

The results of the identification process for k = ky and k = 1072k, are shown in Figure 9. It can be
seen that the recovery of the load can be considered satisfactory in the sense that the spider can “see”
reasonably well where the prey is on the web. However, if the border is too flexible, information is
lost and the spider is not able to locate the prey anymore, as illustrated in Figure 10. In this case, the
origin of the instability of the recovery procedure has a physical root, since if k becomes smaller and
smaller, then the orb web tends to the membrane under homogeneous Neumann boundary conditions
(free membrane) and the pressure exerted by prey’s impact cannot be balanced. On the other hand, if
the border is very stiff, then one might expect that the identification procedure would be carried out
without problems, but this is not what happens.

The origin of the instabilities in the recovery process is expected to be on the possible presence of
a large ratio between the maximum and the minimum value of the set of eigenvalues (/15,(,))) and (/l,(ﬁ))
used in identification. In fact, if the ratio is too big, then small variations on the recovered Fourier
coefficients T,f,o), TC(',Z, 7:5(2 result in great variations on the identified load.

The reconstruction process was stabilized by excluding the higher eigenvalues by means of the
Singular Value Decomposition (SVD) method [45]. In practice, we truncated the list of eigenvalues
of the problem, keeping only the lowest ones, which is translated in the reduction of the order of the
linear system (5.5). Our Finite Element model allows a maximum of Ng,,,, = 30 eigenvalues for each
n=20,..., Ny, To implement the regularization, we used only the lowest Nr,,,. = 10 eigenvalues
for each n = 0,..., Ny Some results using this regularization strategy are shown in Figure 11.
The accuracy of the reconstruction is comparable with that for fixed support in the case of fairly high
support stiffness.
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0.1 0.1

0.1

-0.1

(a) (b)

Figure 10. Results for very flexible border: (a) k = 1077ky, Nrume = 20. (b) k = 107k,
NTrunc = 20.

The stabilization strategy was not just as effective in the case of very flexible support. In this case,
however, a range of limit values was identified below which the reconstruction fails. It is reasonable
to speculate that this may be a general property of the problem and that in Nature spiders prefer the
construction of orb webs with a fairly rigid support precisely because they are more effective in
catching prey.

0.1

-0.1 \ -0.1

(a) (b)

Figure 11. SVD-based strategy active. (a) k = 1077ky, Nrpume = 10. (b) k = 10%%q,
NTrunc = 10.

6.2. Eco-localization of a prey

The works reviewed above [20,24,25], which combine the continuous mechanical membrane model
and the inverse method of source identification, show how the transverse response induced by prey’s
impact can be used to localize the prey. This response, which contains the information necessary for
localization, is significantly conditioned by the geometric and material parameters defining the web.
It is therefore of interest to evaluate to what extent these parameters, namely spider mass, prestress
field, distribution of spiral threads, and position of the load support, modify the information content on
vibration source location. To that aim, the continuous model —in its modality of out-of-plane forced
motion described in Section 3.2— is used to uncover their influence in the signals perceived by the
spider right after a perturbation representing a prey impact. The characteristics of the web is defined in
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Table 1, but for this study, a higher spider mass (100 times that of the web) was considered. According
to Eq (3.26), the out-of-plane contact force between prey and web is assumed to be separable p =
g () f (p, ), the spatial loading function f having a circular support of radius r, centered at (pq, ﬂq)

f(p,®) = cos? (;—r"q) (H) - H(r-r,)). 6.2)

where r is the distance between the loaded point to the center (pq, ﬁq). The time function g is defined as

g (1) = gosin’ (’tiqt) (H@»-H(t-1,)). (6.3)

The quantity denoted as g, represents the amplitude, which functions as a proportionality factor
without affecting the qualitative outcomes of the analysis due to the linear response of the system.
Moreover, t, signifies the pulse duration. The considered radius of the load support is r, = R/8,
and the duration of the load, 7, = 1072 s, is of the same order of magnitude of that used by other
authors [16]. The dynamic response of the web is interpreted by the spider via the extremities of its
eight legs, which function as displacement sensors. These sensor tips are postulated to be positioned
along a circumference centered at p = 0, with radius R/10, at specific angular positions denoted by
¥ =(k—1)r/4, where k = 1,2, ..., 8 represents the index corresponding to each leg. Analogous to the
manner in which vertebrates ascertain the source of auditory signals based on interaural discrepancies,
arachnids appear to discern the directional origin of stimuli through temporal and amplitude variations
among the stimuli affecting their legs [46]. Consequently, any characteristic of the web enhancing
“interleg” discrepancies enables the extraction of pertinent information for eco-localization. In this
regard, the spider’s position on the web has been identified as a feature that significantly affects its
function as a sensor. This can be clearly observed from the comparison of Figure 12(a),(b), which
present a polar plot of the maximum displacements at the eight legs, without and with spider mass,
respectively. The explanation for this remarkable change in the interleg signal can be found in the
drastic attenuation of the radially symmetric modes, solution of the eigenvalue problem (3.29), in favor
of the asymmetric modes, solution of the eigenvalue problem (3.30), for which u® (0) = 0 when there
is an inertial constraint—caused by the presence of the spider—on the transverse motion of the web
center. Note that radially symmetric modes cannot provide information about the angular position of
the perturbation.

The pretension field also changes the way the spider perceives perturbations. This can be seen
by comparing Figure 12(b),(c), corresponding to values of the pretension in circumferential threads
7 = 10 uN and 7 = 50 uN, respectively (both cases in the presence of the spider’s inertial effect).
Increasing 7~ also increases the pretension gradient in radial threads, globally raising the stiffness of
the taut structure and leading to lower interleg discrepancies and compromising the performance of
the web as a sensor. Consequently, it is imperative for the spider to establish a reduced prestress
in the circumferential threads during the weaving process to enhance its eco-localization capability.
It is noteworthy that the reference circumferential prestress 7 = 10 uN (as derived from [35]) is
approximately 1% of the spiral thread’s failure stress. This observation suggests that the spider selects
a minimal prestress value that remains consistent with maintaining the taut thread.

Evolution has endowed orb web spiders with the ability to enhance the energy of vibrational modes
that convey directional information. The developed methodology, based on a continuum model of
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the web, advances the understanding of how the intrinsic vibratory properties of the web affect the
acquisition of information by the spider.
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Figure 12. Polar plot of maximum displacements of the eight spider legs close the hub, for
load position p, = 2R/3, 1, = 0. (a) circumferential prestress 7 = 10 uN, without spider
mass (M = 0); (b) circumferential prestress 7~ = 10 uN, with spider (M = 100M,,,;); (c)
circumferential prestress 7 = 50 uN, with spider (M = 100M,,.,). The red area represents
the support of the load.

6.3. Dynamical prestress identification

We have seen in Section 3.2 that pretension enters explicitly into the equations governing the small
transverse and in-plane vibrations of the orb web. Consequently, it plays a crucial role in
understanding both the whole structural behavior and the problem of prey identification [36,47-50].
Despite this, there is a notable lack of knowledge due to the technical difficulties posed by the
experimental determination of the pretension. To the authors’ knowledge, the only works in which
pretension values in orb webs have been experimentally measured are those by Denny [33] and Wirth
and Barth [35], and in both cases, these are measurements on specific threads without reference to a
global two-dimensional mechanical model.

An indirect method to approach the pretension identification is to set up an inverse problem, where
the data are natural frequencies and principal modes of vibration of the orb web and the pretension is
the unknown coefficient. For this purpose, traditional methods of experimental modal analysis suffer
of the low spatial resolution in determining the principal modes of vibration. It has been shown that
advanced digital image correlation techniques, possibly implemented with model updating procedures,
enables accurate high-resolution reconstruction of full-field mode shapes from video measurements of
the dynamic response of a structure [51,52].

With the future aim of applying these experimental techniques to spider orb webs, some partial
results for the analytical/numerical determination of the prestress field from dynamic eigendata have
been obtained in [53]. It has been shown that the pretensile radial prestress Tp in an axially-symmetric
spider orb web is uniquely determined by one eigenfrequency and by the corresponding eigenfunction
of the transverse vibration of either the radial eigenvalue problem (3.29) or (3.30). In principle, the
reconstruction can be based on one eigenpair of any order belonging to one of the two above classes,
but the determination of Tp is more accurate when the fundamental eigenmode is used. From the
equilibrium equation (3.15), it is clear that the circumferential prestress T is determined once the
radial pretensile force Tp is known. In what follows, we briefly report the major theoretical results and
a numerical reconstruction technique based on regularization and subsequent filtering process. Further
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details can be found in the original paper [53].

Theorem 9. Let the boundary p = R of the orb web be supported. Then,

i) The pretensile force field Tp(p) is uniquely determined by the knowledge in [0,R] of the
fundamental radial eigenfunction u(lo)(p) for n = 0 with M = 0 and by the corresponding
eigenvalue /1(10).

ii) The pretensile force field Tp(p) is uniquely determined by the knowledge in [0,R] of the
Jundamental radial eigenfunction Uy )(p) for n =1 and by the corresponding eigenvalue /1( )

In both cases, it turns out that Tp(p) > 0in (0,R], T,O € C((0, R)), and an explicit formula for Tp(p)

is available:

PO v (V)

(0) 0 Yy (0) . 0 YU dz
Case l) Tp(p) m p € (O, R], (0) = —/ll p_)r(r)l+ C (u(lo)(p)), (64)
yzu 0 dz _ f yZu (I dz
Caseii) T,(p) = -1 ‘ p€(O,R], T,0)=-2"1lim U :
! p(p(u(l”(p))’ - ui"(p)) g o0 oM o)y ‘{élls)?)))

wherey = py.

Some remarks are in order. First, the determination of the pretensile force Tp can also be done when
the spider is present, that is, with M > 0 in the boundary condition (3.29), at p = O for n = 0, provided
that M is known. Second, Theorem 9 can be extended to the determination of the tensile prestress Tp
by using higher eigenpairs as well. Third, results can be generalized to include the elastically restrained
end condition (6.1); at p = R.

The following theorem states that reconstruction of the prestress 7'(p) is Holder stable when the first
derivative of the fundamental eigenfunction is available as data.

Theorem 10. Let Tp, T; be the coefficient corresponding to the fundamental radial eigenpair (A, u),
(A%, u*) of either the problem (3.29) (Case (i) with n = 0 of Theorem 9) or the problem (3.30) (Case (ii)
with n = 1 of Theorem 9), respectively, with fOR yulds = fORﬁf'u*zds =1

For every €, > 0 and €, > 0, if |1* — A| < €y and ||u” — w'|l20r) < €, then

Case n=0: for every n > 3 we have IITZ - Tp”LZ(O,R) < C(gy + eﬂ)%; (6.6)

Case n=1: for every n > 7T we have ||T; — Tp”Lz(O,R) < C(gy + 6,1)%, (6.7)
where C > 0 is a constant only depending on the a priori data.

We now present some numerical experiments of reconstruction of the pretensile force from the
knowledge of the fundamental radial eigenpair (u(ll), /l(ll)) (n = 1). Analogous results are obtained for
n = 0. We focus mainly on the influence of the measurement error, the number of sampling points, and
the strategy chosen to filter the numerical noise.

The reconstruction is based on a Finite Element (FE) model for the eigenproblem (3.30). We use
NEgiem = 240 two-node finite elements with linear test functions, and Ng,,, + 1 equispaced nodes in the
interval [0, R]. The numerical values for the physical parameters are shown in Table 1 [18].
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Figure 13. Influence of different values for My in the Savitzky—Golay filter, keeping fixed
Nsg = 7. Recovered function s(p) for n = 1, with Ngupine = 30 and with 5% error level
added. Valuesin N. (a) Mg = 1; (b) Mgg = 2; (¢c) Mgg = 3; (d) Mgg = 4.

The formula for the recovery of s(p) = Cpi,(p) is Eq (6.5) with n = 1. The procedure for the
evaluation of s(p) begins by estimating the function u(ll) by first computing the corresponding vectors
u'! by the FE method. To estimate the derivative (u(ll))’ we use splines of degree d = 3 to interpolate
u at N Sampling €quispaced sampling nodes, counting from the third FE node to the last node at p = R,
and then differentiate the resulting interpolated functions. The choice to begin the sampling at the third
node is due to the desire to avoid the theoretically removable (but numerically challenging) singularity
at the origin.

When no error is added to the numerical results obtained by the FE model and Ngunpiing = 239,
the identification of s(p) is practically perfect. Conversely, when noise is added to the data u!”, the
reconstructed coefficient s(p) is extremely oscillating and the method does not provide any useful
indication. The error is introduced at each component of the FE eigenvector ull by multiplying each
component by the random error factor €, = (1+N(0, std)), where N(0, std) is a normal random variate
with zero mean and variance std”>. From now on, we designate std by error level.

In order to manage the reconstruction in presence of errors, a suitable two-steps technique based on
regularization and filtering process has been developed.

In the first step, the above interpolation by splines is implemented through a subset of the set of
nodes of the FE model made by N in, €qually spaced points, with Ngampiing << NEgiem. The number
Nsampiing must be properly determined. In fact, if Nggmping 1S too small, then there is a loss of
information and the reconstruction is distorted. On the contrary, if Ngumping 18 greater than a certain
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threshold value, then the regularization effect diminishes. From an extensive series of preliminary
simulations, in our cases, the best value of N pine belongs to the interval 10-40.

In the second step, the results obtained above are passed through a suitably tuned filter based on
convolution: the Savitzky—Golay filter [54,55]. In brief, given the input vector v = (vi, ..., VNsuuine)
to the filter representing an error-perturbed estimate of the coefficient s, the vector v is symmetrically
extended to the left (i.e., with respect to p = 0) and Ngg copies of vy, ... are added to the right
(i.e., to the right of p = R). At each point i, i € {1,..., Ngumpiing}, the filtered value of v; is set to be
equal to the value of a polynomial P of degree My at the node ith, where P is determined as least
squares approximation through {v,_yq.. ..., Vitng}. It follows that, in the form we have used, the filter
action depends on the width of the window for smoothing (Ns) and on the order of the approximating
polynomial (Myg).

Some representative results of the reconstruction without and with filter effect are shown in Figures
13 and 14 for the unfinished web, with n = 1, Ngunpiing = 30 and 5% error level. It can be seen that
higher values of Mgs seem to reduce the filtering capacity, whereas, apart from very low values, the
results do not depend significantly on the choice of Ngs. One can conclude that the use of the filter
is effective and its combination with the regularization by splines and sampling can provide a good
reconstruction of the radial prestress.
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Figure 14. Influence of the parameter Ngs of the Savitzky—Golay filter, keeping fixed
Msc = 2. Recovered function s(p) for n = 1, with Nggmping = 30 and with 5% error

level added. Values in N. (a) Ngg = 2; (b) Ngg = 4; (¢c) Ngg = 6; (d) Ngg = 8.
For the sake of completeness, we recall that the quality of the reconstruction greatly improves when
information on the first derivative of the fundamental eigenfunction is assumed to be available, as

predicted by Theorem 10.
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7. Concluding remarks and some open problems

The process of prey capture by the spider has always fascinated scholars since pioneering works [56,
57] and has given rise to an extensive literature. It is common experience to observe how the spider,
which generally rests in the central part of the web, manages to orient itself and reach the prey trapped
in the threads in a few tens of milliseconds after the impact. Many scholars, mainly with a biological
background, have analyzed the phenomenon from the experimental point of view, and have highlighted
its essential features. Among those, to name a few, the role of radial and circumferential threads in
the propagation of dynamic disturbances, the “audible” frequency range, the pretension effect, and
the mechanical behavior of the silk. These analyses have been conducted with the aid of simplified
mechanical orb web models, typically one-dimensional, or have been developed by means of highly
complex finite element models (Section 2). As far as we know, in the literature, there is no continuous
mechanical model deduced in a rational way that can describe the phenomenon analytically. As a first
goal of our research, we tried to fill this gap. We did so by deriving a continuous model of a fiber
membrane that inherits the properties of real discrete spider orb webs (Section 3). The model has some
limitations. The most severe limitation is that it enables treating small deformations of the spider web.
However, this does not seem to be a very restrictive hypothesis for analyzing the prey’s capture, since
it is known that in the first moments after the prey impact the vibrations are small. Starting from this
model, it was possible to set the problem of prey capture as an inverse problem in vibration that the
spider faces and solves (Section 4). Despite the simplifications and idealizations adopted in modeling,
it turns out in the end that the knowledge of the transverse dynamic response measured at eight points
corresponding to the position of the eight legs of the spider on a small circle concentric to the origin,
for a sufficiently large time interval, enables the spider to determine uniquely the support of the spatial
forcing that was used to simulate the prey impact on the web. Numerical simulations on an orb web
with realistic characteristics have also confirmed the possibility of reconstructing this support with a
certain precision (Section 5).

This first set of results, both in terms of modeling and of solving the inverse problem of prey capture,
are encouraging. However, there are various possibilities for generalizing and deepening the results
obtained so far, and in this last part of the conclusions, we want to focus on some of these aspects.

1) A crucial issue is the study of large deformations. As is known, these develop in the final part of
the prey impact and can be responsible for the onset of damage in the web. They involve highly
nonlinear behavior of the material and possible vanishing of the pretraction in some threads, with
consequent substantial modification of the mechanical model. It could be of interest to model
simplified phenomena interesting for applications, such as the static transverse response of an
axisymmetric web with a concentrated force of monotonically (slowly) increasing intensity applied at
the origin. The assumption of axisymmetrical geometry and the neglect of the circumferential threads
contribution may lead to a problem that can hopefully be treated analytically.

i1) In the context of small transverse vibrations, our model could be made more realistic by
introducing dissipative effects, which are observed in experiments [37]. These could arise from
internal dissipation or, perhaps more importantly, from the interaction of the air through aerodynamic
effects, as shown in [11]. The abandonment of the ideal environment with zero dissipation brings with
it the need to resort to more abstract methods of analysis of the dynamic problem, as highlighted
in [58] for the classical circular membrane. The assumption of viscous forces with a dependence to
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the power one on the velocity amplitude may be a first way to attack the problem.

iii) It has been emphasized in several places that the singularity in the origin characterizes the
general behavior of the orb web statically and dynamically. For small static transversal deformations
of an axisymmetric web, the partial differential equation governing the problem rewritten in divergence
form has a symmetric coeflicient matrix 2 X 2 that admits one bounded eigenvalue and one eigenvalue
that tends to zero in the origin. For these cases (e.g., eigenvalues with different behavior), the regularity
of the solutions is an open issue in many ways. A first contribution of local boundedness has been
obtained in [59], but a global result is missing.

iv) All the results described above concerning the mechanical modeling of the web and the
identification of a prey from dynamic data refer exclusively to axially symmetric orb web geometry.
However, in almost all vertical orb webs, the hub is above the geometric center and, consequently, the
extent of the web is larger below the hub than above [60]. Empirical and theoretical studies suggest
that this vertical asymmetry is primarily an adaptation to the spider’s prey-capture behavior, reflecting
the spider’s ability to run downwards faster than upwards due to gravity. A first attempt to consider
vertical asymmetric webs is under study for small transverse deformations [61]. It can be shown that
this generalization raises non-trivial questions in the mechanical modeling and mathematical
formulation of the static and dynamic response of the orb web.
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