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Abstract: In this paper, the projective synchronization of quaternion-valued memristor-based neural
networks with time-varing delays was studied. First, by utilizing set-valued map and differential
inclusion theories, we reformulated the networks as an uncertain system with interval parameters. Then,
through designing a novel controller and utilizing Lyapunov function and Young’s inequality, several
new synchronization conditions for projection synchronization of quaternion-valued memristor-based
neural networks were obtained. Finally, the effectiveness of this method was demonstrated through a
numerical example, underscoring its practical applicability.

Keywords: projective synchronization; quaternion-valued; time-varying delays; memristor-based
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Notations: Throughout this paper, R, C, and Q denote the real, complex, and quaternion fields,
respectively. The notation adheres to standard mathematical conventions.

1. Introduction

The memristor, a pioneering circuit component that encapsulates the interplay between magnetic
flux and electric charge, made its debut in scientific literature through the visionary work of Chua [1]
in 1971. This innovative element distinguishes itself from traditional circuit components due to
its nonlinear resistance and inherent memory capabilities. Its mnemonic attribute bears a striking
resemblance to the synaptic plasticity observed in the neural connections of the human brain. Leveraging
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this distinctive feature, the memristor has transcended its role as an electrical resistor to become a
cornerstone in simulating the cognitive functions of the human brain. Consequently, the exploration of
memristor-based neural networks (MBNNs) has emerged as a vibrant field of study, with researchers
delving into the intricate dynamics that these networks exhibit [2—4]. MBNNs are characterized as
state-dependent dynamical systems, with coeflicients that are inherently linked to their instantaneous
state. The discontinuous nature of these systems can give rise to a spectrum of complex nonlinear
phenomena, including but not limited to chaos, oscillations, and instability. The investigation of these
dynamical traits is not merely an academic pursuit; it holds profound significance in both theoretical
exploration and practical applications, paving the way for advancements in neuromorphic engineering
and computational neuroscience.

The quaternion, a mathematical construct first articulated by the Irish mathematician Sir William
Rowan Hamilton in 1843, stands as an innovative extension of the real and complex number systems.
Unlike their simpler counterparts, quaternions introduce a non-commutative multiplication, a feature
that has historically posed challenges and led to a period of relative dormancy in their study. However,
in recent years, there has been a resurgence of interest and a broadening scope of applications for
quaternions. They have demonstrated remarkable utility across a spectrum of disciplines, including
artificial intelligence [5], image processing [6], quantum mechanics [7], and aerospace technology [8].
These applications have not only reinvigorated the study of quaternions but also unveiled their potential
to address complex problems in a multidimensional context. Especially in image processing, the nuanced
representational power of quaternions has been harnessed. They are used to encode the three primary
color channels within the imaginary components of a quaternion, while the real part is often reserved
for the alpha channel or other metadata. This elegant mapping of color images to pure quaternions has
opened new avenues for the representation and manipulation of visual data.

Quaternion-valued neural networks (QVNNs) distinguish themselves from their complex-numbered
counterparts by employing quaternions in every aspect of their architecture—states, connection weights,
and activation functions. This holistic approach to quaternion integration endows QVNNSs with a unique
capacity for handling multidimensional data representations. In recent scholarly discourse, a surge
of interest has been directed towards the dynamics of QVNNSs, as evidenced by a burgeoning body
of literature [9-14]. Notably, the exploration of robust stability within the fractional-order realm of
QVNN s has garnered significant attention, as demonstrated by the contributions of [9]. Additionally,
innovative control methodologies, such as sampled-data approaches, have been applied to stabilize
QVNN:g, as explored in [10]. The investigation into the robust stability of these networks continues to
evolve, with offering fresh insights into the fractional-order context [13]. Furthermore, the stability
analysis of quaternion-valued memristive neural networks has been enriched by the application of
Lagrangian mechanics, as discussed in [14], and so on [15-19]. These studies collectively contribute to
a deeper understanding of the intricate dynamics that govern QVNNS, paving the way for advancements
in network stability and synchronization.

The recent research on quaternion-valued memristive neural networks (QVMNN5s) has attempted
to understand their periodic solutions, as highlighted in [15]. This work has been complemented
by an examination of dissipativity in neutral-type memristor-based networks, which provides a fresh
perspective on stability and energy dynamics, as discussed in [16]. Moreover, the exploration of finite-
time stabilization through implicit function methods, as introduced in [17], has opened new avenues for
the rapid and reliable control of these networks, underscoring the growing sophistication in the field
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of QVNNE.

Synchronization, a fundamental and pivotal phenomenon in the realm of neural networks, plays a
crucial role in managing and orchestrating the inherent chaotic dynamics that are often observed in
natural systems. It serves as a powerful tool for harnessing order from chaos, offering a mechanism to
regulate and predict the behavior of complex neural systems. Through synchronization, we can explore
unknown dynamical systems from known ones. So far, the synchronization of neural networks includes
quasi-uniform synchronization [20-22], anti-synchronization [23,24], finite-time synchronization [25-27],
projection synchronization [28,29], exponential synchronization [30,31], and global Mittag-Leffler
synchronization [32,33], and others [34, 35].

Among the spectrum of synchronization phenomena, projection synchronization emerges as an
inclusive and versatile approach within the domain of neural network systems. This method, underpinned
by proportional dynamics, facilitates accelerated communication pathways, a feature that sets it apart
from other synchronization modalities [36—38]. In this work, we extend the discourse to the projective
synchronization of quaternion-valued memristor-based neural networks, a topic that gains relevance
amidst time-varying delays. Our exploration is anchored in the following pivotal contributions:

(1) QVMNNS s offer distinctive benefits over traditional real- and complex-valued neural networks,
particularly in their adept handling of multi-dimensional data through low-dimensional constructs and
enhanced computational efficiency.

(i1) The synchronization criteria established within this study are not only capable of orchestrating
complete synchronization and anti-synchronization but also of embracing the general projection
synchronization paradigm. These findings are posited as universally applicable and representative of the
broader scope of neural network synchronization.

(ii1) By designing a novel controller and using Lyapunov function and Young’s inequality, some new
synchronization conditions for projection synchronization of quaternion-valued memristor-based neural
networks are obtained.

2. Problem description and preliminaries

The quaternion constitutes a realm of hypercomplex numbers, encapsulating a singular real
component alongside three imaginary elements, thereby extending the numerical system beyond the
conventional real and complex planes. The quaternion m € Q can be described as

m:mR+mli+mJj+ka,
where m®, m!, m’, mX € R, the imaginary parts i, j, k obey the Hamilton rule:

P==k=-1,ij=—ji=k, jk=—-kj=i, ki=—ik=j
Remark 1. Quaternions, a class of hypercomplex numbers, diverge from the algebraic properties
of real and complex numbers. Unlike their commutative counterparts, the multiplication of any two
quaternions, denoted as m, n € Q, does not necessarily adhere to the associative law mn = nm. This
departure signifies that several principles governing real and complex number systems are inapplicable
to quaternions. Consequently, it mandates the innovation of novel methodologies and theoretical
frameworks to effectively harness and comprehend the intricacies of quaternion arithmetic.
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For the quaternion m and n, where n = n® + n'i + n’ j + n®k, then we can denote m + n as follows:
m+n :mR+nR+(ml+n1)i+(mj+nj)j+(mK+nK)k.
By Hamilton rule, we can denote mn as

R _R 1.1 J J

mn = (mfn® —min' — m'n’ — m5n®) + fn! + m'n® + m’n¥

— m&n')i
+(mBn’ + m'n® + m%n’ - mInK)j + (mfn® + mEn® + min’ — m’nHk.

The modulus of m is written as

il = Vo = () + (')’ + ()’ + ()

Furthermore, for m = (my, mo, ...,m,)", ||m|| = >.imy Im;| denotes the norm of m.

In this study, we delve into the dynamics of a memristor-driven neural network enriched with
quaternion-valued parameters and subject to time-varying delays. The system’s evolution is intricately
captured by a set of differential equations that account for these temporal lags.

() = —cg(Omy(D) + > by mgfm(0) + )| dymy(0) filmy(t = (1) + I,
s=1 s=1
my(s) = Yu(s),s € [-7,0], (2.1)
with each neuron’s state vector represented by the components m(t) = (m;(t), my(t), - - - ,m,(1))" € Q",
g=1,2,---,n,and m,(t) € Q corresponds to the individual neuron’s state. The positive self-feedback
coeflicient is denoted by ¢, > 0, and the quaternion-valued connection weights, stemming from
memristor  dynamics, are given by by (m,(r)) and d,(my(1)). The vector

fi(my(1)) = (fi(m (1)), fr(my(1)), - - f(m,(¢))) encapsulates the activation functions that govern the
neurons’ firing patterns. The external stimuli to the network are captured by the input vector
I, = (L, L, ,I,)T € Q". Additionally, the network’s signal transmission is subject to delays
characterized by 7(f), which are constrained to be non-negative and less than a maximum delay,
satisfying O < 7(¢) < 7. For the initial setup of the system (2.1), we select an initial condition that is
continuously differentiable over the interval [-7, 0], This is mathematically expressed as
my(8) = Yy (s) = W1(5),¥2(s), -+ ,¥n(s)) € CY([-7, 0],Q"),—7 < s < 0, laying down a well-defined
starting point for the system’s trajectory.

Incorporating the framework of differential inclusion and set-valued mappings, coupled with our
preceding discourse, the representation of system (2.1) is delineated as:

(1) € =cgmy(t) + Y colb, bi) fimy(0) + > coldy,, diy) flmy(t = 7(0) + I, (2.2)
s=1 s=1

where b = min{qu, l}qs},bgs = max{qu, l}qs}, d, = min{chs,dqs},dgs = max{dqs,dqs}. The essence of

differential inclusion encapsulates the existence of a collection of differential equations where the terms

bys(t) € co(by,, by), dys(t) € co(d,,, d,), such that

qs’ gs> “%qs

(1) = =cmy(t) + D by fsmy(0) + ) dys (D) filmy(t = (1) + 1, (2.3)

s=1 s=1
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Assumption 1. Letm = m® + m!i + m’ j + m®k, where m®, m!, m’, mX € R. f,(m) can be decomposed
into its real and imaginary constituents, denoted by f,(m) = fRm®) + flmhi + fl(m’)j + fXm")k.
Assumption 2. For any mg(t), ni(f) € R", we identify the existence of certain positive constants
e=R, 1, J, K g=1,2, -, n,suchthat

£ = fEmE)| < L5l — miS

Under Assumption 1, we divide the network (2.1) into one real part and three imaginary
parts, respectively.

i) = —egmfo)+ Y BEOSReE0) = Y B fl el ) = " b0 f o)
s=1 s=1 s=1
= > KO mE @) + > dk O fF ke - we)) - Y di o fl ol - T@0) 24
s=1 s=1 s=1

= > A Of i - v@) = Y dEOFFmE @ - o) + I,
s=1 s=1

i) = —cgmi(t)+ Y BEWOFme) + D b OfF @) + > bl 0 fF k@)
s=1 s=1 s=1
= > BE@OF ml@) + Y AR @ floml - w0 + Y di o ffmbe—7@)) (2.5
s=1 s=1 s=1

£ O = Y dE O f (e - 1) + I,
s=1 s=1

) = —cgmit)+ > BEOF i)+ D bl OfFmk0) + > b @)l omi(0)
s=1 s=1 s=1
= > B eE @)+ Y Ak O f i - 1w)) + Y dj (0 fFmba - @) (2.6)
s=1 s=1 s=1

+ Y dXOfl i =) = Y d (O fFmE -7 + 1,
s=1 s=1

@) = —cmf@0)+ Y BEOEmE@) + Y K@ R mb@) + Y B f el 0)
s=1 s=1 s=1
= > b flmlo) + > A OfF @ -1 + Y dE O fFmbe -0y 27)
s=1 s=1 s=1
+ 3 db O ol = 7)) = Y di (£l omlie = 7)) + 1.
s=1 s=1
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Based on the characteristics of the memristor, the quaternion-valued memristive connective weights
are defined as

() — b = bqu + b{qsl + b{qvj + blqsk | : | <T )
qs b = bgqs + béqsl + bgqvj + qusk | . | >T ,
() = d = dﬁ[A + d{qsl + d{qs] + dlqbk | : | < Tq,
q d,y = =dy +dy i+d j+dyk 11> T,

where the switching jump T, > 0.
Consider the system (2.1) as the drive system; then, the response system is given as

ng(t) = —cqng(t) + Z bys(ng(0) fo(ny(1)) + Z dys(ng(D) fs(ny(t — (1)) + Iy + uy(2),

s=1 s=1

¢q(s)’ WS [_T’ O], (28)

ny(s)

where g = 1,2, -+ ,n; n(t) = (n1(1), na(1), - - -, m,(£))" € Q™. ny(t) € Q stand for the state vector of the
neuron. The initial condition of system (2.4) is chosen to be 1,(s) = ¢,(s) = (h1(5), d2(s), -+, Pu(5)) €
CO([-1, 0], Q"), —7 < 5 < 0. u,(7) is the controller.

Based on the theory of differential inclusion set-valued map, it yields from Eq (2.8) that

hg(f) € —cyny (1) + Z co(bi,, b finy(D) + Z coldy,, d) fulny(t = T(0) + I, + u, (2). (2.9)

7s(1) € cold,, d,) such that

Differential inclusion means that there exist b* J(1) € co(bqs, bl),d 5

» Ays
ng(t) = —cqng(1) + zn: by (D f5(ny(0) + Zn: dy (D) f5(ns(t = 7(0))) + 1 + uy(D). (2.10)
s=1 s=1
Similarly, we divide the network (2.10) into one real part and three imaginary parts, respectively
k@ = —cnl)+ Z b () fRnf (@) - Z b () f(ni(1) - Z by (O f] (] ()
5=1

- Z bX (O fFnf () + Z dof (O (1 = (1)) - Z dAOfl ol - T0)  (2.11)
s= s=1

= > dAOf e =) = Y dX O FF k- 7o) + IF + uf@),
s=1

s=1

) = =l + Z b f1(nl(0) + Z bR fF @) + Z by () fKnf (1)
= > B f i) + Z () f{ (it = 7(0)) + Z Ay [ = 7)) (2.12)
s=1 s=
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£ ) dIOFE @S =) = Y dF O f] )t = T(0) + 1 + i (o),
s=1 s=1

() = =)0+ Y RO 00)+ D IOk + Y ko fl ol o)
s=1 s=1 s=1
=S BIOfF ek o)+ Y dROf i - o) + Y. dlofR et - @) (2.13)
s=1 s=1 s=1
+ > X Ofl e = 7)) = Y dOfE @S - T0) + 1] + (1),
s=1 s=1
k@) = =0+ Y BEROLOE0) + D bEO LR @) + Y b f @)
s=1 s=1 s=1

=Y B + Y dRofE ek - 1)) + Y dE @ fF ek - w0) (214
s=1 s=1 s=1

+ ) At f (e = @) = Y dOfL 0 = 7)) + I + uf ).
s=1 s=1

Let e(t) = (e1(t), ex(t), - - - , e,(t)) be the synchronization error. The synchronization error between
the drive system (2.2) and the response system (2.9) is defined as e,(t) = n,(t) — pm,(1), expressed as
one real part and three imaginary parts

el(1) = nfj (1) — Bml (1),
el (t) = nl(t) — Bm (1),
ey (t) = n; (1) — Bm;) (1),
eg (1) = ng (1) = fmy (1),
with the initial value ¢,(s) — ¥ (s), -7 < s < 0.
In order to synchronize the drive system and the response system, we choose the following controller

(2.15)

ug(1) = —k,-(n’;(t)—/J’mif(t))+Z(bﬁfs(t)ﬁff(mf(t))—bf]f(t)ff(ﬁmf(t)))
s=1

+ 3 (Brtonftmlen - B O fenl o)) + 3 (B 0f Bmlo) - bl B nl 1)
s=1

s=1

+ 3 (B s ) - b OprE ek an) + Y (A @B - @)
s=1

s=1
n

—dg (O£ (Bmi(t - r(r)))) D (d;i(r)f! (Bml(t - (1))

s=1
n

~db OB F e = D)+ ) (A O/ Brl(e = 7o)

s=1
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n

~d OBF !t = 7))+ ) (K £5 B - 7o)

s=1

~dSBFE =T+ (1 = BIE,

uh( = —ki(né(t)—ﬁmé(t)ﬂZ(bgs(t)ﬁ(ff(mﬁ(t))—bZ'f(t)f!(ﬂmﬁ(t)))
s=1

+ 3 (P OB D) = BAO B o)) + ) (B Bl ) = BB 0
s=1

s=1
n

+ 3 (BB o) - B fE B ) + ) (OB e = 70
s=1

s=1

~d RO Bl = ) + Y (dh OB = 7o)

s=1

~d OB = o) + Y (4K O Bl - 7o)

s=1

~d8WBF !t~ 7))+ ) (4B G e = 70

s=1

~d O f B - o)) + (1 - P,

w0 = k(0 — (o) + Y (B OB rl(e) = b0 1 Bl 1)
s=1

+ 3 (BOGEEmE ) = BB @) + ) (BB im0 = b 0! Bl 1)
s=1

s=1
n

+ 3 (PR OB D) = B R EmE ) + Y (dS OB anle - @)
s=1

s=1

~d RO Bl = o)) + Y (O B~ @)

s=1

~dl OBFE @ =T+ Y (dK OBt = 7))
s=1

~dE @ 7Bt = ) + Y (OB = 7o)
s=1

~d O fH Bt - D)+ (1 - I,

a0 = k0 - ko) + ) (BEOBUE o) - b ) £ B a)
s=1
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n n

+ Y (BROBGE @) - bR O EmE ) + Y (. OB el 0) = BA 0 Bl 1)

s=1 s=1
n

+ 3 (B B - B 0BF o) +

n
s=1 s=1

(déi(ﬂﬁ(ff(mf(r - 7(1)) (2.16)

~dE O fR B = o)) + ) (dEOBE e = 70
s=1

—d RO fF B - o)) + Y (OB anl e - 7o)
1

s=
n

~d OBl = o)) + Y (d o Bmite - 7o)

s=1

~dl OB F (e = ) + (1 = PIE.

Lete,(t) = ei() + e/ ()i + e)(1)j + ek(t)k; then, according to the controller (2.16), the error
system (2.15) can be separated into four real parts as below

W) = —cuel D) — kel ) le by (Of(e5(1) — Z; by (Of; (ey()
- Zl b0 f (el(0) - Zl bk (O FF (ef ) + Zl dROfREEC-T)  @2.17)
- Z] A fl (el — (1)) - Z} d (0 fl €l(t = (1))
- Z; A () K ef e =),
el = —cgeh(t) — keeb(t) + Zl bs(0) fl(el(0) + Zl b () fE(e5(1)
- Z bor (OF (el(0) + Z‘ b (O f (el @) + Z‘ &R flEel@-10)  (2.18)

n

DA OVA CN R OV BN OV CAEEG)
s=1

s=1

+ 3 A fE e - T,
s=1

e = —celn) — ke + Y BEROf ) - . bt fF (X @)
s=1 s=1
+ > bEOFCl D) + D IO ko) + Y dfoflEla-w) (219
s=1 s=1 s=1
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- Zl At f (Xt - (1)) + Z‘ di$ (0 f1 (el = 7(1)))
+ Zl d (O f e 1)),

) = —cek ) — kel + Zi]b;f () fF (@) + 2b;§<z>ﬁK<e§ )
+2%@ﬁ@m—2%ﬂﬂ@m+2@%ﬁ@mwm> (2.20)
+j§@ﬁaﬁﬂfu—ﬂn»+§;@ﬁaﬁwﬁr—ﬂ0»

= > A flel - o)),
s=1

where fi(eS(n) = funS(0) — fi(BmS@), fEeSt — (1) = fu(ni(t = 7)) = fu(Bm(t — 7(1))),
e=R, 1, J, K.
The following notations will be used:

IR | = sup RO, 1bL,] = sup B0, IbL] = sup b/ (D), 1bK| = sup B0,
t>0 >0 >0 >0

N

] = Supldy{(o)l. 1dy,| = Supldyi (O 1dg,| = supldy/ (o)l 1dg,| = sup ldgS (D).

Before deriving the result, the definitions and lemmas are given to facilitate the subsequent derivation.
Definition 2.1. [38] The driving network (2.1) and the response network (2.8) are said to achieve
projection synchronization if

lim 2, (1) - B0l =0, g=1,2,-+-,n,

where 8 € R is a nonzero constant.
Remark 2. When the projection factor § = 1, complete synchronization is achieved. When the

projection factor 8 = —1, anti-synchronization is obtained.
Lemma 2.1. [28] Let m > 0,n > 0, r > 1 and } + % = 1. Then, the following inequality holds
I, 1
mn<-m +—n.
r s

Lemma 2.2. [39] Suppose that function V(f) is non-negative when ¢ € (-7, 00) and satisfies the
following inequality

V(1) < —aV(t) - bV(t — (1)), 1 > 0,
where a and b are positive constants with a > b. Then,

V() < sup V(s)e™”,

-7<5<0
where r is the unique positive solution of the following equation

—rT

a—be " =r.
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3. Main results
Theorem 3.1. Under the controller (2.16), if Assumptions 1 and 2 hold, and

A>7>0. 3.1

Then the projection synchronization of quaternion-valued memristor-based neural networks (2.1)
and (2.8) is obtained, where A = min{Ad,, Ay, A3, A4}, { = max{(,, &>, {3, {4} and

1, = min {rcq+rkq—2(l§|bfjs|+z§|b;s|+z§|b{”|+1§|b;§|
s=1

1<g<n
+(r = DS | + (r = DEBL |+ (r = DEB] | + (r = DIS D]
+ = DISAS ]+ 0= DL + (= DEIdL]+ (= DISISD),

_ : 11,R 1,1 11,J 11,K
b = min {rcq +rk, — ;(zsw + 1L |+ LIl + EbK]
+(r = DEIBE |+ (r = DIEDL | + (r = DISIb] | + (r = DEIbL|

+ = DI+ (= DEL]+ (= DS + (= DEIASDL,

1<g<n

A3 = min {rc,,+rkq—Z(l{|b§s|+l{|bgs|+l§|bgs|+l§|b,’;,|
s=1

+(r = DS |+ (r = DB+ (r = DIKIBL |+ (r = DB

+(r = DEWR) + (r = D] + (r = DI ]+ (r - 1)l§|d;i|)},

A = min {rcq+rkq—Z(lf|b§S|+lf|béS|+lf|b;s|+lf|b§s|
s=1

1<g<n
Hr = DI+ (= DI + (= Dby + (= DEb
+ = DI, + (= D]+ (= DI + = DEIZD )

1<g<n

L = maxZ(lfldgsl+lf|d;x|+lf|dgsl+lf|d;§|),
s=1

O N AR AR ARY )
T s=1

&= max > (M| + Kl + Hldg) + H1dK)),

1<g<n
a s=1

L = maxZ(lﬂng+z§|d;§,|+zf|d;s|+l§,<|d;§|).
s=1

1<q<n
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Proof. Considering the following Lyapunov function

_ 1 C R r 1 C 1 r 1 C J r 1 C K r
Vie) =~ > lef@l +— D 1O +~ > lejol +~ > lef . (3.2)
g=1 g=1 q=1 q=1
Computing the time derivative of V(e(#)) along the trajectory (2.17)—(2.20), from Lemma 2.1, we have

Vie(t) < Z] |e’;<t>|f-1[ = cqlef@l + Zl NGIVACIO)]
+ Z bk I F (el ()] + Z b OIS (el )] + Z‘ ;s (DI (e )]
+ Zl RN e = (o)) + Zl Iz I (ef(r = T(e))]
+ Z; (o OIF (el = ()] + Z‘ X OIFE X = 7)) = kylek )]
- Zl |eg<r)|’-1[ = coleb®)] + Zl [NOITHEIO)
q= 5=
+ Z bk O (ef @)l + Zl NOIVECG)]
+ Zl B OIIFE (X (1)) + Z} RN F (el(r = (o)) + Zl I O (el (2 = ()]
+ Z} |z OIIF (el (2 = ()] + Z} I OIF (e (2 = (o)) = kq|eg<t>|] (3.3)
- Z |e;<r>|’-1[ — cile) ()] + le R ONF (el )
+ Z; s IF (e @] + Z} by OIIF (e3(0))]
+ Zl b OIFF R @) + Zl SO (el = 7)) + Zl (s OIIF (ef (t = 7))
+ Z} e DI} (el = T))] + Z} O el =)l - kq|e;(t>|]
+ Z; leX <r>|f-‘[ = cglek ()] + Z] ROIVACIG)]
=
+ Z] by OIF (5@l + Zj b ONF (] )]
+ Zl b (DI (el))] + Zl SO (et = 7)) + Zl o OIIF (el (t = ()
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=S EE O =T + Y L OIF L = o] kleE o]
s=1 s=1

According to Assumption 2 and the notations defined previously, we can get

Vie() < Z|e§<z>|’—1[—cq|e§(r)|+Z|b£,i|l§|e’§<r)|
s=1

q=1

+ Z b, |LLlet(0)] + Z by | lel (1)) + Z IbS I lef (] + Z (| 1ef (1 = T()]
s=1 s=1 s=1 s=1

+ Z L el (e — T(1)] + Z |\l (t — T(0))|
s=1 s=1

+ Z A |5 1eX (t — ()] - kq|e§<r>|] + Z |e{,<r>|’-‘[ = cilel )] + Z LAIRAIRG]
s=1 g=1 s=1

+ Z b |IR1eR )] + Z bX|lel (] + Z b |IK e ()] + Z |dX |Llel(t — (1))
s=1 s=1 s=1 s=1

+ Z (L |I51eR (¢ — ()| + Z |2 |IK e (2 = 7(0)] + Z | lel(t = T(0)| = kglek @)
s=1 s=1 s=1

& S Lo el Y IR+ S BLEE O+ Y IO G
g=1 s=1 s=1 s=1

+ Z b7 |I51eR (1)) + Z 5| lel(t — (1)
s=1 s=1

+ Z ! K leX (1 — T(0)] + Z (X |Elel(t — 7(0)] + Z ek — 7 (1)) - kq|e{,<r>|]
s=1 s=1 s=1

+ Z |e§(r>|r-1[ — cileX )] + Z bR 11K 1eX (1)) + Z bX 11X (o) + Z B! el )]
g=1 s=1 s=1 s=1

+ Z b el ()] + Z R 1K 1eX (1 — T()] + Z |2 \lel(t = T(0)] = Kglek ()]
s=1 s=1 s=1

WA A O B AR O]
s=1 s=1

Then, according to Lemma 2.2, we have

r— 1 r—

— 1 r 1 r r— r 1 r
eSO IeRO] < Ikl + ——1efOI". lefO el < ~lel(ol + — Ik

-1

_ 1 . T . r_ 1 . r—1 .
O lel 0] < el + ——Ief o), e lek O] < ~lef O + —lef "

1
leg O lef (e = ()l < —left =TI +

r_l R r
" le; (DI,
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1
el el — T(0)] < ;Ie (t =) <L |€ o,
1
leg O lel(t =T < —lej(t =) + Ie o',
1
leg O lef (t = 7(O)] < —leg (¢ = (1)l oL qu(t)lr,
el (O Mel ()] < —|€ O o1 |€ o,
f
les (O Mef (0] < rle or o1 |€ O, lekol el < |€J(f)| + L |€ or,
1
les (O ek ()] < ;le or o1 |€ o, e (t)lr Nek(r — (0| < —|€ (t =) o1 |€ o,
les (I ekt — 7()] < —|€ (t =) ol |€ o,
1
leg (O et = ()] < —lef(t =TI + Ie ol
1
e (D ey (¢ = ()] < —leg(t =TI + L |e o,
e el < —|€ o L= |€J(l)| |€J(f)|r ek < —|€ oI TR |€J(l)|
1 g
le; O el (D] < ;lej(t)lr o1 |€J(l)|r les O es (] < ;le o TR |€J(f)|
e O ek (e — (1)) < ;le (t =TI TR |€J(f)|
1
leg (O el(t = 7] < —leg(t = T + Ie oI,
1
el elta = )l < et~ )l + el
1
e eX (I—T(I))l < —|€ (I—T(l))l + L |€ oI,
1
leX (O lel(n)] < - |€ ol + 1 |€ 0, le, (l)lr_lles(l)l < r|€ o + L |€ o,
1 1
leX (O lel (0] < ;l el L |€ o, leX (I)lr ek (0] < ;le ol 1 |€ o,
leX e — ()l < ;le (t =) 1 |€ o,
1
leg (OF gt = o)l < —leg(t =TI + Ie ol
1
KO el — 7 < Helta — o) + kK,
1
lex O ek (1 — ()] < —ley (=TI + 1 qu ol
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Therefore, one has

Viet) < - Z(cq + klef ol - Z(cq + kley(dl = Z(cq + eyl - Z(cq +kles ()l

+ZZ|bR e el + - e <r>|)+ZZ|b’ 1~ lel(o)l + - L= ek

=1 s=1 g=1 s=1

{;Z}W L elor + e <t>|>+z;§;|b’<|l’<< KOl + ek
g=1 s= ==

{n;ildﬁslzfélef(r—r(r))l’ + e
g=1 s=

+Z;Z;|d1 ¢ |e§(z ) + le )
=1

' Z; Z: Al (%Iei(t — ) + i)
g=1 s=

' Z; Z |dfs|lf(%lef(t —xor + ik
g=1 s=

+zn;z”;|bR |1’( le!(t)]" + Ie Gl )+Z;Zlb’ |lR( lef (" + Ie o)
g=1 s= ==

+zn;zn;|bf |1K( Kor+ 2= Liel o )+Z;leb’<|l’( eor + el o)
g=1 s= ==

+§;Z|d§5|lﬁ(%leﬁ(1 ()" + Ie )

+ Z; Z: 2 IR |e§(t — () + — 1 ey (")
e

' Z; Z: g, II5 (%lef(t o) + i on
g=1 s=

' Z; Z |d§sllf(%lef(t oy + = leg()I")
perien

Jrz;z;ua’e |zf( el @)l + Ie ol )+Z;Zlb’ |lK( Xl + Ie 0
q=1 s= =

+ZZIbK|l’( elor + = Le (t>|)+2121]|b’ llR( oI + “=lelon
g=1 s= ==

' Zl Z gty (%lei(t e leq (I
pry e
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’ Zl Zl sl élef (t - o) + = leq ()
g=1 s=
' Zl Zl |d§i~|l§-(%le§(t oy + = leg (1)
g=1 s=
' Z; Z; ld;sllfélef(t o) + o)
L £
+ZZIbR |l’<( eor + ek or >+ZZIbK|lR< ekl + - 1Ie!f<f>lr>
g=1 s=1 g=1 s=1
+ZZ}W |l’( or + L1k + ZZIb’ Ili(%lei<t>l’+ "= Lesn)
g=1 s= ==
' Z Z: ldzilzf(%lef(r — oy + ek o)
g=1 s=
' Z Z: ldi,ilzfélef(r el + 2 leg (D)
g=1 s=
' Z; Z: dgsEy (%leiv — v+ = leg (O
g=1 s=
' Z; Z ld;slli(%lefv(t e+ leg (OI).
g=1 s=

Then, we have

Vie(r)) < Z (—cq—k + - Zz’%R ZlRlb’ Zz’uﬂ Zmbf
pm
+;Zl’§|bfls|+ Zz’%K Zz’%R —ZlKle ZlRldR
| + Zlﬂd’ ZIK|dK) o
Z( By Zl’|bRs|+ Zl’lb’
=
+— Zl’lb’sl+ Zl’|b" Zl’le ZZRW
Kb | + Zl’le Zl’ldR ; ;lfldésl (3.5)

Kgl)+ T Z 1) ) el ()
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n

1 C J1,R 1 C J11,1 1 C J 1.7 1 C J11.K
+ r( —cy kgt~ Z; BIb+ Z; BIbl+ Z; b+~ Z; EIbK|

q=1
-1 —1 < -1 < -1
P PN r— PNAAR r— Kb+ - A
r r r r
s=1 s=1 s=1 s=1
r_anR r_lnRJ r_anI ”_1an11 r
+— PRAZAEE — PRATAR — PRAAR: — > lsldqsl);leq(t)l
s=1 s=1 s=1 s=1
n 1 n 1 n 1 n 1 n
£ r( oy =yt PRAAE - PRAAR - PNAAR - PALA
g=1 s=1 s=1 s=1 s=1

r—l”KR r—lnRK r—lnjl r—1n1]
+— PRAAE — Z; bl + —— Zl HIbf |+ —— Z Eipl |

r—1
r

+

n n 1 J| JR 1 upl 1 Ji 1] 1 T IK 1 J .

’ ; Zl A+ S+ alag) + RIS efta = <o)
noon };IK'CiR ];lK'ciI ];ZK»CZJ !;[KfciK' ]; P

+ZZFFS|qS|+rS|qS|+r3|qS|+rS|qsl r|eq( ).

We suppose that

A

A

A3

Ay

min {rcq +rk, — Z(lf|b§s| + I51by | + I81b] | + DK + (r = DISIS |+ (r = DI |
s=1

I<g<n

+(r = DEIb,| + (r = DI + (r = DIIE| + (r = DEldy | + (r = DEldy ] + (r = DI |d;i|>},

1<g<n

min {rcq kg = > (B + Lkl + Blbg| + BIbf |+ (r = DEIB| + (r = DIIB]
s=1
+(r = DIIb| + (r = DEIbg| + (r = DEI ] + (r = DEldy | + (r = DISIdy | + (r = DE |d;i|>},

min {rcq kg = > UIBE |+ EIbl| + EIb | + EIbK| + (r = DEIBE| + (r = DIFIB)
s=1

1<q<n

+(r = DISb, |+ (r = DI+ (r = DS + (r = DIy + (r = DISId] | + (r = 1>l§|d£,§|>},

: K|1,R K.l K1.J K1, K K|1,R Ry1. K
min {rcq +rk, — Z_;(z‘y DR |+ IKIBL ) + K167 ]+ DK + (r = DIKIBR ) + (r = DIFBE |
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+(r = DEBL| + (r = DIB) |+ (r = DISWL | + (r = DI + (r = DEdL | + (r - l)lﬁldgsb},

i = max Z(lRldR [+ By |+ Eldy |+ EIdgD. & = max Z(l’ldRsl + d! |+ Eld2 ) + EldK)),

1<g<n

4 = maxZ(lf|dR|+zf|d’|+zf|df|+lf|dk|) G = maxZ(zﬂd’u+z§|d{”|+zf|d;s|+lf|d;§|).

1<g<n

Then,
’ 1 R r 1 1 r 1 J r 1 K r 1 R r
Vie) < —di-1ef0) = L=lel ) = a=lel) = da=leK@ + &i=1ef(t — (1))
r r r r r

1 1 1
+0o=ley(t = TN+ La=ley(t = TN + da=leq (1 = ()N (3.6)
< —AV(e() + {V(e(t — 1(1))),

where A = min{Ay, A2, A3, A4}, { = max{{y, &, &3, 4}

Therefore, according to Lemma 2.4 and Theorem 3.1, the projection synchronization between drive
system (2.1) and response system (2.8) can be achieved.
Remark 3. In recent years, the research of real-valued fractional-order neural networks and complex-
valued fractional-order neural networks in projection synchronization [28,29, 36,37] has also achieved
excellent results. Compared with previous studies, QVNN is superior in handling multi-dimensional
problems. Therefore, our results are more general.

4. Numerical example

Considering the two dimensional quaternion-valued memristor-based neural networks model of
Eq (2.1) with the memristive connection weights are

[ 23— 1.6i+2.3j— L5k |Imi ()| < 1,
bu(m(0) = { 2.0-27i+2.0j—0.7k, |m () > 1,

[ =0.5-0.4i-0.5] - 0.7k, Im ()] < 1,
bralmi (1)) = { ~0.9i — 0.1 — 0.3k, [m; (1)] > 1,

1.1 +0.7i + 1.0 + 0.6k, |m,(t)| < 1,

by (my(1)) = { 1.6 - 0.3i + 1.5 — 0.4k, |my(0)| > 1,

-0.5-1.51-0.5j - 1.6k, |m,(?)| < 1,
-0.1-0.9i - 0.1j - 0.6k, |m,(#)| > 1,

poma(yy = { 127031 = 0.7 = 0.3k (o) < 1,
2V = 0.8 = 0.1 — 1.3/ — 0.2k, [ma(t)] > 1,

1.4 +3.1i — 1.4j + 3.0k, |m; ()| < 1,
du(m (1)) = { —1.542.6i — 1.5j + 2.3k, |my(£)] > 1,

di>(my (1)) {
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-0.8-0.2i = 0.6 — 0.1k, |my(1)| < 1,

(1) = { ~1.2 = 1.1i = 1.3 = 1.3k, Ima()] > 1,

0.5-0.8i +0.4j - 0.7k, |my(1)| < 1,

dn(may (1)) = { 1.3 = 0.5i + 1.2 — 0.4k, lmy(0)] = 1.

The response system of (2.8) is

(1)

2 2
—eim(®) + D @) @) + ) di(m) £yt = (1) + I + (1),
s=1 s=1

2 2
() = —com(t) + Z bas(na (1) f(ns(1)) + Z das(n2(0)) fs(ns(t — (1)) + I + us(2).
s=1 s=1

Take the time delay 7(r) = 0.75 — 0.25cos(t) such that 7 = 1 and the activation function
f(my () = 0.23 (|m§(t) + 1| — |m§(t) — 1)+ 0.23 % (|m[1(t) + 1] - |mf](t) —1Di+0.23 = (|mfl(t) + 1] -
) (1) = 11)j + 0.23 # (jmy (£) + 1] = lmy (£) = 1Dk (¢ = 1,2), and external inputs /; = I, = 0. According to
the Assumption 2, we can get [; = 0.46, where ¢ = 1,2. The control gain parameter is taken as
ki = k, = 40 and the connection weights are taken as ¢; = ¢, = 1. Then, the trajectories of error
systems with controllers and without controllers are obtained.

Besides, we take r = 2. According to the above parameters, we can directly calculate the direct result
of the condition in Theorem 3.1: 4; = A, = A3 = 44, = 53.526 and {} = {» = {53 = {4 = 10.166. Then, we
can obtain A = 53.526 > ¢ = 10.166.

o ® @ ©
O &

0 10 20 30 40 50 60 70 80 90 100
t

Figure 1. The errors e; with 8 = 0.8 without the controller.
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t

Figure 2. The errors e, with 8 = 0.8 without the controller.
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Figure 3. The errors e; with § = 0.8 under the controller.
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Figure 4. The errors e, with 8 = 0.8 under the controller.

Networks and Heterogeneous Media Volume 19, Issue 3, 1156-1181.



1176

0.1

0.08 |

0.06

0.04 |-

0.02 |-

o

o o o o
Loy O &

-0.02 -

-0.04 -

-0.06

-0.08 -

-0.1

t

50

60

70

Figure S. The errors e; with 8 = —1 under the controller.
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Figure 6. The errors e, with 8 = —1 under the controller.
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Figure 7. The errors e; with 8 = 2 under the controller.
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Figure 8. The errors e, with 8 = 2 under the controller.

The above result satisfies the condition in Theorem 3.1, so systems (2.1) and (2.8) achieve projective
synchronization. Figures 1 and 2 show the synchronization error curves e, (g = 1,2) for § = 0.8 without
the controller. Figures 3 and 4 show the synchronization error curves e, (g = 1,2) for § = 0.8 with the
controller (2.16). Figures 5 and 6 show the synchronization error curves ¢, (¢ = 1,2) for § = —1 with
the controller (2.16). Figures 7 and 8 show the synchronization error curves e, (g = 1,2) for § = 2 with
the controller (2.16). From the above simulation results, we know that the derive system (2.1) and the
response system (2.8) are synchronized, which verifies the effectiveness of Theorem 3.1.

5. Conclusions

This study delves into the dynamics of projective synchronization within the realm of quaternion-
valued memristor-based neural networks, which are subject to time-varying delays. Employing the
theoretical underpinnings of set-valued mappings and differential inclusion, we formulate a hybrid
control approach to dissect the projection synchronization dilemma of the network. By harnessing
the stability assurances of a Lyapunov function and the quantitative bounds provided by Young’s
inequality, we formulate a novel criterion for synchronization. This leads to the achievement of
projective synchronization in the context of the aforementioned neural networks. The efficacy and
practicality of our proposed strategy are substantiated through rigorous numerical simulations.
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