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Abstract: In this paper, we mainly study the influence of environmental pollution and bacterial
hyper-infectivity on the spreading of diseases by considering a waterborne pathogen model with free
boundaries. At first, the global existence and uniqueness of the solution to this problem is proved.
Then, we analyze its longtime behavior, which is determined by a spreading-vanishing dichotomy.
Furthermore, we obtain the criteria for spreading and vanishing. Our results indicate that environmental
pollution and bacterial hyper-infectivity can increase the chance of epidemic spreading.
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1. Introduction

Nowadays, infectious diseases pose a significant risk to human health, such as, waterborne diseases. To
gain a comprehensive understanding of the transmission dynamics of such diseases, Eisenberg et al. [1]
emphasized the necessity of considering various transmission pathways. A large number of models
have been proposed to describe the transmission of waterborne diseases. For example, Codeco [2]
used a compartmental ordinary differential equation (ODE) model to describe the human-water-human
transmission mechanism, where the infectious population shed the pathogen into the water, and subsequently
the susceptible population drink the contaminated water. However, this model overlooks human-human
transmission. Later, Tien and Earn [3] added a compartment into the classical SIR model, and proposed
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the following model:
S"=kN -=BISW-=0,SI-kS, t>0,
I'=BSW+BSI—vyI—-kI, >0,
R =yl — kR, t>0,
W' =al —dw, t>0,

(1.1

where S (¢), I(t), and R(¢) denote the densities of the susceptible, infectious, and recovered human
population, respectively, and W(r) represents the concentration of pathogen in the contaminated water.
Assume that the birth and death rates are equal to k. A susceptible human can be infected through two
primary pathways: human-water-human transmission and human-human contact, whose transmission
rates are represented by the parameters 5, and 3,, respectively. While 7 is the recovery rate, and « is the
pathogen shedding rate from infectious humans into the water. The removed rate of pathogen in the
water is represented by d. The main results in [3] indicated that there exists a threshold parameter R
such that the disease will spread if Ry > 1, and tend to extinction if Ry < 1.

After the above work, numerous researchers have studied model (1.1) and related models. For
example, reference [4] focused on the corresponding local diffusion version of (1.1) and provided
insights into the global dynamics, while [5] considered the corresponding traveling waves. However,
these works all showed that if the basic reproduction number is larger than 1, the disease will always
spread regardless of the size of the initial infectious population. These results do not match well with
the fact that the disease will not always spread for the small size of the initial infectious population. At
the same time, the above works can not tell us the location of the spreading front. Motivated by the
introduction of free boundary by Du and Lin in [6], Zhao [7] incorporated the free boundary into the
partial differential equation (PDE) model discussed in [4], proposed a new model, and obtained the
dynamics of the solution, which can be better to describe the spreading of diseases. Following the work
of Du and Lin [6] on a logistic model, free boundary approaches similar to the problem considered
in [7] have been studied by many researchers recently, for which the readers can refer to [8—13] and the
references therein.

As society has developed, the issue of environmental pollution has attracted extensive attention.
Findings from [14] demonstrated that environmental pollutants can suppress an individual’s immune
system and thereby increase the susceptibility of the human population to various infectious diseases.
Thus, this will help epidemics spread rapidly. Thus, it is necessary to consider the effect of environmental
pollutants when constructing mathematical models to describe disease transmission. Recently, Wang
and Feng [15] proposed a PDE model to investigate the influence of environmental pollution on the
spreading of waterborne diseases.

In addition, recent laboratory findings in [16] indicated that, for some diseases, the pathogen will
be excreted by the infectious human via the gastrointestinal tract, and can remain viable, highly toxic,
and infectious for several hours. Compared with the pathogen persisting in the environment for several
months, these pathogens exhibit up to 700-fold infectivity. Therefore, bacterial hyper-infectivity should
be considered during modeling. Wang and Wu [17] studied the different roles of two types of vibrios
and the spatial heterogeneity of the environment on the transmission of cholera. Thus, it is significant to
consider two types of vibrios distinguished by their infectivity.

Inspired by above works, we develop our model in [7] and study the influence of environmental
pollution on dynamics of a waterborne pathogen model with bacterial hyper-infectivity and free bound-
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aries. We categorize the human population into three classes: susceptible, infectious, and recovered,
which are denoted by S (¢, x), I(t, x), and R(¢, x), respectively. To explore the influence of environmental
pollution, we further divide the susceptible human population into two subcategories: those unaffected
by environmental pollutants, denoted as U(t, x), and those affected, represented as V(¢, x). According
to the infectivity of the pathogen, we also divide the pathogen into two classes denoted by P(z, x) and
Q(t, x), where P exhibits hyper-infectivity. The susceptible human population U and V can be infected
by two pathways: human-water-human and human-human contact. The direct transmission rate is
represented by ;1. Recalling that pathogen stay highly toxic and infectious for a short time during
disease transmission. Based on the number of pathogens P and Q, it follows from [18] that we can use
the linear incidence rate 81 P and the saturated incidence rate 8,Q/(m + Q) (this can be derived from
particles as in [19]) to describe the rate of indirect transmission. To describe the spreading of disease
well, we suppose that the range of the initial infected area is the interval [—hy, k], and the infected
area is increasing as the time goes on and is denoted by [g(?), h(?)], where g(¢) and h(¢) represent the
spreading fronts of the disease and satisfy the Stefan condition (the derivation of this free boundary
condition can refer to [20]): g'(¢¥) = —ul(t,g(¢)) and h'(t) = —ul(t, h(t)) where u is the spreading
capacity. Before proposing our model, we put forward the following assumptions:

(1) the mobility of the pathogen is significantly lower than that of the human population and thus can
be neglected; the dispersal rate of U, V, I, and R are represented by Dy, D,, D3, and Dy, respectively;

(1) the recruitment rate of the human population is denoted by b, with a fraction p transitioning
directly to the class V;

(ii1) environmental pollutants cause some individuals to migrate from class U to class V, and we
assume that the rate is the constant g as referenced in [21];

(iv) noting that the environmental pollutants increase the susceptibility of the human population to
specific infectious diseases, we assume that the effects of pollution on §; are equal and denoted by 6;

(v) assume that the death rate of U, V, I, and R are the same and denoted by k;

(vi) assume that the hyper-infective pathogen will not die before they transition into the lower-
infective strains.

According to the above assumptions, we propose the following model:

Uy = D\Uy+ (1= p)b—qU - BiUP - 222 — BsUI-kU, >0, xeR,

V, = DV + pb + qU — B160VP — /f;ﬁVQQ - mevz kV, >0, xR,

I = D3It By (U+0V) P+ 2008 4 By (U +0V) -y 1K, 1> 0, x € (g(t), (1)),
R, = D4R, + yI — kR, 1> 0, x € (g(0), h(1)),
P, =al — P, t>0, x € (g(0), h(1)),
0, =nP -do, t>0, xe(g®),h(r), (1.2)
I(t,x) = R(t,x) = P(t,x) = O(t,x) = 0, t>0, x eR\(g(®), h(r)),
g'(t) = —ul(t, g(1), W (1) = —ul(t, h()), >0,

—g(0) = h(0) = ho,

U0, x) = Uy(x), V(0,x) = Vy(x), x€eR,

1(0, x) = Ip(x), R(0, x) = Ro(x), P(0,x) = Py(x), Q(0,x) = Qp(x), x € [~ho,hol,

where vy is the recovery rate, a stands for the shedding rate of the pathogen from an infectious human into
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the water, 7 is the removal rates of the hyper-infective pathogen in contaminated water, d represents the
removal rate of the lower-infective pathogen in contaminated water. Assume that the above parameters
are all positive, 8 > 1,0 < p,q < 1, and Uy(x), Vo(x), Ip(x), Ro(x), Po(x), and Qy(x) satisfy

Uo(x), Vo(x) € C*(R), Io(x), Ro(x) € C*([~ho, hol), Po(x), Qo(x) € C'~([—ho, ho])

Io(x) = Ro(x) = Po(x) = Qo(x) = 0, x € R\(=ho, ho), (1.3)

U()(x) > 0, V()(X) >0,x €R, ]()(X) > 0, Ro(x) >0, P()(X), Q()(X) >0,x € (—ho, ho),

where C'~ is Lipschitz continuous functions space.
For convenience, we denote

Ro = (ﬁl_a N B +,83) (1 — p)bk + Opb(k + q) + 6g(1 — p)b
m k(k + q)(y + k)

, (1.4)

and (1=pb Opb  6g(1— p)b
—pb Opb  6g(1 -p

A= . 1.

k+q |k kik+q) (1.5

Our main results are listed as follows.

Theorem 1.1. For any given hy > 0 and U, Vy, Iy, Ry, Py, Qo satisfying (1.3), problem (1.2) admits a
unique solution (U, V,I,R, P, Q, g, h) defined for all t > 0.

Theorem 1.2. Assume that the conditions in Theorem 1.1 hold. Let (U, V,I,R, P, Q, g, h) be the unique
solution of (1.2). Then, the following alternative holds:

Either

(i) Spreading: tlgg h(t) = — tlirg g(t) = +oo (and necessarily Ry > 1),

t1_1>1+130 (2, leqew.non + IRE eqewnen + IPE Nleqew.non + 1O, lleqem.non > 0,

a
+581

LB
and furthermore, if —2=A + Kby _ytk 1 then
v+

k Ak+b ﬁ3+%ﬂ1

tliin U(t, x), V(t, x), I, x), R(t, x), P(t, x), Q(t, x)) = (U", V*, I",R*, P*, O"),

uniformly for x in any bounded set of R, where (U*, V*,I",R*, P*, Q") is given by (4.1);
or
(i1) Vanishing: lim[A(7) — g(1)] < oo, and
>0

1-pb b 1-p)b
( +I;) , tlgg Vit,x) = % + % uniformly in R,

,1_1>£20 (2, lleea.non + IRE eqewnon + IPE lleqswm.non + 1QE lleqem.non = 0.

IimU(t, x) =

t—o00

Theorem 1.3. In Theorem 1.2, the dichotomy can be determined as follows: for fixed Dy, D,, D3, and
Dy, we have:

(1) If Ry < 1, then vanishing happens for any (Uy, Vo, 1y, Ry, Py, Qo).

(1) If Ry > 1, then there is a critical value h* > 0 independent of (U, Vy, Iy, Ry, Py, Qo) such that
spreading happens when hy > h*, and if hy < h* and ||Up|| < “k_ﬁ[)b, [ Volleo < %b + q,i(lkjrpq))b, then there
exists u* > p, > 0 depending on (Uy, Vy, Iy, Ry, Py, Qo) such that spreading happens for u > u*, and
vanishing happens for u < u. and u = u*.
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Remark 1.4. In this paper, our primary focus is on the influence of the initial infected domain on the
dynamics of (1.2) for a fixed dispersal rate. Additionally, for fixed hy, we can follow the argument in [22]
to investigate how the sign of the principal eigenvalue is affected by the dispersal rate. Then, we will
know the impact of the dispersal rate on the dynamics of (1.2).

Remark 1.5. It is crucial to highlight that we identify Ry as an important parameter in our analysis of
the corresponding eigenvalue problem. The above results indicate that this parameter acts analogously
as the basic reproduction number, and we call it the risk index rather than the basic reproduction
number. Observing the expression of Ry, we note that it decreases with respect to n and increases in q
and 0. By understanding n, q, and 6, we conclude that greater environmental pollution correlates with
elevated values of q and 6, while a reduced removal rate of the hyper-infective pathogen corresponds to
a diminished value of . Consequently, it follows from Theorem 1.3 that environmental pollution and
bacterial hyper-infectivity can increase the chance of epidemic spreading.

The rest of the paper is organized as follows. In Section 2, we first obtain the global existence and
uniqueness of solution (Theorem 1.1). Then, the criteria for spreading and vanishing are established
(Theorem 1.3) in Section 3. Finally, we give the longtime behavior of (U, V, I, R, P, Q) when spreading
happens (Theorem 1.2) in Section 4.

2. The existence and uniqueness of solution

In this section, we mainly prove that problem (1.2) has a unique global solution. At first, we obtain
the local existence and uniqueness of solution by the contraction mapping theorem.

Theorem 2.1. For any given (Uy, Vo, Iy, Ry, Py, Qo) and any a € (0, 1), there is a T > 0 such that (1.2)
admits a unique solution

(U.V.I.R.P,Q.g.h) € [CL]? X [C3]* x [CH1=(D, ) x [C"*4(0, T]I2, @2.1)

where

l+a
T,1+(t

Ch = L™(Ap) N Ci "™ (Ar), €2 = WH(DL,) n €57 (D, ),
Ar={(t,x) eR*: 1€[0,T], x€R}, D}, ={(t,x) eR*: 1€ (0,T], x € [g(t), (D]}
Proof. The proof of this theorem can be done by following the steps of [23, Theorem 2.1] and [24,

Theorem 1.1] with some modifications. In the following, we give the main steps for completeness.
Step 1: For any 7 > 0, let

(1 - p)b b+ gA
Ay = max { —L22 1Upllw b, Az = max { 222200 1ol b
q+k k

b b
As = max{k—;’, ||P0||oo}, Ay = max{i, ||Qo||oo},

and
X}, :={U € C(Ar): U(0,x) = Up(x), 0 < U <Ay},
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Xy, ={VeC(Ar): V(0,x) = Vo(x), 0 <V <Ay,
XT ={P¢ C(DTh) P(0, x) = Py(x), 0 < P < A3},

={Q¢€ C(DTh) 0(0,x) = Qop(x), 0 < O < Ay}
For any given (U, V, P, Q) € XITJO X X‘CO X X;O X X;O, we consider

I = D3Ixx+,81(U+9V)P+B2(U+9V)Q +B5(U+0V)I=ylkI, t> 0, x € (g(), h(?)),

I(t,x) =0, t >0, x eR\(g(1), h(t)), 2.2)
g(0) = —pl (1, g(0), W(t) = —ul(t, h()), t>0, '
—g(0) = h(0) = hy, 1(0, x) = Io(x), x € [~ho, hol.

Following the steps of [25, Theorem 1.1] with some modifications, we can find some 0 < 77 < 1

such that (2.2) admits a unique solution (, g, k) € [Wy*(D'1) N c lJ"U‘(Dg D1 x [C*3([0, T,])]? for
any a € (0,1 -3/p), and

g.h

—2hy < g(1) < h(t) < 2hy, ||| + Al 1+g < (.

wiraop) lI8llcr+3 o7, cIqor =

Define

P (x) = Po(x), |x| < ho, and é (x) = Qo(x), x| < hy,
’ 0. x> hy ° 0, ] > o,

By Py, Qp € C'([~ho, ho]), we have Fo, Qo € C'=([g(T}), h(T})]). For above g(¢) and h(f), we define

g_l(-x)9 X € [g(Tl)5 _hO),
t, =<0, X € [=hg, hy]l,
h='(x), x € (hy, h(T))].

For above I(t, x) and any x € [g(T), h(T)], we consider

Ft:al(t,x)—nﬁ, t,<t<T,
0, = nP - dQ, <t<T, (2.3)
P(t,, x) = Py(x), Q1. x) = Qo(x),

and it follows from the standard theory of ODEs that there exists some Tz € (0,T) such that P(r X)
and Q(t X) are well defined on [¢,, T>] for any x € [g(T>), h(T>)], and then P(t x) and Q(t x) are also

well defined on Dg’h. Moreover, we can obtain that P and Q are Lipschitz continuous in x by similar
arguments in step 2 of [24, Theorem 1.1], and then P, Q € C 1*1‘(5;2).
For above I(t, x), ﬁ(t, x), and Q(t, Xx), we consider

U =DU,+( —p)b—qU—ﬁlUF—ijTUg _BUI—kU, t>0, xR, 04
U(0, x) = Up(x), x€R. '
By the standard theory in [26,27], (2.4) has a unique solution Ue Co(Ar) N Clll ;%’ZM(AT), where

C,(A7) is the space of continuous and bounded functions in Ar.
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For above I(t, x), ﬁ(t, X), é(t, x), and U (1, x), we consider

m (2.5)

V, = D,V + pb + qU — B16VP - ﬁZ‘ivg —BOVI—kV, >0, xeR,
V(0, x) = Vp(x), x€R.

1+ .2+a

By the standard theory in [26,27], (2.5) has a unique solution Ve C(Ar)NC,, (Ar).
Step 2: Denote [1I; = [0,T] X [-2hg,2hy]. By arguing as in the arguments in step 2 of [24,
Theorem 1.1], we can find a constant M such that

|P(2, x) — P(t,y)| < 2M|x —y|, |0, x) — Q(, )| < 2M|x — y| for (¢, x), (z,y) € 7. (2.6)
Define

Y;O ={P e C(lIy): P(,x) = Po(x), 0 < P <A, |P(t,x)— P(t,y)| <2M|x - yl},

Yo, ={0 € C(Tr) : 0(0,%) = Qo(x), 0 < Q < Ay, 01, %) — O(1,)| < 2Mx -y},
YT = X[, x Xy, XY XY}

Obviously, Y Tis complete with the metric,

d((U1, Vi, P1, 01),(Uz, Vo, P2, Q) = sup (U = Us| + |V = Va|) + (lm)gﬁi (|1P1 = P5| + Q1 — Qa)).
(t,x)eAT X T
Define a map o
F(U,V,P,Q) =(U,V,P,Q) for (U V,P,Q)eY".

In the following, we will prove ¥ maps Y7 into itself and F is a contraction mapping on Y7 for all
small 7. Then we can obtain that # has a unique fixed point by the contraction mapping theorem.

By the comparison principle, we have U < A; and V < A, fortr > 0 and x € R, and P < A; and
1+ .2+a

0 < Ay fort > 0 and x € [g(¢), h(r)]. Combined with (2.6), U, V € C,([0, T] x R) N CL-+2" ([0, T] x R)
and P,Q € Cl’l‘(ﬁizh), we have (U,V,P,0) € Y for T < T,, namely, ¥ maps XSTO into itself for

T < T2.

For (U;, Vi, Pi, Q) € X[, X X|, X Y} X Ygo (i = 1,2), let (1;, gi, h;) be the unique solution of (2.2)
with (U, V, P, Q) = (U;, Vi, P;, Q)), let (P;, O;) be the unique solution of (2.3) with I = I, let U, be the
unique solution of (2.4) with (1, F, Q) = (1, Fi, Q-), and let F\Z be the unique solution of (2.5) with
(I,P,0,U) = (I, P;, 0;, U,). Denote Qy = DT . U D? , and

g 82,
U=U-Uy, V=V, =V, P=P - P2, Q=01 - Oy,
U=U,-U,, V=V, -V,, P=P - P,, Q= 0, - >,
I=L-L G=8g—8, H=h-h.

Noting that ;(z, x) = Pi(t,x) = Q;(t, x) = 0 for 7 > 0 and x € R\(g;(¢), h;(1)), we then have

V, = DyV,, +qU - (ﬁleﬁ + ,329% + B30I, + k)(T/
~B,6V,P —,329‘72(é—l~ - a—2~) — BV, T, t>0,x€eR,
m+Qy m+Qn

V0, x) = 0, xeR.
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Similar to [28, (2.6)], one can apply the classical L” estimate for parabolic equations to derive that
[Vlliorme < Co (IUl=qo.rme + Plleg,, + 1Qca,, + 1 lleg,,) - 2.7)
Noting that I;(z, x) = Pi(t,x) = Qi(t,x) =0fort>0and x € R\(gi(?), hi(?)), then we have
U, =Dy U, - (CI + 1P +ﬁ2m$;é| + B30 + k)(LNI

BUP—BU,[2L _ 2\ 5T
N L1UP - BU, (m+§1 m+§2) ,83U2I, t>0,x€eR,
U0, x) =0, x €R.
It follows from the standard L” theory and Sobolev’s embedding theorem that we can obtain
[Ullsqorne < Cs (IPlleg,, + Qe + 1 lle,)) - (2.8)

In the following, we estimate II?’IIC@T) and IIéIIC@T). Similar to the arguments in the proof of [24, (2.9)],
we can have

1Qllc@,, < CallGllcqory + [Hllcqory) + TCs(IQl e,y + 1Plle@,)-

1Pllc@,) < CollGllcqory + IHlcqo.rn) + TC:(IPlleg,) + e, )

where C4 depends on Az + dA4 and o, Ce depends on aCy + nAs and o, Cs depends on max{n, d}, and
C; depends on max{a, n}.
By following the steps in the proof of [24, (2.10)] with some modifications, we can have

IGllcqory + 1Hlcqory < TUGlerqo.ry + 1Hllerqo.ry) < CsTI Nl oz,
e,y < CollUll=qo.rixey + 1VIiL=qorixe + IPllei,y + 1QlleG,)-
By (2.7)-(2.10), we have

U= qo.rixey + 1V lIzeqorixey + [1Plleg,y + 1R,

(2.9)

(2.10)

1
< §(||(L1||L°°([0,T]xR) + 1Vl qorixey + IPllea,) + Qe )

forO0 < T <« 1.

Therefore, # is a contraction mapping for small 7', and then ¥ has a unique fixed point denoted
by (U, V, P, Q). For such (U, V, P, Q), we can obtain that (2.2) has a unique solution (/, g, h). For above
(1,g,h), we can get a unique R satisfying the fourth equation of (1.2) and the corresponding initial
condition in (1.3). By the factthat U < Ay and V < A, fort > 0and x € R, and P < A3 and Q < A4 for
t > 0and x € [g(t), h(?)], problem (1.2) has a unique local solution (U, V, I, R, P, Q, g, h). Moreover, we
can obtain the regularity (2.1) by the above arguments. This completes the proof of the theorem.

In the following, we prove the global existence and uniqueness of solution by extending the local
solution above.
Proof of Theorem 1.1: Applying the comparison principle, it is easy to obtain that U < A; and V < A,
fort >0and x € R, and P < As and Q < A4 fort > 0 and x € [g(?), h(?)]. In view of the equations
satisfied by 7 and R, we can find two positive constants A5 and Ag such that I(z, x) < As and R(¢, x) < Ag
for (¢, x) € 5;,2. By following the steps in the proof of [29, Lemma 2.1] with some modifications,
we find an A; > 0 such that 0 < —g’(¢), h'(¥) < A7 for ¢t € [0, T]. Using the above estimates, we can
extend the local solution in Theorem 2.1 to the global solution by following the arguments in [25]. This
completes the proof of the theorem.
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3. Ciriteria for spreading and vanishing

By g'(r) < 0 and A'(¢) > 0, we have that g(¢) is monotonically decreasing in ¢ and A(¢) is mono-
tonically increasing in #, which implies that there exist g, € [—0,0) and A, € (0, co] such that
lim g(#) = g and lim A(¢) = h.. Since the spreading of disease depends on whether /., — g, = oo and
t—o00 t—0o0

t1—1>£—130 (2, lleew.nen + IPE Nleqemnon + 1O lleqem.nay > 0 or not, we give the following definition.
Definition 3.1. The disease is spreading if

heo — 8oo = 00 and tl_l){rfgo Wz, lleagwnan + 1PE leqsa.non + 1QE lleagm.non > 0
the disease is vanishing if

heo — 8o < 0 and 11_1520 L1, leqew.non + 1P lledewn.man + 1QE lledew ey = 0.

Before giving the criteria for spreading and vanishing, we first prove the following result, which
shows that vanishing will happen if lim[A(f) — g(7)] < oo.
t—00

Lemma 3.2. If tlim[h(t) — g(1)] < oo, then

1-p)b b 1-p)b
,llglo U(t,x) = (k+l:]) , ;lgg V(t, x) = % + % uniformly in R,

11_1)5130 I, Meqew.non + IRE Meaewnan + IPE leqemnony + 1O, lleew.menn = 0.

Proof. 1t follows from [30, Proposition 2] that
tlgg (2, lleqem.non = 0.
By [31, Lemma 2.6], we have
tlgg IR(t, leew.non = 0.

Noting that /(t,x) = O for t > 0 and x € R\(g(?), h(¢)), then, for any £ > 0, there exists 7 > 0
such that
I(t,x) <efort>T and x € R.

Then, P satisfies
P, <ae-nP, t>T, xe(g(),h)),
P, x)=0, t>T, x=g(t) or h(t),
P(T,x) > 0.
Applying the comparison principle, we get
,IL% P2, lledemnon < %-

By the arbitrariness of &, we have

,152, 1P, e nen = 0.

Networks and Heterogeneous Media Volume 19, Issue 3, 940-969.



949

Similarly, we have
Lim QG Jlleqswmap = 0-

It is easy to obtain that

U(t,x) < , >0, xeR.

(1-p)b pb g1 -p)b
kg VOV TG T

On the other hand, for any € > 0, there exists T > 0 such that
I(t,x) < e, P(t,x) <&, Q(t,x) <efort>T and x € R.

Then,

m+e

U >DUyn+(=pb—qU - Us—-2% _BUs—kU, t>T, xeR,
U(T, x) > 0, xeR.

Let U be the solution of

U=(1-pb-qU-pUc-2Z_pgUs—kU, t>T,
U(T,x)=0

It is well known that

1 -
lim U(r) = d=phb
f=eo ™ k+q+ﬁ18+m+s+ﬁ8

Applying the comparison principle, we have
U(,x)>U(t)fort > T and x € R.

Thus,
1 - p)b
liminf U(t, x) > d=p) uniformly in R.
=00 k+q+,813+m+£+ﬁg

By the arbitrariness of €, we have

liminf U(t, x) >

—o0

1-pb
d=p) uniformly in R.
k+q

Hence,
1-p)b
lim U(r, x) = 9P

>0

uniformly in R.

Repeating the same arguments as above, we can conclude that

b 1-
tlirg V(t,x) = l;c % uniformly in R.

This completes the proof of the lemma.

In the following, we give the criteria for spreading and vanishing. The following arguments are
divided into two cases according to the value of R, which is given in (1.4).

Networks and Heterogeneous Media Volume 19, Issue 3, 940-969.



950

3.1. The case of Ry < 1
The next lemma shows that if Ry < 1, then vanishing will happen no matter what the initial data are.

Lemma 3.3. If Ry < 1, then lim[h(t) — g(1)] < oo.
—00

Proof. Noting that Ry < 1 and

(I-p)b pb q(1-p)b
Ut,x) < , <—+——"—fort>0and x e R,
6x0) < = Ve < S+ S,y fort > Oand.x
we have 1 W opb (1 b
- P 14 ql —p
U+60V < + + = A fort > 0and R,
= k+q k k(k+q) ort > and x €
and then

dr Jgu
h(t)
:f [It(t x)+(ﬁlT+'82—)Pt(t )+ﬁ2 0., x)]dx

0] dm

BiA ,32 ) ,32 ]

h(t)
a [I(t >+(/31 L 24 )P(t 0+220¢, x)]dx

Pl HO) + 2201, o)
—g) [1@ o) + (’317 ; /32_) P(t, g(1) + ’B—Q(t g(r))]
h(t)
_ f [031” +Bu(U + ov)p + 2L OV0
g m + Q

(ﬁ;;\ PoA )( I— nP)+’82—(77P dQ)]dx

+ K (1) [I(t h(t)) + (

+By(U + OV) — yI — kI

h(t)
< f [D3Ixx +BIAP + ﬂZmQ + BN — yI — kI
g
(ﬂlTA + /i;—A)( [-73P) + ’Bz—(nP dQ)] dx

h(t)
- f [D3Ixx+,BgAI yI - k1+(

8

BiA ﬁzA) I] dx
n m
h(t)
= D;[1(t, h(1)) — L(, g(1)] + (y +b)(Ro — Dldx
8

D
< -2 -g0)
M

Integrating from O to ¢ yields

ho
h(r) — (1) < 2hy + [10( ) + (ﬁl LA )Po( )+’82—Q0(x) dx < oo, t > 0.
Ds —ho n dm

Hence, lim[A(7) — g(¢)] < oo. This completes the proof of the lemma.
—o0

Networks and Heterogeneous Media Volume 19, Issue 3, 940-969.



951

3.2. The case of Ry > 1

In this subsection, we always assume Ry > 1. Before giving the criteria for spreading and vanishing,
we first study the corresponding eigenvalue problem.
It is well known that the eigenvalue problem

D3¢” +ang =n¢, xe€(-L,L),
d(x) =0, x ==L,

admits a principal eigenvalue denoted by 1, and its corresponding eigenvector is ¢.
Consider the following eigenvalue problem:

D3¢” +ang +ape +ay = A¢, x€(-L,L),
axy ¢ + any = Ag, x€(-L,L),
ane + azsy = Y, x€(-L,L),
P(x) = p(x) = Y(x) =0, x ==L,

3.1

where ay», a3, a1, a3 > 0,ax,a33 <0, and a;; € R are constants. Then, we have the following lemma.

Lemma 3.4. The following properties hold:
(i) Problem (3.1) has a principal simple eigenvalue A, with a positive eigenfunction (¢, ¢, ¥);

(ii) A, has the same sign as ny — “‘;—2‘?‘ + %

Proof. (1) Define

Lag = Dag" + (““ Fh—a T A= am(l—an)

andsg a|3dspdyg )
9

with A4 > max{a,,, asz}. Set

Q) = 2 — (axn + az; + o)A + (axnass + Moaxn + M0as3)d — Nodnds; — A;3azay;.

Let A be the largest root of Q(1) = 0. Since Q(ax) = —aj3anax < 0 and Q(azs) = —azanax <0,
we have Ay > max{ay,, aszz}. For such A, it follows that

—_ — appan a|3dspdyg <
L1,¢ =Ds3¢" + |ay + ]
109 = D3¢ T —am) T (Ao — an)(do — an)
B [ apnds a13a3a1 ]“‘
(Ao —axn) (Ao —azs)(do —axn)

[77 n a3azdng ]~
> |no

(Ao — az3)(Ao — ax)
= Ao®.

Consequently, e’lo’a(x) is a subsolution of u, = £, u. By [32, Theorem 2.3] and [32, Remark 2.1],
problem (3.1) has an eigenvalue with geometric multiplicity one denoted by A; and a nonnegative
eigenpair (¢(x), p(x), ¥(x)). Using (3.1) and its associated parabolic system, we easily see that this
eigenpair is positive.
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(ii) It is clear that £, ¢ = A4,¢. Then,

_ apnds ai3dspdsg
no =41 — - ,
(A —ax) (A —az)(d —ax)
namely,
apdyg a3azpdng
o — +
an aszdn)
ajndz) azdspdyg appds)  ap3dspdsg
= /7.1 — — + = f(/l])
(4 —axn) U —axn)l—an) —ax asaxn

Since ay, aszz < 0, f(4;) is monotone increasing in 4;, and f(0) = 0, we can obtain that A, has the

same sign as gy — “292L + 43929 Thjg completes the proof of the lemma.
an assan

In the following, we write 4;(L) instead of A, to stress the dependence of A, on L. Since

we have the following corollary.

Corollary 3.5. Definel' = a;; — % + % Then, we have:

(1) IfT <0, then A, <0 for any L;
(11) If T > O, then there exists a unique L such that 1,(L*) = 0, and A,(L)(L — L") > 0 for L # L.

Let us recall that A is given by (1.5). Let (1,(L), ¢(x), ¢(x), Y(x)) be the first eigenpair of (3.1) with
an =BsA -y —k,ap =BiA, a3 = 2A, a5 = @, ay, = -1, az» = n, and as; = —d. Then, by R, > 1,

we have
BiAa N BrAna

F=BA—y—k-
-1 mdn

=(y+k)Ry—1)> 0.

By the above corollary, we can find a unique 7" := L*(B3A — v — k, B1A, %A, a,—n,1n,—d) > 0 such
that A,(h*) = 0 and A, (L)(L — h*) > O for L # h*.

The next result shows that if 4y > h*, then spreading will always happen no matter what the spreading
capacity p is.

Lemma 3.6. If hy > h*, then spreading happens.

Proof. We only need to prove that if lim[A(f) — g(¢)] < oo, then lim[A(f) — g(¢)] < 2h*. Assume on the
t—o0 t—00
contrary that 24" < lim[A(f) — g()] < co. Then there exists € € (0, A) such that
—o0

im[A() — (] > 21, := 2L°(B3(A — &) =y =k, fi(A — &), %(A - &), @, —1,1, =d).

Then, we can obtain from Lemma 3.2 that, for the above &, there exists T > 0 such that A(T) —
g(T) > 2h; and

1-p)b  Opb  6q(1 - p)b
(A-pb 0opb 04(1-p)b

U+6V >
“k+q  k  k(k+9q

e=AN-¢cfort>T and x € [gw, hoo].
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Therefore,
I, > D3Ixx+,81(A—s)P+,82(A—s)WQQ +B3(A=e)[—yl-kI, t>T, xe (g(T),h(T)),
P, =al —nP, t>T, xe(g(T),T)),
Q,=nP-dQ, t>T, xe(g(T),hT)), 3.2)
I(t,x) >0, P(t,x) >0, O(t,x) >0, t>T, x=g(T)or kT),
I(T,x)>0, P(T,x) >0, O(T,x) >0, x € [g(T), h(T)].

Let (41(L), ¢(x), ¢(x), ¥(x)) be the eigenpair of (3.1) with L = “2280 g, = (A — &) -y — k,
apn :ﬁl(A - 8), a;z = '%(A - 8), ay =@,dy =-N,a3 =1, and aszz = —d. Then, /11(L) > (0. We define

11, %) = 5¢(x— M)
P(t,x) = 590(96— M)
= o s DD

fort > T and x € [g(T), h(T)]. By the direct computations, we have that, for r > T and x € (g(T), h(T)),

I, = D3l —Bi(A=e)P—Br(A —s)m%Q —Bs(A =) +yl +kl
5y

= —D35¢" —B1(A—¢€)op—Br (A —¢)
:6[ﬂ2(1\—8)(%—m id )—/11¢]

asp azg

) — B3 (A —&)op + ydp + ko

| 1
=5¢[ ’BZ(A_S)(Z_m )—/ll]ztA,

ay —A1an — A

P —al +nP = -adép +nép = —A16¢ <0,
and
gt —nP+dQ = —nbp + doy = —4,6¢ < 0.
We can choose some ¢ > 0 small enough such that A < 0 and
1(0,x) = 1(0, x), P(0,x) = P(0,x) and Q(0, x) > Q(0, x).

Recalling that I(z,x) = P(t,x) = Q(t, x) = 0 for x = g(T) or h(T), we can apply the comparison
principle to conclude that

I(t,x) > I(t, x), P(t,x) > P(t,x), O(t,x) > Q(t, x)fort>T and x € [g(T), h(T)],

which 1mphes that tll)l’glo [|1(z, ')”C([g(t),h(t)]) + || P(t, ')”C([g(t),h(t)]) + ||0(t, ')”C([g(t),h(t)]) > 0. This contradicts
Lemma 3.2. This completes the proof of the lemma.
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In the following, we show that, under some conditions, if 4y < h*, then vanishing will happen for
small p.

1-p)b b . g(l-p)b .
Lemma 3.7. Assume that ||Uy||e < (kf;) and ||Vollw < &2 + qk(k+’;) If hy < h*, then there exists some

such that vanishing happens for u < uy.

Proof. Thanks to ||Up||e < (1 ” 2 and ||Vy|le < 2 b qli(lk +’2)b , we can use the comparison principle to obtain

U, x)+60V(t,x) < Afort>0and x € R,

and then we have

I, < D3l + BIAP + 22 Q + B3 Al — yI — kI, t>0, x € (g(r), (1)),

P, = al — P, t>0, x e (g(t), h()),

Q, =nP —-dQ, t>0, x € (g), ),

I(t,x) = P(t, x) = Q(t, x) = 0, t>0, x < g(t)or x > h(1), (3.3)
g(0) = —ho, g'(t) = —ul(t, g(1)), t>0,

h(0) = hy, I'(t) = —ul(t, (1)), >0,

1(0, x) = Iy(x), P(0,x) = Py(x), O(0,x) = Qo(x), x € [~ho, ho].

Let (41(L), ¢(x), ¢(x), ¥(x)) be the eigenpair of (3.1) with L = hy, a;y = BsA -y —k, a;p =
ﬁ]A, a;z = %A, ay =, axy =—n,dax =1, and aszz = —d, then /7.1 < 0. Set

o(t) = ho(1 +6 — ge—‘”), t>0,

I(t, x) = Me -‘”gb( ()) t>0, x €[-o(), ()],
s (h x)

P(t,x) = Me™p 0 120, x€[-0(n), @],

o1, x) = Me“”t//( prr )) t20, x € [-o(0), 0],

where the positive parameters ¢ and M will be determined later. Direct computations yield that

I, — D3l — BiAP - ﬁZ—Q B3AT +yI + kI
=Me ™ (—5¢ - hof((; ¢ - D3¢"—g —BiAg - ’Bz—w BsAg +yd + k¢)
= [ 5 + (ﬁlA(p + '8—¢ +B3Ap — v — k¢) (h—2 — 1) Alqsg—gz] - Me_&%(p’
= Me ™| -6 + (ﬂl aflazzﬁ‘A + ﬂl"_”a% T “_zlmﬁfn +BA -y - k) (g—é - 1) A g—Z]
e =
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P,—al +nP
hoxa’
— M —ot _ ’_ +
e 2(0) ¢ —ap+np
h /
= Me ™" (=6p — A1) — M0 20 ¢
o (t)
h /
=Me g (=6 —Ay) — Me™ O;CO- ¢ = A,
o(1)
and
_ _ hoxo’
0, — 1P +d0 = Me™"y (=5 — 1)) — M 2257 yr . A,
(1)

We choose sufficiently small 6 > 0 such that 6 < —4; and

A h? h?
o[ gyt A PR e (B o) a B s,
Al —ap Al —axdi—ay m o? o?

and then we can use the similar arguments as in [33, Lemma 3.5] to conclude that

A >0, Ay >0, A3 >0.

We choose sufficiently large M > 0 such that, for x € [—hy, ho],

hO-x hox hox
M¢(h0(1 T 5/2)) 2 Tola). M‘”(ho(l T 5/2)) = Fol) Mlﬁ(ho(l + 6/2)) = ol
Ifu< % =: Uy, then
52 ho -
o'(f) = hoie_‘” > —uMe ¢ (hy) > —uMe ¢ (hg)—— = —ul(t, o (1)).
o(1)

Similarly, —0”(t) < —ul,(t, —o(t)). By
a(0) > hy, 1(t, 2o (¢)) = P(t, 20(f)) = O(t, +0(r)) = 0 for t > 0,
we can use the comparison principle to conclude that
—o(t) < g(1), h(t) < o(t) fort > 0.

Then, we have that lim[A(?) — g(¢)] < 2 lim o(¥) < 2ho(1 + 6) < co. Hence, vanishing will happen.
t—00 t—oo

This completes the proof of the lemma.

Finally, we show that if iy < h*, then spreading will happen for large p.

Lemma 3.8. If hy < h*, then there exists some u° such that spreading happens for pu > 1i°.
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Proof. Consider the following problem:

W, = DsW,, — (y + k)W, t>0,x e (@), s@),

Wi(t, x) =0, t>0,x<r()orx > s, (3.4)
r'(t) = —uWi(t, r(t), s'(t) = —uW.(t, 5(1)), >0,

s(0) = —=r(0) = hy, W(O0, x) = Iy(x), x € [=hy, ho].

By following the steps in the proof of [6] with some modifications, we can conclude that (3.4) admits
a unique solution, denoted by (W, r, s). By the comparison principle, we have

I(t,x) > W(t, x), g(t) < r(t), s(t) < h(¢) fort > 0 and x € [r(z), s(1)].

Next, we show that there exists a 7 > 0 such that #(T") — s(T) > 2h*. We first choose the smooth
functions r(7), s(¢), and W satisfying

5(0) = —r(0) = ho, S(T) - r(T) = 21", s'(t) > 0, '(t) <0 fort > 0,

< Wy(x) < Io(x) for x € [=ho. hol. W(~ho) = W(ho) = 0

Consider the following problem:

W, =DsW —-(+bW, 1>0,r@) <x<s(),
W, r@®) = E(h () =0, >0, (3.5)
E(O’ X) = Eo(x)a X € [_hO’ hO]

By the standard theory, this problem admits a unique positive solution W(z, x), W (7, s(1)) < 0 and
W (t,r(t)) > 0. Then we can find a 10 such that, for pu > u°,

s'(0) < —uW (1, 5(0), r'(t) = —uW (¢, (1), t € [0, T].
Thus, we have
W(t, x) > W(t, x), r(t) <r(t), s(t) < s(r)for0 <t < T and r(t) < x < s(2).

Therefore, W(T) — g(T) = s(T) —r(T) > s(T) — r(T) = 2h*. By Lemma 3.6, we have lim[A(f) —

t—00

g(®)] = oo. This completes the proof of the lemma.

By similar arguments as in [29, Theorem 5.2], it follows from Lemmas 3.7 and 3.8 that we have the
following lemma.

Lemma 3.9. If hy < h* and ||Ug||e < = ’;)b Vol < 2 +q/£(1k+pq))b, then there exists u* > p, > 0 depending

on (Uy, Vo, Iy, Ry, Py, Qo) such that spreadmg happensfor,u > u*, and vanishing happens for u < u.
and u = u*.

Theorem 1.3 can be obtained by Lemmas 3.3, 3.6, and 3.9.
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4. The longtime behavior of (1.2) for spreading

In this section, we give the longtime behavior of the solution (U, V, I, R, P, Q) to (1.2) for spreading.
At first, we give the following lemma, which implies that [g(¢), A(¢)] will be R if lim[A(z) — g(¢)] = oo.
[—0o0

Lemma 4.1. If lim[A(f) — g()] = oo, then lim h(f) = — lim g(7) = co.
t—o0 t—o0 —00

Proof. We can prove this lemma by following the steps in [33, Lemma 3.10] with some modifications.
Here, we omit the details.
Without loss of generality, we assume on the contrary that lim g(#) = —co and lim A(#) < co. Taking
t—o0 1—o00

L > 2h*+ 2, wecan find a Ty > 0 such that g(Ty) < —L.
First, we use [23, Lemma 3.3] to conclude that

im |l Illeq-Lawon = 0-
Then, by a similar argument as in the proof of Lemma 3.2, we have

lim max P@{,x)=0,lim max Ot x)=0.
t—o0 xe[1-L,h(Ty)] t—o0 xe[1-L,h(Typ)]

There exists some small & such that L — 1 > 2k} for € € (0,&,). We choose /; and [, such that
[l;,b] € [1—-L,h(Ty)] and [, — [; > 2h. Using the argument in step 3 of the proof in [33, Lemma 3.10],
we can conclude that, for above L and small € € (0, &), we can find a T > 0 such that

(I-pb € pb q(1—-p)b

-5 V) 2 ~ % fort> T and x € [y 1],

vt x 2 Kk+q) 26

Fore e (0,g))and T > T4, (I, P, Q) satisfies

I, > Dyl + Bi(A — )P+ 2028 4 By(A — ) -yl kI, 1>T, xe(ly,h),
P, =al —nP, t>T, xe(ly,1,),
O, =nP-dQ, t>T, xe (),
I(t,x) >0, P(t,x) >0, O(t,x) >0, t>T, x=1 orl,
I(T,x) 20, P(T,x) 20, Q(T, x) >0, x e[l bl

Finally, we can use similar arguments as in the proof of Lemma 3.6 to obtain

liminf I(¢, x) > O for x € [I;, 5],

—00

which is a contradiction. This completes the proof of the lemma.

In the following, we apply the iterative method to give the longtime behavior of the solution
(U, V, I, R, P, Q) to (1.2) for spreading under some additional condition.

PPN 4 B vk e limA(r) — g(£)] = oo, then
>0

Lemma 4.2. Assume that Ry > 1 and s NE+h B 2

lim(U, V.I,R,P,Q) = (U", V", I"',R", P*, Q"),
t—00
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uniformly for x in any bounded set of R, where (U*,V*,I",R*, P*, Q") is a unique positive constant
root of

(1= p)b—qU -BUP - 222 - B;UI - kU =0,

pb + qU — B,0VP — ‘WQ ﬁgew kV =0,

Bi(U +6V)P + ﬁz(U*"V)Q +B5(U + 6V)I —yI — kI = 0,

4.1
vl — kR = 0, @
al —nP =0,
nP—-dQ =0.
Proof. This lemma will be proved by the following iterative method:
Step 1: Clearly,
1-pb —
lim U(t, x) < d=p) =: U, uniformly in R,
=00 k+
and then .
b+ qU -
}Eﬁ}, V(t, x) < % =: V; uniformly in R.
Then, for any & > 0, there exists T > 0 such that
Ut,x) < T, + g Vit x) <V, + 2% fort>T and x € R.
Thus, (1, P, Q) satisfies
I < D3l + Bi(U, + 6V, + g)P + U120
+B3(U, + 6V, + &) —yI -k, t>T, x € (g(t),h),
P, =al —nP, t>T, x €(g),h),
Q,=nP-dQ, t>T, xe(g),hnd)),
I(t,x) = P(t,x) = O(t, x) = 0, t>T, x < g(t)or x> h(t),
I(T,x) =20, P(T,x) >0, O(T, x) >0, x € [g(T), (T)].
Let (I, P, @) be the solution of
T(®)=p(U, +6V, + &P + ﬁ—zwl;liVQl 1
+85(U, + 6V, + &) —yI — kI, t>T,
P (1) = al — P, t>T, (4.2)
0 (1) =nP - dQ, t>T,
I(T) 2 (T, Ylloos P(T) 2 IP(T, leos OT) 2 N1O(T, llco-

We can use the comparison principle to conclude that I(z, x) < 1(t), P(t,x) < P(t), and O(t, x) < O(t)
fort > T and x € R. In view of Ry, > 1, we have that the basic reproduction number of (4.2) is larger
than 1, and then tli_)m(f(t), ﬁ(r),@(t)) = (T;,Fj,@f), where (7?, ﬁ?, I_’T) is the unique positive constant
endemic equilibrim;0 of (4.2). Thus,

lim sup I(¢, x) < 7?, lim sup P(z, x) < Fls, lim sup Q(¢, x) < @T uniformly in R.

t—00 —00 t—00
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By the arbitrariness of &, we have

limsup I(¢, x) < 1,,lim sup P(t, x) < Py, lim sup Q(t, x) < @1 uniformly in R,

>0 >0 —o0

where (I, P, Q) is the unique positive constant root of

ﬁ](ﬁ] + 9‘7])? + @%Oé +B3(ﬁl + 9‘_/1)? — ’)/7 - k? = 0,
al —nP =0,
nP—dQ =0.

By direct calculations, we have

. P _ d— _ d—
0, = 4 —m, I; ==Q,and P, = =Q,,
Ty TN B

(’3}—," +,6'3)A

where A is defined in (1.5). Moreover, I,, P;, and @1 are positive by Ry > 1 and vz

Step 2: For small £ > 0, there exists 7 > 0 such that
I(t,x) < I, + &, P(t,x) < P, +¢, o(t, x) < @1 +egfort>T and x € R.
Thus, U satisfies

Ut 2 DlUxx + (l - P)b - qU —,BIU(ﬁl + 8) - ﬁ—2U@1+8)

m+Q+e
—B3U(I, + &) — kU, t>T, xeR,
U(0, x) = Up(x), x €R,
and then
1-pb
liminf U(¢, x) > — ( fp) — =: U{ uniformly in R.
e q+,81(P1+8)+%+,33(11+8)+k
m 1t€

By the arbitrariness of &, we have

liminf U(z, x) > U, uniformly in R,

t—00

where U | is the unique positive constant root of

_ Uo _
(1-p)b—qU - BUP; - pUG —BUI, — kU =0.
m+ Q,
By the direct calculation, we have
1-p)b
U, = (—p)+k— > 0.
k+q+ =1

<1.
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For small € > 0, there exists 7 > O such that
Ut,x) >U,—efort>T and x € R.
Thus, V satisfies

Viz DiVi + pb + Q(gl - 8) _ﬁle‘/(ﬁl + 8) - 'B—QHV@] +2)

_ m+Q+e
—B30V(I, + &) = kV, t>T, xR,
V(0, x) = Vp(x), x €R,
and then
b+qg(U, —¢
liminf V(t, x) > —— b4 &, ~2 — =: V¢ uniformly in R.
(e BiOP, + €) + % + B30I, + &) +k
m 1 £

By the arbitrariness of €, we have

liminf V(z, x) > V, uniformly in R,

t—00

where V, is the unique positive constant root of

pb+qU, —B1OVP, — P0VO, — B30VI, —kV = 0.
m+ Q,
By the direct calculation, we have
_ pb+ qU,
-1 k + H(YTH()Y]

For any £ > 0 and any given L > L*(B3(A — &) —y — k,B1(A — &), %(A - &), a,—1n,1n,—d), it follows
from lim[A(#) — g(¢)] = oo that we can find a T > 0 such that
t—00

(8. h(®) 2 [-L,LL, Ut 2 Uy ==, V(t.0) 2 V, - - fort > T and x € [~L, L.

Thus, (I, P, Q) satisfies

I 2 Dsl +Bi(U, + 6V, — )P + Mf’fgw

+85(U, + 6V, — &)l —yI — Kk, t>T, xe(-L,L),
P, =al —nP, t>T, xe(-L,L),
Q,=nP-dQ, t>T, xe(-L,L),
I(t,+L) > 0, P(t,+L) >0, Q(t,+L) > 0, t>T,
I(T,x) 20, P(T,x) 20, O(T,x) 20, x€[-L,L].

Networks and Heterogeneous Media Volume 19, Issue 3, 940-969.



961

Let (41, ¢(x), ¢(x), ¥(x)) be the eigenpair of (3.1) with a;; = B3(A —&) —y —k, a;p = B1(A — &),
ap = %(A —&),ax =@, ap = -1, ax =1, and as3 = —d. Using the comparison principle, we can have
that, for small enough 9,

(Lo(x), Py(x), @ (X)) = (6¢(x), 6p(x), (x)) for x € [-L, L],

satisfies
I(t,x) 2 1 (x), P(t,x) > Py(x), O(t, x) > Qo(x), t>T, xe[-L,L].

Let (U, V, W) be the solution of the following auxiliary problem:

U, = DUy, +Bi(U, + 6V, — &)V + 2L oW

+B3(U, + 0V, —o)U —yU - kU, t>T, xe(-L,L),
V,=al —-nvV, t>T, xe(-L,L),
W, =nV —dW, t>T, xe (=L, L),
U, +L) =V(t,+L) = W(,+L) =0, t>T,
UT, x) = 1,(x), V(T,x) = Py(x), W(T,x) = Qo(x), xe[-L,L].

Applying the comparison principle, we derive
I(t,x) > U(t, x), P(t,x) > V(t,x), O, x)>W(t,x),t>T, xe[-L,L].
By the choice of (Z,,(x), P (x), Qo(x)), it follows from [34, Lemma 3.5] and [35, Theorem 4.5] that
Um (U, x), V(E, x), W, x)) = (UL, Vi(x), Wi(x) in C*([-L, L],
where (U (x), Vi(x), W(x)) is the solution of

B2(U,+60V,—e)W
D3q/[xx +ﬁl(g1 + HKI - S)q/ + - 7lm+7VlV -

+B3(U, + 6V, — &)U —yU — kU = 0, x e (-L,L),

ald-nvV =0, x€ (=L, L),
nvV—-dw =0, x€(-L,L),
Ux)=V(x)=W(kx) =0, x=-LorlL.

Moreover,
Llim (Ur(x), Vi(x), Wi(x) = 5, P, Q‘f) locally uniformly in R,

where (15, P, 2‘19) is the unique positive constant root of

Bi(U, +8Y, —e)P + 2EZE0C 4 gy (U + 0V, — )] -yl — kI =0,
al —nP =0,
nP—-dQ =0.

By the arbitrariness of &, we have

liminf I(¢, x) > I, liminf P(¢, x) > P, liminf O(z, x) > Q1 locally uniformly in R,
t—00 t—00 =

t—00
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where (I, P,, Q1) is the unique positive constant root of

Bi(U, + 6V )P+ ZEE 4 By(U, + 6V ) —yI — kI =0,
al —nP =0,

nP—-dQ =0.
By direct calculations, we have

pa(U, +6V,)

g

To make sure that I, P,, and 21 are positive, we should check that

+k +k
(;zy a <Q1+GKI< Y a *
B3+ TB1+ 4.5 B3+ LB

In the following, we check this result. According to

—~ RUO -
(1-pb—qU, -BU,P - —=L - g,U,T, - kU, =0,
m+ Q,

and

pb+qU, =16V, P\ ~ POV, B0V, I, —kV, =0,

m+ Q
we have _
(y + k)I
b— LU, +0V) KU, + V) =0

and then it follows from @ > 1 that

k+7+k
Then,
+k
U +6V, - —F
B3+ B+ o4
S b v+k
_k+y+k11 :83+%ﬂ1
3 b y+k
B2 N +Q -
k+1-ﬁ3ﬁkﬁ11\ B3 + 2P
B3+2B1
LetII =: yjk
b A
B _ﬁ>0’
k+ 5
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namely,
bIl Ak + 2)

bk T oo <0

. B+ 5B k+By  y+k y+k
which must hold by s A+ 25 Foroh < 1, and then we have —=z==72 < U, + 6V,. On the other
y+k

B+ 3B+ B
hand, U + 60V, <U; +6V; <A< FrTh
Step 3: We can use the similar arguments as in Step 2 to obtain

limsup U(t, x) < U, locally uniformly in R,

—00

where U, is the unique positive constant root of

BUQ,
(1-pb-qU-pUP, - s —BsUI - kU = 0.

=1

Similarly, we can derive

lim sup V(z, x) < V, locally uniformly in R,

t—00

where V, is the unique positive constant root of

_ Ba6VQ,
pb +qU, - BOVP, — —=L — B0VI, —kV = 0.
m+ 21

Moreover, we have

lim sup I(¢, x) < I, lim sup P(t, x) < P,, lim sup O(t, x) < @2 locally uniformly in R,

[—o0 —o0 [—o0

where (15, P, Q,) is the unique positive constant root of

Bi(U, + 6V )P+ 2000 o 5y (T, + GV ) — yI — kI =0,
al —nP =0,
nP—-dQ =0.

We can repeat the above steps to obtain ten monotone sequences (U}, {V.}, {I}, {P,}. {Q }, (UL Vi,
{I}}, {P;}, and {Q,} satisfying

U, < liminf U(t, x) < limsup U(1, x) < U;,

>0 t—00
V, < liminf V(z, x) < limsup V(t,x) <V,
—0o t—oo

I, < liminf I(z, x) < limsup I(z, x) < Z,
>0

—00

P. < liminf P(z, x) < limsup P(t, x) < P;,
—o0

t—00
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Q < liminf Q(¢, x) < limsup Q(t, x) < Q

t—oo f—00

(1 p)b _ pb+qU1
andV = =

locally uniformly in R, U, =

(U + _i_i+;+ s(U; + 0Vl —yI; - kl; = 0,
(U; + V)P, + PEml 4 By (U + 6V — vl — kI, = 0

a’j,’ - 7]?’1 = 0,
nﬁi - dal = O’
— U.0; _
(1 -pb—-qU,-pU,P; —'Bz_lg -BU.L; - kU, =0,
m+ Q,;
_ V.0, _
pb+qU,—piov B~ P50 povT kv, 0,
m+ Q,;

BuU, + 0V )P, + o058 4 By(U, + V)L, =y, — kI, = 0,
al, —nP, = 0,
nB[ - dQl = 0’

— — ﬁZ 1+1Q —
(I=-pb-qUin —pUnP,———F - z+1L- - kU1 =0,

m+Q
_ _ ,329Vl+1Q —
pb+qUiy = 1OV Py — ———— = B30V L, = kViyy =0, i = 1,2, -
m+2i
From the above expressions, we have

U <U,<+<U, < <U; < <U, < Uy,

VSV, < <V, < SV <- <V, <V,

I << <[ <---<L<---<hL<I,

P <P,<-- <P <---<P<---<P<P,

0,<0,< <0< <0< <0, <0,

Thus,
_lim(glwzi’!i’ Bi’ 21) = (gmazw7lm9£mvgm)v
and

lim(Us, Vio 11, i, ©) = (Uss, Voo Toor P Qo).
are well defined, where (QOO,ZOO,ZOO,BOO,QOO) and (Uoo, Ve, Ioo,ﬁx,,@m) satisfy
Bi(Ues + V)P + 22Ut Vells o g (T 4 GV ), — Yl — koo = 0,

-~ _ m+Qs
al, —nPs, =0,
nP. —dQ,, =0,
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BU_ O -

(1-pb-qU,_-piU Po—-—— -pU I.—kU_ =0,
m+ Q.
_ oV 0., _
pb+qU_ — 16V P — PrbVoOn B30V T —kV_ =0,
m+ O,
BiU, + 0V )P, + 252 L gy 40V )~ I, kI, =0,
nP,—-dQ =0,
— — ﬁZUono — —
(1 =pb—qUe —BiUP, — ——= — Ul — kU, =0,
m+ Qm
_ _ BbVeQ _
pb+ qUy = B10VP, — ————= — B30V I —kV=0,i=1,2,--
m+ Q

A series of calculations show that
UV I P, @ ) = (Uao, Veos o, Poo, Q) = (U, V', I, P7, @),
where (U, V*,I", P*, Q") is a unique positive constant root of

(1= p)b—qU -BUP - 222 - BsUI - kU =0,
pb+qU —BiOVP — 222 — BioVI - kV = 0,

Bi(U +0V)P + B8 4 (U + 0V)I -yl — kI =0,
al —nP =0,

nP —dQ =0.

Finally, by [31, Lemma 2.6], we have that

lim R = R" locally uniformly in R.

[—0o0
This completes the proof of the lemma.

Theorem 1.2 can be obtained by Lemmas 3.2 and 4.2.
5. Conclusions

In this paper, we investigate the influence of environmental pollution and bacterial hyper-infectivity
on dynamics of a waterborne pathogen model with free boundaries. At first, we prove that the solution
to this problem has a unique solution for all # > 0. Then, we show that the disease will either spread
or vanish. Finally, we find a risk index R, such that the disease will vanish if R, < 1, and whether the
disease will spread or not depends on the initial data if Ry > 1, which is very different from that for the
reaction diffusion equation without free boundaries. Specifically, under some assumptions, we can find
some critical value 4" such that the disease will always spread as long as the initial infected domain is
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large than 2h*; otherwise, the disease will spread if the spreading capacity u is large. These results will
be helpful in taking measures to control the spreading of disease. For example, we can improve the
environmental condition and decrease the density of the hyper-infective pathogen by sterilizing.

Although the results in this paper show that model (1.2) can describe the disease well, we only
consider the most special situation, and there are many related problems deserving our further study.
For example,

(1) we can study the heterogeneous environment to consider the different levels of environment stress
in different parts of the spatial domain;

(i1) if we use the same function 8, P (or %) to describe the rate of indirect transmission due to contact
with environments contaminated by hyper-infectivity and lower-infectivity state of the pathogen, it will
be difficult to deal with as we can not calculate the specific expression of Q, in Step 1 of Lemma 4.2;

(iii1) it is interesting to study the case where the death rate of U, V, I, and R are different, but this
problem is difficult as we can not deal with the term U + V + I + R;

(iv) if we do not ignore the diffusion of P and Q, then the corresponding eigenvalue problem will be
complex and we will study this case in the future;

(v) if the effect of the pollution on S; is not the same, this problem will be more complex and deserve
our further study;

(vi) it is difficult to use MATLAB to carry out some numerical simulations to illustrate the spreading
and vanishing of diseases since there are 19 parameters in (1.2), but taking some simulations is very
meaningful and deserves our further study;

(vii) extending model (1.2) to two and three spatial dimensions is more realistic, so we will try to
study the high-dimensional extension of (1.2) with radial symmetry in the future.
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