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Abstract: In this paper, we mainly study the influence of environmental pollution and bacterial
hyper-infectivity on the spreading of diseases by considering a waterborne pathogen model with free
boundaries. At first, the global existence and uniqueness of the solution to this problem is proved.
Then, we analyze its longtime behavior, which is determined by a spreading-vanishing dichotomy.
Furthermore, we obtain the criteria for spreading and vanishing. Our results indicate that environmental
pollution and bacterial hyper-infectivity can increase the chance of epidemic spreading.
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1. Introduction

Nowadays, infectious diseases pose a significant risk to human health, such as, waterborne diseases. To
gain a comprehensive understanding of the transmission dynamics of such diseases, Eisenberg et al. [1]
emphasized the necessity of considering various transmission pathways. A large number of models
have been proposed to describe the transmission of waterborne diseases. For example, Codeco [2]
used a compartmental ordinary differential equation (ODE) model to describe the human-water-human
transmission mechanism, where the infectious population shed the pathogen into the water, and subsequently
the susceptible population drink the contaminated water. However, this model overlooks human-human
transmission. Later, Tien and Earn [3] added a compartment into the classical SIR model, and proposed
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the following model: 
S ′ = kN − β1S W − β2S I − kS , t > 0,
I′ = β1S W + β2S I − γI − kI, t > 0,
R′ = γI − kR, t > 0,
W ′ = αI − dW, t > 0,

(1.1)

where S (t), I(t), and R(t) denote the densities of the susceptible, infectious, and recovered human
population, respectively, and W(t) represents the concentration of pathogen in the contaminated water.
Assume that the birth and death rates are equal to k. A susceptible human can be infected through two
primary pathways: human-water-human transmission and human-human contact, whose transmission
rates are represented by the parameters β1 and β2, respectively. While γ is the recovery rate, and α is the
pathogen shedding rate from infectious humans into the water. The removed rate of pathogen in the
water is represented by d. The main results in [3] indicated that there exists a threshold parameter R0

such that the disease will spread if R0 > 1, and tend to extinction if R0 < 1.
After the above work, numerous researchers have studied model (1.1) and related models. For

example, reference [4] focused on the corresponding local diffusion version of (1.1) and provided
insights into the global dynamics, while [5] considered the corresponding traveling waves. However,
these works all showed that if the basic reproduction number is larger than 1, the disease will always
spread regardless of the size of the initial infectious population. These results do not match well with
the fact that the disease will not always spread for the small size of the initial infectious population. At
the same time, the above works can not tell us the location of the spreading front. Motivated by the
introduction of free boundary by Du and Lin in [6], Zhao [7] incorporated the free boundary into the
partial differential equation (PDE) model discussed in [4], proposed a new model, and obtained the
dynamics of the solution, which can be better to describe the spreading of diseases. Following the work
of Du and Lin [6] on a logistic model, free boundary approaches similar to the problem considered
in [7] have been studied by many researchers recently, for which the readers can refer to [8–13] and the
references therein.

As society has developed, the issue of environmental pollution has attracted extensive attention.
Findings from [14] demonstrated that environmental pollutants can suppress an individual’s immune
system and thereby increase the susceptibility of the human population to various infectious diseases.
Thus, this will help epidemics spread rapidly. Thus, it is necessary to consider the effect of environmental
pollutants when constructing mathematical models to describe disease transmission. Recently, Wang
and Feng [15] proposed a PDE model to investigate the influence of environmental pollution on the
spreading of waterborne diseases.

In addition, recent laboratory findings in [16] indicated that, for some diseases, the pathogen will
be excreted by the infectious human via the gastrointestinal tract, and can remain viable, highly toxic,
and infectious for several hours. Compared with the pathogen persisting in the environment for several
months, these pathogens exhibit up to 700-fold infectivity. Therefore, bacterial hyper-infectivity should
be considered during modeling. Wang and Wu [17] studied the different roles of two types of vibrios
and the spatial heterogeneity of the environment on the transmission of cholera. Thus, it is significant to
consider two types of vibrios distinguished by their infectivity.

Inspired by above works, we develop our model in [7] and study the influence of environmental
pollution on dynamics of a waterborne pathogen model with bacterial hyper-infectivity and free bound-
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aries. We categorize the human population into three classes: susceptible, infectious, and recovered,
which are denoted by S (t, x), I(t, x), and R(t, x), respectively. To explore the influence of environmental
pollution, we further divide the susceptible human population into two subcategories: those unaffected
by environmental pollutants, denoted as U(t, x), and those affected, represented as V(t, x). According
to the infectivity of the pathogen, we also divide the pathogen into two classes denoted by P(t, x) and
Q(t, x), where P exhibits hyper-infectivity. The susceptible human population U and V can be infected
by two pathways: human-water-human and human-human contact. The direct transmission rate is
represented by β3I. Recalling that pathogen stay highly toxic and infectious for a short time during
disease transmission. Based on the number of pathogens P and Q, it follows from [18] that we can use
the linear incidence rate β1P and the saturated incidence rate β2Q/(m + Q) (this can be derived from
particles as in [19]) to describe the rate of indirect transmission. To describe the spreading of disease
well, we suppose that the range of the initial infected area is the interval [−h0, h0], and the infected
area is increasing as the time goes on and is denoted by [g(t), h(t)], where g(t) and h(t) represent the
spreading fronts of the disease and satisfy the Stefan condition (the derivation of this free boundary
condition can refer to [20]): g′(t) = −µIx(t, g(t)) and h′(t) = −µIx(t, h(t)) where µ is the spreading
capacity. Before proposing our model, we put forward the following assumptions:

(i) the mobility of the pathogen is significantly lower than that of the human population and thus can
be neglected; the dispersal rate of U, V , I, and R are represented by D1, D2, D3, and D4, respectively;

(ii) the recruitment rate of the human population is denoted by b, with a fraction p transitioning
directly to the class V;

(iii) environmental pollutants cause some individuals to migrate from class U to class V , and we
assume that the rate is the constant q as referenced in [21];

(iv) noting that the environmental pollutants increase the susceptibility of the human population to
specific infectious diseases, we assume that the effects of pollution on βi are equal and denoted by θ;

(v) assume that the death rate of U, V , I, and R are the same and denoted by k;
(vi) assume that the hyper-infective pathogen will not die before they transition into the lower-

infective strains.
According to the above assumptions, we propose the following model:

Ut = D1Uxx + (1 − p)b − qU − β1UP − β2UQ
m+Q − β3UI−kU, t > 0, x ∈ R,

Vt = D2Vxx + pb + qU − β1θVP − β2θVQ
m+Q − β3θVI − kV, t > 0, x ∈ R,

It =D3Ixx+β1(U+θV)P+ β2(U+θV)Q
m+Q +β3(U+θV)I−γI−kI, t > 0, x ∈ (g(t), h(t)),

Rt = D4Rxx + γI − kR, t > 0, x ∈ (g(t), h(t)),
Pt = αI − ηP, t > 0, x ∈ (g(t), h(t)),
Qt = ηP − dQ, t > 0, x ∈ (g(t), h(t)),
I(t, x) = R(t, x) = P(t, x) = Q(t, x) = 0, t > 0, x ∈R\(g(t), h(t)),
g′(t) = −µIx(t, g(t)), h′(t) = −µIx(t, h(t)), t > 0,
−g(0) = h(0) = h0,

U(0, x) = U0(x), V(0, x) = V0(x), x ∈ R,

I(0, x) = I0(x), R(0, x) = R0(x), P(0, x) = P0(x), Q(0, x) = Q0(x), x ∈ [−h0, h0],

(1.2)

where γ is the recovery rate, α stands for the shedding rate of the pathogen from an infectious human into
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the water, η is the removal rates of the hyper-infective pathogen in contaminated water, d represents the
removal rate of the lower-infective pathogen in contaminated water. Assume that the above parameters
are all positive, θ > 1, 0 < p, q < 1, and U0(x), V0(x), I0(x), R0(x), P0(x), and Q0(x) satisfy

U0(x),V0(x) ∈ C2(R), I0(x),R0(x) ∈ C2([−h0, h0]), P0(x),Q0(x) ∈ C1−([−h0, h0])
I0(x) = R0(x) = P0(x) = Q0(x) = 0, x ∈ R\(−h0, h0),
U0(x) > 0,V0(x) > 0, x ∈ R, I0(x) > 0,R0(x) > 0, P0(x),Q0(x) > 0, x ∈ (−h0, h0),

(1.3)

where C1− is Lipschitz continuous functions space.
For convenience, we denote

R0 =

(
β1α

η
+
β2α

dm
+ β3

)
(1 − p)bk + θpb(k + q) + θq(1 − p)b

k(k + q)(γ + k)
, (1.4)

and
Λ =

(1 − p)b
k + q

+
θpb

k
+
θq(1 − p)b

k(k + q)
. (1.5)

Our main results are listed as follows.

Theorem 1.1. For any given h0 > 0 and U0, V0, I0, R0, P0, Q0 satisfying (1.3), problem (1.2) admits a
unique solution (U,V, I,R, P,Q, g, h) defined for all t > 0.

Theorem 1.2. Assume that the conditions in Theorem 1.1 hold. Let (U,V, I,R, P,Q, g, h) be the unique
solution of (1.2). Then, the following alternative holds:

Either
(i) Spreading: lim

t→∞
h(t) = − lim

t→∞
g(t) = +∞ (and necessarily R0 > 1),

lim
t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥R(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) > 0,

and furthermore, if
β3+

α
η β1

γ+k Λ +
k+β2
Λk+b

γ+k
β3+

α
η β1

< 1, then

lim
t→+∞

(U(t, x),V(t, x), I(t, x),R(t, x), P(t, x),Q(t, x)) = (U∗,V∗, I∗,R∗, P∗,Q∗),

uniformly for x in any bounded set of R, where (U∗,V∗, I∗,R∗, P∗,Q∗) is given by (4.1);
or

(ii) Vanishing: lim
t→∞

[h(t) − g(t)] < ∞, and

lim
t→∞

U(t, x) =
(1 − p)b

k + q
, lim

t→∞
V(t, x) =

pb
k
+

q(1 − p)b
k(k + q)

uniformly in R,

lim
t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥R(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) = 0.

Theorem 1.3. In Theorem 1.2, the dichotomy can be determined as follows: for fixed D1, D2, D3, and
D4, we have:

(i) If R0 ≤ 1, then vanishing happens for any (U0,V0, I0,R0, P0,Q0).
(ii) If R0 > 1, then there is a critical value h∗ > 0 independent of (U0,V0, I0,R0, P0,Q0) such that

spreading happens when h0 ≥ h∗, and if h0 < h∗ and ∥U0∥∞ ≤
(1−p)b

k+q , ∥V0∥∞ ≤
pb
k +

q(1−p)b
k(k+q) , then there

exists µ∗ ≥ µ∗ > 0 depending on (U0,V0, I0,R0, P0,Q0) such that spreading happens for µ > µ∗, and
vanishing happens for µ ≤ µ∗ and µ = µ∗.
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Remark 1.4. In this paper, our primary focus is on the influence of the initial infected domain on the
dynamics of (1.2) for a fixed dispersal rate. Additionally, for fixed h0, we can follow the argument in [22]
to investigate how the sign of the principal eigenvalue is affected by the dispersal rate. Then, we will
know the impact of the dispersal rate on the dynamics of (1.2).

Remark 1.5. It is crucial to highlight that we identify R0 as an important parameter in our analysis of
the corresponding eigenvalue problem. The above results indicate that this parameter acts analogously
as the basic reproduction number, and we call it the risk index rather than the basic reproduction
number. Observing the expression of R0, we note that it decreases with respect to η and increases in q
and θ. By understanding η, q, and θ, we conclude that greater environmental pollution correlates with
elevated values of q and θ, while a reduced removal rate of the hyper-infective pathogen corresponds to
a diminished value of η. Consequently, it follows from Theorem 1.3 that environmental pollution and
bacterial hyper-infectivity can increase the chance of epidemic spreading.

The rest of the paper is organized as follows. In Section 2, we first obtain the global existence and
uniqueness of solution (Theorem 1.1). Then, the criteria for spreading and vanishing are established
(Theorem 1.3) in Section 3. Finally, we give the longtime behavior of (U,V, I,R, P,Q) when spreading
happens (Theorem 1.2) in Section 4.

2. The existence and uniqueness of solution

In this section, we mainly prove that problem (1.2) has a unique global solution. At first, we obtain
the local existence and uniqueness of solution by the contraction mapping theorem.

Theorem 2.1. For any given (U0,V0, I0,R0, P0,Q0) and any α ∈ (0, 1), there is a T > 0 such that (1.2)
admits a unique solution

(U,V, I,R, P,Q, g, h) ∈ [C1
T ]2 × [C2

T ]2 × [C1,1−(D
T
g,h)]2 × [C1+ α2 (0,T ]]2, (2.1)

where

C1
T = L∞(∆T ) ∩C

1+α
2 ,1+α

loc (∆T ), C2
T = W1,2

p (DT
g,h) ∩C

1+α
2 ,1+α(D

T
g,h),

∆T = {(t, x) ∈ R2 : t ∈ [0,T ], x ∈ R}, DT
g,h = {(t, x) ∈ R2 : t ∈ (0,T ], x ∈ [g(t), h(t)]}.

Proof. The proof of this theorem can be done by following the steps of [23, Theorem 2.1] and [24,
Theorem 1.1] with some modifications. In the following, we give the main steps for completeness.

Step 1: For any T > 0, let

A1 = max
{

(1 − p)b
q + k

, ∥U0∥∞

}
, A2 = max

{
pb + qA1

k
, ∥V0∥∞

}
,

A3 = max
{

bα
kη
, ∥P0∥∞

}
, A4 = max

{
bα
kd
, ∥Q0∥∞

}
,

and

XT
U0

:= {U ∈ C(∆T ) : U(0, x) = U0(x), 0 ≤ U ≤ A1},
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XT
V0

:= {V ∈ C(∆T ) : V(0, x) = V0(x), 0 ≤ V ≤ A2},

XT
P0

:= {P ∈ C(DT
g,h) : P(0, x) = P0(x), 0 ≤ P ≤ A3},

XT
Q0

:= {Q ∈ C(DT
g,h) : Q(0, x) = Q0(x), 0 ≤ Q ≤ A4}.

For any given (U,V, P,Q) ∈ XT
U0
× XT

V0
× XT

P0
× XT

Q0
, we consider

It =D3Ixx+β1(U+θV)P+ β2(U+θV)Q
m+Q +β3(U+θV)I−γI−kI, t > 0, x ∈ (g(t), h(t)),

I(t, x) = 0, t > 0, x ∈R\(g(t), h(t)),
g′(t) = −µIx(t, g(t)), h′(t) = −µIx(t, h(t)), t > 0,
−g(0) = h(0) = h0, I(0, x) = I0(x), x ∈ [−h0, h0].

(2.2)

Following the steps of [25, Theorem 1.1] with some modifications, we can find some 0 < T1 ≪ 1
such that (2.2) admits a unique solution (I, g, h) ∈ [W1,2

p (DT1
g,h) ∩ C

1+α
2 ,1+α(D

T1

g,h)] × [C1+ α2 ([0,T1])]2 for
any α ∈ (0, 1 − 3/p), and

−2h0 ≤ g(t) < h(t) ≤ 2h0, ∥I∥W1,2
p (DT1

g,h) + ∥g∥C1+ α2 ([0,T1]) + ∥h∥C1+ α2 ([0,T1]) ≤ C1.

Define

P̃0(x) =

P0(x), |x| ≤ h0,

0, |x| > h0
and Q̃0(x) =

Q0(x), |x| ≤ h0,

0, |x| > h0.

By P0,Q0 ∈ C1−([−h0, h0]), we have P̃0, Q̃0 ∈ C1−([g(T1), h(T1)]). For above g(t) and h(t), we define

tx =


g−1(x), x ∈ [g(T1),−h0),
0, x ∈ [−h0, h0],
h−1(x), x ∈ (h0, h(T1)].

For above I(t, x) and any x ∈ [g(T1), h(T1)], we consider
P̃t = αI(t, x) − ηP̃, tx < t ≤ T1,

Q̃t = ηP̃ − dQ̃, tx < t ≤ T1,

P̃(tx, x) = P̃0(x), Q̃(tx, x) = Q̃0(x),

(2.3)

and it follows from the standard theory of ODEs that there exists some T2 ∈ (0,T1) such that P̃(t, x)
and Q̃(t, x) are well defined on [tx,T2] for any x ∈ [g(T2), h(T2)], and then P̃(t, x) and Q̃(t, x) are also
well defined on D

T2

g,h. Moreover, we can obtain that P̃ and Q̃ are Lipschitz continuous in x by similar

arguments in step 2 of [24, Theorem 1.1], and then P̃, Q̃ ∈ C1,1−(D
T2

g,h).
For above I(t, x), P̃(t, x), and Q̃(t, x), we considerUt = D1Uxx + (1 − p)b − qU − β1UP̃ − β2UQ̃

m+Q̃
− β3UI − kU, t > 0, x ∈ R,

U(0, x) = U0(x), x ∈ R.
(2.4)

By the standard theory in [26, 27], (2.4) has a unique solution Ũ ∈ Cb(∆T ) ∩ C1+ α2 ,2+α
loc (∆T ), where

Cb(∆T ) is the space of continuous and bounded functions in ∆T .
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For above I(t, x), P̃(t, x), Q̃(t, x), and Ũ(t, x), we considerVt = D2Vxx + pb + qŨ − β1θVP̃ − β2θVQ̃
m+Q̃
− β3θVI − kV, t > 0, x ∈ R,

V(0, x) = V0(x), x ∈ R.
(2.5)

By the standard theory in [26, 27], (2.5) has a unique solution Ṽ ∈ Cb(∆T ) ∩C1+ α2 ,2+α
loc (∆T ).

Step 2: Denote ΠT = [0,T ] × [−2h0, 2h0]. By arguing as in the arguments in step 2 of [24,
Theorem 1.1], we can find a constant M such that

|P(t, x) − P(t, y)| ≤ 2M|x − y|, |Q(t, x) − Q(t, y)| ≤ 2M|x − y| for (t, x), (t, y) ∈ ΠT . (2.6)

Define

YT
P0
= {P ∈ C(ΠT ) : P(0, x) = P0(x), 0 ≤ P ≤ A3, |P(t, x) − P(t, y)| ≤ 2M|x − y|},

YT
Q0
= {Q ∈ C(ΠT ) : Q(0, x) = Q0(x), 0 ≤ Q ≤ A4, |Q(t, x) − Q(t, y)| ≤ 2M|x − y|},

YT = XT
U0
× XT

V0
× YT

P0
× YT

Q0
.

Obviously, YT is complete with the metric,

d((U1,V1, P1,Q1), (U2,V2, P2,Q2)) = sup
(t,x)∈∆T

(|U1 − U2| + |V1 − V2|) + max
(t,x)∈ΠT

(|P1 − P2| + |Q1 − Q2|).

Define a map
F (U,V, P,Q) = (Ũ, Ṽ , P̃, Q̃) for (U,V, P,Q) ∈ YT .

In the following, we will prove F maps YT into itself and F is a contraction mapping on YT for all
small T . Then we can obtain that F has a unique fixed point by the contraction mapping theorem.

By the comparison principle, we have Ũ ≤ A1 and Ṽ ≤ A2 for t > 0 and x ∈ R, and P̃ ≤ A3 and
Q̃ ≤ A4 for t > 0 and x ∈ [g(t), h(t)]. Combined with (2.6), Ũ, Ṽ ∈ Cb([0,T ] ×R) ∩C1+ α2 ,2+α

loc ([0,T ] ×R)

and P̃, Q̃ ∈ C1,1−(D
T2

g,h), we have (Ũ, Ṽ , P̃, Q̃) ∈ YT for T ≤ T2, namely, F maps XT
S 0

into itself for
T ≤ T2.

For (Ui,Vi, Pi,Qi) ∈ XT
U0
× XT

V0
× YT

P0
× YT

Q0
(i = 1, 2), let (Ii, gi, hi) be the unique solution of (2.2)

with (U,V, P,Q) = (Ui,Vi, Pi,Qi), let (P̃i, Q̃i) be the unique solution of (2.3) with I = Ii, let Ũi be the
unique solution of (2.4) with (I, P̃, Q̃) = (Ii, P̃i, Q̃i), and let Ṽi be the unique solution of (2.5) with
(I, P̃, Q̃, Ũ) = (Ii, P̃i, Q̃i, Ũi). Denote ΩT = DT

g1,h1
∪ DT

g2,h2
and

U = U1 − U2, V = V1 − V2, P = P1 − P2, Q = Q1 − Q2,

Ũ = Ũ1 − Ũ2, Ṽ = Ṽ1 − Ṽ2, P̃ = P̃1 − P̃2, Q̃ = Q̃1 − Q̃2,

I = I1 − I2, G = g1 − g2, H = h1 − h2.

Noting that Ii(t, x) = P̃i(t, x) = Q̃i(t, x) = 0 for t > 0 and x ∈ R\(gi(t), hi(t)), we then have
Ṽt = D2Ṽxx + qŨ −

(
β1θP̃1 + β2θ

Q̃1

m+Q̃1
+ β3θI1 + k

)
Ṽ

−β1θṼ2P̃ − β2θṼ2( Q̃1

m+Q̃1
−

Q̃2

m+Q̃2
) − β3θṼ2I, t > 0, x ∈ R,

Ṽ(0, x) = 0, x ∈ R.
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Similar to [28, (2.6)], one can apply the classical Lp estimate for parabolic equations to derive that

∥Ṽ∥L∞([0,T ]×R) ≤ C2

(
∥Ũ∥L∞([0,T ]×R) + ∥P̃∥C(ΩT ) + ∥Q̃∥C(ΩT ) + ∥I∥C(ΩT )

)
. (2.7)

Noting that Ii(t, x) = P̃i(t, x) = Q̃i(t, x) = 0 for t > 0 and x ∈ R\(gi(t), hi(t)), then we have
Ũt = D1Ũxx −

(
q + β1P̃1 + β2

Q̃1

m+Q̃1
+ β3I1 + k

)
Ũ

−β1Ũ2P̃ − β2Ũ2

(
Q̃1

m+Q̃1
−

Q̃2

m+Q̃2

)
− β3Ũ2I, t > 0, x ∈ R,

Ũ(0, x) = 0, x ∈ R.

It follows from the standard Lp theory and Sobolev’s embedding theorem that we can obtain

∥Ũ∥L∞([0,T ]×R) ≤ C3

(
∥P̃∥C(ΩT ) + ∥Q̃∥C(ΩT ) + ∥I∥C(ΩT )

)
. (2.8)

In the following, we estimate ∥P̃∥C(ΩT ) and ∥Q̃∥C(ΩT ). Similar to the arguments in the proof of [24, (2.9)],
we can have

∥Q̃∥C(ΩT ) ≤ C4(∥G∥C([0,T ]) + ∥H∥C([0,T ])) + TC5(∥Q̃∥C(ΩT ) + ∥P̃∥C(ΩT )),

∥P̃∥C(ΩT ) ≤ C6(∥G∥C([0,T ]) + ∥H∥C([0,T ])) + TC7(∥P̃∥C(ΩT ) + ∥I∥C(ΩT )),
(2.9)

where C4 depends on ηA3 + dA4 and σ, C6 depends on αC1 + ηA3 and σ, C5 depends on max{η, d}, and
C7 depends on max{α, η}.

By following the steps in the proof of [24, (2.10)] with some modifications, we can have

∥G∥C([0,T ]) + ∥H∥C([0,T ]) ≤ T (∥G∥C1([0,T ]) + ∥H∥C1([0,T ])) ≤ C8T∥I∥C(∆T ),

∥I∥C(ΩT ) ≤ C9(∥U∥L∞([0,T ]×R) + ∥V∥L∞([0,T ]×R) + ∥P∥C(∆T ) + ∥Q∥C(∆T )).
(2.10)

By (2.7)–(2.10), we have

∥Ũ∥L∞([0,T ]×R) + ∥Ṽ∥L∞([0,T ]×R) + ∥P̃∥C(∆T ) + ∥Q̃∥C(∆T )

≤
1
3

(∥U∥L∞([0,T ]×R) + ∥V∥L∞([0,T ]×R) + ∥P∥C(∆T ) + ∥Q∥C(∆T )),

for 0 < T ≪ 1.
Therefore, F is a contraction mapping for small T , and then F has a unique fixed point denoted

by (U,V, P,Q). For such (U,V, P,Q), we can obtain that (2.2) has a unique solution (I, g, h). For above
(I, g, h), we can get a unique R satisfying the fourth equation of (1.2) and the corresponding initial
condition in (1.3). By the fact that U ≤ A1 and V ≤ A2 for t > 0 and x ∈ R, and P ≤ A3 and Q ≤ A4 for
t > 0 and x ∈ [g(t), h(t)], problem (1.2) has a unique local solution (U,V, I,R, P,Q, g, h). Moreover, we
can obtain the regularity (2.1) by the above arguments. This completes the proof of the theorem.

In the following, we prove the global existence and uniqueness of solution by extending the local
solution above.
Proof of Theorem 1.1: Applying the comparison principle, it is easy to obtain that U ≤ A1 and V ≤ A2

for t > 0 and x ∈ R, and P ≤ A3 and Q ≤ A4 for t > 0 and x ∈ [g(t), h(t)]. In view of the equations
satisfied by I and R, we can find two positive constants A5 and A6 such that I(t, x) ≤ A5 and R(t, x) ≤ A6

for (t, x) ∈ D
T
g,h. By following the steps in the proof of [29, Lemma 2.1] with some modifications,

we find an A7 > 0 such that 0 < −g′(t), h′(t) ≤ A7 for t ∈ [0,T ]. Using the above estimates, we can
extend the local solution in Theorem 2.1 to the global solution by following the arguments in [25]. This
completes the proof of the theorem.

Networks and Heterogeneous Media Volume 19, Issue 3, 940–969.



948

3. Criteria for spreading and vanishing

By g′(t) < 0 and h′(t) > 0, we have that g(t) is monotonically decreasing in t and h(t) is mono-
tonically increasing in t, which implies that there exist g∞ ∈ [−∞, 0) and h∞ ∈ (0,∞] such that
lim
t→∞

g(t) = g∞ and lim
t→∞

h(t) = h∞. Since the spreading of disease depends on whether h∞ − g∞ = ∞ and
lim

t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) > 0 or not, we give the following definition.

Definition 3.1. The disease is spreading if

h∞ − g∞ = ∞ and lim
t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) > 0;

the disease is vanishing if

h∞ − g∞ < ∞ and lim
t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) = 0.

Before giving the criteria for spreading and vanishing, we first prove the following result, which
shows that vanishing will happen if lim

t→∞
[h(t) − g(t)] < ∞.

Lemma 3.2. If lim
t→∞

[h(t) − g(t)] < ∞, then

lim
t→∞

U(t, x) =
(1 − p)b

k + q
, lim

t→∞
V(t, x) =

pb
k
+

q(1 − p)b
k(k + q)

uniformly in R,

lim
t→+∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥R(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) = 0.

Proof. It follows from [30, Proposition 2] that

lim
t→∞
∥I(t, ·)∥C([g(t),h(t)]) = 0.

By [31, Lemma 2.6], we have
lim
t→∞
∥R(t, ·)∥C([g(t),h(t)]) = 0.

Noting that I(t, x) = 0 for t ≥ 0 and x ∈ R\(g(t), h(t)), then, for any ε > 0, there exists T > 0
such that

I(t, x) ≤ ε for t > T and x ∈ R.

Then, P satisfies 
Pt ≤ αε − ηP, t > T, x ∈ (g(t), h(t)),
P(t, x) = 0, t > T, x = g(t) or h(t),
P(T, x) > 0.

Applying the comparison principle, we get

lim
t→∞
∥P(t, ·)∥C([g(t),h(t)]) ≤

αε

η
.

By the arbitrariness of ε, we have

lim
t→∞
∥P(t, ·)∥C([g(t),h(t)]) = 0.
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Similarly, we have
lim
t→∞
∥Q(t, ·)∥C([g(t),h(t)]) = 0.

It is easy to obtain that

U(t, x) ≤
(1 − p)b

k + q
, V(t, x) ≤

pb
k
+

q(1 − p)b
k(k + q)

, t > 0, x ∈ R.

On the other hand, for any ε > 0, there exists T > 0 such that

I(t, x) ≤ ε, P(t, x) ≤ ε, Q(t, x) ≤ ε for t > T and x ∈ R.

Then, Ut ≥ D1Uxx + (1 − p)b − qU − β1Uε − β2Uε
m+ε − β3Uε − kU, t > T, x ∈ R,

U(T, x) > 0, x ∈ R.

Let U be the solution ofUt = (1 − p)b − qU − β1Uε − β2Uε
m+ε − β3Uε − kU, t > T,

U(T, x) = 0.

It is well known that
lim
t→∞

U(t) =
(1 − p)b

k + q + β1ε +
β2ε

m+ε + β3ε
.

Applying the comparison principle, we have

U(t, x) ≥ U(t) for t > T and x ∈ R.

Thus,

lim inf
t→∞

U(t, x) ≥
(1 − p)b

k + q + β1ε +
β2ε

m+ε + β3ε
uniformly in R.

By the arbitrariness of ε, we have

lim inf
t→∞

U(t, x) ≥
(1 − p)b

k + q
uniformly in R.

Hence,

lim
t→∞

U(t, x) =
(1 − p)b

k + q
uniformly in R.

Repeating the same arguments as above, we can conclude that

lim
t→∞

V(t, x) =
pb
k
+

q(1 − p)b
k(k + q)

uniformly in R.

This completes the proof of the lemma.

In the following, we give the criteria for spreading and vanishing. The following arguments are
divided into two cases according to the value of R0, which is given in (1.4).
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3.1. The case of R0 ≤ 1

The next lemma shows that if R0 ≤ 1, then vanishing will happen no matter what the initial data are.

Lemma 3.3. If R0 ≤ 1, then lim
t→∞

[h(t) − g(t)] < ∞.

Proof. Noting that R0 ≤ 1 and

U(t, x) ≤
(1 − p)b

k + q
, V(t, x) ≤

pb
k
+

q(1 − p)b
k(k + q)

for t > 0 and x ∈ R,

we have
U + θV ≤

(1 − p)b
k + q

+
θpb

k
+
θq(1 − p)b

k(k + q)
= Λ for t > 0 and x ∈ R,

and then

d
dt

∫ h(t)

g(t)

[
I(t, x) +

(
β1Λ

η
+
β2Λ

dm

)
P(t, x) +

β2Λ

dm
Q(t, x)

]
dx

=

∫ h(t)

g(t)

[
It(t, x) +

(
β1Λ

η
+
β2Λ

dm

)
Pt(t, x) +

β2Λ

dm
Qt(t, x)

]
dx

+ h′(t)
[
I(t, h(t)) +

(
β1Λ

η
+
β2Λ

dm

)
P(t, h(t)) +

β2Λ

dm
Q(t, h(t))

]
− g′(t)

[
I(t, g(t)) +

(
β1Λ

η
+
β2Λ

dm

)
P(t, g(t)) +

β2Λ

dm
Q(t, g(t))

]
=

∫ h(t)

g(t)

[
D3Ixx + β1(U + θV)P +

β2(U + θV)Q
m + Q

+ β3(U + θV)I − γI − kI

+

(
β1Λ

η
+
β2Λ

dm

)
(αI − ηP) +

β2Λ

dm
(ηP − dQ)

]
dx

≤

∫ h(t)

g(t)

[
D3Ixx + β1ΛP +

β2ΛQ
m
+ β3ΛI − γI − kI

+

(
β1Λ

η
+
β2Λ

dm

)
(αI − ηP) +

β2Λ

dm
(ηP − dQ)

]
dx

=

∫ h(t)

g(t)

[
D3Ixx + β3ΛI − γI − kI +

(
β1Λ

η
+
β2Λ

dm

)
αI

]
dx

= D3[Ix(t, h(t)) − Ix(t, g(t))] +
∫ h(t)

g(t)
(γ + k)(R0 − 1)Idx

≤ −
D3

µ
[h′(t) − g′(t)].

Integrating from 0 to t yields

h(t) − g(t) ≤ 2h0 +
µ

D3

∫ h0

−h0

[
I0(x) +

(
β1Λ

η
+
β2Λ

dm

)
P0(x) +

β2Λ

dm
Q0(x)

]
dx < ∞, t > 0.

Hence, lim
t→∞

[h(t) − g(t)] < ∞. This completes the proof of the lemma.
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3.2. The case of R0 > 1

In this subsection, we always assume R0 > 1. Before giving the criteria for spreading and vanishing,
we first study the corresponding eigenvalue problem.

It is well known that the eigenvalue problemD3ϕ
′′ + a11ϕ = ηϕ, x ∈ (−L, L),

ϕ(x) = 0, x = ±L,

admits a principal eigenvalue denoted by η0, and its corresponding eigenvector is ϕ̃.
Consider the following eigenvalue problem:

D3ϕ
′′ + a11ϕ + a12φ + a13ψ = λϕ, x ∈ (−L, L),

a21ϕ + a22φ = λφ, x ∈ (−L, L),
a32φ + a33ψ = λψ, x ∈ (−L, L),
ϕ(x) = φ(x) = ψ(x) = 0, x = ±L,

(3.1)

where a12, a13, a21, a32 > 0, a22, a33 < 0, and a11 ∈ R are constants. Then, we have the following lemma.

Lemma 3.4. The following properties hold:
(i) Problem (3.1) has a principal simple eigenvalue λ1 with a positive eigenfunction (ϕ, φ, ψ);
(ii) λ1 has the same sign as η0 −

a12a21
a22
+ a13a32a21

a33a22
.

Proof. (i) Define

Lλϕ = D3ϕ
′′ +

(
a11 +

a12a21

(λ − a22)
+

a13a32a21

(λ − a33)(λ − a22)

)
ϕ,

with λ > max{a22, a33}. Set

Q(λ) = λ3 − (a22 + a33 + η0)λ2 + (a22a33 + η0a22 + η0a33)λ − η0a22a33 − a13a32a21.

Let λ0 be the largest root of Q(λ) = 0. Since Q(a22) = −a13a32a21 < 0 and Q(a33) = −a13a32a21 < 0,
we have λ0 > max{a22, a33}. For such λ0, it follows that

Lλ0 ϕ̃ = D3ϕ̃
′′ +

[
a11 +

a12a21

(λ0 − a22)
+

a13a32a21

(λ0 − a33)(λ0 − a22)

]
ϕ̃

=

[
η0 +

a12a21

(λ0 − a22)
+

a13a32a21

(λ0 − a33)(λ0 − a22)

]
ϕ̃

≥

[
η0 +

a13a32a21

(λ0 − a33)(λ0 − a22)

]
ϕ̃

= λ0ϕ̃.

Consequently, eλ0tϕ̃(x) is a subsolution of ut = Lλ0u. By [32, Theorem 2.3] and [32, Remark 2.1],
problem (3.1) has an eigenvalue with geometric multiplicity one denoted by λ1 and a nonnegative
eigenpair (ϕ(x), φ(x), ψ(x)). Using (3.1) and its associated parabolic system, we easily see that this
eigenpair is positive.
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(ii) It is clear that Lλ1ϕ = λ1ϕ. Then,

η0 = λ1 −
a12a21

(λ1 − a22)
−

a13a32a21

(λ1 − a33)(λ1 − a22)
,

namely,

η0 −
a12a21

a22
+

a13a32a21

a33a22

= λ1 −
a12a21

(λ1 − a22)
−

a13a32a21

(λ1 − a33)(λ1 − a22)
+

a12a21

−a22
+

a13a32a21

a33a22
=: f (λ1).

Since a22, a33 < 0, f (λ1) is monotone increasing in λ1, and f (0) = 0, we can obtain that λ1 has the
same sign as η0 −

a12a21
a22
+ a13a32a21

a33a22
. This completes the proof of the lemma.

In the following, we write λ1(L) instead of λ1 to stress the dependence of λ1 on L. Since

η0 = a11 −
D3π

2

4L2 ,

we have the following corollary.

Corollary 3.5. Define Γ = a11 −
a12a21

a22
+ a13a32a21

a33a22
. Then, we have:

(i) If Γ ≤ 0, then λ1 < 0 for any L;
(ii) If Γ > 0, then there exists a unique L∗ such that λ1(L∗) = 0, and λ1(L)(L − L∗) > 0 for L , L∗.

Let us recall that Λ is given by (1.5). Let (λ1(L), ϕ(x), φ(x), ψ(x)) be the first eigenpair of (3.1) with
a11 = β3Λ − γ − k, a12 = β1Λ, a13 =

β2
mΛ, a21 = α, a22 = −η, a32 = η, and a33 = −d. Then, by R0 > 1,

we have
Γ = β3Λ − γ − k −

β1Λα

−η
+
β2Ληα

mdη
= (γ + k)(R0 − 1) > 0.

By the above corollary, we can find a unique h∗ := L∗(β3Λ − γ − k, β1Λ,
β2
mΛ, α,−η, η,−d) > 0 such

that λ1(h∗) = 0 and λ1(L)(L − h∗) > 0 for L , h∗.
The next result shows that if h0 ≥ h∗, then spreading will always happen no matter what the spreading

capacity µ is.

Lemma 3.6. If h0 ≥ h∗, then spreading happens.

Proof. We only need to prove that if lim
t→∞

[h(t) − g(t)] < ∞, then lim
t→∞

[h(t) − g(t)] ≤ 2h∗. Assume on the
contrary that 2h∗ < lim

t→∞
[h(t) − g(t)] < ∞. Then there exists ε ∈ (0,Λ) such that

lim
t→∞

[h(t) − g(t)] > 2h∗ε := 2L∗(β3(Λ − ε) − γ − k, β1(Λ − ε),
β2

m
(Λ − ε), α,−η, η,−d).

Then, we can obtain from Lemma 3.2 that, for the above ε, there exists T > 0 such that h(T ) −
g(T ) > 2h∗ε and

U + θV ≥
(1 − p)b

k + q
+
θpb

k
+
θq(1 − p)b

k(k + q)
− ε = Λ − ε for t ≥ T and x ∈ [g∞, h∞].
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Therefore,

It ≥ D3Ixx+β1(Λ−ε)P+β2(Λ−ε) Q
m+Q+β3(Λ−ε)I−γI−kI, t > T, x ∈ (g(T ), h(T )),

Pt = αI − ηP, t > T, x ∈ (g(T ), h(T )),
Qt = ηP − dQ, t > T, x ∈ (g(T ), h(T )),
I(t, x) > 0, P(t, x) > 0, Q(t, x) > 0, t > T, x = g(T ) or h(T ),
I(T, x) ≥ 0, P(T, x) ≥ 0, Q(T, x) ≥ 0, x ∈ [g(T ), h(T )].

(3.2)

Let (λ1(L), ϕ(x), φ(x), ψ(x)) be the eigenpair of (3.1) with L = h(T )−g(T )
2 , a11 = β3(Λ − ε) − γ − k,

a12 = β1(Λ − ε), a13 =
β2
m (Λ − ε), a21 = α, a22 = −η, a32 = η, and a33 = −d. Then, λ1(L) > 0. We define

I(t, x) = δϕ
(
x −

g(T ) + h(T )
2

)
,

P(t, x) = δφ
(
x −

g(T ) + h(T )
2

)
,

Q(t, x) = δψ
(
x −

g(T ) + h(T )
2

)
,

for t ≥ T and x ∈ [g(T ), h(T )]. By the direct computations, we have that, for t > T and x ∈ (g(T ), h(T )),

It − D3Ixx − β1(Λ − ε)P − β2(Λ − ε)
Q

m + Q
− β3(Λ − ε)I + γI + kI

= − D3δϕ
′′ − β1 (Λ − ε) δφ − β2 (Λ − ε)

δψ

m + δψ
− β3 (Λ − ε) δϕ + γδϕ + kδϕ

= δ

[
β2 (Λ − ε)

(
ψ

m
−

ψ

m + δψ

)
− λ1ϕ

]
= δϕ

[
a32

a33 − λ1

a21

a22 − λ1
β2 (Λ − ε)

(
1
m
−

1
m + δψ

)
− λ1

]
=: ∆,

Pt − αI + ηP = −αδϕ + ηδφ = −λ1δφ < 0,

and

Q
t
− ηP + dQ = −ηδφ + dδψ = −λ1δψ < 0.

We can choose some δ > 0 small enough such that ∆ < 0 and

I(0, x) ≥ I(0, x), P(0, x) ≥ P(0, x) and Q(0, x) ≥ Q(0, x).

Recalling that I(t, x) = P(t, x) = Q(t, x) = 0 for x = g(T ) or h(T ), we can apply the comparison
principle to conclude that

I(t, x) ≥ I(t, x), P(t, x) ≥ P(t, x), Q(t, x) ≥ Q(t, x) for t ≥ T and x ∈ [g(T ), h(T )],

which implies that lim
t→∞
∥I(t, ·)∥C([g(t),h(t)]) + ∥P(t, ·)∥C([g(t),h(t)]) + ∥Q(t, ·)∥C([g(t),h(t)]) > 0. This contradicts

Lemma 3.2. This completes the proof of the lemma.
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In the following, we show that, under some conditions, if h0 < h∗, then vanishing will happen for
small µ.

Lemma 3.7. Assume that ∥U0∥∞ ≤
(1−p)b

k+q and ∥V0∥∞ ≤
pb
k +

q(1−p)b
k(k+q) . If h0 < h∗, then there exists some µ0

such that vanishing happens for µ ≤ µ0.

Proof. Thanks to ∥U0∥∞ ≤
(1−p)b

k+q and ∥V0∥∞ ≤
pb
k +

q(1−p)b
k(k+q) , we can use the comparison principle to obtain

U(t, x) + θV(t, x) ≤ Λ for t > 0 and x ∈ R,

and then we have

It ≤ D3Ixx + β1ΛP + β2Λ

m Q + β3ΛI − γI − kI, t > 0, x ∈ (g(t), h(t)),
Pt = αI − ηP, t > 0, x ∈ (g(t), h(t)),
Qt = ηP − dQ, t > 0, x ∈ (g(t), h(t)),
I(t, x) = P(t, x) = Q(t, x) = 0, t > 0, x ≤ g(t) or x ≥ h(t),
g(0) = −h0, g′(t) = −µIx(t, g(t)), t > 0,
h(0) = h0, h′(t) = −µIx(t, h(t)), t > 0,
I(0, x) = I0(x), P(0, x) = P0(x), Q(0, x) = Q0(x), x ∈ [−h0, h0].

(3.3)

Let (λ1(L), ϕ(x), φ(x), ψ(x)) be the eigenpair of (3.1) with L = h0, a11 = β3Λ − γ − k, a12 =

β1Λ, a13 =
β2
mΛ, a21 = α, a22 = −η, a32 = η, and a33 = −d, then λ1 < 0. Set

σ(t) = h0(1 + δ −
δ

2
e−δt), t ≥ 0,

I(t, x) = Me−δtϕ
(

h0x
σ(t)

)
, t ≥ 0, x ∈ [−σ(t), σ(t)],

P(t, x) = Me−δtφ
(

h0x
σ(t)

)
, t ≥ 0, x ∈ [−σ(t), σ(t)],

Q(t, x) = Me−δtψ
(

h0x
σ(t)

)
, t ≥ 0, x ∈ [−σ(t), σ(t)],

where the positive parameters δ and M will be determined later. Direct computations yield that

It − D3Ixx − β1ΛP −
β2Λ

m
Q − β3ΛI + γI + kI

= Me−δt
(
−δϕ −

h0xσ′

σ2(t)
ϕ′ − D3ϕ

′′
h2

0

σ2 − β1Λφ −
β2Λ

m
ψ − β3Λϕ + γϕ + kϕ

)
= Me−δt

[
−δϕ +

(
β1Λφ +

β2Λ

m
ψ + β3Λϕ − γϕ − kϕ

) (
h2

0

σ2 − 1
)
− λ1ϕ

h2
0

σ2

]
− Me−δt

h0xσ′

σ2(t)
ϕ′

= Me−δtϕ
[
−δ +

(
a21

λ1 − a22
β1Λ +

a32

λ1 − a33

a21

λ1 − a22

β2Λ

m
+ β3Λ − γ − k

) (
h2

0

σ2 − 1
)
− λ1

h2
0

σ2

]
− Me−δt

h0xσ′

σ2(t)
ϕ′ =: ∆1,
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Pt − αI + ηP

= Me−δt
[
−δφ −

h0xσ′

σ2(t)
φ′ − αϕ + ηφ

]
= Me−δt (−δφ − λ1φ) − Me−δt

h0xσ′

σ2(t)
φ′

= Me−δtφ (−δ − λ1) − Me−δt
h0xσ′

σ2(t)
φ′ =: ∆2,

and

Qt − ηP + dQ = Me−δtψ (−δ − λ1) − Me−δt
h0xσ′

σ2(t)
ψ′ =: ∆3.

We choose sufficiently small δ > 0 such that δ < −λ1 and

−δ +

(
a21

λ1 − a22
β1Λ +

a32

λ1 − a33

a21

λ1 − a22

β2Λ

m
+ β3Λ − γ − k

) (
h2

0

σ2 − 1
)
− λ1

h2
0

σ2 > 0,

and then we can use the similar arguments as in [33, Lemma 3.5] to conclude that

∆1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0.

We choose sufficiently large M > 0 such that, for x ∈ [−h0, h0],

Mϕ

(
h0x

h0(1 + δ/2)

)
≥ I0(x), Mφ

(
h0x

h0(1 + δ/2)

)
≥ P0(x), Mψ

(
h0x

h0(1 + δ/2)

)
≥ Q0(x).

If µ ≤ h0δ
2

−2Mϕ′(h0) =: µ0, then

σ′(t) = h0
δ2

2
e−δt ≥ −µMe−δtϕ′(h0) ≥ −µMe−δtϕ′(h0)

h0

σ(t)
= −µIx(t, σ(t)).

Similarly, −σ′(t) ≤ −µIx(t,−σ(t)). By

σ(0) > h0, I(t,±σ(t)) = P(t,±σ(t)) = Q(t,±σ(t)) = 0 for t > 0,

we can use the comparison principle to conclude that

− σ(t) ≤ g(t), h(t) ≤ σ(t) for t ≥ 0.

Then, we have that lim
t→∞

[h(t) − g(t)] ≤ 2 lim
t→∞

σ(t) ≤ 2h0(1 + δ) < ∞. Hence, vanishing will happen.
This completes the proof of the lemma.

Finally, we show that if h0 < h∗, then spreading will happen for large µ.

Lemma 3.8. If h0 < h∗, then there exists some µ0 such that spreading happens for µ ≥ µ0.
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Proof. Consider the following problem:
Wt = D3Wxx − (γ + k)W, t > 0, x ∈ (r(t), s(t)),
W(t, x) = 0, t > 0, x ≤ r(t) or x ≥ s(t),
r′(t) = −µWx(t, r(t)), s′(t) = −µWx(t, s(t)), t > 0,
s(0) = −r(0) = h0, W(0, x) = I0(x), x ∈ [−h0, h0].

(3.4)

By following the steps in the proof of [6] with some modifications, we can conclude that (3.4) admits
a unique solution, denoted by (W, r, s). By the comparison principle, we have

I(t, x) ≥ W(t, x), g(t) ≤ r(t), s(t) ≤ h(t) for t > 0 and x ∈ [r(t), s(t)].

Next, we show that there exists a T > 0 such that r(T ) − s(T ) ≥ 2h∗. We first choose the smooth
functions r(t), s(t), and W0 satisfying

s(0) = −r(0) = h0, s(T ) − r(T ) = 2h∗, s′(t) > 0, r′(t) < 0 for t > 0,

0 < W0(x) ≤ I0(x) for x ∈ [−h0, h0], W0(−h0) = W0(h0) = 0.

Consider the following problem:
W t = D3W xx − (γ + k)W, t > 0, r(t) ≤ x ≤ s(t),
W(t, r(t)) = W(t, s(t)) = 0, t > 0,
W(0, x) = W0(x), x ∈ [−h0, h0].

(3.5)

By the standard theory, this problem admits a unique positive solution W(t, x), W x(t, s(t)) < 0 and
W x(t, r(t)) > 0. Then we can find a µ0 such that, for µ ≥ µ0,

s′(t) ≤ −µW x(t, s(t)), r′(t) ≥ −µW x(t, r(t)), t ∈ [0,T ].

Thus, we have

W(t, x) ≥ W(t, x), r(t) ≤ r(t), s(t) ≤ s(t) for 0 ≤ t ≤ T and r(t) ≤ x ≤ s(t).

Therefore, h(T ) − g(T ) ≥ s(T ) − r(T ) ≥ s(T ) − r(T ) = 2h∗. By Lemma 3.6, we have lim
t→∞

[h(t) −
g(t)] = ∞. This completes the proof of the lemma.

By similar arguments as in [29, Theorem 5.2], it follows from Lemmas 3.7 and 3.8 that we have the
following lemma.

Lemma 3.9. If h0 < h∗ and ∥U0∥∞ ≤
(1−p)b

k+q , ∥V0∥∞ ≤
pb
k +

q(1−p)b
k(k+q) , then there exists µ∗ ≥ µ∗ > 0 depending

on (U0,V0, I0,R0, P0,Q0) such that spreading happens for µ > µ∗, and vanishing happens for µ ≤ µ∗
and µ = µ∗.

Theorem 1.3 can be obtained by Lemmas 3.3, 3.6, and 3.9.
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4. The longtime behavior of (1.2) for spreading

In this section, we give the longtime behavior of the solution (U,V, I,R, P,Q) to (1.2) for spreading.
At first, we give the following lemma, which implies that [g(t), h(t)] will be R if lim

t→∞
[h(t) − g(t)] = ∞.

Lemma 4.1. If lim
t→∞

[h(t) − g(t)] = ∞, then lim
t→∞

h(t) = − lim
t→∞

g(t) = ∞.

Proof. We can prove this lemma by following the steps in [33, Lemma 3.10] with some modifications.
Here, we omit the details.

Without loss of generality, we assume on the contrary that lim
t→∞

g(t) = −∞ and lim
t→∞

h(t) < ∞. Taking
L > 2h∗ + 2, we can find a T0 > 0 such that g(T0) < −L.

First, we use [23, Lemma 3.3] to conclude that

lim
t→∞
∥I(t, ·)∥C([−L,h(t)]) = 0.

Then, by a similar argument as in the proof of Lemma 3.2, we have

lim
t→∞

max
x∈[1−L,h(T0)]

P(t, x) = 0, lim
t→∞

max
x∈[1−L,h(T0)]

Q(t, x) = 0.

There exists some small ε1 such that L − 1 > 2h∗ε for ε ∈ (0, ε1). We choose l1 and l2 such that
[l1, l2] ⊂ [1 − L, h(T0)] and l2 − l1 ≥ 2h∗ε. Using the argument in step 3 of the proof in [33, Lemma 3.10],
we can conclude that, for above L and small ε ∈ (0, ε1), we can find a T1 > 0 such that

U(t, x) ≥
(1 − p)b

k + q
−
ε

2
, V(t, x) ≥

pb
k
+

q(1 − p)b
k(k + q)

−
ε

2θ
for t ≥ T1 and x ∈ [l1, l2].

For ε ∈ (0, ε1) and T > T1, (I, P,Q) satisfies

It ≥ D3Ixx + β1(Λ − ε)P + β2(Λ−ε)Q
m+Q + β3(Λ − ε)I − γI − kI, t > T, x ∈ (l1, l2),

Pt = αI − ηP, t > T, x ∈ (l1, l2),
Qt = ηP − dQ, t > T, x ∈ (l1, l2),
I(t, x) > 0, P(t, x) > 0, Q(t, x) > 0, t > T, x = l1 or l2,

I(T, x) ≥ 0, P(T, x) ≥ 0, Q(T, x) ≥ 0, x ∈ [l1, l2].

Finally, we can use similar arguments as in the proof of Lemma 3.6 to obtain

lim inf
t→∞

I(t, x) > 0 for x ∈ [l1, l2],

which is a contradiction. This completes the proof of the lemma.

In the following, we apply the iterative method to give the longtime behavior of the solution
(U, V, I, R, P, Q) to (1.2) for spreading under some additional condition.

Lemma 4.2. Assume that R0 > 1 and
β3+

α
η β1

γ+k Λ +
k+β2
Λk+b

γ+k
β3+

α
η β1

< 1. If lim
t→∞

[h(t) − g(t)] = ∞, then

lim
t→∞

(U,V, I,R, P,Q) = (U∗,V∗, I∗,R∗, P∗,Q∗),
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uniformly for x in any bounded set of R, where (U∗,V∗, I∗,R∗, P∗,Q∗) is a unique positive constant
root of 

(1 − p)b − qU − β1UP − β2UQ
m+Q − β3UI − kU = 0,

pb + qU − β1θVP − β2θVQ
m+Q − β3θVI − kV = 0,

β1(U + θV)P + β2(U+θV)Q
m+Q + β3(U + θV)I − γI − kI = 0,

γI − kR = 0,
αI − ηP = 0,
ηP − dQ = 0.

(4.1)

Proof. This lemma will be proved by the following iterative method:
Step 1: Clearly,

lim
t→∞

U(t, x) ≤
(1 − p)b

k + q
=: U1 uniformly in R,

and then

lim
t→∞

V(t, x) ≤
pb + qU1

k
=: V1 uniformly in R.

Then, for any ε > 0, there exists T > 0 such that

U(t, x) ≤ U1 +
ε

2
, V(t, x) ≤ V1 +

ε

2θ
for t ≥ T and x ∈ R.

Thus, (I, P,Q) satisfies

It ≤ D3Ixx + β1(U1 + θV1 + ε)P + β2(U1+θV1+ε)Q
m+Q

+β3(U1 + θV1 + ε)I − γI − kI, t > T, x ∈ (g(t), h(t)),
Pt = αI − ηP, t > T, x ∈ (g(t), h(t)),
Qt = ηP − dQ, t > T, x ∈ (g(t), h(t)),
I(t, x) = P(t, x) = Q(t, x) = 0, t > T, x ≤ g(t) or x ≥ h(t),
I(T, x) ≥ 0, P(T, x) ≥ 0, Q(T, x) ≥ 0, x ∈ [g(T ), h(T )].

Let (I, P,Q) be the solution of

I
′
(t) = β1(U1 + θV1 + ε)P + β2(U1+θV1+ε)Q

m+Q

+β3(U1 + θV1 + ε)I − γI − kI, t > T,

P
′
(t) = αI − ηP, t > T,

Q
′
(t) = ηP − dQ, t > T,

I(T ) ≥ ∥I(T, ·)∥∞, P(T ) ≥ ∥P(T, ·)∥∞, Q(T ) ≥ ∥Q(T, ·)∥∞.

(4.2)

We can use the comparison principle to conclude that I(t, x) ≤ I(t), P(t, x) ≤ P(t), and Q(t, x) ≤ Q(t)
for t ≥ T and x ∈ R. In view of R0 > 1, we have that the basic reproduction number of (4.2) is larger
than 1, and then lim

t→∞
(I(t), P(t),Q(t)) = (I

ε

1, P
ε

1,Q
ε

1), where (I
ε

1, P
ε

1, P
ε

1) is the unique positive constant
endemic equilibrium of (4.2). Thus,

lim sup
t→∞

I(t, x) ≤ I
ε

1, lim sup
t→∞

P(t, x) ≤ P
ε

1, lim sup
t→∞

Q(t, x) ≤ Q
ε

1 uniformly in R.
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By the arbitrariness of ε, we have

lim sup
t→∞

I(t, x) ≤ I1, lim sup
t→∞

P(t, x) ≤ P1, lim sup
t→∞

Q(t, x) ≤ Q1 uniformly in R,

where (I1, P1,Q1) is the unique positive constant root of
β1(U1 + θV1)P + β2(U1+θV1)Q

m+Q
+ β3(U1 + θV1)I − γI − kI = 0,

αI − ηP = 0,
ηP − dQ = 0.

By direct calculations, we have

Q1 =

β2α

d Λ

γ + k − β3Λ −
β1α

η
Λ
− m, I1 =

d
α

Q1 and P1 =
d
η

Q1,

where Λ is defined in (1.5). Moreover, I1, P1, and Q1 are positive by R0 > 1 and

(
β1α
η +β3

)
Λ

γ+k < 1.
Step 2: For small ε > 0, there exists T > 0 such that

I(t, x) ≤ I1 + ε, P(t, x) ≤ P1 + ε, Q(t, x) ≤ Q1 + ε for t ≥ T and x ∈ R.

Thus, U satisfies
Ut ≥ D1Uxx + (1 − p)b − qU − β1U(P1 + ε) − β2U(Q1+ε)

m+Q1+ε

−β3U(I1 + ε) − kU, t > T, x ∈ R,

U(0, x) = U0(x), x ∈ R,

and then

lim inf
t→∞

U(t, x) ≥
(1 − p)b

q + β1(P1 + ε) + β2(Q1+ε)
m+Q1+ε

+ β3(I1 + ε) + k
=: Uε

1 uniformly in R.

By the arbitrariness of ε, we have

lim inf
t→∞

U(t, x) ≥ U1 uniformly in R,

where U1 is the unique positive constant root of

(1 − p)b − qU − β1UP1 −
β2UQ1

m + Q1

− β3UI1 − kU = 0.

By the direct calculation, we have

U1 =
(1 − p)b

k + q + γ+k
Λ

I1

> 0.
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For small ε > 0, there exists T > 0 such that

U(t, x) ≥ U1 − ε for t ≥ T and x ∈ R.

Thus, V satisfies
Vt ≥ D2Vxx + pb + q(U1 − ε) − β1θV(P1 + ε) − β2θV(Q1+ε)

m+Q1+ε

−β3θV(I1 + ε) − kV, t > T, x ∈ R,

V(0, x) = V0(x), x ∈ R,

and then

lim inf
t→∞

V(t, x) ≥
pb + q(U1 − ε)

β1θ(P1 + ε) + β2θ(Q1+ε)
m+Q1+ε

+ β3θ(I1 + ε) + k
=: Vε

1 uniformly in R.

By the arbitrariness of ε, we have

lim inf
t→∞

V(t, x) ≥ V1 uniformly in R,

where V1 is the unique positive constant root of

pb + qU1 − β1θVP1 −
β2θVQ1

m + Q1

− β3θVI1 − kV = 0.

By the direct calculation, we have

V1 =
pb + qU1

k + θ(γ+k)
Λ

I1

> 0.

For any ε > 0 and any given L > L∗(β3(Λ − ε) − γ − k, β1(Λ − ε), β2
m (Λ − ε), α,−η, η,−d), it follows

from lim
t→∞

[h(t) − g(t)] = ∞ that we can find a T > 0 such that

(g(t), h(t)) ⊇ [−L, L], U(t, x) ≥ U1 −
ε

2
, V(t, x) ≥ V1 −

ε

2θ
for t ≥ T and x ∈ [−L, L].

Thus, (I, P,Q) satisfies

It ≥ D3Ixx + β1(U1 + θV1 − ε)P + β2(U1+θV1−ε)Q
m+Q

+β3(U1 + θV1 − ε)I − γI − kI, t > T, x ∈ (−L, L),
Pt = αI − ηP, t > T, x ∈ (−L, L),
Qt = ηP − dQ, t > T, x ∈ (−L, L),
I(t,±L) ≥ 0, P(t,±L) ≥ 0, Q(t,±L) ≥ 0, t > T,

I(T, x) ≥ 0, P(T, x) ≥ 0, Q(T, x) ≥ 0, x ∈ [−L, L].
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Let (λ1, ϕ(x), φ(x), ψ(x)) be the eigenpair of (3.1) with a11 = β3(Λ − ε) − γ − k, a12 = β1(Λ − ε),
a13 =

β2
m (Λ − ε), a21 = α, a22 = −η, a32 = η, and a33 = −d. Using the comparison principle, we can have

that, for small enough δ,

(I0(x), P0(x),Q
0
(x)) = (δϕ(x), δφ(x), δψ(x)) for x ∈ [−L, L],

satisfies
I(t, x) ≥ I0(x), P(t, x) ≥ P0(x), Q(t, x) ≥ Q

0
(x), t ≥ T, x ∈ [−L, L].

Let (U,V,W) be the solution of the following auxiliary problem:

Ut = D3Uxx + β1(U1 + θV1 − ε)V + β2(U1+θV1−ε)W
m+W

+β3(U1 + θV1 − ε)U − γU − kU, t > T, x ∈ (−L, L),
Vt = αU − ηV, t > T, x ∈ (−L, L),
Wt = ηV − dW, t > T, x ∈ (−L, L),
U(t,±L) = V(t,±L) =W(t,±L) = 0, t > T,

U(T, x) = I0(x), V(T, x) = P0(x), W(T, x) = Q
0
(x), x ∈ [−L, L].

Applying the comparison principle, we derive

I(t, x) ≥ U(t, x), P(t, x) ≥ V(t, x), Q(t, x) ≥ W(t, x), t > T, x ∈ [−L, L].

By the choice of (I0(x), P0(x),Q
0
(x)), it follows from [34, Lemma 3.5] and [35, Theorem 4.5] that

lim
t→∞

(U(t, x),V(t, x),W(t, x)) = (UL(x),VL(x),WL(x)) in C2([−L, L]),

where (UL(x),VL(x),WL(x)) is the solution of

D3Uxx + β1(U1 + θV1 − ε)V + β2(U1+θV1−ε)W
m+W

+β3(U1 + θV1 − ε)U − γU − kU = 0, x ∈ (−L, L),
αU − ηV = 0, x ∈ (−L, L),
ηV − dW = 0, x ∈ (−L, L),
U(x) = V(x) =W(x) = 0, x = −L or L.

Moreover,
lim
L→∞

(UL(x),VL(x),WL(x)) = (Iε1, P
ε
1,Q

ε

1
) locally uniformly in R,

where (Iε1, P
ε
1,Q

ε

1
) is the unique positive constant root of
β1(U1 + θV1 − ε)P + β2(U1+θV1−ε)Q

m+Q + β3(U1 + θV1 − ε)I − γI − kI = 0,

αI − ηP = 0,
ηP − dQ = 0.

By the arbitrariness of ε, we have

lim inf
t→∞

I(t, x) ≥ I1, lim inf
t→∞

P(t, x) ≥ P1, lim inf
t→∞

Q(t, x) ≥ Q
1

locally uniformly in R,

Networks and Heterogeneous Media Volume 19, Issue 3, 940–969.



962

where (I1, P1,Q1
) is the unique positive constant root of

β1(U1 + θV1)P + β2(U1+θV1)Q
m+Q + β3(U1 + θV1)I − γI − kI = 0,

αI − ηP = 0,
ηP − dQ = 0.

By direct calculations, we have

Q
1
=

β2(U1 + θV1)
d
α
[γ + k − β3(U1 + θV1)] − d

η
β1(U1 + θV1)

− m, I1 =
d
α

Q
1

and P1 =
d
η

Q
1
.

To make sure that I1, P1, and Q
1

are positive, we should check that

γ + k
β3 +

α
η
β1 +

α
dmβ2

< U1 + θV1 <
γ + k

β3 +
α
η
β1
.

In the following, we check this result. According to

(1 − p)b − qU1 − β1U1P1 −
β2U1Q1

m + Q1

− β3U1I1 − kU1 = 0,

and

pb + qU1 − β1θV1P1 −
β2θV1Q1

m + Q1

− β3θV1I1 − kV1 = 0,

we have

b −
(γ + k)I1

Λ
(U1 + θV1) − k(U1 + V1) = 0,

and then it follows from θ > 1 that
U1 + θV1 ≥

b

k + γ+k
Λ

I1

.

Then,

U1 + θV1 −
γ + k

β3 +
α
η
β1 +

α
dmβ2

≥
b

k + γ+k
Λ

I1

−
γ + k

β3 +
α
η
β1

=
b

k + β2

1−
β3+

α
η β1

γ+k Λ

−
γ + k

β3 +
α
η
β1
= ∆.

Let Π =:
β3+

α
η β1

γ+k Λ. If Π < 1, then ∆ > 0 is equivalent to

b

k + β2
1−Π

−
Λ

Π
> 0,
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namely,
bΠ

b + Λk
+
Λ(k + β2)
(b + Λk)Π

− 1 < 0,

which must hold by
β3+

α
η β1

γ+k Λ +
k+β2
Λk+b

γ+k
β3+

α
η β1

< 1, and then we have γ+k
β3+

α
η β1+

α
dmβ2

< U1 + θV1. On the other

hand, U1 + θV1 < U1 + θV1 < Λ <
γ+k

β3+
α
η β1

.
Step 3: We can use the similar arguments as in Step 2 to obtain

lim sup
t→∞

U(t, x) ≤ U2 locally uniformly in R,

where U2 is the unique positive constant root of

(1 − p)b − qU − β1UP1 −
β2UQ

1

m + Q
1

− β3UI1 − kU = 0.

Similarly, we can derive

lim sup
t→∞

V(t, x) ≤ V2 locally uniformly in R,

where V2 is the unique positive constant root of

pb + qU2 − β1θVP1 −
β2θVQ

1

m + Q
1

− β3θVI1 − kV = 0.

Moreover, we have

lim sup
t→∞

I(t, x) ≤ I2, lim sup
t→∞

P(t, x) ≤ P2, lim sup
t→∞

Q(t, x) ≤ Q2 locally uniformly in R,

where (I2, P2,Q2) is the unique positive constant root of
β1(U1 + θV1)P + β2(U1+θV1)Q

m+Q + β3(U1 + θV1)I − γI − kI = 0,

αI − ηP = 0,
ηP − dQ = 0.

We can repeat the above steps to obtain ten monotone sequences {U i}, {V i}, {Ii}, {Pi}, {Qi
}, {U i}, {V i},

{Ii}, {Pi}, and {Qi} satisfying

U i ≤ lim inf
t→∞

U(t, x) ≤ lim sup
t→∞

U(t, x) ≤ U i,

V i ≤ lim inf
t→∞

V(t, x) ≤ lim sup
t→∞

V(t, x) ≤ V i,

Ii ≤ lim inf
t→∞

I(t, x) ≤ lim sup
t→∞

I(t, x) ≤ Ii,

Pi ≤ lim inf
t→∞

P(t, x) ≤ lim sup
t→∞

P(t, x) ≤ Pi,
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Q
i
≤ lim inf

t→∞
Q(t, x) ≤ lim sup

t→∞
Q(t, x) ≤ Qi,

locally uniformly in R, U1 =
(1−p)b

k+q , and V1 =
pb+qU1

k ,
β1(U i + θV i)Pi +

β2(U i+θV i)Qi

m+Qi
+ β3(U i + θV i)Ii − γIi − kIi = 0,

αIi − ηPi = 0,
ηPi − dQi = 0,

(1 − p)b − qU i − β1U iPi −
β2U iQi

m + Qi

− β3U iIi − kU i = 0,

pb + qU i − β1θV iPi −
β2θV iQi

m + Qi

− β3θV iIi − kV i = 0,
β1(U i + θV i)Pi +

β2(U i+θV i)Qi
m+Q

i
+ β3(U i + θV i)Ii − γIi − kIi = 0,

αIi − ηPi = 0,
ηPi − dQ

i
= 0,

(1 − p)b − qU i+1 − β1U i+1Pi −
β2U i+1Q

i

m + Q
i

− β3U i+1Ii − kU i+1 = 0,

pb + qU i+1 − β1θV i+1Pi −
β2θV i+1Q

i

m + Q
i

− β3θV i+1Ii − kV i+1 = 0, i = 1, 2, · · · .

From the above expressions, we have

U1 ≤ U2 ≤ · · · ≤ U i ≤ · · · ≤ U i ≤ · · · ≤ U2 ≤ U1,

V1 ≤ V2 ≤ · · · ≤ V i ≤ · · · ≤ V i ≤ · · · ≤ V2 ≤ V1,

I1 ≤ I2 ≤ · · · ≤ Ii ≤ · · · ≤ Ii ≤ · · · ≤ I2 ≤ I1,

P1 ≤ P2 ≤ · · · ≤ Pi ≤ · · · ≤ Pi ≤ · · · ≤ P2 ≤ P1,

Q
1
≤ Q

2
≤ · · · ≤ Q

i
≤ · · · ≤ Qi ≤ · · · ≤ Q2 ≤ Q1.

Thus,
lim
i→∞

(U i,V i, Ii, Pi,Qi
) = (U

∞
,V
∞
, I
∞
, P
∞
,Q
∞

),

and
lim
i→∞

(U i,V i, Ii, Pi,Qi) = (U∞,V∞, I∞, P∞,Q∞),

are well defined, where (U
∞
,V
∞
, I
∞
, P
∞
,Q
∞

) and (U∞,V∞, I∞, P∞,Q∞) satisfy
β1(U∞ + θV∞)P∞ +

β2(U∞+θV∞)Q∞
m+Q∞

+ β3(U∞ + θV∞)I∞ − γI∞ − kI∞ = 0,

αI∞ − ηP∞ = 0,
ηP∞ − dQ∞ = 0,
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(1 − p)b − qU
∞
− β1U

∞
P∞ −

β2U
∞

Q∞
m + Q∞

− β3U
∞

I∞ − kU
∞
= 0,

pb + qU
∞
− β1θV∞P∞ −

β2θV∞Q∞
m + Q∞

− β3θV∞I∞ − kV
∞
= 0,

β1(U
∞
+ θV

∞
)P
∞
+

β2(U
∞
+θV

∞
)Q
∞

m+Q
∞

+ β3(U
∞
+ θV

∞
)I
∞
− γI

∞
− kI

∞
= 0,

αI
∞
− ηP

∞
= 0,

ηP
∞
− dQ

∞
= 0,

(1 − p)b − qU∞ − β1U∞P
∞
−
β2U∞Q

∞

m + Q
∞

− β3U∞I
∞
− kU∞ = 0,

pb + qU∞ − β1θV∞P
∞
−
β2θV∞Q

∞

m + Q
∞

− β3θV∞I
∞
− kV∞ = 0, i = 1, 2, · · · .

A series of calculations show that

(U
∞
,V
∞
, I
∞
, P
∞
,Q
∞

) = (U∞,V∞, I∞, P∞,Q∞) = (U∗,V∗, I∗, P∗,Q∗),

where (U∗,V∗, I∗, P∗,Q∗) is a unique positive constant root of

(1 − p)b − qU − β1UP − β2UQ
m+Q − β3UI − kU = 0,

pb + qU − β1θVP − β2θVQ
m+Q − β3θVI − kV = 0,

β1(U + θV)P + β2(U+θV)Q
m+Q + β3(U + θV)I − γI − kI = 0,

αI − ηP = 0,
ηP − dQ = 0.

Finally, by [31, Lemma 2.6], we have that

lim
t→∞

R = R∗ locally uniformly in R.

This completes the proof of the lemma.

Theorem 1.2 can be obtained by Lemmas 3.2 and 4.2.

5. Conclusions

In this paper, we investigate the influence of environmental pollution and bacterial hyper-infectivity
on dynamics of a waterborne pathogen model with free boundaries. At first, we prove that the solution
to this problem has a unique solution for all t > 0. Then, we show that the disease will either spread
or vanish. Finally, we find a risk index R0 such that the disease will vanish if R0 ≤ 1, and whether the
disease will spread or not depends on the initial data if R0 > 1, which is very different from that for the
reaction diffusion equation without free boundaries. Specifically, under some assumptions, we can find
some critical value h∗ such that the disease will always spread as long as the initial infected domain is
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large than 2h∗; otherwise, the disease will spread if the spreading capacity µ is large. These results will
be helpful in taking measures to control the spreading of disease. For example, we can improve the
environmental condition and decrease the density of the hyper-infective pathogen by sterilizing.

Although the results in this paper show that model (1.2) can describe the disease well, we only
consider the most special situation, and there are many related problems deserving our further study.
For example,

(i) we can study the heterogeneous environment to consider the different levels of environment stress
in different parts of the spatial domain;

(ii) if we use the same function β1P (or β2Q
m+Q ) to describe the rate of indirect transmission due to contact

with environments contaminated by hyper-infectivity and lower-infectivity state of the pathogen, it will
be difficult to deal with as we can not calculate the specific expression of Q1 in Step 1 of Lemma 4.2;

(iii) it is interesting to study the case where the death rate of U, V , I, and R are different, but this
problem is difficult as we can not deal with the term U + V + I + R;

(iv) if we do not ignore the diffusion of P and Q, then the corresponding eigenvalue problem will be
complex and we will study this case in the future;

(v) if the effect of the pollution on βi is not the same, this problem will be more complex and deserve
our further study;

(vi) it is difficult to use MATLAB to carry out some numerical simulations to illustrate the spreading
and vanishing of diseases since there are 19 parameters in (1.2), but taking some simulations is very
meaningful and deserves our further study;

(vii) extending model (1.2) to two and three spatial dimensions is more realistic, so we will try to
study the high-dimensional extension of (1.2) with radial symmetry in the future.
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