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Abstract: In this study, we introduce and investigate a new class of split inverse problems, comprising
a multidimensional parameter of evolution, which we call the multidimensional split variational
inequality problem with multiple output sets. To demonstrate its applicability, we formulate the
equilibrium flow of multidimensional traffic network models for an arbitrary number of locations.
We define a multidimensional split Wardrop condition with multiple output sets and establish its
equivalence with the formulated equilibrium flow of multidimensional traffic network models. We then
establish the existence and uniqueness of equilibria for our proposed model. In addition, we propose
a method for solving the introduced problem. We then validate our results using some numerical
experiments.
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1. Introduction

The variational inequality problem was first introduced independently by Fichera [1] and
Stampacchia [2] to model optimization problems arising from mechanics. The concept of multi-time
has been employed in optimization theory, namely in the framework of multi-time optimal control
problem. This problem is a particular case of the multidimensional variational problems. Several
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problems, in science and engineering, can be modelled in terms of optimization problems, which are
governed by m-flow type partial differential equations (multi-time evolution systems) and cost
functionals expressed as path-independent integrals or multiple integrals. Apart from optimization
theory, the concept of multidimensional parameters of evolution has also been applied in space theory,
where the space coordinates are represented by two-dimensional time parameters t = (t1, t2), where t1

and t2 represent the intrinsic time and the observer time, respectively. For more details and recent
studies in this direction, interested readers are referred to the studies in [3–5] and the references
therein.

The study of variational inequality problems in finite dimensional spaces was initiated
independently by Smith [6] and Dafermos [7]. They set up the traffic assignment problem in terms of
a finite dimensional variational inequality problem (VIP). On the other hand, Lawphongpanich and
Hearn [8], and Panicucci et al. [9] studied traffic assignment problems based on Wardrop user
equilibrium principle via a variational inequality model.

Lions and Stampacchia [10], and Brezis [11] independently introduced the time-dependent
(evolutionary) variational inequality problem, and developed an existence and uniqueness theory of
the problem. Daniele et al. [12] formulated a dynamic traffic network equilibrium problem in terms of
an evolutionary variational inequality problem. Ever since then, several other economics related
problems like Nash equilibrium problem, spatial price equilibrium problems, internet problems,
dynamic financial equilibrium problems and environmental network and ecology problems have been
studied via time-dependent variational inequality problem (see [13–16]).

Censor et al. [17] introduced a new split inverse problem called the split variational inequality
problem (SVIP). The authors proposed iterative methods for estimating the solution of the problem,
they and analysed the convergence of the proposed iterative schemes. The SVIP has several areas of
applications, including network problems, image reconstruction, cancer treatment planning and many
more.

Very recently, Singh et al. [18] introduced another split inverse problem, which they called
evolutionary split variational inequality problem. The authors demonstrated the applicability of this
new problem through the formulation of the equilibrium flow of dynamic traffic network models,
which comprised two given cities. Moreover, they established the existence and uniqueness of
equilibria for the proposed model.

However, Singh in [19] noted that in an economic problem, other parameters in addition to time
may also affect the values of the constraints and arguments associated with the problem. Similarly, in
a traffic network problem the flow of traffic depends on several economic parameters other than the
time parameter. For instance, traffic flow data are known to be strongly influenced by both space
(location) and time. In addition, parameters related to road capacity, safety measures for averting road
accidents and several other economic parameters could affect traffic flow. Based on this observation,
Singh [19] introduced a new split inverse problem, called the multidimensional split variational
inequality problem (MSVIP). This new problem includes a multidimensional parameter of evolution.
As an application, the author formulated the equilibrium flow within two different traffic network
models, e.g., traffic networks for two given cities.

More recently, Alakoya and Mewomo [20] studied a new class of split inverse problems, known as
split variational inequality problem with multiple output sets. This class of split inverse problems is
designed such that multiple variational inequality problems are solved simultaneously. The authors
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proposed an iterative method for estimating the solution of this problem, and they further presented
some numerical experiments to demonstrate the feasibility of the proposed iterative method.

We note that the results of Singh et al. [18] and Singh [19] are only capable of dealing with two
different traffic network models simultaneously. In other words, their results are not applicable when
the goal is to study multiple (more than two) traffic network models simultaneously. Moreover, we
also note that in formulating the split inverse problems introduced in [18, 19], the authors needed to
define explicitly two inverse problems (one in each of the two spaces under consideration) such that
the image of the solution of the first inverse problem under a bounded linear operator is the solution of
the second inverse problem. This method of formulation made the proofs of the results in [18, 19]
lengthy and not easily comprehensible. To overcome these shortcomings, in this study we introduce
and study a new class of split inverse problems, which we call the multidimensional split variational
inequality problem with multiple output sets. This newly introduced problem also includes a
multidimensional parameter of evolution. Moreover, in formulating our problem we demonstrate that
the inverse problems involved in the formulation need not to be explicitly defined. Instead, by
introducing an index set our problem could be formulated succinctly and the proofs of the results
presented more concisely. To demonstrate its applicability in the economic world, we formulate the
equilibrium flow of multidimensional traffic network models for an arbitrary number of locations,
e.g., traffic network models for different cities. Moreover, we define a multidimensional split Wardrop
condition with multiple output sets (MSWC-MOS), and establish its equivalence with the formulated
equilibrium flow of multidimensional traffic network models. Furthermore, we establish the existence
and uniqueness of equilibria for our proposed model. We propose a method for solving the introduced
problem, which will be useful in evaluating the equilibrium flow of multidimensional traffic network
models for different cities simultaneously. Finally, we validate our results using some numerical
experiments. To further illustrate the utilization of our newly introduced problem, we apply our
results to study the network model of a city with heterogeneous networks. More precisely, we
consider a city, which comprises connected automated vehicles (CAVs) and legacy (human-driven)
vehicles, alongside electricity network, e.g. for charging the CAVs, and we formulate the equilibrium
flow of this network model in terms of our newly introduced multidimensional split variational
inequality problem with multiple output sets. We note that the results in [18, 19] cannot be applied to
the numerical examples and application considered in our study.

2. Preliminaries and problem formulation

In this section, we formulate our multidimensional split variational inequality problem with
multiple output sets. First, we introduce some important notations and mathematical concepts, which
are needed for the problem formulation. In what follows, except otherwise stated, the abbreviation
“a.e.” means “almost everywhere” and Rm

+ denotes the set of non-negative vectors in Rm. We assume
that our multidimensional traffic network model comprises a multi-parameter of evolution v, which is
the multidimensional parameter of evolution, i.e., v = (vα) ∈ Ωv0,v1 , where α = 1, 2, . . . ,m.
Geometrically, Ωv0,v1 is a hyper-parallelepiped in Rm

+ with the opposite diagonal points
v0 = (v1

0, v
2
0, . . . , v

m
0 ) and v1 = (v1

1, v
2
1, . . . , v

m
1 ), which by the product order on Rm

+ is equivalent to the
closed interval v0 ≤ v ≤ v1. Suppose that we have cities denoted by Ci, i = 0, 1, . . . ,M. The traffic
network of each city Ci comprises the set of nodes Ni, representing railway stations, airports,
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crossings, etc., the set of directed links Li between the nodes, the set of origin-destination pairs Wi and
the set of routes Vi. Moreover, it is assumed that each route ri ∈ Vi connects exactly one
origin-destination pair. We denote by Vi(wi) the set of all ri ∈ Vi, which connects a given wi ∈ Wi. Let
xi(v) ∈ R|Vi | be the flow trajectory, and for each ri ∈ Vi, let xri(v) represent the flow trajectory of the
route ri over the multidimensional parameter v.We take our functional setting for the flow trajectories
to be the reflexive Banach space Lpi(Ωv0,v1 ,R

|Vi |), pi > 1, with the dual space Lqi(Ωv0,v1 ,R
|Vi |), where

1
pi
+ 1

qi
= 1, i = 0, 1, . . . ,M. We assume that every feasible flow satisfies the following

multidimensional capacity constraints for each i = 0, 1, . . . ,M

λi(v) ≤ xi(v) ≤ µi(v), a.e. on Ωv0,v1 ,

and the multidimensional traffic conservation law/demand requirements

Φixi(v) = ρi(v), a.e. on Ωv0,v1 ,

where λi(v), µi(v) ∈ Lpi(Ωv0,v1 ,R
|Vi |) are given bounds such that λi(v) ≤ µi(v) and ρi(v) ∈ Lpi(Ωv0,v1 ,R

|Wi |)
is the given demand such that ρi(v) ≥ 0, and Φi = (ϕri,wi) is the pair-route incidence matrix, whose
entries are equal to 1 if route ri links the pair wi and 0 otherwise. It is also assumed that

Φiλi(v) ≤ ρi(v) ≤ Φiµi(v), a.e. on Ωv0,v1 .

This assumption implies the non-emptiness of the set of feasible flows

Ki =
{
xi(v) ∈ Lpi(Ωv0,v1 ,R

|Vi |) : λi(v) ≤ xi(v) ≤ µi(v) and Φixi(v) = ρi(v), a.e. on Ωv0,v1 , i = 0, 1, . . . ,M
}
.

The canonical bilinear form on Lqi(Ωv0,v1 ,R
|Vi |) × Lpi(Ωv0,v1 ,R

|Vi |) is defined as

⟨⟨ fi(v), xi(v)⟩⟩Ci =

∫
Ωv0 ,v1

⟨ fi(v), xi(v)⟩dv, xi(v) ∈ Lpi(Ωv0,v1 ,R
|Vi |)

and
fi(v) ∈ Lqi(Ωv0,v1 ,R

|Vi |), i = 0, 1, . . . ,M,

where ⟨·, ·⟩ denotes the Euclidean inner product and dv = dv1dv2 . . . dvm denotes the volume element
of Ωv0,v1 .

Remark 1. It is clear that for each i = 0, 1, . . . ,M, the feasible set Ki is closed, convex and bounded.
From this, it follows that each Ki is weakly compact.

Moreover, for each xi(v) ∈ Ki, i = 0, 1, . . . ,M, the cost trajectory is denoted by the mapping
Ai : Ki → Lqi(Ωv0,v1 ,R

|Vi |), and we let Ti : Lp0(Ωv0,v1 ,R
|V0 |) → Lpi(Ωv0,v1 ,R

|Vi |), i = 0, 1, . . . ,M be
bounded linear operators, where T0 = ILp0 (Ωv0 ,v1 ,R

|V0 |) is the identity operator on Lp0(Ωv0,v1 ,R
|V0 |).

Now, we formulate our multidimensional split variational inequality problem with multiple output
sets (MSVIP-MOS) as follows:

find x0(v) ∈ K0 such that∫
Ωv0 ,v1

⟨A0(x0(v)), y0(v) − x0(v)⟩dv ≥ 0, ∀y0(v) ∈ K0, (2.1)
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and such that

xi(v) = Tix0(v) ∈ Ki solves
∫
Ωv0 ,v1

⟨Ai(xi(v)), yi(v) − xi(v)⟩dv ≥ 0, ∀yi(v) ∈ Ki, (2.2)

i = 1, 2, . . . ,M.

Alternatively, the problem can be formulated in a more compact form as follows:
find x0(v) ∈ K0 such that∫

Ωv0 ,v1

⟨Ai(Tix0(v)), yi(v) − Tix0(v)⟩dv ≥ 0, ∀yi(v) ∈ Ki,Tix0(v) ∈ Ki, i = 0, 1, . . . ,M. (2.3)

We denote the solution set of the MSVIP-MOS by

Γ = {x0(v) ∈ C∗0 such that Tix0(v) ∈ C∗i , i = 1, 2, . . . ,M} = C∗0 ∩
M
i=1 T−1

i (C∗i ),

where C∗0,C
∗
i , i = 1, 2, . . . ,M are the solution sets of VIPs (2.1) and (2.2), respectively.

We have the following specials cases of our formulated MSVIP-MOS:

1. if the multidimensional parameter of evolution v = (tα), α = 1, 2, . . . ,m, then the MSVIP-MOS
reduces to a multi-time split variational inequality problem with multiple output sets.

2. if M = 1, then our formulated MSVIP-MOS reduces to the multidimensional split variational
inequality problem introduced by Singh [19].

3. if the multidimensional parameter of evolution v = (vα) ∈ Ωv0,v1 , α = 1, . . . ,m, is a single or linear
dimensional parameter of evolution, that is, m = 1, then Ωv0,v1 is simply the closed real interval
[v0, v1] in R+ (set of non-negative real numbers). Moreover, for convenience we set v0 = 0 and
v1 = T, where T denotes an arbitrary time. Thus, Ωv0,v1 = [0,T ] (a fixed time interval). In
this case, the MSVIP-MOS reduces to an evolutionary split variational inequality problem with
multiple output sets. In addition, if M = 1, then the MSVIP-MOS reduces to the evolutionary
split variational inequality problem studied by Singh et al. [18].

4. if all the functions are independent of the multidimensional parameter of evolution v, then the
MSVIP-MOS reduces to the split variational inequality problem with multiple output sets studied
by Alakoya and Mewomo [20]. In addition, if M = 1, then the MSVIP-MOS reduces to the split
variational inequality problem introduced by Censor et al. [17].

In line with the definition of an equilibrium flow for a dynamic traffic network problem given by
Danielle et al. [12], we put forward the following definition for a multidimensional traffic network
model with multiple networks, in terms of the introduced MSVIP-MOS.

Definition 2.1. x0(v) ∈ K0 is an equilibrium flow if and only if x0(v) ∈ Γ.

The equilibrium flow of a traffic network has been investigated by several authors in terms of the
Wardrop condition. Danielle et al. [12] modelled the traffic network equilibrium problem as a classical
variational inequality problem, thereby establishing an equivalent relationship between the Wardrop
condition and the classical variational inequality problem. On the other hand, Raciti [21] examined the
vector form of the Wardrop equilibrium condition. Motivated by these results, here we consider the
following MSWC-MOS.
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Definition 2.2. For an arbitrary x0(v) ∈ K0 and a.e. on Ωv0,v1 , the MSWC-MOS is defined as follows:

Au0
0 (x0(v)) < As0

0 (x0(v)) =⇒ xu0
0 (v) = µu0

0 (v) or xs0
0 (v) = λs0

0 (v), ∀w0 ∈ W0, ∀u0, s0 ∈ V0(w0)
and such that xi(v) = Tix0(v) ∈ Ki, i = 1, 2, . . . ,M, satisfies

Aui
i (xi(v)) < Asi

i (xi(v)) =⇒ xui
i (v) = µui

i (v) or xsi
i (v) = λsi

i (v), ∀wi ∈ Wi, ∀ui, si ∈ Vi(wi).

Alternatively, we can recast the definition as follows:

Definition 2.3. For an arbitrary x0(v) ∈ K0 and a.e. on Ωv0,v1 , the MSWC-MOS can be defined as

Aui
i (xi(v)) < Asi

i (xi(v)) =⇒ xui
i (v) = µui

i (v) or xsi
i (v) = λsi

i (v), ∀wi ∈ Wi, ∀ui, si ∈ Vi(wi), (2.4)

where xi(v) = Tix0(v) ∈ Ki, i = 0, 1, . . . ,M.

3. User-oriented multidimensional traffic network equilibria with multiple networks

In this section, we present an equivalent form of the equilibria of our multidimensional traffic
network model with multiple networks via the MSWC-MOS. We note that because of the form of the
MSWC-MOS, it is more responsive to the user. Hence, we can conclude that it is a user-oriented
equilibrium.

Now, we state and prove the following theorem, which is the main result of this section.

Theorem 3.1. Let x0(v) ∈ K0 be an arbitrary flow. Then x0(v) is an equilibrium flow if and only if it
satisfies the conditions of the MSWC-MOS.

Proof. First, we suppose that x0(v) ∈ K0 satisfies the conditions of the MSWC-MOS. For a given
origin-destination pair wi ∈ Wi, i = 0, 1, . . . ,M, we define the following sets:

Ri = {ui ∈ Vi(wi) : xui
i (v) < µui

i }, i = 0, 1, . . . ,M,
S i = {si ∈ Vi(wi) : xsi

i (v) > λsi
i }, i = 0, 1, . . . ,M.

By the MSWC-MOS, it follows that

Aui
i (Tix0(v)) ≥ Asi

i (Tix0(v)), ∀ui ∈ Ri, ∀si ∈ S i, i = 0, 1, . . . ,M, a.e. on Ωv0,v1 . (3.1)

It follows from Eq (3.1) that there exist real numbers ai ∈ R, i = 0, 1, . . . ,M, such that

sup
si∈S i

Asi
i (Tix0(v)) ≤ ai ≤ inf

ui∈Ri
Aui

i (Tix0(v)), a.e. on Ωv0,v1 .

Suppose that yi(v) ∈ Ki, i = 0, 1 . . . ,M, are arbitrary flows. Then, for a.e. on Ωv0,v1 we have

∀ri ∈ Vi(wi), A
ri
i (Tix0(v)) < ai =⇒ ri < Ri, i = 0, 1, . . . ,M.

Note that if ri < Ri, then (Tix0(v))ri = µri(v) and
(
yri

i (v) − (Tix0(v))ri
)
≤ 0, i = 0, 1, . . . ,M. Hence,

it follows that
(
Ari

i (Tix0(v)) − ai
)(

yri
i (v) − (Tix0(v))ri

)
≥ 0, i = 0, 1, . . . ,M, a.e. on Ωv0,v1 . In a similar

manner, for all ri ∈ Vi(wi) such that Ari
i (Tix0(v)) > ai a.e. on Ωv0,v1 , we also have that

(
Ari

i (Tix0(v)) −
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ai
)(

yri
i (v) − (Tix0(v))ri

)
≥ 0, i = 0, 1, . . . ,M, a.e. on Ωv0,v1 . Consequently, for each i = 0, 1, . . . ,M, we

get

⟨Ai(Tix0(v)), yi(v) − Tix0(v)⟩ =
∑

wi∈Wi

∑
ri∈Vi(wi)

Ari
i (Tix0(v))

(
yri

i (v) − (Tix0(v))ri
)

=
∑

wi∈Wi

∑
ri∈Vi(wi)

(
Ari

i (Tix0(v)) − ai
)(

yri
i (v) − (Tix0(v))ri

)
+ ai

∑
wi∈Wi

∑
ri∈Vi(wi)

(
yri

i (v) − (Tix0(v))ri
)

≥ 0, a.e. on Ωv0,v1 . (3.2)

Observe that in Eq (3.2), the value of the term
∑

wi∈Wi

∑
ri∈Vi(wi)

(
yri

i (v) − (Tix0(v))ri
)
, i = 0, 1, . . . ,M, is

zero by the traffic conservation law/demand requirements, i.e.,
∑

r∈V(w)
xr(v) = ρw(v) for all x(v) ∈ K and

w ∈ W a.e. on Ωv0,v1 . Since each yi(v) ∈ Ki, i = 0, 1, . . . ,M is arbitrary, it follows from Eq (3.2) that∫
Ωv0 ,v1

⟨Ai(Tix0(v)), yi(v) − Tix0(v)⟩ ≥ 0, ∀yi(v) ∈ Ki, i = 0, 1, . . . ,M.

Consequently, x0(v) is an equilibrium flow.
Next, we prove the converse statement by contradiction, that is, we suppose that x0(v) is an

equilibrium flow, but it does not satisfy the conditions of the MSWC-MOS. Then, it follows that there
exists origin-destination pairs w0 ∈ W0,wi ∈ Wi and routes

u0, s0 ∈ V0(w0), ui, si ∈ Vi(wi), i = 1, 2, . . . ,M,

together with a set Ψ ⊂ Ωv0,v1 having a positive measure such that we have the following cases:

1.
Au0

0 (x0(v)) < As0
0 (x0(v)), xu0

0 (v) < µu0
0 (v), xs0

0 (v) > λs0
0 (v), a.e. on Ψ,

and such that
xi(v) = Tix0(v) ∈ Ki, i = 1, 2, . . . ,M,

satisfies
Aui

i (xi(v)) < Asi
i (xi(v)), xui

i (v) < µui
i (v), xsi

i (v) > λsi
i (v), a.e. on Ψ.

2.
Au0

0 (x0(v)) < As0
0 (x0(v)), xu0

0 (v) < µu0
0 (v), xs0

0 (v) > λs0
0 (v), a.e. on Ψ,

and such that
xi(v) = Tix0(v) ∈ Ki, i = 1, 2, . . . ,M,

satisfies

Aui
i (xi(v)) < Asi

i (xi(v)) =⇒ xui
i (v) = µui

i (v) or xsi
i (v) = λsi

i (v), a.e. on Ψ.
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3.
Au0

0 (x0(v)) < As0
0 (x0(v)) =⇒ xu0

0 (v) = µu0
0 (v) or xs0

0 (v) = λs0
0 (v), a.e. on Ψ,

and such that
xi(v) = Tix0(v) ∈ Ki, i = 1, 2, . . . ,M,

satisfies
Aui

i (xi(v)) < Asi
i (xi(v)), xui

i (v) < µui
i (v), xsi

i (v) > λsi
i (v), a.e. on Ψ.

4.
Au0

0 (x0(v)) < As0
0 (x0(v)) =⇒ xu0

0 (v) = µu0
0 (v) or xs0

0 (v) = λs0
0 (v), a.e. on Ψ,

and such that
xi(v) = Tix0(v) < Ki, i = 1, 2, . . . ,M,

satisfies

Aui
i (xi(v)) < Asi

i (xi(v)) =⇒ xui
i (v) = µui

i (v) or xsi
i (v) = λsi

i (v), a.e. on Ψ.

5. Case 1. with xi(v) = Tix0(v) < Ki, i = 1, 2, . . . ,M.
6. Case 2. with xi(v) = Tix0(v) < Ki, i = 1, 2, . . . ,M.
7. Case 3. with xi(v) = Tix0(v) < Ki, i = 1, 2, . . . ,M.

Starting with the Case 1., let

δ0(v) = min{µu0
0 (v)−xu0

0 (v), xs0
0 (v)−λs0

0 (v)} and δi(v) = min{µui
i (v)−xui

i (v), xsi
i (v)−λsi

i (v)}, i = 0, 1, . . . ,M,

where v ∈ Ψ.
Then, δ0(v) > 0 and δi(v) > 0, i = 0, 1, . . . ,M, a.e. on Ψ. Next, we construct a flow trajectory

y0(v) ∈ Lp0(Ωv0,v1 ,R
|V0 |) as follows:

yu0
0 (v) = xu0

0 (v) + δ0(v), ys0
0 (v) = xs0

0 (v) − δ0(v), yr0
0 (v) = xr0

0 (v),

for r0 , u0, s0, a.e. on Ψ, and y0(v) = x0(v) outside of Ψ.

In the same manner, we can define a flow trajectory yi(v) ∈ Lpi(Ωv0,v1 ,R
|Vi |), i = 1, 2, . . . ,M as

yui
i (v) = xui

i (v) + δi(v), ysi
i (v) = xsi

i (v) − δi(v), yri
i (v) = xri

i (v),

for ri , ui, si, a.e. on Ψ, and yi(v) = xi(v) outside of Ψ.

Hence, it is obvious that y0(v) ∈ K0 such that y0(v) = x0(v) outside of Ψ and yi(v) ∈ Ki such that
yi(v) = xi(v), i = 1, 2, . . . ,M, outside of Ψ.Moreover, we have∫

Ωv0 ,v1

⟨A0(x0(v)), y0(v) − x0(v)⟩dv =
∫
Ψ

⟨A0(x0(v)), y0(v) − x0(v)⟩dv

=

∫
Ψ

δ0(v)
(
Au0

0 (x0(v)) − As0
0 (x0(v))

)
dv

< 0.
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By a similar argument, xi(v) = Tix0(v) ∈ Ki, i = 1, 2, . . . ,M, satisfies∫
Ωv0 ,v1

⟨Ai(xi(v)), yi(v) − xi(v)⟩dv < 0, i = 1, 2, . . . ,M.

It follows that x0(v) is not an equilibrium flow. Using a similar argument, we can easily show that x0(v)
is not an equilibrium flow for Case 2 and Case 3. Furthermore, by the fact that xi(v) = Tix0(v) ∈ Ki, i =
1, 2, . . . ,M, in Cases 4, 5, 6 and 7, it is clear that x0(v) is not an equilibrium flow. Consequently, we
have a contradiction, and this completes the proof of the theorem.

4. Existence and uniqueness of equilibria of a multidimensional traffic network with multiple
networks

Here, we establish the existence and uniqueness of equilibria of our multidimensional traffic
network model with multiple networks, which is formulated as a MSVIP-MOS. To prove the
existence and uniqueness theorem, we will employ the concept of graph theory of operators. First, we
present the following definitions and lemma, which will be needed in establishing our results in this
section (see [18, 19, 22]).

Definition 4.1. The graph of operator Ti, i = 1, 2, . . . ,M is defined by

Gr Ti = {(x0(v),Tix0(v)) ∈ K0 × Ki : x0(v) ∈ K0}.

We assume that Ki ∩ TiK0 , ∅ for each i = 1, 2, . . . ,M, where TiK0 = {yi(v) ∈ Lpi(Ωv0,v1 ,R
|Vi |) :

∃ x0(v) ∈ K0 such that yi(v) = Tix0(v)}. It can easily be shown that Gr Ti is a convex set. Since Ti

is a bounded linear operator for each i = 1, 2, . . . ,M, it follows that Ti is also continuous. Thus, by
the closed graph theorem we have that Gr Ti is closed w.r.t. the product topology. Consequently, Gr
Ti is a nonempty, closed and convex subset of K0 × Ki, i = 1, 2, . . . ,M. By Remark 1, we have that
K0 ×Ki, i = 1, 2, . . . ,M is a weakly compact set. Thus, Gr Ti, i = 1, 2, . . . ,M is a weakly compact set.

Definition 4.2. The cost operator A is said to be demi-continuous at the point x(v) ∈ K0 if it is strongly-
weakly sequentially continuous at this point, that is, if the sequence {A(xn(v))} weakly converges to
A(x(v)) for each sequence {xn(v)} ⊂ K0 such that xn(v) → x(v), where the symbol “→” denotes strong
convergence.

Definition 4.3. The cost operator A is said to be strictly monotone if

⟨⟨A(x) − A(y), x − y⟩⟩ > 0, ∀x, y ∈ K0 and x , y. (4.1)

Definition 4.4. The convex hull of a finite subset {(x1(v),T x1(v)), (x2(v),T x2(v)), . . . , (xn(v),T xn(v))}
of Gr T is defined by

co{(x1(v),T x1(v)), (x2(v),T x2(v)), . . . , (xn(v),T xn(v))}

=
{ n∑

j=1

δ j(x j(v),T x j(v)) :
n∑

j=1

δ j = 1, for some δ j ∈ [0, 1]
}
.
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Remark 2. Observe that

co{(x1(v),T x1(v)), (x2(v),T x2(v)), . . . , (xn(v),T xn(v))}
⊂
(
co{x1(v), x2(v), . . . , xn(v)}, co{T x1(v),T x2(v), . . . ,T xn(v)}

)
.

Definition 4.5. ( [19]) A set-valued mapping Q : Gr T → 2K0×K1 is said to be a KKM* mapping if, for
any finite subset (x1(v),T x1(v)), (x2(v),T x2(v)), . . . , (xn(v),T xn(v)) of Gr T,

co{(x1(v),T x1(v)), (x2(v),T x2(v)), . . . , (xn(v),T xn(v))} ⊂
n⋃

j=1

Q(x j(v),T x j(v)).

Lemma 4.6. ( [19] KKM-Fan theorem) Let Q : Gr T → 2K0×K1 be a KKM mapping with closed set
values. If Q(x(v),T x(v)) is compact for at least one (x(v),T x(v)) ∈ Gr T, then⋂

(x(v),T x(v))∈Gr T

Q(x(v),T x(v)) , ∅.

We are now in a position to state and prove the existence theorem.

Theorem 4.7. Suppose that for i = 1, 2, . . . ,M, the cost operators A0, Ai are demi-continuous, and
that there exist B0 × Bi ⊆ Gr Ti nonempty and compact, and D0 × Di ⊆ Gr Ti compact such that for

all (x0(v),Tix0(v)) ∈ Gr Ti\B0 × Bi there exists (y0(v),Tiy0(v)) ∈ D0 × Di with
∫
Ωv0 ,v1

⟨A0(x0(v)), y0(v) −

x0(v)⟩dv < 0 and
∫
Ωv0 ,v1

⟨Ai(Tix0(v)),Tiy0(v) − Tix0(v)⟩dv < 0. Then, the MSVIP-MOS has a solution.

Proof. First, we define the following set-valued mappings:

• for all x∗0(v) ∈ K0, we define the mapping P0 : K0 → 2K0 by

P0(x∗0(v)) = {x0(v) ∈ K0 :
∫
Ωv0 ,v1

⟨A0(x∗0(v)), x0(v) − x∗0(v)⟩dv < 0},

• for all y∗i (v) ∈ Ki, i = 1, 2, . . . ,M, we define Pi : Ki → 2Ki by

Pi(y∗i (v)) = {yi(v) ∈ Ki :
∫
Ωv0 ,v1

⟨Ai(y∗i (v)), yi(v) − y∗i (v)⟩dv < 0},

• for all (x0(v),Tix0(v)) ∈ Gr Ti, i = 1, 2, . . . ,M, we define the mappings Qi : Gr Ti → 2K0×Ki by

Qi(x0(v),Tix0(v)) =
{
(x∗0(v),Tix∗0(v)) ∈ Gr Ti :

∫
Ωv0 ,v1

⟨A0(x∗0(v)), x0(v) − x∗0(v)⟩dv ≥ 0

and ∫
Ωv0 ,v1

⟨Ai(Tix∗0(v)),Tix0(v) − Tix∗0(v)⟩dv ≥ 0
}
.

*Knaster–Kuratowski–Mazurkiewicz lemma
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Clearly, (x0(v),Tix0(v)) ∈ Qi(x0(v),Tix0(v)), i = 1, 2, . . . ,M. Therefore, Qi(x0(v),Tix0(v)) is
nonempty for each i = 1, 2, . . . ,M.

Next, we prove that for each i = 1, 2, . . . ,M, Qi is a KKM mapping. We proceed by contradiction,
i.e., by assuming that Qi is not a KKM mapping for each i = 1, 2, . . . ,M. Then for each
i = 1, 2, . . . ,M, there exists a finite subset {(x1(v),Tix1(v)), (x2(v),Tix2(v)), . . . , (xn(v),Tixn(v))} of
Gr Ti such that

co{(x1(v),Tix1(v)), (x2(v),Tix2(v)), . . . , (xn(v),Tixn(v))} 1
n⋃

j=1

Qi(x j(v),Tix j(v)), i = 1, 2, . . . ,M. (4.2)

By the definition of a convex hull, there exists the following, for each i = 1, 2, . . . ,M,

(ŷ0(v),Tiŷ0(v)) ∈ co{(x1(v),Tix1(v)), (x2(v),Tix2(v)), . . . , (xn(v),Tixn(v))}

such that

(ŷ0(v),Tiŷ0(v)) =
n∑

j=1

β
j
i (x j(v),Tix j(v)), i = 1, 2, . . . ,M,

where β j
i ∈ [0, 1] and

∑n
j=1 β

j
i = 1 for each i = 1, 2, . . . ,M. The expression (4.2) implies that

(ŷ0(v),Tiŷ0(v)) <
n⋃

j=1

Qi(x j(v),Tix j(v)), i = 1, 2, . . . ,M.

Consequently, for any j = {1, 2, . . . , n}, we have the following cases:

1.
∫
Ωv0 ,v1

⟨A0(ŷ0(v)), x j(v) − ŷ0(v)⟩dv < 0 and
∫
Ωv0 ,v1

⟨Ai(Tiŷ0(v)),Tix j(v) − Tiŷ0(v)⟩dv < 0,

i = 1, 2, . . . ,M.

2.
∫
Ωv0 ,v1

⟨A0(ŷ0(v)), x j(v) − ŷ0(v)⟩dv ≥ 0 and
∫
Ωv0 ,v1
⟨Ai(Tiŷ0(v)),Tix j(v) − Tiŷ0(v)⟩dv < 0,

i = 1, 2, . . . ,M.

3.
∫
Ωv0 ,v1

⟨A0(ŷ0(v)), x j(v) − ŷ0(v)⟩dv < 0 and
∫
Ωv0 ,v1

⟨Ai(Tiŷ0(v)),Tix j(v) − Tiŷ0(v)⟩dv ≥ 0,

i = 1, 2, . . . ,M.

Case 1 implies that

{x1(v), x2(v), . . . , xn(v)} ⊂ P0(ŷ0(v)) and {Tix1(v),Tix2(v), . . . ,Tixn(v)} ⊂ Pi(Tiŷ0(v)), i = 1, 2, . . . ,M.

Moreover, it is clear that P0(x∗0) and Pi(Tix∗0) are convex, for each x∗0 ∈ K0 and Tix∗0 ∈ Ki, i = 1, 2, . . . ,M.
Consequently, we have

co{x1(v), x2(v), . . . , xn(v)} ⊂ P0(ŷ0(v))

and
co{Tix1(v),Tix2(v), . . . ,Tixn(v)} ⊂ Pi(Tiŷ0(v)), for each i = 1, 2, . . . ,M.

By the fact that

(ŷ0(v),Tiŷ0(v)) ∈ co{(x1(v),Tix1(v)), (x2(v),Tix2(v)), . . . , (xn(v),Tixn(v))}, i = 1, 2, . . . ,M
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and by Remark 2, we have

(ŷ0(v),Tiŷ0(v)) ∈
(
co{x1(v), x2(v), . . . , xn(v)}, co{Tix1(v),Tix2(v), . . . ,Tixn(v)}

)
,

which implies that ŷ0(v) ∈ P0(ŷ0(v)) and Tiŷ0(v) ∈ Pi(Tiŷ0(v)), i = 1, 2, . . . ,M.
Thus, we have∫
Ωv0 ,v1

⟨A0(ŷ0(v)), ŷ0(v)− ŷ0(v)⟩dv < 0 and
∫
Ωv0 ,v1

⟨Ai(Tiŷ0(v)),Tix j(v)−Tiŷ0(v)⟩dv < 0, i = 1, 2, . . . ,M,

which are contradictions.
By a similar argument, we can easily show that the other cases also lead to contradictions. Hence, for
each i = 1, 2, . . . ,M, Qi is a KKM mapping.

Next, we claim that for each i = 1, 2, . . . ,M, Qi is a closed set-valued mapping for each
(x0(v),Tix0(v)) ∈ Gr Ti w.r.t. the weak topology of K0 × Ki, i = 1, 2, . . . ,M. Let
(x0(v),Tix0(v)) ∈ Gr Ti be arbitrary and suppose that {(xn

0(v),Tixn
0(v))}∞n=0 is a sequence in

Qi(x0(v),Tix0(v)), which converges strongly to (y0(v),Tiy0(v)), i = 1, 2, . . . ,M. Since for each
n ∈ N, (xn

0(v),Tixn
0(v)) ∈ Qi(x0(v),Tix0(v)), i = 1, 2, . . . ,M, we have the following for each n ∈ N∫

Ωv0 ,v1

⟨A0(xn
0(v)), x0(v) − xn

0(v)⟩dv ≥ 0 and
∫
Ωv0 ,v1

⟨Ai(Tixn
0(v)),Tix0(v) − Tixn

0(v)⟩dv ≥ 0, i = 1, 2, . . . ,M. (4.3)

Since A0, Ai , i = 1, 2, . . . ,M are demi-continuous and T0, Ti , i = 1, 2, . . . ,M are continuous, by taking
the limit as n→ ∞ in Eq (4.3), we obtain∫

Ωv0 ,v1

⟨A0(y0(v)), x0(v) − y0(v)⟩dv ≥ 0

and ∫
Ωv0 ,v1

⟨Ai(Tiy0(v)),Tix0(v) − Tiy0(v)⟩dv ≥ 0, i = 1, 2, . . . ,M,

which implies that
(y0(v),Tiy0(v)) ∈ Qi(x0(v),Tix0(v))

for each i = 1, 2, . . . ,M. Thus, Qi(x0(v),Tix0(v)) is closed (w.r.t. the strong topology) for each

(x0(v),Tix0(v)) ∈ Gr Ti, i = 1, 2, . . . ,M.

By the hypothesis in Theorem 4.7, it follows that Qi(x0(v),Tix0(v)), i = 1, 2, . . . ,M is compact (w.r.t.
the strong topology) for each

(x0(v),Tix0(v)) ∈ D0 × Di ⊆ Gr Ti, i = 1, 2, . . . ,M.

Consequently, by the KKM-Fan theorem, we have⋂
(x0(v),Ti x0(v))∈Gr Ti

Qi(x0(v),Tix0(v)) , ∅, i = 1, 2, . . . ,M.
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This implies that there exists

(x∗0(v),Tix∗0(v)) ∈ Gr Ti, i = 1, 2, . . . ,M,

such that
(x∗0(v),Tix∗0(v)) ∈ Qi(x0(v),Tix0(v))

for all
(x0(v),Tix0(v)) ∈ Gr Ti, i = 1, 2, . . . ,M.

Now, we consider the subsets F0 ⊂ K0, Fi ⊂ Ki, i = 1, 2, . . . ,M, such that

(x∗0(v),Tix∗0(v)) ∈ F0 × Fi ⊆ Gr Ti, i = 1, 2, . . . ,M.

Then, we can write that there exists

(x∗0(v),Tix∗0(v)) ∈ F0 × Fi

such that
(x∗0(v),Tix∗0(v)) ∈ Qi(x∗0(v),Tix∗0(v))

for all
(x0(v),Tix0(v)) ∈ F0 × Fi, i = 1, 2, . . . ,M.

Consequently, we have that for all (x0(v),Tix0(v)) ∈ F0 × Fi,∫
Ωv0 ,v1

⟨A0(x∗0(v)), x0(v) − x∗0(v)⟩dv ≥ 0 and
∫
Ωv0 ,v1

⟨Ai(Tix∗0(v)),Tix0(v) − Tix∗0(v)⟩dv ≥ 0, i = 1, 2, . . . ,M. (4.4)

Let
y∗i (v) = Tix∗0(v), yi(v) = Tix0(v), i = 1, 2, . . . ,M,

and observe that x∗0(v) and
y∗i (v) = Tix∗0(v), i = 1, 2, . . . ,M

are fixed in Eq (4.4). Thus, Eq (4.4) can be rewritten as x∗0(v) ∈ F0, such that∫
Ωv0 ,v1

⟨A0(x∗0(v)), x0(v) − x∗0(v)⟩dv ≥ 0, ∀x0(v) ∈ F0,

and such that

y∗i (v) = Tix∗0(v) ∈ Fi solves
∫
Ωv0 ,v1

⟨Ai(y∗i (v)), yi(v) − y∗i (v)⟩dv ≥ 0, ∀yi(v) ∈ Fi, i = 1, 2, . . . ,M.

Hence, it follows that the MSVIP-MOS has a solution x∗0(v) ∈ F0 ⊂ K0.

Next, we present the result on the uniqueness of the solution of the MSVIP-MOS in the following
corollary.

Corollary 1. If the cost operators Ai, i = 0, 1, . . . ,M are strictly monotone on Ki, i = 0, 1, . . . ,M, then
the MSVIP-MOS has a unique solution.
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Proof. Suppose to the contrary that the MSVIP-MOS does not have a unique solution. Let x0(v) ∈ K0

be a solution of the MSVIP-MOS. Then, we have∫
Ωv0 ,v1

⟨Ai(Tix0(v)), xi(v) − Tix0(v)⟩dv ≥ 0, ∀ xi(v) ∈ Ki,Tix0(v) ∈ Ki, i = 0, 1, . . . ,M. (4.5)

Let x̂0(v) ∈ K0 be another solution of the MSVIP-MOS such that x0(v) , x̂0(v). Then, it follows that∫
Ωv0 ,v1

⟨Ai(Ti x̂0(v)), x̂i(v) − Ti x̂0(v)⟩dv ≥ 0, ∀ x̂i(v) ∈ Ki,Ti x̂0(v) ∈ Ki, i = 0, 1, . . . ,M. (4.6)

We can rewrite Eq (4.5) as∫
Ωv0 ,v1

⟨Ai(Tix0(v)),Ti x̂0(v) − Tix0(v)⟩dv ≥ 0, i = 0, 1, . . . ,M. (4.7)

By the strict monotonicity of the Ai, i = 0, 1, . . . ,M, together with the fact that x0(v) , x̂0(v), we get

∫
Ωv0 ,v1

⟨Ai(Tix0(v)) − Ai(Ti x̂0(v)),Tix0(v) − Ti x̂0(v)⟩dv > 0, i = 0, 1, . . . ,M. (4.8)

By adding Eqs (4.7) and (4.8), we obtain∫
Ωv0 ,v1

⟨Ai(Ti x̂0(v)),Tix0(v) − Ti x̂0(v)⟩dv < 0, i = 0, 1, . . . ,M,

which contradicts Eq (4.6). Therefore, it follows that x̂0(v) is not a solution of the MSVIP-MOS.
Consequently, the MSVIP-MOS has a unique solution.

5. Numerical experiments for the multidimensional traffic model with multiple networks

In this section, motivated by the work of Cojocaru et al. [23], we study our multidimensional traffic
model with multiple networks by employing the theory of a projected dynamical system (PDS).
Dupuis and Nagurney [24] were the first to introduce and study the PDS. Furthermore, they
established the connections of PDS with the classical variational inequality problem. For more details
about the various areas of applications of the PDS, we refer interested readers to [23, 25].

Inspired by the results from the aforementioned works, here, we introduce and formulate a
multidimensional split projected dynamical system with multiple output sets (MSPDS-MOS) for
pi = 2, i = 0, 1, . . . ,M as follows:

Find x0(·) ∈ K0 such that
dx0(·, τ)

dτ
= ΠK0

(
x0(·, τ),−A0(x0(·, τ))

)
, x0(·, 0) = x0

0(·) ∈ K0

and such that xi(·) = Tix0(·) ∈ Ki satisfies
dxi(·, τ)

dτ
= ΠKi

(
xi(·, τ),−Ai(xi(·, τ))

)
, xi(·, 0) = x0

i (·) ∈ Ki, i = 1, 2, . . . ,M,
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where Ai : Ki → L2(Ωv0,v1 ,R
|Vi |), i = 0, 1, . . . ,M, are Lipschitz continuous vector fields and the

operators ΠKi : Ki × L2(Ωv0,v1 ,R
|Vi |), i = 0, 1, . . . ,M are defined by

ΠKi(xi(·), yi(·)) := lim
δ→0+

projKi

(
xi(·) + δyi(·)

)
− xi(·)

δ
, ∀ xi(·) ∈ Ki, yi(·) ∈ L2(Ωv0,v1 ,R

|Vi |),

where projKi
(·) are the nearest point projection of a given vector onto the sets given by Ki.

Alternatively, the MSPDS-MOS can be formulated as follows:
Find x0(·) ∈ K0 such that

dTix0(·, τ)
dτ

= ΠKi

(
Tix0(·, τ),−Ai(Tix0(·, τ))

)
, xi(·, 0) = x0

i (·) ∈ Ki, i = 0, 1, . . . ,M.

For clarity, here we have represented the elements of the space L2(Ωv0,v1 ,R
|Vi |) at fixed v ∈ Ωv0,v1

by x(·). Observe that for all v ∈ Ωv0,v1 , a solution of the MSVIP-MOS represents a static state of the
underlying system and the static states define one or more equilibrium curves when v varies overΩv0,v1 .

On the contrary, the time τ defines the dynamics of the system over the interval [0,∞) until it attains one
of the equilibria on the curves. Clearly, the solutions to the MSPDS-MOS lie in the class of absolutely
continuous functions with respect to τ, mapping [0,∞) to Ki, i = 0, 1, . . . ,M. Before we describe the
procedure to solve the MSVIP-MOS, we present the following useful definitions motivated by [26,27].

Definition 5.1. A point x̂0(·) ∈ K0 is called a critical point for the MSPDS-MOS if

ΠK0

(
x̂0(·),−A0(x̂0(·))

)
= 0

and the point ŷi(·) = Ti x̂0(·) ∈ Ki satisfies

ΠKi

(
ŷi(·),−Ai(ŷi(·))

)
= 0, i = 1, 2, . . . ,M.

Alternatively, the critical point for the MSPDS-MOS can be defined as follows: x̂0(·) ∈ K0 is called
a critical point for the MSPDS-MOS if

ΠKi

(
Ti x̂0(·),−Ai(Ti x̂0(·))

)
= 0, Ti x̂0(·) ∈ Ki, i = 0, 1, . . . ,M.

Definition 5.2. The polar set Ko associated with K is defined by

Ko :=
{
x(·) ∈ L2(Ωv0,v1 ,R

|V |) : ⟨⟨x(·), y(·)⟩⟩ ≤ 0, ∀ y(·) ∈ K
}
.

Definition 5.3. The tangent cone to the set K at x(·) ∈ K is defined by

T̂K(x(·)) = cl
(⋃
λ>0

K − x(·)
λ

)
,

where cl denotes the closure operation.

Definition 5.4. The normal cone of K at x(·) ∈ K is defined by

NK(x(·)) :=
{
y(·) ∈ L2(Ωv0,v1 ,R

|V |) : ⟨⟨y(·), z(·) − x(·)⟩⟩ ≤ 0, ∀ z(·) ∈ K
}
.

Alternatively, we can express this as T̂K(x(·)) = [NK(x(·))]o.
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Definition 5.5. The projection of x(·) ∈ L2(Ωv0,v1 ,R
|V |) onto K is defined by

projK(x(·)) := arg min
y(·)∈K
∥x(·) − y(·)∥.

Remark 3. The projection map projK(·) satisfies the following property for each x(·) ∈ L2(Ωv0,v1 ,R
|V |) :

⟨⟨x(·) − projK(x(·)), y(·) − projK(x(·))⟩⟩ ≤ 0, ∀ y(·) ∈ K.

We have the following results, which follow from Proposition 2.1 and 2.2 in [26].

Proposition 1. For all x(·) ∈ K and y(·) ∈ L2(Ωv0,v1 ,R
|V |), ΠK(x(·), y(·)) exists and ΠK(x(·), y(·)) =

projT̂K (x(·))(y(·)).

Proposition 2. For all x(·) ∈ K, there exists n(·) ∈ NK(x(·)) such thatΠK(x(·), y(·)) = y(·)−n(·), ∀y(·) ∈
L2(Ωv0,v1 ,R

|V |).

Now, we prove the following theorem, which establishes the relationship between solutions of
MSVIP-MOS and the critical points of the MSPDS-MOS.

Theorem 5.6. The point x∗0(·) ∈ K0 is a solution of the MSVIP-MOS if and only if it is a critical point
of the MSPDS-MOS.

Proof. First, we suppose that x∗0(·) ∈ K0 is a solution to the MSVIP-MOS, that is,∫
Ωv0 ,v1

⟨Ai(Tix∗0(·)), yi(·) − Tix∗0(·)⟩dv ≥ 0, ∀ yi(·) ∈ Ki, i = 0, 1, . . . ,M,

which implies that

⟨⟨Ai(Tix∗0(·)), yi(·) − Tix∗0(·)⟩⟩ ≥ 0, ∀ yi(·) ∈ Ki, i = 0, 1, . . . ,M.

From the last inequality, it follows that

−Ai(Tix∗0(·)) ∈ NKi(Tix∗0(·)), i = 0, 1, . . . ,M.

By Proposition 2, we have
ΠKi(Tix∗0(·),−Ai(Tix∗0(·))) = 0, (5.1)

which implies that x∗0(·) is a critical point of the MSPDS-MOS.
Conversely, suppose that x∗0(·) is a critical point of the MSPDS-MOS. Then, Eq (5.1) holds. By

Proposition 1, it follows that

projT̂Ki (Ti x∗0(·))(−Ai(Tix∗0(·))) = 0, i = 0, 1, . . . ,M.

Applying Remark 3, we obtain

⟨⟨−Ai(Tix∗0(·)), zi(·)⟩⟩ ≤ 0, ∀ zi(·) ∈ T̂Ki(Tix∗0(·)), i = 0, 1, . . . ,M,

which gives
−Ai(Tix∗0(·)) ∈ NKi(Tix∗0(·)), i = 0, 1, . . . ,M.

From this, it follows that x∗0(·) is a solution of the MSVIP-MOS.
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At this point, we present the method for finding the solution of the MSVIP-MOS. In our numerical
experiments, we consider the case in which v = (tα), α = 1, 2, . . . ,m, that is, there are m-dimensional
time parameters. We have established the existence and uniqueness of equilibria for the MSVIP-MOS
in Section 4. Moreover, Theorem 5.6 guarantees that any point on a curve of equilibria in the set Ωv0,v1

is a critical point of the MSPDS-MOS and vice versa. Taking into consideration all of these facts, now
we discretize the set Ωv0,v1 as follows: Ωv0,v1 : (v1

0, v
2
0, . . . , v

m
0 ) = (t1

0, t
2
0, . . . , t

m
0 ) < (t1

1, t
2
1, . . . , t

m
1 ) < . . . <

(t1
j , t

2
j , . . . , t

m
j ) < . . . < (t1

n, t
2
n, . . . , t

m
n ) = (v1

1, v
2
1, . . . , v

m
1 ). Consequently, for each t j = (t1

j , t
2
j , . . . , t

m
j ), j =

0, 1, . . . , n, we obtain a sequence of the MSPDS-MOS on the distinct, finite-dimensional, closed and
convex sets denoted by Kt j . After evaluating all of the critical points of each MSPDS-MOS, we obtain
a sequence of critical points and from this, we generate the curves of equilibria by interpolation.

5.1. Example 1

To demonstrate the implementation of this procedure, we consider the transportation network
patterns of three cities C0,C1 and C2 as shown in Figure 1 below.
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Figure 1. The transportation network patterns of the three cities C0,C1 and C2.

We suppose that a bus company has stations at nodes P1
0 and P2

0 in City C0, at nodes P1
1 and P4

1 in
City C1 and at nodes P1

2 and P12
2 in City C2. In City C0, the buses from stations P1

0 and P2
0 have to

deserve the locations P3
0 and P5

0, respectively. In City C1, the buses from stations P1
1 and P4

1 have to
deserve the locations P2

1 and P3
1, respectively. While in City C2, the buses from stations P1

2 and P12
2

have to deserve the locations P6
2 and P8

2, respectively.
Hence, the network of City C0 comprises six nodes and eight links, and we assume that the

origin-destination pairs are w1
0 = (P1

0, P
3
0) and w2

0 = (P2
0, P

5
0), which are respectively connected by the

following routes:

w1
0 :

r1
0 = (P1

0, P
2
0) ∪ (P2

0, P
3
0)

r2
0 = (P1

0, P
6
0) ∪ (P6

0, P
5
0) ∪ (P5

0, P
2
0) ∪ (P2

0, P
3
0),
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w2
0 :

r3
0 = (P2

0, P
3
0) ∪ (P3

0, P
4
0) ∪ (P4

0, P
5
0)

r4
0 = (P2

0, P
3
0) ∪ (P3

0, P
6
0) ∪ (P6

0, P
5
0).

Let Ωv0,v1 = Ω0,3 = [0, 3]2. The set of feasible flows, K0, is given by

K0 ={x(t) ∈ L2(Ω0,3,R
4) :

(0, 0, 0, 0) ≤ (x1(t), x2(t), x3(t), x4(t)) ≤ (t1 + t2 + 1, t1 + t2 + 2, 2t1 + 2t2 + 2, t1 + t2 + 3)
and x1(t) + x2(t) = t1 + t2 + 2, x3(t) + x4(t) = 2t1 + 2t2 + 3, a.e. in Ω0,3},

the cost function A0 : K0 → L2(Ω0,3,R
4) is defined by

A0(x(t)) = (x1(t), x2(t), x3(t), x4(t))

and the bounded linear operator

T0 : L2(Ω0,3,R
4)→ L2(Ω0,3,R

4)

is defined by T0x(t) = (x1(t), x2(t), x3(t), x4(t)), where x(t) = (x1(t), x2(t), x3(t), x4(t)).
Moreover, the network of City C1 is made up of five nodes and seven links, and we assume that the

origin-destination pairs are w1
1 = (P1

1, P
2
1) and w2

1 = (P4
1, P

3
1), which are respectively connected by the

following routes:

w1
1 :

r1
1 = (P1

1, P
2
1)

r2
1 = (P1

1, P
4
1) ∪ (P4

1, P
2
1),

w2
1 :


r3

1 = (P4
1, P

2
1) ∪ (P2

1, P
3
1)

r4
1 = (P4

1, P
5
1) ∪ (P5

1, P
3
1)

r5
1 = (P4

1, P
2
1) ∪ (P2

1, P
5
1) ∪ (P5

1, P
3
1).

The set of feasible flows, K1, is given by

K1 = {y(t) ∈ L2(Ω0,3,R
5) :

(0, 0, 0, 0, 0) ≤ (y1(t), y2(t), y3(t), y4(t), y5(t)) ≤ (t1 + t2 + 6, t1 + t2 + 6, 2t1 + 2t2 + 2,
t1 + t2 + 4, 4t1 + 4t2 + 4) and y1(t) + y2(t) = 3t1 + 3t2 + 5,
y3(t) + y4(t) + y5(t) = 2t1 + 4t2 + 6, a.e. in Ω0,3},

the cost function A1 : K1 → L2(Ω0,3,R
5) is defined as

A1(y(t)) = (y2
1(t), y2

2(t), y2
3(t), y2

4(t), y2
5(t))

and the bounded linear operator

T1 : L2(Ω0,3,R
4)→ L2(Ω0,3,R

5)

is defined by

T1y(t) = (y1(t) + y4(t), y2(t) + y3(t), y1(t) + y2(t), 2y1(t), 2y2(t) + y4(t) − y3(t)),
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where
y(t) = (y1(t), y2(t), y3(t), y4(t)).

Also, the network of City C2 is composed of twelve nodes and thirteen links, and we assume that
the origin-destination pairs are w1

2 = (P1
2, P

6
2) and w2

2 = (P12
2 , P

8
2), which are respectively connected by

the following routes:

w1
2 :

r1
2 = (P1

2, P
2
2) ∪ (P2

2, P
3
2) ∪ (P3

2, P
4
2) ∪ (P4

2, P
5
2) ∪ (P5

2, P
6
2)

r2
2 = (P1

2, P
2
2) ∪ (P2

2, P
8
2) ∪ (P8

2, P
7
2) ∪ (P7

2, P
6
2),

w2
2 :

r3
2 = (P12

2 , P
11
2 ) ∪ (P11

2 , P
10
2 ) ∪ (P10

2 , P
9
2) ∪ (P9

2, P
8
2)

r4
2 = (P12

2 , P
1
2) ∪ (P1

2, P
2
2) ∪ (P2

2, P
8
2).

The set of feasible flows, K2, is given by

K2 = {z(t) ∈ L2(Ω0,3,R
4) :

(0, 0, 0, 0) ≤ (z1(t), z2(t), z3(t), z4(t)) ≤ (2t1 + 2t2 + 3, t1 + t2 + 7, 3t1 + 3t2 + 4, 2t1 + 2t2 + 5)
and z1(t) + z2(t) = 3t1 + 3t2 + 4, z3(t) + z4(t) = 2t1 + 6t2 + 7, a.e. in Ω0,3},

the cost function A2 : K2 → L2(Ω0,3,R
4) is defined by

A2(z(t)) = (z1(t) + z2
1(t), z2(t) + z2

2(t), z3(t) + z2
3(t), z4(t) + z2

4(t))

and the bounded linear operator

T2 : L2(Ω0,3,R
4)→ L2(Ω0,3,R

4)

is defined by
T2z(t) = (2z3(t) − z1(t), 2z4(t) − z2(t), 2z1(t) + z4(t), 2z2(t) + z3(t)),

where
z(t) = (z1(t), z2(t), z3(t), z4(t)).

It can easily be verified that all the hypotheses of Theorem 4.7 are satisfied and that the cost
operators denoted by Ai, i = 0, 1, 2 are strictly monotone on the sets of feasible flows denoted by
Ki, i = 0, 1, 2. Thus, the MSVIP-MOS has a unique solution. We select

t j ∈
{[k

6
,

k
6
]

: k ∈ {0, 1, 2, . . . , 18}
}
.

Then, we have a sequence of MSPDS-MOS defined on the feasible sets

K0,t j ={x(t j) ∈ L2(Ω0,3,R
4) :

(0, 0, 0, 0) ≤ (x1(t j), x2(t j), x3(t j), x4(t j)) ≤ (t1
j + t2

j + 1, t1
j + t2

j + 2, 2t1
j + 2t2

j + 2,

t1
j + t2

j + 3) and x1(t j) + x2(t j) = t1
j + t2

j + 2, x3(t j) + x4(t j) = 2t1
j + 2t2

j + 3, a.e. in Ω0,3},

K1,t j = {y(t j) ∈ L2(Ω0,3,R
5) :
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(0, 0, 0, 0, 0) ≤ (y1(t j), y2(t j), y3(t j), y4(t j), y5(t j)) ≤ (t1
j + t2

j + 6, t1
j + t2

j + 6,

2t1
j + 2t2

j + 2, t1
j + t2

j + 4, 4t1
j + 4t2

j + 4) and y1(t j) + y2(t j) = 3t1
j + 3t2 + 5, y3(t j) + y4(t j) + y5(t j)

= 2t1
j + 4t2

j + 6, a.e. in Ω0,3},

K2,t j = {z(t j) ∈ L2(Ω0,3,R
4) :

(0, 0, 0, 0) ≤ (z1(t j), z2(t j), z3(t j), z4(t j)) ≤ (2t1
j + 2t2

j + 3, t1
j + t2

j + 7, 3t1
j + 3t2

j + 4, 2t1
j + 2t2

j + 5)

and z1(t j) + z2(t j) = 3t1
j + 3t2

j + 4, z3(t j) + z4(t j) = 2t1
j + 6t2

j + 7, a.e. in Ω0,3}.

For evaluating the unique equilibrium, we have the following system at t j :

find x∗(t j) ∈ K0,t j such that − A0(x∗(t j)) ∈ NK0,t j
(x∗(t j))

and Tix∗(t j) ∈ Ki,t j solves − Ai(Tix∗(t j)) ∈ NKi,t j
(Tix∗(t j)), i = 1, 2.

After some computations, we obtain the equilibrium points which are presented in Tables 1–3. Then,
we interpolate the points in Tables 1–3 to get the curves of equilibria displayed in Figures 2–4.

Table 1 displays the equilibrium points at each instant for City C0 while the traffic network pattern
of City C0 is presented in Figure 2. We observe from Table 1 that at the beginning of the equilibrium
flow in City C0, the flow on each of the routes connecting the origin-destination pair w2

0 is about 1.5
times the flow on each of the routes connecting the origin destination pair w1

0, and this factor increases
gradually over the equilibrium flow time to about 1.9.

Table 1. Numerical results associated with the traffic network pattern of City C0.

ti = {t1
i , t

2
i } x∗1(ti) x∗2(ti) x∗3(ti) x∗4(ti)

{0, 0} 1.0000 1.0000 1.5000 1.5000
{ 16 ,

1
6 } 1.1667 1.1667 1.8333 1.8333

{ 13 ,
1
3 } 1.3333 1.3333 2.1667 2.1667

{ 12 ,
1
2 } 1.5000 1.5000 2.5000 2.5000

{ 23 ,
2
3 } 1.6667 1.6667 2.8333 2.8333

{ 56 ,
5
6 } 1.8333 1.8333 3.1667 3.1667

{1, 1} 2.0000 2.0000 3.5000 3.5000
{ 76 ,

7
6 } 2.1667 2.1667 3.8333 3.8333

{ 43 ,
4
3 } 2.3333 2.3333 4.1667 4.1667

{ 32 ,
3
2 } 2.5000 2.5000 4.5000 4.5000

{ 53 ,
5
3 } 2.6667 2.6667 4.8333 4.8333

{ 11
6 ,

11
6 } 2.8333 2.8333 5.1667 5.1667

{2, 2} 3.0000 3.0000 5.5000 5.5000
{ 13

6 ,
13
6 } 3.1667 3.1667 5.8333 5.8333

{ 73 ,
7
3 } 3.3333 3.3333 6.1667 6.1667

{ 52 ,
5
2 } 3.5000 3.5000 6.5000 6.5000

{ 83 ,
8
3 } 3.6667 3.6667 6.8333 6.8333

{ 17
6 ,

17
6 } 3.8333 3.8333 7.1667 7.1667

{3, 3} 4.0000 4.0000 7.5000 7.5000
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Figure 2. The traffic network pattern of City C0.

Table 2 shows the equilibrium points at each instant for City C1 and the traffic network pattern of
the city is presented in Figure 3. We note from Table 2 that at the beginning of the equilibrium flow in
City C1, the flow on each of the routes connecting the origin-destination pair w1

1 is about 1.3 times the
flow on each of the routes connecting the origin destination pair w2

1, and this factor increases gradually
over the equilibrium flow time to about 1.4.

Table 2. Numerical results associated with the traffic network pattern of City C1.

ti = {t1
i , t

2
i } y∗1(ti) y∗2(ti) y∗3(ti) y∗4(ti) y∗5(ti)

{0, 0} 2.5000 2.5000 2.0000 2.0000 2.0000
{ 16 ,

1
6 } 3.0000 3.0000 2.3333 2.3333 2.3333

{ 13 ,
1
3 } 3.5000 3.5000 2.6667 2.6667 2.6667

{ 12 ,
1
2 } 4.0000 4.0000 3.0000 3.0000 3.0000

{ 23 ,
2
3 } 4.5000 4.5000 3.3333 3.3333 3.3333

{ 56 ,
5
6 } 5.0000 5.0000 3.6667 3.6667 3.6667

{1, 1} 5.5000 5.5000 4.0000 4.0000 4.0000
{ 76 ,

7
6 } 6.0000 6.0000 4.3333 4.3333 4.3333

{ 43 ,
4
3 } 6.5000 6.5000 4.6667 4.6667 4.6667

{ 32 ,
3
2 } 7.0000 7.0000 5.0000 5.0000 5.0000

{ 53 ,
5
3 } 7.5000 7.5000 5.3333 5.3333 5.3333

{ 11
6 ,

11
6 } 8.0000 8.0000 5.6667 5.6667 5.6667

{2, 2} 8.5000 8.5000 6.0000 6.0000 6.0000
{ 13

6 ,
13
6 } 9.0000 9.0000 6.3333 6.3333 6.3333

{ 73 ,
7
3 } 9.5000 9.5000 6.6667 6.6667 6.6667

{ 52 ,
5
2 } 10.0000 10.0000 7.0000 7.0000 7.0000

{ 83 ,
8
3 } 10.5000 10.5000 7.3333 7.3333 7.3333

{ 17
6 ,

17
6 } 11.0000 11.0000 7.6667 7.6667 7.6667

{3, 3} 11.5000 11.5000 8.0000 8.0000 8.0000
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Figure 3. The traffic network pattern of City C1.

Table 3 presents the equilibrium points at each instant for City C2 while the traffic network pattern of
the city is presented in Figure 4. It is observed from Table 3 that at the beginning of the equilibrium flow
in City C2, the flow on each of the routes connecting the origin-destination pair w2

2 is about 1.8 times
the flow on each of the routes connecting the origin destination pair w1

2. Contrary to the observation in
cities C0 and C1, this factor decreases gradually over the equilibrium flow time to about 1.4.

Table 3. Numerical results associated with the traffic network pattern of City C2.

ti = {t1
i , t

2
i } z∗1(ti) z∗2(ti) z∗3(ti) z∗4(ti)

{0, 0} 2.0000 2.0000 3.5000 3.5000
{ 16 ,

1
6 } 2.5000 2.5000 4.1667 4.1667

{ 13 ,
1
3 } 3.0000 3.0000 4.8333 4.8333

{ 12 ,
1
2 } 3.5000 3.5000 5.5000 5.5000

{ 23 ,
2
3 } 4.0000 4.0000 6.1667 6.1667

{ 56 ,
5
6 } 4.5000 4.5000 6.8333 6.8333

{1, 1} 5.0000 5.0000 7.5000 7.5000
{ 76 ,

7
6 } 5.5000 5.5000 8.1667 8.1667

{ 43 ,
4
3 } 6.0000 6.0000 8.8333 8.8333

{ 32 ,
3
2 } 6.5000 6.5000 9.5000 9.5000

{ 53 ,
5
3 } 7.0000 7.0000 10.1667 10.1667

{ 11
6 ,

11
6 } 7.5000 7.5000 10.8333 10.8333

{2, 2} 8.0000 8.0000 11.5000 11.5000
{ 13

6 ,
13
6 } 8.5000 8.5000 12.1667 12.1667

{ 73 ,
7
3 } 9.0000 9.0000 12.8333 12.8333

{ 52 ,
5
2 } 9.5000 9.5000 13.5000 13.5000

{ 83 ,
8
3 } 10.0000 10.0000 14.1667 14.1667

{ 17
6 ,

17
6 } 10.5000 10.5000 14.8333 14.8333

{3, 3} 11.0000 11.0000 15.5000 15.5000
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Figure 4. The traffic network pattern of City C2.

We observe from the results that when the system is in equilibrium every route in each of the three
cities is in use. Moreover, routes connecting the same origin-destination pair in each city have an equal
amount of flow at each instant t within the equilibrium flow time.

5.2. Example 2: Extension to models with heterogeneous networks

In this section, we illustrate how our results can be applied to study models with heterogeneous
networks. For that purpose, we consider a City C, which comprises a traffic network of human-driven
vehicles (HDVs), traffic network of connected automated vehicles (CAVs) and an electricity network
as shown in Figure 5 below.
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Figure 5. The network model of the three heterogeneous networks in City C.

We denote the traffic network of human-driven vehicles by NHDV, while we denote the traffic
network of connected automated vehicles by NCAV and the electricity network by EN. Here, it is
assumed that the EN is analogous to the traffic network. Suppose that within the network coverage
of CAVs, we have commuters such that some of them need to be transported from location P1 to
location P3 and others from location P1 to location P4, using CAVs. On the other hand, we assume
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that within the network coverage of HDVs, we have commuters who need to be transported by HDVs
from locations Q1 and Q12 to locations Q6 and Q8, respectively. Also, we suppose that within the EN,
electricity needs to be transmitted from point R1 to point R4.

Therefore, the NCAV consists of four nodes and six links, and we assume that the origin destination
pairs are w1

p = (P1, P3) and w2
p = (P1, P4), which are connected respectively by the following routes:

w1
p :


r1

p = (P1, P2) ∪ (P2, P3)
r2

p = (P1, P4) ∪ (P4, P3)
r3

p = (P1, P3),

w2
p :

r4
p = (P1, P4)

r5
p = (P1, P2) ∪ (P2, P4).

The set of feasible flows K0 is given by

K0 =
{
x0(v) ∈ Lp0(Ωv0,v1 ,R

5) : λ0(v) ≤ x0(v) ≤ µ0(v) and Φ0x0(v) = ρ0(v), a.e. on Ωv0,v1

}
,

the cost function is given by A0 : K0 → Lq0(Ωv0,v1 ,R
5) and the bounded linear operator

T0 : Lp0(Ωv0,v1 ,R
5)→ Lp0(Ωv0,v1 ,R

5).
Similarly, the NHDV comprises twelve nodes and thirteen links, and we assume that the

origin-destination pairs are w1
q = (Q1,Q6) and w2

q = (Q12,Q8), which are respectively connected by
the following routes:

w1
q :

r1
q = (Q1,Q2) ∪ (Q2,Q3) ∪ (Q3,Q4) ∪ (Q4,Q5) ∪ (Q5,Q6)

r2
q = (Q1,Q2) ∪ (Q2,Q8) ∪ (Q8,Q7) ∪ (Q7,Q6),

w2
q :

r3
q = (Q12,Q11) ∪ (Q11,Q10) ∪ (Q10,Q9) ∪ (Q9,Q8)

r4
q = (Q12,Q1) ∪ (Q1,Q2) ∪ (Q2,Q8).

The set of feasible flows K1 is given by

K1 =
{
x1(v) ∈ Lp1(Ωv0,v1 ,R

4) : λ1(v) ≤ x1(v) ≤ µ1(v) and Φ1x1(v) = ρ1(v), a.e. on Ωv0,v1

}
,

the cost function is given by A1 : K1 → Lq1(Ωv0,v1 ,R
4) and the bounded linear operator

T1 : Lp1(Ωv0,v1 ,R
4)→ Lp1(Ωv0,v1 ,R

4).
On the other hand, the EN consists of six nodes and seven links, and we assume that the

origin-destination pair is w1
r = (R1,R4), which is connected by the following routes:

w1
r :


r1

r = (R1,R2) ∪ (R2,R3) ∪ (R3,R4)
r2

r = (R1,R6) ∪ (R6,R5) ∪ (R5,R4)
r3

r = (R1,R4).

The set of feasible flows K2 is given by

K2 =
{
x2(v) ∈ Lp2(Ωv0,v1 ,R

3) : λ2(v) ≤ x2(v) ≤ µ2(v) and Φ2x2(v) = ρ2(v), a.e. on Ωv0,v1

}
,
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the cost function is given by A2 : K2 → Lq2(Ωv0,v1 ,R
3) and the bounded linear operator

T2 : Lp2(Ωv0,v1 ,R
3)→ Lp2(Ωv0,v1 ,R

3).

Then, it follows that x0(v) ∈ K0 is an equilibrium flow if and only if∫
Ωv0 ,v1

⟨A0(x0(v)), y0(v) − x0(v)⟩dv ≥ 0, ∀y0(v) ∈ K0,

and such that xi(v) = Tix0(v) ∈ Ki solves (5.2)∫
Ωv0 ,v1

⟨Ai(xi(v)), yi(v) − xi(v)⟩dv ≥ 0, ∀yi(v) ∈ Ki, i = 1, 2.

Therefore, by employing the model (5.2), we can determine the equilibrium flows of the NCAV, NHDV
and EN simultaneously.

Conclusion

We introduced and studied a new class of split inverse problem called the MSVIP-MOS. Our
proposed model is finite-dimensional and essentially an assignment problem. It comprises a
multidimensional parameter of evolution. To demonstrate the applicability of our proposed model in
the economic world, we formulated the equilibrium flow of multidimensional traffic network models
for an arbitrary number of locations. Moreover, we proposed a method for solving the introduced
problem and validated our results with some numerical experiments. Finally, to further demonstrate
the usefulness of our newly introduced model, we applied our results to study the network model of a
city with heterogeneous networks that comprises CAVs and legacy (human-driven) vehicles,
alongside the EN, e.g. for charging the CAVs, and we formulated the equilibrium flow of this network
model in terms of the newly introduced MSVIP-MOS. However, we note that the problem
investigated in this study belongs to the class of linear (split) inverse problems, and as such our results
are not applicable to nonlinear traffic flow models. In our future study, we will be interested in
extending our results to this class of models.
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