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Abstract: We systematically test families of explicit adaptive step size controllers for solving the 

diffusion or heat equation. After discretizing the space variables as in the conventional method of lines, 

we are left with a system of ordinary differential equations (ODEs). Different methods for estimating 
the local error and techniques for changing the step size when solving a system of ODEs were 

suggested previously by researchers. In this paper, those local error estimators and techniques are used 

to generate different types of adaptive step size controllers. Those controllers are applied to a system 
of ODEs resulting from discretizing diffusion equations. The performances of the controllers were 

compared in the cases of three different experiments. The first and the second system are heat 

conduction in homogeneous and inhomogeneous media, while the third one contains a moving heat 
source that can correspond to a welding process.  
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1. Introduction  

1.1. The studied problems 

We consider a linear second order partial differential equation (PDE), the so-called heat 

equation [1]:  

2u
u q

t


  


 (1.1) 

Or more generally, 

 (1.2) 

where u = u(t,x) is the temperature, α = k/ (cρ) > ൪ is the thermal diffusivity, and q, k, c and ρ are the 
intensity of the heat source, heat conductivity, specific heat and (mass) density, respectively. To solve 

Eq (1.1) numerically, we construct an equidistant grid of N nodes. For simplicity let us consider a one-
dimensional equation in a homogeneous medium. Now, if we make a second order central difference 

approximation for the space derivative, then we get a system of ordinary differential equations in the 

following form: 

2
1 12

, 1,...,ii i i
i

u u udu
q i N

dt x
   

  


 

which can be written in matrix form as 

. (1.3) 

MN,N is a square matrix with , 1 , 12 2

2
, (1 )ii i i i im m m i N

x x

 
      

 
 . If the material 

parameters, such as c, are not spatially homogeneous, and/or the mesh is not equidistant, we use a 
resistance-capacitance model, which can be derived from PDE (1.2) using the central difference 
formula. For more details, see [2,3], where we have done it in the case of arbitrary space dimensions. 
In the general case, the system of ODEs can be written as follows: 

 (1.4) 

where Ci, Ri,j are the heat capacity and the thermal resistance of the cell labeled by i. Eq (1.4) can be 

written into the same matrix form as in Eq (1.3), and since the capacities and resistances are 

nonnegative quantities, the eigenvalues λi i = 1,..., N  of the matrix M remain non-positive. The 
stiffness ratio now can be defined as max{|λi|}/ min{|λi|}, while the CFL (Courant–Friedrichs–Lewy) 

limit for the classical first order explicit method can be given as 2/max{|λi|}, and this limit is just 
slightly larger for the fourth order Runge-Kutta (RK) methods. It is well known that explicit Runge-
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Kutta methods are only conditionally stable, which means that if the time step size is larger than the 

CFL limit, the solution is expected to start to oscillate with exponentially increasing amplitude. 

1.2. Brief literature review and the scope of the paper 

Many explicit numerical methods are available for solving a parabolic PDE, such as Eq (1.1) or 

Eq (1.2). A typical approach is the so-called method of lines (MOL), that is, to spatially discretize them 

and then solve the obtained system of ODEs by well-established ODE solvers. In fact, the three most 
common schemes, i.e., the standard explicit, implicit and Crank-Nicolson finite difference schemes, 

can be perceived as members of the MOL family, since after spatial discretization, they apply the 

explicit and implicit Euler time-discretization and the implicit trapezoidal rule, which are actually two 
first order and one second order RK methods, respectively. Although the family of the RK methods 

has been well known for a long time, it is still challenging to outperform them. For example,    

Savovic et al. [4] tested the so-called UPFD (unconditionally positive finite difference) scheme, 
constructed in the last decade, against the simplest standard explicit finite difference scheme. However, 

they obtained that the classical scheme is more accurate than the UPFD due to the extra truncation 

error terms of the UPFD scheme. Our current study will be restricted to two fundamentally different 
types of explicit methods, the multi-stage RK methods and the recently published LNe3 method [2].  

In general, the explicit numerical methods for solving a system of ordinary differential equations 

use fixed time steps. This kind of approach can perform poorly if the solution changes rapidly in some 
parts of the integration interval and slowly in other ones. Using a small constant time-step where the 

solution changes rapidly can help to circumvent the problem of poor performance, but this small 

constant time-step may cause unnecessary computational cost where the solution changes slowly. 
Using adaptive methods based on automatic time-step selection can be the remedy of the expensive 

numerical computations [5]. Adapting the time-step size during the integration process is not just a 

matter of improving the performance of the integrator; it makes the solution of difficult problems 
practical [6]. There are at least three crucial factors when it comes to designing adaptive step-size 

integrators: the method of calculating the solution at the end of the actual time step, the method of 

estimating the local error in each time step and the approach for changing the time step [7]. 
Estimating the local error in Runge-Kutta methods when applied to ordinary differential equations 

was studied intensively in the literature of numerical analysis [5–14]. The methods of estimating the 

local error can be classified into two types: the methods which use the information from only a single 
step and those which use the information from successive steps. The methods of the second type are 

out of the scope of this paper. The most well-known method of the first type for estimating the local 

error is to calculate the dependent variable u first by using a full time step h and to recalculate it using 
two halved time steps h/2. The difference between the two values of u represents the local error LE. 

Another common method is the pseudo-iterative formula, which uses an RK formula of order p and 

then an RK formula of order p + 1, which uses the already calculated quantities of the lower order RK 
formula to save time, which is why these algorithms are called embedded methods [13]. In his early 

work [8], Merson derived a formula that gives a plausible estimation for the local error which is valid 

only if the ordinary differential equation is linear. Later, Scraton [14] suggested a new formula for 
estimating the local error but without any restrictions on its validity. The particular schemes of most 
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interest are given in Eqs 7–9 of his paper. However, the formula suggested by Scraton can be applied 

only to a single differential equation, not to a system of ODEs [12]. To overcome this shortcoming, 
England [12] introduced a process that can be valid even when it is applied to a general system of 

ODEs. Also, Shampine [7] proposed a new formula in his work and compared the performances of 

different error estimators.  
The approach for changing the step size in the case of ODEs can be done using the elementary 

controller 

hnew = s
TOL

LE

1
p

hpresent, 
(1.5) 

where s < 1 is the safety factor, TOL is the tolerance specified by the user, h is the time step, LE is the 

estimated local error, and p is the order of the method. The elementary controller changes the step size 

based on the current estimation of the local error. This elementary controller generally shows good 
performance, but there are some exceptions. For instance, the time step size can be limited by the 

stability properties of the used method, which in turn causes an oscillation in the step size sequences. 

More details about the shortcomings of the elementary controller can be found in [15]. Based on 
control theory, Gustafsson [16,17] introduced the so-called PI controller to overcome the problem of 

oscillating step size. Its adaptivity algorithm is 

, (1.6) 

where KI and KP are constants, LEn is the estimated local error at the current step size, LEn–1 is the 

estimated local error at the previous step size, and h is the step size. Unlike the elementary controller, 

the PI controller changes the step size based on the past history of the local error estimation. Later, 
Soderlind [18–20] investigated this type of controller. He developed new strategies for adaptive step 

size based on digital control theory. 

In the previously mentioned references, the authors tested the methods for estimating the local 
error and the approaches for changing the step size only in the case of small systems of ODEs. Those 

algorithms might be efficient when they are applied to a single ordinary differential equation or a 

system of ODEs including a limited number of equations. The objective of this paper is to design and 
extensively test adaptive step size controllers based on the previously mentioned studies and then apply 

those algorithms to an equation system (1.3), where the size of matrix M is big.  

1.3. The outline of the paper 

In Section 2, the I and PI types of step size controllers are introduced in more detail. In Section 3, 

we show the steps of designing adaptive controllers based on the Runge-Kutta and LNe3 methods. 
Then, in Section 4, we present three numerical experiments for 2D systems. The first case study is a 

spatially uniform system which is not stiff, and then the second one is a very stiff system. Finally, the 

third one includes a moving heat source, which can be considered as simulating a welding process. 

1
I PK K

n
new present

n n

LETOL
h h

LE LE
   

    
   
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2. The I and PI step-size controllers 

Suppose that we applied an explicit numerical method of order P, with step size hpresent, to equation 

system (1.3) in order to get an approximated solution 1n
iu  . Also, assume that we used some method 

for estimating the local error, and the local error estimation, based on that method, is denoted by iLE . 

The norm of the error estimation is [21]  

, (2.1) 

where AbsTol and RelTol are the relative and absolute tolerances that can be defined by the user.  
We note that in Eq (17) in [5] and Eq (4.10) in [22], the authors used a different formula for 

calculating the norm of the error estimation. In their formula, they did not only consider the value of 
1n

iu  , but they also considered the value of n
iu . Based on our numerical experiments, we do believe 

that including the value of n
iu  in the calculation does not have a significant effect, and it only causes 

extra cost.  
Now, after calculating errn+1 we can change the step size using the following formula [5]: 

, (2.2) 

where βn+1 is a function of errn+1, and it depends on the type of the step size controller. That 
function will be defined for each type of controller individually, as we will see later. The nonnegative 
number fs is a safety factor, and it is used to increase the probability of accepting the step size in the 
next iteration. The factors fmin and fmax are used to prevent the step size from decreasing or increasing 
too rapidly. In our code, we set the following values for the factors: fs = 0.9, fmin =0.1, fmax = 5.           
If errn+1 ≤ 1, the step size is accepted, the solution is advanced with 1n

iu  , and the step size will be 

modified by Eq (2.2). If errn+1 > 1, the step size and the solution ui
n+1 are rejected, and the calculations 

are repeated with a new time step calculated by Eq (2.2). It is worth mentioning here that some 
researchers suggested setting a new, smaller value for fmax in computing the approximate solution 
directly after a step rejection [23]. The main goal of this procedure is to prevent an infinite loop that 
can occur. In our numerical experiment, we did not encounter such infinite loops. More information 
about the rejected time-step size will be given in Subsection 4.1. 

In the elementary controller I (asymptotic) the value of the function βn+1 depends on the 

currently estimated error as follows: 

. (2.3) 

 
 

 

 

1
11

max
Re

in
ni N

i i

LE
err

AbsTol u lTol


 

 
   

  

  1
max minmin , max , n

new s presenth f f f h 

 
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

 
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In the PI controller the value of the function βn+1 depends on the current and previous estimated 

errors as follows: 

, (2.4) 

Here, the values k1 = 0.8, k2 = 0.31 are taken from [5]. For the first step we considered that 1nerr  . 
To be systematic, we run all our code for adaptive controller algorithms considering the following 
decreasing series for the tolerance: AbsTol = RelTol = 2–1, 2–2,….  

3. Description of the schemes 

For the sake of simplicity, all the schemes resulting from Runge-Kutta methods and adaptive 

Runge-Kutta methods are described when they are applied to a single ordinary differential equation. 
Nevertheless, these schemes can be straightforwardly expanded to solve the system in Eq (1.3).  

For the initial value problem (IVP) of the form 

,  

the general s-stage Runge-Kutta method can be written as follows [24]: 

, (3.1) 

where aij, bi and ci are constants and can be defined using the Butcher tableau. 

3.1. Group A: Dormand-Prince fifth-order Runge-Kutta method 

In the Dormand-Prince method, the quantities ik  are evaluated as follows [15]: 

   
1 2

1 1
k k

n n np perr err


 

 

 0 0

,
du

f t u
dt

u t u

 

 

1

1

1

, , 1: .

s
n n

i i
i

s
n n

i i ij j
j

u u h b k

k f t c h u h a k i s







  

         




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. (3.2) 

The fifth-order Runge-Kutta formula is 

. (3.3) 

Estimating the local error requires another formula. To do that, Dormand considered an extra 
evaluation: 

. (3.4) 

The embedded formula is 

. (3.5) 

The coefficients a7j in Eq (3.4) are chosen to be the same as the coefficients bi in Eq (3.3). This means 

that Eq (3.4) is equivalent to 

.  

Now, for the next step (when errn+1 ≤ 1), we set k1 = k7. This trick is called FSAL (first-same-as-
last). This means that, in the case of acceptance, the evaluation of the function k7 can be reused in the 
following step as k1, which in turn reduces the cost of computations. The local error estimation can be 
calculated: 

. (3.6) 

 1

2 1

3 1 2

4 1 2 3

5 1 2 3 4

6

,

1 1
,

5 5

3 3 9
,

10 40 40
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,

5 45 15 9

8 19372 25360 64448 212
,

9 6561 2187 6561 729

9017
,

3168

n n

n n

n n
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     
 
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 
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Our notations hide the fact that the functions LE and k are vectors if the method is applied to a system 
of ODEs. Since the method is applied to a single differential equation, as we mentioned previously, 
the i index has been dropped from all the formulas of those functions. Also, for the functions of the 
subsequent sections, except Subsection 3.4, the i index has been dropped as well. 

Substituting Eqs (3.5)–(3.7) and considering Eq (2.2) and Eq (2.3) result in the adaptive step size 
scheme of the Dormand-Prince method with I controller type, which will be denoted as     
“DPRK5(4) #I”. Considering Eq (2.4) instead of Eq (2.3) leads us to the adaptive step size scheme of 
the Dormand-Prince method but with PI controller type, which will be denoted as “DPRK5(4) #PI”. 
For the sake of comparison, we will also test the scheme of Eq (3.3), which is a fifth-order Runge-
Kutta method with a fixed step size. This method will be denoted as “non-adaptive DPRK5(4)”. 

Based on Eq (3.2), we can design adaptive controllers which use the doubling step size technique. 
First, we take a single step of size h, and we use the four stages of Eq (3.2) in order to calculate the 

solution un+1 using Eq (3.3). Second, we take two steps of size 
h

2
 to recalculate the solution, denoted 

again by ûn+1, using Eqs (3.2) and (3.3) two times. The local error can be simply estimated as in      
Eq (3.6) and then substituted into Eq (2.1) to obtain 

. (3.7) 

Note that instead of ûn+1, now there is un+1 in the denominator. If the error norm is tolerable, the step 
size is accepted, and there are three possibilities to advance the solution. The first possibility is to 

accept the solution un+1 resulting from taking a single step. With that possibility, we can design two 

controllers based on Eqs (2.2)–(2.4). Those adaptive controllers will be denoted as “RKduplicate 1#I” 
and “Rkduplicate 1 # PI”. The second possibility is to accept the more accurate solution ûn+1, and we 

will be left again with “RKduplicate 2 # I” and “RKduplicate 2 # PI”. The third one is Richardson 

extrapolation (see Eq (4.5) from [22]), which combines the solutions un+1 and ûn+1 to produce another, 
more accurate solution as follows: 

, (3.8) 

where p is the order of the method, which is four in this scheme. Based on the last formula, we can 
design two adaptive controllers, and they will be denoted as “RKduplicate 3 # I” and      
“RKduplicate 3 # PI”. 

3.2. Group B: Scraton’s fourth-order Runge-Kutta method 

In his work [14], Scraton introduced a Runge-Kutta method with five stages, 

1
1

max
Re

n
n

LE
err

AbsTol u lTol




 
   

  

1 1
1 1 ˆ

ˆ
2 1

n n
n n

p

u u
u u

 
   
     


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, (3.9) 

and the fourth-order scheme is 

. (3.10) 

To estimate the local error, Scraton evaluated the following functions: 

 

1 3 4 5

1 2 3 4

3 1

1 27 4 25

18 170 15 153
19 27 57 4

24 8 20 15

q k k k k

r k k k k

s k k

    

   

 

 

Then, the local error estimation is given by the following nonlinear formula: 

. (3.11) 

Scraton stated that subtracting the local error calculated in Eq (3.11) from Eq (3.10) will increase the 
order of the scheme to five: 

. (3.12) 

For easy recognition, we refer to scheme (3.10) as “non-adaptive RKSc 1” and Eq (3.12) as “non-
adaptive RKSc 2”. To design an adaptive step size controller based on Scraton’s error estimation, we 
substitute Eqs (3.10) and (3.11) into Eq (2.1), and then we use Eqs (2.2) and (2.3). This is an adaptive-
Scraton scheme with an I controller type. We have two possibilities to advance the solution when the 
step size is accepted: First, use Eq (3.10), and this type will be referred to as “RKSc 1 # I”. Second, 
use Eq (3.12), and this type will be referred to as “RKSc 2 # I”. If we repeat the previous steps but use 
Eq (2.4) instead of Eq (2.3), we will get another two types of adaptive step size controllers, which are 
“RKSc 1 # PI” and “RKSc 2 # PI”. 
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3.3. Group C: England fourth-order Runge-Kutta method 

England used the four-stage Runge-Kutta method in the first step [7,12]: 

 (3.13) 

The fourth-order formula is 

 (3.14) 

Unlike in the case of other methods, England started the second time step before estimating the local 
error, and he used the same stage formulas as in the first step: 
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Before completing the second step, an extra evaluation is made which enables us to estimate the local 
error accumulated in the two steps: 

  1 2 3 4 5 6 72 , 96 92 121 144 6 12
6

n n
extra

h
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 
 

The local error estimation according to England is 

. (3.15) 

Now, we substitute Eqs (3.14) and (3.15) into Eq (2.1): 

. (3.16) 

If errn+2 ≤ 1, the evaluation of the last function in the second step can now proceed, 
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 (3.17) 

If errn+2 ≤ 1, we reject the step size without evaluating the function k8 and repeat the first step 
with a new step size. In this case, we lose seven function evaluations. When the time step is acceptable, 
nine function evaluations will be performed if we consider the calculation of kextra as well. In other 

words, we make only 1
4

2
 function evaluations for each step, while it requires five function 

evaluations per step if we use the logic of the classical adaptive Runge-Kutta such as the Fehlberg 
method. This means that we saved 1/2 of a function evaluation for each step. One might argue that 
saving only a half function evaluation per step cannot compensate for the expensive cost of the 
probability of losing seven function evaluations when the step size is rejected. According to the 
experience, for a well-designed adaptive controller, the probability of a rejected step size is low, and 
the majority of the steps are accepted. It is worth it here to recall that there are more effective tricks 
that enable us to make only four function evaluations per step: for instance, the so called FSAL trick 
previously described and the local extrapolation technique [15, p. 915]. 

Nevertheless, in case of either a rejected or an accepted step, we should repeat or proceed with 
the calculations with the new step size. If we use Eq (3.16) along with Eqs (2.2) and (2.3), an adaptive 
controller of type I is applied, and it will be denoted as “RKEn #I”. If we use Eq (3.16) along with  
Eq (2.4), a new adaptive controller is applied but of type “PI”, and it will be denoted as “RKEn #PI”. 
The simple 4th-order RK scheme using only Eq (3.14) will be referred to as “non-adaptive RKEn”. 

Shampine [7] used the same function evaluations that England used but with a new local error 
estimator of the form 

. (3.18) 

Again, based on Shampine’s formula for estimating the local error and using Eqs (2.1)–(2.4), we 
can design another two types of step size controllers, which are “RKSh #I” and “RKSh #PI”. 

Since England used two steps to calculate the numerical solution, it is fair to compare the “RKEn 
#” types with that adaptive controller which depends on doubling the step size. First, we take a single 
step of size h  and use the four stages of Eq (3.13) in order to calculate the solution un+1 using      
Eq (3.14). Second, we take two steps of size h/2 to recalculate the solution ûn+1 using Eqs (3.13)    
and (3.14) two times. The local error can be simply estimated now as in Eq (3.6), and then Eq (3.7) is 
used to calculate errn+1. If the error norm is tolerable, then the step size is accepted, and we again have 
the same three possibilities as in Subsection 3.1 to calculate the new solution. The first possibility is 
to accept the solution un+1 resulting from taking a single step. In this case, we can design two controllers 
based on Eqs (2.2)–(2.4). Those adaptive controllers will be denoted as “RKdoubling 1 # I” and 
“Rkdoubling 1 # PI”. The second possibility is to accept the solution ûn+1, and this will be denoted 
again with “Rkdoubling 2 # I” and “Rkdoubling 2 # PI”. The third one is to use Richardson 
extrapolation: 

, (3.19) 
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Where p is the order of the method, which is four in this scheme. Based on the last formula, we can 
design two adaptive controllers, and they will be denoted as “RKdoubling 3 # I” and “RKdoubling 3 
# PI”. 

3.4. Group D: Second-order LNe3 method 

In [2] we introduced a new family of explicit methods, dealing with the spatially discretized heat 
equation, or generally, any system of first order linear ODEs. In this Subsection, we explain the core 
ideas of the LNe3 method, which allows us to introduce the necessary schemes for designing an 
adaptive step size controller, but a more detailed explanation can be found in [2] and [3]. Unlike the 
previous subsections, this method will be explained when it is applied to a system of ODEs instead of 
the single differential equation. 

For the system in Eq (1.4), the LNe3 method can be summarized in three stages: 

Stage 1: We take a time step of size h and calculate the variable 1n
iu  , assuming that the neighbors 

uj are not changing during that time step. This means that 1n n
j ju u   during the time ∆t = tn+1 – tn = h, 

while j ≠ i, and the index j refers to the neighbors of the cell with index i. That assumption decouples 
the system (1.4), converting it to an uncoupled system of ODEs of the following form: 

 (3.20) 

where 

 and . 
(3.21) 

Eq (3.20) can be solved analytically, and we can use the solution as a predictor value for the next stage. 
The solution is 

. (3.22) 

Stage 2: Here, we assume that the neighboring variable uj, of the actual variable ui, is changing linearly 
during the time ∆t = h. For each cell of index i, we introduce the effective slope: 

, (3.23) 
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. (3.24) 

Using the new assumption, we get a new system of uncoupled ODEs: 

. (3.25) 

Again, Eq (3.25) can be solved analytically, and the solution is 

. (3.26) 

The scheme using Eq (3.26) has second order temporal convergence and is called LNe2. 
Stage 3: We use the values of Eq (3.26) as predictors for this stage. We substitute these values in 

Eq (3.24) and then in (3.23) to calculate the new values ai
predictand si, respectively. Now, we can use 

Eq (3.26) with the new values to obtain an algorithm which will be denoted as “non-adaptive LNe3”. 
This scheme is still of the second order but usually more accurate, as one can see from the truncation 
error, which is published in [26]. Since the stages serve as estimations of the solutions at the end of the 
time step, it is straightforward to organize an adaptive version of the LNe3 method. If the solutions 

produced in the second and third stages are denoted by ui
n+1 and 1ˆn

iu  , the local error can be estimated 

as before: 

. (3.27) 

Substituting Eqs (3.26) and (3.27) into (2.1) and considering Eqs (2.2)–(2.4), adaptive controllers will 
be applied, and they will be denoted as “ALNe3 #I” and “ALNe3 #PI”.  

We must note that when Fehlberg introduced his adaptive step size controller, many practitioners 
questioned the robustness of the method at that time. They thought that it was risky to estimate the 
local error using the same evaluation points. Later, experiments showed that this concern was not a 
problem in practice [25, p. 716]. Since the embedded LNe3 method is new, one might have the same 
concern. As we can see later, our experiments showed a very stable performance for that method. 

4. Numerical experiments 

The numerical solution and the reference solution are compared only at tfin, which is the final time 
of the simulation and will be specified later. We measure the accuracy using the global L∞ error, which 

is the maximum of the absolute difference between the reference temperature uj
ref

 and the temperature 
num
ju  calculated by our numerical methods at the final time: 

. (3.28) 
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In the first experiment, we will test the previously described methods in the case of a linear 
diffusion equation in the absence of the heat source, which yields a non-stiff system of ODEs after 
spatial discretization. In the second experiment, a linear diffusion equation in inhomogeneous media 
will be tested. The third experiment will treat the problem of a moving heat source. 

The simulations are conducted using MATLAB R2020b software on a desktop computer with an 
Intel Core (TM) i11-11700F. Since the analytical solution does not exist for the systems we examine, 
the reference solution was calculated by the implicit ode15s solver setting very stringent error tolerance 
(‘RelTol’ and ‘AbsTol’ were both 10−14). 

4.1. Experiment 1: Non-stiff linear diffusion equation 

In this experiment, we consider Eq (1.4) in 2 space dimensions 
(x,y,t)∈[0, 1] × [0, 1] × [0, 2 × 10–3] , subjected to zero Neumann boundary conditions, and in the 
absence of the heat source, q = 0. The space domain was divided into N = Nx × Ny = 50 × 50, and thus 
we have 2500 cells. The initial conditions were generated randomly using the built-in function ‘rand’ 
in MATLAB, ui 0  = rand. The ‘rand’ function generates random numbers uniformly distributed in 
the interval [0,1]. The resistances and capacities were set as Rxi = Rzi = 1, Ci = 10–3. The stiffness ratio 
of the introduced system is roughly 4 × 104, and the CFL limit for the explicit Euler scheme            
is 2.5 × 10−4. 

For all the groups of methods, Figures 1–4 show that the adaptive controllers of type (I) achieve 
approximately the same or slightly better performance compared to the controllers of type (PI) when 
both use the same method for estimating the local error. For example, as we can see from Figure 2, the 
curves of the controllers “RKdoubling 1 # I” and “RKdoubling 1 # PI” are almost identical. From 
Figures 1 and 3, we can clearly see that using Eq (3.19), which was suggested in Theorem 4.1 in [22], 
improved the performance of the algorithms based on the step doubling technique. However, the 
embedded Runge-Kutta-Dormand-Prince adaptive controller showed better performance than all the 
types of adaptive controllers based on the step doubling technique, as we can see in Figure 1. That is 
not a surprising result and was clearly stated in [15, p. 911]. Another important observation is related 
to the England and Shampine methods of group C. Although England stated in his work [12] that his 
method is valid “when applied to a general system of differential equations,” our numerical 
experiments appear to contradict his claims. As we can see in Figure 3, the adaptive controllers based 
on England and Shampine showed poor performance when they were applied to our suggested   
system (1.4). Scraton suggested a new scheme (3.12), Eq (9) in his work [14], to increase the order of 
the method. As we can see in Figure 2, the non-adaptive scheme (3.12), which is the red color curve, 
showed unstable behavior. However, the adaptive schemes, which are RKSc 2 # I and RKSc 2 # PI, 
showed a stable performance but without improving the accuracy, if they are compared         
to “RKSc 1 # I” and “RKSc 1 # PI”. 

For each group of methods, we can see that the non-adaptive scheme is faster than the adaptive 
controller. Here, a question arises: Why do we use the adaptive controller if the non-adaptive scheme 
is faster? The subsequent discussion will show that the non-adaptive Runge-Kutta scheme is vulnerable, 
and the stability can be easily violated when small changes in the conditions or parameters of the 
experiment take place. To illustrate that, the time domain of the experiment, 2 × 10−3, was replaced  
by 2 × 10−1 while all other settings and conditions remained the same. Figure 5 shows the performance 
of the methods of group A. We can see that after we made a small change in the time domain, the 
behavior of “non-adaptive DPRK5(4)” became unstable, and its curve blew up and became 
discontinuous. Despite the fact that the behavior of the adaptive controllers changed after we changed 
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the time domain, their performance remained stable. It does indeed look like the running time, in the 
case of adaptive controllers, is relatively independent of the required accuracy. This point is out of the 
scope of this study and one can see a good explanation in Appendix D of [27]. So, the advantage of 
using the adaptive controller is not always about reducing the computational time, but it is sometimes 
more about providing reliable results when the non-adaptive scheme fails.  

The “non-adaptive LNe3” method is excluded from the last discussion, and in the second 
experiment we will show that this method remains stable regardless of the conditions of the system. It 
was proved mathematically and verified by numerical experiments that the method is unconditionally 
stable [2].  

It is true that non-adaptive DPRK5 is faster than adaptive schemes when the time interval        
is [0, 2 × 10−3], and this is advantageous from the point of view of the computational cost. However, 
in practice, the adaptive controllers still have an advantage even when they are slower than non-
adaptive controllers. Suppose that the user needs a specific accuracy for the solution. Actually, in the 
case of a non-adaptive scheme, the user should choose an appropriate step size to achieve that accuracy, 
which requires information about the stiffness ratio of the system and the CFL limit, etc. Generally, 
the ordinary users of the simulation software are not mathematicians and cannot calculate the 
appropriate step size for the required accuracy. They are usually engineers who are interested in the 
output of the software but not in the input. Moreover, for some methods, it is so difficult, if not 
impossible, to calculate the CFL limit, even for mathematicians. In this case, the adaptive controller 
will allow the user to define a specific tolerance that can guarantee the required accuracy without being 
involved in complicated calculations. 

 

Figure 1. Experiment 1:  errors as a function of the running time for group A. L
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Figure 2. Experiment 1: L  errors as a function of the running time for group B. 

 

Figure 3. Experiment 1: L  errors as a function of the running time for group C. 
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Figure 4. Experiment 1: L  errors as a function of the running time for group D. 

 

Figure 5. Experiment 1: L  errors as a function of the running time for group A. 

As we mentioned previously, we did not experience infinite loops in any of our numerical 
experiments. For example, in the case of DPRK5(4) #I for the current experiment, for high tolerance, 
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which guarantees error of order 10−13, the observed number of rejected time-steps was 10, while the 
number of accepted time-steps was 1495. The largest number of successive rejected time-steps, out of 
the 10 rejected time-steps, was 5. On the other hand, when the tolerance guarantees an error of    
order 10−2, the number of accepted time-steps was found to be 483 while the number of rejected time-
steps was 20. The largest number of successive rejected time-steps, out of the 20 rejected time-steps, 
was 5. Table 1 shows some data for some methods as an illustrative example.  

Table 1. The number of rejected and accepted time-steps for different methods at specific tolerances. 

4.2. Experiment 2: Stiff linear diffusion equation 

In this experiment we consider Eq (1.4) in 2 space dimensions x,y,t ∈ 0,1 × 0,1 × 0, 2×10–4 , 
subjected to zero Neumann boundary conditions, and in the absence of the heat source, q = 0. The 
space domain was divided into N = Nx × Ny = 20 × 20, and thus we have 400  nodes. The capacity 

and the resistances obeyed the following formula: 

     4 4 410 1 1 10 , 10 1 1, 1x yC x R x R y           

The stiffness ratio of the resulting system is 1.05 × 109, while the CFL limit is 109 10 . For such a 
relatively stiff system, all the non-adaptive schemes based on Runge-Kutta showed a poor performance. 
They can provide a reliable result only when the time step is very small, which increases the cost of 
the computations. The adaptive controllers which used England or Shampine methods for estimating 
the local error also showed poor performance when they are compared to those adaptive controllers 
which used the step doubling technique. As we can see in Figure 6, the highest accuracy that the 
England or Shampine formulas could reach was of the order 10–8, while it is of the order 10–13 if the 
step doubling technique is used. Also, the performance of the controllers of type (I) was identical to 
and sometimes even better than the performance of those of type (PI). For the sake of comparison, in 
Figure 7 we selected the most accurate methods of groups A, B and C, as well as the methods of  
group D. 
 

The method TOL Max error Number of accepted 

time-steps 

Number of rejected 

time-steps 

Largest number of 

successive rejected 

time-steps 

DPRK5(4) #I 1.25 × 10–1 4.9 × 10–2 483 20 5 

DPRK5(4) #I 7.8 × 10–3 10–3 484 28 4 

DPRK5(4) #I 9.09 × 10–13 7.8 × 10–13 941 22 5 

ALNe3 #I 2.3 × 10–7 3.8 × 10–5 3003 5 5 

RKSc 2 # I 1.2 × 10–4 3.2 × 10–5 555 98 4 
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Figure 6. Experiment 2: L  errors as a function of the running time for group C. 

 

Figure 7. Experiment 2: L  errors as a function of the running time for the selected methods. 
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4.3. Experiment 3: Stiff linear diffusion equation with a moving heat source 

In this experiment, we consider Eq (1.4) in 2 space dimensions x,y,t ∈ 0,1 × 0,1 × 0, 2×10–5 , 
subjected to zero Neumann boundary conditions. The space domain was divided            
into N = Nx × Nz = 30 × 30, and thus we have 900 cells. The initial conditions are generated randomly 
using the built-in function ‘rand’ in MATLAB ui(0) = rand. The capacity and the resistance obeyed the 
following form: 

    6 4 610 1 1 10 , 10 1 1, 1x yC x R x R y           

The stiffness ratio of the resulting system is roughly 1.5 × 1011, while the CFL limit is 6.4 × 10−12. 
Here, we consider a moving Gaussian point heat source which takes the formula 

 

   0 0
2

max e ,

z xz z v t x x v t

rq q

     
 
   

where qmax is the maximum heat flux at the center of the heat source, r is the effective heating radius 
of the heat source, vx and vz are the velocities of the heat source in x and z directions, respectively, and 
(x0,z0) is the initial position of the heat source. The parameters of the heat source are set as 
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This means that the heat source will move with a constant speed along the positive direction of 
the x axis. The effective heating radius is chosen to be 5 5r x z     to ensure that there are at least 
four nodes inside the effective heating diameter. Figure 8 shows the contour of the temperature 
distribution at the end of the time interval, and the trace of the heating process refers to the trajectory 
of the heat source. 

 

Figure 8. Experiment 3: The contour of the temperature distribution at the end of the time interval. 
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Figure 9. Experiment 3: L  errors as a function of the running time. 

We can clearly see from Figure 9 that the LNe3 and its adaptive scheme are much faster than the 
adaptive schemes of Runge-Kutta when high accuracy is not required, while adaptive Runge-Kutta 
schemes are more applicable when the desired accuracy goes beyond a certain level (which is of order 
in our experiment). 

5. Conclusions 

1) For solving a system of ODEs, such as the one in Eq (1.4), adaptive schemes using (PI) controller 
do not have any advantage compared to the same schemes using (I) controller. Moreover, (I) type 
is relatively faster than (PI) type in some cases, as the second experiment shows.  

2) In his work [12], England aimed to overcome the shortcoming of Scraton’s formula and to create 
a formula valid for a general system of ODEs. The scheme that England suggested is less accurate 
than the one suggested by Scraton when they are used to solve our system. 

3) Scraton suggested his formula (3.12) that increases the order of the method when solving a single 
ordinary differential equation. That formula showed poor performance when it was applied to our 
system (1.4). However, his formula for estimating the local error is valid, and it is still better and 
less complicated than England’s formula when it is used to solve Eq (1.4). 

4) Our first numerical experiment shows that the method of duplicating time steps yields higher 
accuracy than the procedure of England when both use the same approach for changing the step 
size. Since both methods use the same approach for selecting the step size, this difference in 
accuracy can be explained by the inefficiency of England’s formula for estimating the local error. 
So, we are skeptical about the result that Shampine and Watts came up with in their paper [7]. 
They claimed that the methods of the duplicating and England’s method could be compared since 
they estimate the local error per two steps, and their “accuracies are identical”. 

5) When solving our system, Richardson extrapolation increased the accuracy of the technique of 
time step duplication. 
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6) Embedded methods, such as the Dormand-Prince Runge-Kutta method, are still more efficient 
than the technique of duplicating the steps even after we consider Richardson extrapolation. 

7) The LNe3 method remained perfectly stable even if the system had a high stiffness, as well as in 
the presence of a moving heat source.  

8) According to our experience in numerical methods, the non-adaptive scheme can be sometimes, 
if not often, faster than its corresponding adaptive schemes when it is applied to Eq (1.4). Despite 
that fact, the adaptive schemes still have the advantage of enabling the user to define a desired 
level of accuracy, while the non-adaptive ones do not provide such a facility. 

9) Some authors recommended integrating the parabolic partial differential equations by explicit 
methods even if they are only conditionally stable [28]. However, the Runge-Kutta methods are 
only conditionally stable, and the non-adaptive versions are not reliable. A small change in the 
parameters, e.g., increasing the final time of the simulation, can make them unstable. On the other 
hand, the adaptive schemes of Runge-Kutta may automatically select the proper step size, which 
can reach the stability region. This is typical for strict tolerances, but in the case of loose tolerances, 
the adaptive RK solvers can also produce huge errors.   

10) Unlike the Runge-Kutta methods, the LNe3 method is unconditionally stable. As a result, the 
adaptive scheme of LNe3 will sometimes lose its advantage, and the time step selector can be 
redundant. However, it can be used to help the user to reach the desired accuracy. However, we 
do not say that the adaptive scheme of LNe3 is restricted to the previous role because in some 
conditions it was faster than the non-adaptive Lne3, as we saw in the second experiment. 

11) It is clear that if the accuracy requirement is only moderate, but the speed is important, 
unconditionally stable explicit schemes should be used instead of explicit RK methods. If very 
high accuracy is required, then either the RKDP5(4) or, in stiff cases, the Lne3 method can be 
recommended. The explicit Lne3 method, which is unconditionally stable, can be used as a 
reliable integrator of the parabolic equations even in very extreme conditions. 
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