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Abstract: We present a general multi-scale approach for modeling the interaction of controlled
autonomous vehicles (AVs) with the surrounding traffic flow. The model consists of a scalar
conservation law for the bulk traffic, coupled with ordinary differential equations describing the
possibly interacting AV trajectories. The coupling is realized through flux constraints at the moving
bottleneck positions, inducing the formation of non-classical jump discontinuities in the traffic density.
In turn, AVs are forced to adapt their speed to the downstream traffic average velocity in congested
situations. We analyze the model solutions in a Riemann-type setting, and propose an adapted finite
volume scheme to compute approximate solutions for general initial data. The work paves the way to
the study of general optimal control strategies for AV velocities, aiming at improving the overall traffic
flow by reducing congestion phenomena and the associated externalities.
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1. Introduction

Moving bottleneck models have been introduced in the engineering literature starting from the end
of the last century to describe the interaction of slow moving vehicles, such as buses or trucks, with
bulk traffic, see [9, 28, 30]. Further approaches have then be proposed in the applied mathematics
community [1, 15, 27, 39, 41], always following the underlying idea of using multi-scale models
consisting of Partial Differential Equations (PDEs) to model the overall traffic flow evolution, coupled
with Ordinary Differential Equations (ODEs) accounting for the moving bottlenecks trajectories.
Despite the intrinsic difficulties arising as a result of the flux constraint induced by the presence of the

http://www.aimspress.com/journal/nhm
http://dx.doi.org/10.3934/nhm.2023040


931

slow vehicles, corresponding existence and stability results have been provided, see
also [17, 20, 31, 32], together with numerical schemes to compute approximate solutions capturing the
emerging non-classical phenomena [2, 3, 11, 14, 16].

More recently, moving bottleneck models have been applied to traffic flow regulation by means
of Autonomous Vehicles (AVs), see e.g., [4–8, 34]. Indeed, AVs can act as endogenous actuators of
moving variable speed limits, improving throughput by hindering upstream traffic. This possibility has
already been the object of several theoretical studies (see e.g., [13, 24, 26, 35, 40, 42] and [19, Chapter
11]), but also artificial [25] and real world [38] experiments. In particular, it has been demonstrated
that even low AV penetration rates can have a significant impact on reducing congestion phenomena
and the associated energy consumption. In this context, macroscopic approaches are needed to address
the curse of dimensionality in control design for microscopic models [18].

Even if some of the above works account for the presence of multiple AVs on the road, very few of
them allow for AV interactions, and only in very specific modeling frameworks [21, 37]. In this paper,
we aim at generalizing the control framework designed in [20,34] for the Lighthill-Whitham-Richards
model [33, 36] to multiple, possibly interacting, moving bottlenecks, as if they were distributed on
several lanes and they were allowed both to merge (if on the same lane) and to overtake (if on different
lanes). This can be achieved by a careful study of the corresponding Riemann-type problems, and a
natural generalization of the numerical reconstruction technique presented in [3].

The proposed model can be used to develop a general simulation environment accounting for several
AVs interacting with the surrounding traffic flow and among themselves, which in turns allows to
design optimization-based control strategies having fleets of AVs as actuators.

The paper is organized as follows: Section 2 details the model framework, providing a
mathematical description of the fully coupled PDE-ODE model and the interactions among AVs at the
level of Riemann problems. Section 3 describes the numerical scheme and Section 4 shows the results
of the numerical experiments.

2. PDE-ODE model with interacting moving bottlenecks

Following [15, 20], we consider the following strongly coupled PDE-ODEs system

∂tρ (t, x) + ∂x f (ρ (t, x)) = 0, (2.1a)

ẏℓ(t) = min{uℓ(t), v(ρ(t, yℓ(t)+))}, (2.1b)

f (ρ (t, yℓ(t))) − ẏℓ(t)ρ (t, yℓ(t)) ≤ Fα (ẏℓ(t)) := max
ρ∈[0,R]

(α f (ρ/α) − ρẏℓ(t)) , (2.1c)

ρ(0, x) = ρ0(x), (2.1d)

yℓ(0) = y0
ℓ , (2.1e)

for ℓ = 1, . . . ,N and t > 0, x ∈ R, where ρ = ρ(t, x) ∈ [0,R] denotes the macroscopic traffic density at
time t ≥ 0 and at position x ∈ R, f = f (ρ) = ρv(ρ) is the (strictly convex) flux and v ∈ C2 ([0,R]; [0,V])
is a strictly decreasing function such that v(0) = V and v(R) = 0, which represents the average speed of
cars (R being the maximal vehicle density attainable on the considered road section). Above, ρ0 ∈ [0,R]
and y0

ℓ ∈ R, ℓ = 1, . . . ,N, are respectively the initial traffic density and AV positions, while the function
Fα in Eq (2.1c), α ∈ [0, 1], represents the road capacity reduction rate due to the presence of the AV at
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x = yℓ(t), ℓ = 1, . . . ,N, acting as a moving bottleneck which imposes a unilateral flux constraint at its
position. For simplicity, we assume that this parameter is the same for all AVs, and it is a function of
the number of lanes: α = (M − 1)/M, where M ∈ N denotes the number of lanes. (The extension to a
more general framework would follow the same lines detailed in this work.) To determine the function
Fα, we consider the rescaled flux function

fα : [0, αR] −→ R+

ρ 7−→ ρv(ρ/α) = α f (ρ/α),

which is strictly concave function and such that fα(0) = fα(αR) = 0. For every u ∈ [0,V], we define
the point ρ̃u as the unique solution to the equation f ′α(ρ) = u. Moreover, for every u ∈ [0,V], we define
the function

φu : [0,R] −→ R+

ρ 7−→ fα(ρ̃u) + u (ρ − ρ̃u) .

Hence, if ẏ(t) = u, the function Fα in Eq (2.1c) is defined by

Fα : [0,V] −→ R+

u 7−→ φu(0) = fα(ρ̃u) − uρ̃u.

If ẏ(t) = v(ρ(t, y(t)+)), the inequality (2.1c) is trivially satisfied since the left-hand side is zero. Finally,
the points 0 ≤ ρ̌u ≤ ρ̃u ≤ ρ̂u ≤ ρ

∗
u ≤ R are uniquely defined by

ρ̌u = minIu, ρ̂u = maxIu, Iu = {ρ ∈ [0,R] : f (ρ) = φu(ρ)} , v(ρ∗u) = u,

see [15, 20] and Figure 1. We remark that ρ̌V = ρ̃V = ρ̂V = ρ
∗
V = 0.

0

Fα(u)

ρ∗uρ̃u ρ̂uρ̌u ρ

f

fα

R

φu

uρ

Figure 1. The definition of ρ̃u, ρ̌u, ρ̂u and ρ∗u.

Solutions to Eq (2.1) are defined as follows (see [20, Definition 3.1]):

Definition 2.1. The N + 1-tuple (ρ, y1, . . . , yN) provides a solution to (2.1) if the following conditions
hold.

1. ρ ∈ C0
(
R+; L1

loc (R; [0,R])
)

and TV (ρ(t)) < +∞ for all t ∈ R+;

2. yℓ ∈W1,1
loc(R+;R) for ℓ = 1, . . . ,N;
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3. For every κ ∈ R and for all φ ∈ C1
c(R2;R+) it holds∫

R+

∫
R

(
|ρ − κ|∂tφ + sgn(ρ − κ)( f (ρ) − f (κ))∂xφ

)
dx dt +

∫
R

|ρ0 − κ|φ(0, x) dx

+ 2
N∑
ℓ=1

∫
R+

( f (κ) − ẏℓ(t)κ −min{ f (κ) − ẏℓ(t)κ, Fα(ẏℓ(t))})φ(t, y(t)) dt ≥ 0 ;

4. For a.e. t > 0, f (ρ (t, yℓ(t)±)) − ẏℓ(t)ρ (t, yℓ(t)±) ≤ Fα (ẏℓ(t)) for ℓ = 1, . . . ,N;

5. For a.e. t > 0, ẏℓ(t) = min {uℓ(t), v (ρ (t, yℓ(t)+))} for ℓ = 1, . . . ,N.

As long as AV trajectories do not intersect, one can apply the theory and the numerical schemes
developed in [3, 14–16, 20]. In particular, we recall that the Constrained Riemann Solver is defined as
follows.

Definition 2.2. The Constrained Riemann Solver Rα for

∂tρ (t, x) + ∂x f (ρ (t, x)) = 0, (2.2a)

ẏ(t) = min{u, v(ρ(t, y(t)+))}, (2.2b)

f (ρ (t, y(t))) − ẏ(t)ρ (t, y(t)) ≤ Fα (ẏ(t)) , (2.2c)

ρ(0, x) =

ρL if x < 0,
ρR if x > 0,

(2.2d)

y(0) = 0, (2.2e)

is the map Rα : [0,R]2 × [0,V]→ L1
loc(R, [0,R]) defined as follows.

1. If f (R(ρL, ρR)(u)) > Fα(u) + uR(ρL, ρR)(u), then

Rα(ρL, ρR; u)(x/t) =
{
R(ρL, ρ̂u)(x/t) if x < u t,
R(ρ̌u, ρR)(x/t) if x ≥ u t,

and y(t) = u t.

2. If f (R(ρL, ρR)(u)) ≤ Fα(u) + uR(ρL, ρR)(u), then

Rα(ρL, ρR; u) = R(ρL, ρR) and y(t) = min{u, v(ρR)} t.

Above, R denotes the standard (i.e., without the constraint (2.2c)) Riemann solver for Eqs (2.2a)–
(2.2d), i.e., the (right continuous) map (t, x) 7→ R(ρL, ρR)(x/t) given by the standard weak entropy
solution to Eqs (2.2a)–(2.2d).

In this paper, we are interested in describing what happens when two vehicles AVi and AV j, with
i, j ∈ {1, . . . ,N}, i , j, interact. Let us assume yi(t) < y j(t) with constant speeds ui(t) = ui > u j(t) = u j

for t ∈ ]t̄ − ,εt̄[, so that yi(t̄) = y j(t̄) for some t̄ > 0, see Figure 2. Depending on the surrounding traffic
density conditions, only three situations may occur in a Riemann-like setting (piece-wise constant
density with at most one jump discontinuity):
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0

Fα(u j)

Fα(ui)

ρ̂u jρ̂uiρ̌u jρ̌ui
ρ

f

fα

R

φui

φu j

Figure 2. Notation for interacting bottlenecks.

• The constraint (2.1c) is enforced for ℓ = i (we will say that AVi is active), so that ρ(t, x) = ρ̂ui for
x < yi(t) and ρ(t, x) = ρ̌ui for x > yi(t). Since, at x = y j(t), it holds f

(
ρ̌ui

)
− u jρ̌ui ≤ Fα

(
u j

)
(see

Figure 2), the constraint is not enforced for ℓ = j (AV j is then inactive).

• If AV j is active, we have ρ(t, x) = ρ̂u j for x < y j(t) and ρ(t, x) = ρ̌u j for x > y j(t). At x = yi(t), it
therefore holds f

(
ρ̂u j

)
− uiρ̂u j ≤ Fα (ui) , thus AVi is inactive.

• If both AVi and AV j are inactive, we may have either a constant density or a classical shock
coinciding with one of the AV trajectories. In any case, the density must satisfy ρ(t, x) ∈ [0, ρ̌ui]∪
[ρ̂u j ,R].

We remark that AVi and AV j cannot be both active at the same time, unless other waves are present
between them.

To detail the problem evolution after the interaction (at t > t̄), we distinguish if AVs are moving in
different lanes or if they are located on the same lane.

Same lane interactions.

Let us assume that the two vehicles are in the same lane, so for t > t̄ the upstream vehicle must
adapt to the downstream vehicle speed: we will have yi(t) = y j(t) with ui(t) = u j(t) for t ≥ t̄. Three
situations may occur, see Figure 3:

• If, before the interaction, AVi was active and AV j inactive, at t > t̄ the solution will consists of a
classical shock joining ρ̂ui to ρ̂u j , followed by a non-classical shock at x = y j(t) = yi(t) between
ρ̂u j and ρ̌u j and a rarefaction wave from ρ̌u j to ρ̌ui , see Figure 3a. In particular, after the interaction,
both AVs will be active.
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t = t̄

ρ̌ui

ρ̌u j

ui u j

u j

ρ̂ui

ρ̂u j

(a) AVi active, AV j not

t = t̄

ρ̌u j

ui u j

u j

ρ̂u j

(b) AV j active, AVi not

t = t̄

ui u j

u j

ρ̄
ρ̄

(c) AVi, AV j not active

Figure 3. Possible configurations of AV interactions on the same lane.

• If, before the interaction, AVi was inactive and AV j active, at t > t̄ the solution will consists only
of a non-classical shock joining ρ̂u j to ρ̌u j , see Figure 3b. Again, after the interaction, both AVs
will be active.

• If, before the interaction, AVi and AV j were both inactive, at t > t̄ the solution will consists at
most of the classical shock that was already present before the interaction, see Figure 3c. After
the interaction, both AVs will still be inactive.

In any case, after the interaction, the two vehicles behave as AV j.

Different lane interactions.

If the two interacting vehicles travel in different lanes, for t > t̄ they will follow their own trajectory
and AVi will overtake AV j: we will have yi(t) ≥ y j(t) with ui(t) ≥ u j(t) for t ≥ t̄. Three situations may
occur, see Figure 4:

• If, before the interaction, AVi was active and AV j inactive, at t > t̄ the solution will consists of a
classical shock joining ρ̂ui to ρ̂u j , followed by a non-classical shock at x = y j(t) from ρ̂u j to ρ̌u j , a
classical shock from ρ̌u j to ρ̂ui and a non-classical shock at x = yi(t) from ρ̂ui to ρ̌ui , see Figure 4a.
In particular, after the interaction, both AVs will be active.

• If, before the interaction, AVi was inactive and AV j active, at t > t̄ the solution will consists of a
non-classical shock at x = y j(t) from ρ̂u j to ρ̌u j , followed by a classical shock from ρ̌u j to ρ̂ui , a
non-classical shock at x = yi(t) from ρ̂ui to ρ̌ui and a classical shock from ρ̌ui to ρ̌u j , see Figure 4b.
In particular, after the interaction, both AVs will be active.

• If, before the interaction, AVi and AV j were both inactive, at t > t̄ the solution will consists at
most of the classical shock that was already present before the interaction, see Figure 4c. After
the interaction, both AVs will still be inactive.
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t = t̄

ρ̌ui

ρ̌u jρ̂ui

ui u j

u j

ui

ρ̂ui

ρ̂u j

(a) t < t̄: AVi active, AV j not
t > t̄: both active

t = t̄

ρ̌u j

ρ̌u j

ui u j

u j

ui

ρ̂u j

ρ̂ui

ρ̌ui

(b) t < t̄: AV j active, AVi not
t > t̄: both active

t = t̄

ui u j

u j

ui

ρ̄
ρ̄

(c) AVi, AV j not active

Figure 4. Possible configurations of AV interactions on different lanes.

3. Numerical scheme

We extend the reconstruction strategy introduced in [3] to include moving bottleneck interactions.
The scheme is composed of two parts:

Numerical approximation of Eqs (2.1a)–(2.1c).

To approximate the conservation equation (2.1a), we use a conservative finite volume scheme for
the constrained hyperbolic PDE using a flux reconstruction technique at the constraint locations, which
allows to capture the non-classical shocks sharply. Let ∆x and ∆t be the fixed space and time steps
satisfying the standard Courant-Friedrichs-Lewy (CFL) condition [10]:

max
ρ∈[0,R]

| f ′(ρ)|∆t < ∆x,

and set x j−1/2 = j∆x, x j = ( j + 1/2)∆x for j ∈ Z, and tn = n∆t for n ∈ N. The initial data ρ0 is
approximated by the piece-wise constant function obtained by averaging it on the discretization cells
C j = [x j−1/2, x j+1/2], namely

ρ0
j =

1
∆x

∫ x j+1/2

x j−1/2

ρ0(x) dx, j ∈ Z.

Away from AV positions, Eq (2.1a) is approximated by the standard Godunov scheme [22], whose
numerical fluxes at cell interfaces Fn

j+ 1
2
= F(ρn

j , ρ
n
j+1) can in this case be derived using the supply-

demand formula [29]
F(ρn

j , ρ
n
j+1) = min{D(ρn

j), S (ρn
j+1)}, (3.1)

where

D(ρ) = f (min{ρ, ρcr}), S (ρ) = f (max{ρ, ρcr}),

ρcr = argminρ∈[0,R] f (ρ) being the point of maximum of the flux function f .
Let now the approximate ℓ-th AV position be yn

ℓ ∈ Cmℓ for some mℓ ∈ Z, ℓ = 1, . . . ,N. If

f (R(ρn
mℓ−1, ρ

n
mℓ+1)(un

ℓ)) > Fα(un
ℓ) + un

ℓR(ρn
mℓ−1, ρ

n
mℓ+1)(un

ℓ),
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we assume a moving bottleneck at x̄mℓ = xmℓ−1/2 + dn
mℓ∆x with dn

mℓ =
ρ̌un
ℓ
− ρn

mℓ

ρ̌un
ℓ
− ρ̂un

ℓ

. If 0 ≤ dn
mℓ ≤ 1, then

x̄mℓ ∈ Cmℓ and we set

∆tn
mℓ =

1 − dn
mℓ

un
ℓ

∆x,

Fn
mℓ− 1

2
= F(ρn

mℓ−1, ρ̂un
ℓ
),

∆tFn
mℓ+ 1

2
= min (∆tn

mℓ ,∆t) f (ρ̌un
ℓ
) +max (∆t − ∆tn

mℓ , 0) f (ρ̂un
ℓ
).

We can then update the density by means of the conservative formula

ρn+1
j = ρn

j −
∆t
∆x

(
Fn

j+ 1
2
− Fn

j− 1
2

)
, j ∈ Z. (3.2)

Above, we set un
ℓ = uℓ(tn). If two or more AVs are located in the same cell, the moving bottlenecks are

treated sequentially one after the other, starting from those which are not active (i.e., satisfy Eq (2.1c)),
then processing those which are active (violating Eq (2.1c)).

Remark 1. For better resolution, we also apply the above reconstruction technique to classical shocks,
as described in [3, Section 3.1].

Numerical approximation of Eq (2.1b).

To track the AV trajectories, at each time step, we update the positions yn
ℓ using an explicit Euler

scheme
yn+1
ℓ = yn

ℓ + v(ρn)∆tn, ℓ = 1, . . . ,N.

If two AVs are in the same lane and in the same cell, and the upstream AVℓ1 moves faster than the
downstream AVℓ2 , i.e., un

ℓ1
> un

ℓ2
, then we set

yn+1
ℓ1
= yn+1

ℓ2
= yn

ℓ2
+ v(ρn)∆tn and un

ℓ1
= un

ℓ2
.

(A more accurate computation of the interaction point could be implemented to improve simulation
accuracy.)

Remark 2. The above procedure seems not coherent with the observation that two vehicles travelling
at close speeds ui ≈ u j would act as a single bottleneck with αi j = αi + α j − 1. In this perspective,
another option could be to reconstruct a single front moving at speed ui j = (ui + u j)/2 with α = αi j

whenever two vehicles are in the same cell on two different lanes. In this case, the procedure should
be the following: If f (R(ρn

m−1, ρ
n
m+1)(ui j)) > Fαi j(ui j) + ui jR(ρn

m−1, ρ
n
m+1)(ui j), we replace ρn

m by ρ̂ui j and
ρ̌ui j , with the jump located at

x̄m = xm− 1
2
+ dn

m∆x,

where dn
m ∈ [0, 1] is given by

dn
m =
ρ̌ui j − ρm

ρ̌ui j − ρ̂ui j

.
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To reconstruct the numerical flux at the cell interface xm+ 1
2
, we compute

∆tm+ 1
2
=

1 − dn
m

ui j
∆x

and we set

∆tFn
m+ 1

2
= min{∆tm+ 1

2
,∆t} f (ρ̌ui j) +max{∆t − ∆tm+ 1

2
, 0} f (ρ̂ui j).

4. Numerical tests

In this section we illustrate the performances of the numerical scheme described in the previous
Section 3 in capturing AV interactions correctly. We first analyze the Riemann-like cases described in
Section 2, to conclude with a more general test case.

We consider a three lane stretch of road of length 50 km, parametrized by the interval [0, 50] with
absorbing boundary conditions. We consider the quadratic flux function proposed by Greenshields [23]
that assumes a linear decreasing dependence of the speed on the traffic density

f (ρ) = Vρ
(
1 −
ρ

R

)
, (4.1)

where V = 140 km/h denotes the maximal speed and R = 400 veh/km the maximal (bump-to-bump)
density on the road. The capacity reduction ratio is set to α = 0.6. In all simulations, we set ∆x = 0.2
and ∆t = 0.9∆x/V .

For the Riemann-like cases, we consider the following initial data:

AV1 :

y1(0) = 7.5,
u1 = 50,

AV2 :

y2(0) = 15,
u2 = 20,

(a) ρ0(x) =

ρ̂u1 ≈ 210 if x < 7.5,
ρ̌u1 ≈ 47 if x > 7.5,

(b) ρ0(x) =

ρ̂u2 ≈ 280 if x < 15,
ρ̌u2 ≈ 63 if x > 15,

(c) ρ0(x) ≡ 20.

The results are depicted in Figures 5 and 6. Except small spurious oscillations emerging from AV
interactions in some cases, the solutions, and in particular non-classical shocks, are accurately
reproduced.
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(a) Same lane interaction of an upstream active AV with an inactive one, causing the formation of a classical shock followed
by a non-classical shock at the AVs’ common position, see Figure 3a.

(b) Same lane interaction of an inactive AV with an active preceding one, causing no change in the surrounding traffic
density displaying only a non-classical shock at the AVs’ common position, see Figure 3b.

(c) Same lane interaction of inactive AVs, resulting in no change in the surrounding traffic density, see Figure 3c.

Figure 5. Numerical reconstruction of possible configurations of AV interactions on same
lanes. Left: (t, x) representation. Right: density profile at given time instant.
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(a) Different lane interaction of an upstream active AV with an inactive one, causing the formation of two classical shocks
alternated with two non-classical shocks at the AVs’ positions, see Figure 4a.

(b) Different lane interaction of an inactive AV with an active preceding one, causing the formation of a classical shock
separating two non-classical shocks at the AVs’ positions, see Figure 4b.

(c) Different lane interaction of inactive AVs, resulting in no change in the surrounding traffic density, see Figure 4c.

Figure 6. Numerical reconstruction of possible configurations of AV interactions on different
lanes. Left: (t, x) representation. Right: density profile at given time instant.
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Figure 7. Numerical reconstruction of the solution of (2.1) corresponding to four interacting
AVs with initial data (4.2). Top: (t, x) representation. Bottom: density profiles at given time
instants. The first and third AV are on the same lane and merge after overtaking the others.

To give a more general example, we consider the following initial data: ρ0(x) ≡ 200 and

AV1 :

y1(0) = 2.5,
u1 = 120,

AV2 :

y2(0) = 7.5,
u2 = 30,

AV3 :

y3(0) = 10,
u3 = 55,

AV4 :

y4(0) = 20,
u4 = 20,

(4.2)

Moreover, AV1 and AV3 are on the same lane.
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Figure 7 displays the solution, accounting for the different interaction types (queuing and
overtaking). We observe that AV1 and AV3 are initially inactive while AV2 and AV4 are active.
Moreover, AV1 and AV3 overtake the preceding vehicles and finally merge. Also, AV1 is always
inactive until it merges with AV3, which becomes active after the interaction with AV4, while AV4 is
always active. On the contrary, AV2 becomes inactive when it reaches an high traffic density region.

5. Conclusion

We have presented a strongly coupled PDE-ODE model describing the interaction of a small number
of autonomous vehicles with bulk traffic on a multi-lane highway. The model allows for AV queuing
and overtaking, expanding the range of traffic control applications of previous works [4–8, 34]. A first
study on traffic management opportunities offered by this framework is presented in [12], showing that
low penetration rates are sufficient to reach nearly optimal improvements of a selected performance
index.
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