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Abstract. In this paper, we study a model of opinion dynamics based on

the so-called “bounded confidence” principle introduced by Hegselmann and

Krause. Following this principle, voters participating in an electoral decision
with two options are influenced by individuals sharing an opinion similar to

their own.
We consider a modification of this model where the operator generating the

dynamical system which describes the process of formation the final distribu-
tion of opinions in the society is defined in two steps. First, to the opinion
of an agent, a value proportional to opinions in his/her “influence group” is
added, and then the elements of the resulting array are divided by the maximal

absolute value of elements to keep the opinions in the prescribed interval. We
show that under appropriate conditions, any trajectory tends to a fixed point,

and all the remaining fixed points are Lyapunov stable.
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1. Introduction. Various models of opinion dynamics have been studied since
1950s ([6, 7]). At present, opinion studies are a well-developed field of research (see,
for example, the monographs [14, 20] and the recent survey [17]). The main goal
of opinion dynamics is to describe and analyze evolution of public opinion in social
systems.

Mostly, models studied in opinion dynamics are linear, which allows one to apply
more or less standard methods of linear dynamical systems. One of the first nonlin-
ear models was suggested in [11, 12], where the notion of “bounded confidence” has
been introduced. This notion formalizes the fact that, in the course of formation of
public opinion, a member of the society is mostly influenced by individuals sharing
a similar opinion.

The first opinion model based on the notion of bounded confidence, introduced
by Hegselmann and Krause, was later called the Hegselmann – Krause (HK) model;
this model and its generalizations have been intensively studied by various authors,
see, for example, [5, 16, 13, 1, 15, 4, 3, 10, 21, 22, 8]. Mostly, the results were based
on computer simulations, and it was noticed that “rigorous analytical results are
difficult to obtain [9].

In the paper [18], a modification of the HK model suggested by Campi was
studied. Let us consider the dynamics of opinions in a society of voters who have
to choose between two options, -1 and 1. Assume that the society is formed by
N individuals (usually called “agents”), and let vnk ∈ [−1, 1] be the opinion of
individual k at time moment n.

Fix a positive ε < 1 (the level of bounded confidence in the society) and consider
for k ∈ {1, . . . , N} the set of indices

J(vnk ) = {l ∈ {1, . . . , N} : |vnl − vnk | ≤ ε}.

This is the set of indices of agents whose opinions influence agent k at time moment
n.

In the classical HK model, the dynamics of voters is based on the following
procedure: at the step of the process of opinion formation at time n, the new
opinion of agent k is obtained by adding to vnk a value proportional to the average
of values vnl − vnk over indices l belonging to the set J(vnk ).

In the model studied in the paper [18], the average of values vnl − vnk over the set
J(vnk ) is replaced by the average of values vnl over the set J(vnk ).

Thus, when taking the average, the opinion of agent k is included into consider-
ation. In the case where an agent has no other agents with ε-close opinions, this
means that the agent enforces her/his belief: in absence of counter-arguments, one
tends to strengthen her/his own opinion.

Mathematically, this modification of the process may lead to the following con-
sequence: some of the new values may be outside the interval [−1, 1]. In [18], a
“cutting” procedure was suggested; the new opinion value is obtained by replacing
the values less than -1 by -1, and the values more than 1 are replaced by 1.

The dynamics of the appearing dynamical system has been completely described
in [18]. It was shown that if ε ≤ 1/2, then any trajectory tends to a fixed point as
time goes to infinity. All possible fixed points have been characterized. It was shown
that any fixed point P = (p1, . . . , pN ) with |pk| = 1, k ∈ {1, . . . , N}, is attracting,
while all the remaining fixed points are Lyapunov unstable. Modifications of the
model studied in [18] were considered in the recent papers [2] (where the average of
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values vnl has been replaced by values i(vnl ) for a wide class of influence functions i)
and [19] (where the finite set of agents has been replaced by the continuum [0, 1]).

In this paper, we study a model similar to that considered in [18] but with a
different norming. Instead of “cutting” the values obtained at the first step (when
we add to vnk a value proportional to the average of values vnl over the set J(vnk )
and obtain values wnk ), now we divide the values wnk by the maximal absolute value
of wnk (see a detailed description of the appearing dynamical system in the next
section).

Our main results are as follows:

• we find a condition (see inequality (6)) under which any trajectory tends to a
fixed point as time goes to infinity;

• we describe all fixed points in this case;
• we show that both fixed points P− = (−1, . . . ,−1) and P+ = (1, . . . , 1) are

attracting;
• we prove that all the remaining fixed points are Lyapunov stable (thus, the

dynamics of our system is completely different from that of the system studied
in [18]) but not attracting;

• we give an example of the system for which condition (6) is not satisfied and
that has an unstable fixed point.

Of course, our reasoning in this paper essentially differs from that in [18].

The structure of the paper is as follows. Section 2 is devoted to the statement of
the problem. In Section 3, basic properties of the system are described. In Section 4,
we prove the convergence of trajectories to fixed points. In Section 5, stability of
fixed points is analyzed. In Section 6, we give an example of a system with an
unstable fixed point. Section 7 contains several examples of computer modeling.

2. Statement of the problem. We study a dynamical system modeling the fol-
lowing problem of opinion dynamics. A society consisting of N agents has to choose
between two options, 1 and -1. Let vnk ∈ [−1, 1] be the opinion of agent with index
k ∈ {1, . . . , N} at time moment n = 0, 1, . . . and let

V n = (vn1 , . . . , v
n
N )

be the array of opinions at time moment n.

Let us define the operator Φ determining the iterative process which models the
opinion dynamics. Fix two numbers h, ε ∈ (0, 1) and an array

V = (vk ∈ [−1, 1] : k ∈ {1, . . . , N}).

Introduce the sets

J(vk) = {l ∈ {1, . . . , N} : |vl − vk| ≤ ε}, k ∈ {1, . . . , N}.

Denote by I(vk) the cardinality of the (nonempty) set J(vk).

Define an auxiliary array

W (V ) = (w1(V ), . . . , wN (V )),

where

wk(V ) = vk +
h

I(vk)

∑
l∈J(vk)

vl, k = 1, . . . , N. (1)
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Now, assuming that W (V ) is a nonzero array, we set

m(W (V )) = max
l∈{1,...,N}

|wl(V )|

and
Φ(V ) = (v′1, . . . , v

′
N ),

where

v′k =
wk(V )

m(W (V ))
.

Clearly,
v′k ∈ [−1, 1]. (2)

We can represent W (V ) in the form

W (V ) = (E + hA)V,

where E is the identity matrix and the matrix A is row-stochastic; it easily follows
from the inclusion h ∈ (0, 1) that if V 6= 0, then W (V ) 6= 0 as well.

Consider an initial array of opinions V 0 = (v01 , . . . , v
0
N ). If V 0 = 0, then we set

V n = 0 for n ≥ 0 and exclude this trivial case from the further consideration.
It follows from the above reasoning that if V 0 6= 0, then V n = Φn(V 0) are defined

for n > 0. Our main goal is to study the behavior of positive trajectories of the
appearing dynamical system.

3. Basic properties of the system. For simplicity, we denote wnk = wk(V n).

Denote by V the set of arrays V such that

v1 ≤ v2 ≤ · · · ≤ vN . (3)

Lemma 3.1. If v ∈ V, then Φ(V ) ∈ V.

Proof. It follows from [18, Corollary 1] that inequality (3) implies the inequalities
wk(V ) ≤ wk+1(V ); division by m(W (V )) preserves the required inequalities.

It is easily seen that the value wk(V ) in (1) does not depend on the indexing of
components of V . Hence, in what follows, we may (and will) consider trajectories
belonging to V.

Let us note one important inequality. Without loss of generality, we may assume
that, for given V , m(W (V )) = |wN (V )|. Then

m(W (V )) =

∣∣∣∣∣∣vN +
h

I(vN )

∑
l∈J(vN )

vl

∣∣∣∣∣∣ ≤ 1 + h. (4)

Lemma 3.2. If |vnk − vnk+1| > ε, then |vνk − vνk+1| > ε for all ν > n.

Proof. It is enough to prove the statement for ν = n+ 1.
The inequality |vnk − vnk+1| > ε implies that J(vnk ) ⊂ {1, . . . , k} and J(vnk+1) ⊂

{k + 1, . . . , N}. Hence,

vnk +
h

I(vnk )

∑
l∈J(vnk )

vnl ≤ vnk (1 + h)

and

vnk+1 +
h

I(vnk+1)

∑
l∈J(vnk+1)

vnl ≥ vnk+1(1 + h).
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Thus,

vn+1
k+1 − v

n+1
k ≥

(vnk+1 − vnk ) · (1 + h)

m(W (V n))
>

ε(1 + h)

m(W (V n))
. (5)

Now inequality (4) implies the required inequality

vn+1
k+1 − v

n+1
k > ε.

Remark 1. An analog of Lemma 3.2 does not necessarily hold for vnk and vnm with
|k −m| 6= 1. Let us consider the following example.

Let N = 8, ε = 1/2, and h = 1/3. If

V 0 = (−1,−5/16, 0, 0, 0, 0, 5/16, 1),

then m(W (V 0)) = 1 + h and

V 1 = (−1,−1/4, 0, 0, 0, 0, 1/4, 1).

Hence, v07 − v02 = 10/16 > ε, while v17 − v12 = 1/2 = ε.

4. Convergence to fixed points. In this section, we show that if

ε(N − 1) < 1, (6)

then any trajectory Φn(V ) converges to a fixed point of Φ as n→∞.

Now we introduce the object which is the main tool in the following proofs.

Definition 4.1. For an array V n = Φn(V 0), a set {k, k + 1, . . . ,m} ⊂ {1, . . . , N}
is called a band at time n if the following properties are satisfied:

(1) if k > 1, then |vnk−1 − vnk | > ε, and if m < N , then |vnm − vnm+1| > ε;
(2) |vnl − vnl+1| ≤ ε for all l ∈ {k, . . . ,m− 1}.

The value |vnk − vnm| is called the diameter of the band {k, k + 1, . . . ,m}.
In what follows, we often use the term band instead of band at time n.

Remark 2. Since we work with trajectories in V,

vnk ≤ . . . ≤ vnm
for any band {k, k + 1, . . . ,m}.

It follows from Lemma 3.2 that if {k, k+ 1, . . . ,m} is a band at time n for some
V n = Φn(V 0), then no subset of {k, k+1, . . . ,m} can be a subset of a band at time
ν > n for V ν containing either k−1 or m+1. Hence, either a band {k, k+1, . . . ,m}
at time n for V n is a band at time n + 1 for V n+1 as well or it splits into a union
of several bands of smaller lengths.

Thus, for any band {k, k+ 1, . . . ,m} of any initial array V 0 there exists a unique
decomposition

{k, k + 1, . . . ,m} =

r⋃
j=1

{kj , . . . ,mj} (7)

with k1 = k, mr = m, and kj+1 = mj + 1 and a time ν such that any {kj , . . . ,mj}
is a band for any V n = Φn(V 0) for any n ≥ ν (i.e., it does not split into bands of
smaller lengths as time grows).

Clearly, if V 0 is a nonzero array, then either vn1 = −1 or vnN = 1 for any n > 0.
We assume that the same holds for n = 0.

We introduce the following condition on the initial array V 0.



922 S. YU. PILYUGIN, M. S. TARASOVA, A. S. TARASOV AND G. V. MONAKOV

Condition A. The array V 0 has a band {k, . . . ,m} at time 0 such that v0k, . . . , v
0
m

are nonzero and have the same sign.

If V 0 contains a single band, then this band is {1, . . . , N}, and, by our assump-
tion, either v01 = −1 either v0N = 1. Then inequality (6) implies that V 0 satisfies
Condition A.

If V 0 contains at least two bands, then it obviously satisfies Condition A.
Thus, inequality (6) implies Condition A for any array V 0.

In the remaining part of this section, we assume that any initial array V 0 satisfies
Condition A.

Lemma 4.2. For any V 0, the following relation holds:

lim
n→∞

m(W (V n)) = 1 + h. (8)

Proof. Fix a band {k, . . . ,m} for V 0 at time 0 such that v0k, . . . , v
0
m are nonzero and

have the same sign. Without loss of generality, we may assume that these values
are positive.

Let us consider the behavior of vnk as n grows:

vn+1
k =

1

m(W (V n))

vnk + h
1

I(vnk )

∑
l∈J(vnk )

vnl

 ≥ (1 + h)

m(W (V n))
vnk .

To get a contradiction, assume that relation (8) does not hold. Then there exists
a subsequence nk tending to infinity such that

m(W (V nk)) ≤ 1 + h− α

for some α ∈ (0, h).
Without loss of generality, we may assume that the above inequalities hold for

all n. Then

vn+1
k ≥ 1 + h

1 + h− α
vnk = βvnk ,

where

β =
1 + h

1 + h− α
> 1.

Thus,

vn+1
k ≥ βnv0k →∞, n→∞,

which contradicts the inequalities vnk ≤ 1.

Let us describe the behavior of a band of diameter not more than ε.

Lemma 4.3. Assume that a band {k, . . . ,m} for an array V ν at time ν has diam-
eter not more than ε and does not split as time grows. Then the diameters of this
band for the arrays V n at all times n > ν are not more than ε as well and

lim
n→∞

(vnm − vnk ) = 0. (9)

Proof. Without loss of generality, we assume that ν = 0. Applying Lemma 4.2, we
may also assume that

m(W (V n)) ≥ γ > 1, n ≥ 0.
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It follows from our assumption (the band does not split) that J(vnk ) = J and
I(vnk ) = I for n ≥ 0. Hence, if n ≥ 0, then

vn+1
m − vn+1

k =
1

m(W (V n))

(
vnm +

h

I

∑
l∈J

vnl − vnk −
h

I

∑
l∈J

vnl

)

=
1

m(W (V n))
(vnm − vnk ) ≤ 1

γ
(vnm − vnk ) .

This obviously implies the statement of our lemma.

Now we prove that the diameter of every band in decomposition (7) does not
exceed ε for times n ≥ ν if ν is large enough.

Lemma 4.4. For any initial array V 0 and any its band {k, . . . ,m} at time 0 there
exists a time ν such that the diameter of any band {kj , . . . ,mj} in decomposition
(7) for V n with n ≥ ν does not exceed ε.

First we fix some constants.

Fix a positive δ such that

δ ≤ εh

3N(1 + h)
, (10)

a positive β such that

β ≤ δh

3N(1 + h)
, (11)

and a positive α such that

α

1 + h− α
≤ β. (12)

We get Lemma 4.4 as a corollary of the following two lemmas.

Lemma 4.5. Assume that a band {k, . . . ,m} has diameter larger than ε for all
n ≥ 0 and does not split as time grows. There exists n0 ≥ 0 such that the following
implication holds. If vnl ∈ [vnk , v

n
k + δ) for all l ∈ J(vnk ) and for some n ≥ n0, then

there exists an index s such that vn+1
s ∈ [vn+1

k + δ, vn+1
k + ε].

Proof. Fix a time n and let s = max J(vnk ). We will show that the assumption of

the lemma implies the inclusion vn+1
s ∈ [vn+1

k + δ, vn+1
k + ε].

By assumption, the value vnm−vnk (the diameter of the band {k, . . . ,m}) is larger
than ε for all n, and from the inequality

vns − vnk ≤ ε

it follows that s < m. Hence, s, s + 1 ∈ {k, . . . ,m}. Since {k, . . . ,m} is a band,
s+ 1 ∈ J(vns ).
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Then we have the following estimates for n ≥ 0:

vn+1
s − vn+1

k =
1

m(W (V n))

vns +
h

I(vns )

∑
l∈J(vns )

vnl − vnk −
h

I(vnk )

∑
l∈J(vnk )

vnl


≥ 1

m(W (V n))

(
vns + h

(
I(vns )− 1

I(vns )
vnk +

1

I(vns )
vns+1

)
− vnk − hvns

)
≥ 1

m(W (V n))

(
vns + h

(
I(vns )− 1

I(vns )
(vns − δ)+

+
1

I(vns )
(vns + ε− δ)

)
− vnk − h(vnk + δ)

)
≥ 1 + h

m(W (V n))
(vns − vnk ) +

h

m(W (V n))
·
( ε
N
− 2δ

)
≥ h

1 + h

( ε
N
− 2δ

)
≥ δ.

In the last line, we apply inequality (10).
To get the upper bound, take a number n0 ≥ 0 such that

m(W (V n)) ≥ 2

3
+ h, n ≥ n0.

If n ≥ n0, then

vn+1
s − vn+1

k =
1

m(W (V n))

vns +
h

I(vns )

∑
l∈J(vn

s )

vnl − vnk − h

I(vnk )

∑
l∈J(vn

k
)

vnl


≤ 1

m(W (V n))

(
vns + h

(
1

I(vns )
vnk +

I(vns )− 1

I(vns )
(vnk + ε+ δ)

)
− vnk − hvnk

)
≤ 1

m(W (V n))

(
vnk + δ + h

(
1

I(vns )
vnk +

I(vns )− 1

I(vns )
(vnk + ε+ δ)

)
− vnk − hvnk

)
=

1

m(W (V n))

(
δ + h

(
I(vns )− 1

I(vns )
(ε+ δ)

))
≤ 1

2
3
+ h

((1 + h)δ + hε) ≤ 1
2
3
+ h

(2δ + hε) ≤ ε,

where in the last line we take into account that δ ≤ ε

3
due to (10).

Lemma 4.6. Assume that a band {k, . . . ,m} has diameter larger than ε for all
n ≥ 0 and does not split as time grows. There exists n0 ≥ 0 such that for any
n ≥ n0, the following inequality holds:

vn+2
k ≥ vnk + β.

Proof. We claim that there exists n0 such that

vn+1
k ≥ vnk − β, n ≥ n0, (13)

and if there exists an index s such that vns ∈ [vnk + δ, vnk + ε], then

vn+1
k ≥ vnk + 2β, n ≥ n0. (14)

Then the statement of our lemma follows from Lemma 4.5. Indeed, there are
two possible cases:
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• There exists an index s such that vns ∈ [vnk + δ, vnk + ε].
Applying the inequalities (13) and (14), we get

vn+2
k ≥ vn+1

k − β ≥ (vnk + 2β)− β = vnk + β.

• For all l ∈ J(vnk ) we have vnl ∈ [vnk , v
n
k + δ). From Lemma 4.5 we obtain that

there exists an index s such that vn+1
s ∈ [vn+1

k + δ, vn+1
k + ε]. Then, applying

first inequality (14) and the inequality (13), we get

vn+2
k ≥ vn+1

k + 2β ≥ (vnk − β) + 2β = vnk + β

which completes the proof.

To establish estimate (13), let us fix a positive α such that inequality (12) holds.
Consider an n0 ≥ 0 such that

m(W (V n)) ≥ 1 + h− α, n ≥ n0.
If n ≥ n0, then

vn+1
k =

1

m(W (V n))

vnk +
h

I(vnk )

∑
l∈J(vnk )

vnl

 ≥ 1 + h

m(W (V n))
vnk

=vnk +

(
1 + h

m(W (V n))
− 1

)
vnk ≥ vnk −

(
1 + h

m(W (V n))
− 1

)
≥vnk −

α

1 + h− α
≥ vnk − β.

Next, we assume that vns ∈ [vnk + δ, vnk + ε]. Let us estimate

vn+1
k =

1

m(W (V n))

vnk +
h

I(vnk )

∑
l∈J(vnk )

vnl


≥ 1

m(W (V n))

(
vnk + h

(
I(vnk )− 1

I(vnk )
vnk +

1

I(vnk )
vns

))
≥ 1

m(W (V n))

(
vnk + h

(
I(vnk )− 1

I(vnk )
vnk +

1

I(vnk )
(vnk + δ)

))
=

1 + h

m(W (V n))
vnk +

δh

I(vnk ) ·m(W (V n))

≥vnk −
α

1 + h− α
+

δh

N(1 + h)
≥ vnk + 2β.

To prove Lemma 4.4, we assume that the diameter of the band {k, . . . ,m} is more
than ε for arbitrarily large n0. Then Lemmas 4.5 and 4.6 lead to a contradiction
since the sequence (vnk ) is bounded.

Theorem 4.7. If condition (6) is satisfied, then any trajectory Φn(V 0) tends to a
fixed point of Φ as n→∞.

Proof. It follows from Lemmas 4.3 and 4.4 that for any initial nonzero array V 0 the
following holds: if n is large enough, then the set {1, . . . , N} is the union of disjoint
subsets,

{1, . . . , N} =

r⋃
i=1

{k : bi ≤ k ≤ ci},
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where b1 = 1, cr = N , ci+1 = bi + 1, and any set {bi, . . . , ci} is a band for V n such
that

0 ≤ vnci − v
n
bi → 0, n→∞, i = 1, . . . , r.

There are the following possible cases:

• vnbi ≥ 0 for some n; then vmk ≥ 0 for all bi ≤ k ≤ ci and m ≥ n;
• vnci ≤ 0 for some n; then vmk ≤ 0 for all bi ≤ k ≤ ci and m ≥ n;
• vnbiv

n
ci < 0 for some n; then vmk v

m
k < 0 for all bi ≤ k ≤ ci and m ≥ n.

In any of these cases, there exist numbers ai ∈ [0, 1] such that

vnk → ai, bi ≤ k ≤ ci, n→∞,
(and ai = 0 in the third case).

It follows from the left-hand side of inequality (5) that

vn+1
ci+1
− vn+1

bi
≥ vnci+1

− vnbi , i = 1, . . . , r − 1;

hence,

ai+1 − ai > ε, i = 1, . . . , r − 1.

In addition, either a1 = −1 or ar = 1 (or both possibilities are realized). Clearly,
the corresponding array

A = (a1, . . . , a1, a2, . . . , a2, . . . , ar, . . . , ar)

is a fixed point of Φ such that

V n → A, n→∞.

Remark 3. In fact, the proofs of Lemmas 4.3 and 4.4 (and hence, of Theorem 4.7)
are based not on condition (6) but on the assumption that for any V 0, relation (8)
holds (which we deduce from Condition A).

We refer to condition (6) in Theorem 4.7 since the above-formulated two assump-
tions are of “inner” character while condition (6) relates values from the statement
of the problem.

5. Stability of fixed points. In this section, we assume that relation (8) holds.
As was noted, this assumption implies the conclusion of Theorem 4.7. Let us study
the stability properties of the appearing fixed points of Φ.

First we introduce the following notation. Let P = (p1, . . . , pN ) be a fixed point
of Φ. An array

(B1(a1), . . . , Br(ar))

is called the scheme of the fixed point P if

Bj(aj) = {bj , . . . , cj}, for any j = 1, . . . , r,

where b1 = 1, cr = N , and bi+1 = ci + 1, is a band for P = Φn(P ) at any time n
and

pk = aj , k ∈ Bj(aj).

Let us select two fixed points, P− and P+, having schemes (B1(−1)) and (B1(1)),
respectively, where B1(−1) = B1(1) = {1, . . . , N}.

Theorem 5.1. If relation (8) holds, then

(1) both fixed points P− and P+ are asymptotically stable for Φ;
(2) any fixed point P different from P− and P+ is Lyapunov stable but not asymp-

totically stable.
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Proof. Let us first prove item (1). We consider the case of the fixed point P+, for
P− the proof is similar.

First we prove that P+ is Lyapunov stable. Fix a ∆ > 0; without loss of gener-
ality, we assume that ∆ ≤ ε.

Let δ ≤ ∆ and consider a V = (v1, . . . , vN ) ∈ V such that

vk ∈ [1− δ, 1], k ∈ {1, . . . , N}. (15)

Then J(vk) = {1, . . . , N} for k ∈ {1, . . . , N}; hence,

wk(V ) ≥ (1 + h)(1− δ), k ∈ {1, . . . , N},
and

(Φ(V ))k ∈ [1− δ, 1], k ∈ {1, . . . , N}.
This implies that

(Φn(V ))k ∈ [1−∆, 1], k ∈ {1, . . . , N}, n ≥ 0.

Thus, P+ is Lyapunov stable.
As was said before introducing Condition A, we may assume that, for any V ,

either (Φn(V ))1 = −1 or (Φn(V ))N = 1 for n ≥ 0. In our case, inequality (15)
implies that vnN = (Φn(V ))N = 1 for all n, and it follows from Lemma 4.3 that

|vnk − 1| → 0, n→∞, k ∈ {1, . . . , N}.
Thus, P+ is asymptotically stable.

Now we prove item (2). Consider two possible cases.

Case 1. The fixed point P has scheme (B1(−1), B2(1)) with nonempty B1(−1),
B2(1). In this case, the Lyapunov stability is proved by the same reasoning as
above. To prove that P is not asymptotically stable, note that any point with
scheme (B1(−1 + δ), B2(1)), where δ ∈ (0, ε), is a fixed point of Φ.

Case 2. The fixed point P = (p1, . . . , pn) has scheme

(B1(−1), . . . , Bl(al), . . . , Br(1)),

where Bl(al) is nonempty and |al| 6= 1. In this case, |al| ∈ (−1+ε, 1−ε) and one of
the sets B1(−1), Br(1) is nonempty. To simplify consideration, assume that B1(−1)
is empty (the remaining cases are treated similarly).

Fix a ∆ > 0 such that

aj+1 − aj > ε+ 2∆, j = 1, . . . , r − 1. (16)

Without loss of generality, we assume that ∆ ≤ ε/2. Clearly, if V = (v1, . . . , vN )
and

|vk − pk| ≤ ∆, k ∈ {1, . . . , N},
then J(vk) = J(pk) for k ∈ {1, . . . , N}.

Take a positive δ such that
2δ

1− δ
< ∆. (17)

Clearly, in this case δ < ∆.
Introduce the following condition on the trajectory of an initial point V 0.
Condition C(ν):

|vnk − pk| ≤ ∆, k ∈ {1, . . . , N}, 0 ≤ n ≤ ν.
We show that if

|v0k − pk| ≤ δ, k ∈ {1, . . . , N}, (18)
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for an initial point V 0, then Condition C(ν) is satisfied for all ν ≥ 0, which, of
course, means that P is Lyapunov stable.

Thus, below we assume that inequalities (18) are satisfied.
Since δ < ∆, Condition C(0) is satisfied. Now we show that Condition C(ν)

implies Condition C(ν + 1).
We start with k ∈ Br(1). Due to Condition C(ν), J(vnk ) = Br(1) for 0 ≤ n ≤ ν.

The same reasoning as in the proof of item (1) shows that

|vnk − 1| ≤ δ, k ∈ Br(1), n ≤ ν + 1.

Denote

µn = m(W (V n−1))× · · · ×m(W (V 1))×m(W (V 0)).

Since v0k ≥ 1− δ for k ∈ Br(1),

(1 + h)n

µn
(1− δ) ≤ vnk ≤ 1, 0 ≤ n ≤ ν + 1, k ∈ Br(1),

and the inequalities

(1 + h)n

µn
− 1 ≤ δ

1− δ
, 0 ≤ n ≤ ν + 1, (19)

hold.
Now we consider indices k ∈ Bl(al) with l < r. Condition C(ν) and inequalities

(18) imply that

v0k ≤ al + δ, v1k ≤
1 + h

µ1
(al + δ), . . . , vnk ≤

(1 + h)n

µn
(al + δ)

for 0 ≤ n ≤ ν + 1.
Hence, if k ∈ Bl(al), then it follows from inequality (19) with n = ν + 1 that

vν+1
k − al ≤

(1 + h)ν+1

µν+1
(al + δ)− al

=

(
(1 + h)ν+1

µν+1
− 1

)
al +

(1 + h)ν+1

µν+1
δ ≤ 2δ

1− δ
< ∆.

Similarly one shows that

vν+1
k − al > −∆,

which proves that Condition C(ν + 1) is satisfied.
This completes the proof of Lyapunov stability of the fixed point P .
To prove that P is not asymptotically stable, note that any point with scheme

(B1(−1), . . . , Bl(al + δ), . . . , Br(1)),

where δ is small enough, is a fixed point of Φ.

6. Example with a single band. The following example shows that if ε is not
small, then the dynamics of the system can be essentially different from that de-
scribed above.

Let N = 6 and ε = 1/2. Then Φ has a fixed point

P = (−1,−1/2, 0, 0, 1/2, 1).

Clearly,

W (P ) =

(
−1− 3h

4
,−1

2
− 3h

8
, 0, 0,

1

2
+

3h

8
, 1 +

3h

4

)
,
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m(W (P )) = 1 +
3h

4
, (20)

and Φ(P ) = P .
This fixed point is unstable; for any small δ > 0, the point

V 0 = (−1,−1/2, δ, δ, 1/2, 1)

has a band {δ, δ, 1/2, 1} at time 0 with nonzero elements of the same sign; the
reasoning applied in the proof of Lemma 4.2 shows that

m(W (V n))→ 1 + h, n→∞,
which, compared with relation (20) indicates that the fixed point P is unstable.

In Fig. 3 of the next section, the dynamics with δ = 0.01 is shown.

Figure 1. Initial distribution and opinions’ evolution of system
with (6) at steps 10, 30 and 70; ε = 0.1, h = 0.1.

7. Numerical experiments. The first figure illustrates the dynamics of the sys-
tem for which condition (6) holds. Figure 1 shows the initial distribution of opinions
and the evolution of the system at times 10, 30, and 70. One can see that at time
70, the equilibrium is almost reached. The fixed points of this system are 4 groups
of equal numbers.

Figure 2. Initial distribution and opinions’ evolution of system
with Condition A at steps 20, 40 and 90; ε = 0.4, h = 0.1.

The second example illustrates the evolution of the system with a larger number
of agents. Here, condition (6) is not met, but Condition A holds. Figure 2 shows
the initial distribution of such a system with ε = 0.5, h = 0.1 and its evolution at
times 20, 40, and 90.

Figure 3 shows the dynamics of the band

V 0 = (−1,−1/2, δ, δ, 1/2, 1)

which was mentioned in Section 6. The illustration shows the initial distribution of
this system with δ = 0.01 and its evolution at times 10, 30, and 70. In this case,
the band of positive values collapses into a band with the same values.
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Figure 3. Initial distribution and opinions’ evolution for third
example at steps 10, 30 and 70, when the equilibrium is reached;
ε = 0.5, h = 0.1.
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