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Abstract. In this paper we propose a multiscale traffic model, based on the

family of Generic Second Order Models, which integrates multiple trajectory
data into the velocity function. This combination of a second order macro-

scopic model with microscopic information allows us to reproduce significant

variations in speed and acceleration that strongly influence traffic emissions.
We obtain accurate approximations even with a few trajectory data. The pro-

posed approach is therefore a computationally efficient and highly accurate

tool for calculating macroscopic traffic quantities and estimating emissions.

1. Introduction. In this paper, we focus on the development of models specifically
designed to take advantage of the availability of heterogeneous data. By heteroge-
neous data we mean not only data coming from different sources, but especially
data coming from different scales of observation and different modes of monitoring.
We refer in particular to Lagrangian data, which provide information on the trajec-
tories followed by vehicles, and to Eulerian data, which measure the transit of cars
from fixed locations. In the case of vehicles, the Lagrangian data are typically GPS
data (i.e. trajectory data, from which the instantaneous speed is derived), while the
Eulerian data come from fixed sensors placed along the road, capable of counting
cars and measuring their speed.

Alongside this analysis we consider the problem of estimating emissions from
vehicular traffic on complex networks. The continuous traffic growth is in fact as-
sociated with negative environmental effects, which are related to both air quality
and climate change. In order to assess the impact of traffic emissions on the en-
vironment and human health, an accurate estimate of their rates and location is
required.

1.1. Related work. In this article we mainly follow the approach of [11], where the
authors propose a new traffic model that integrates position and velocity informa-
tion of a single tracked vehicle into the velocity function of the Lighthill-Whitham-
Richards (LWR) model [25, 28]. LWR is a first order (i.e. a single equation) model
that describes traffic dynamics in a road through the density of vehicles and their
average speed. We extend the ideas of [11] to the case of several vehicle trajectory
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data and to the family of Generic Second Order Models (GSOM) introduced in [23].
GSOM encompasses the majority of second order (i.e. two equations) traffic models
that, unlike first order ones, are able to reproduce bounded traffic accelerations [22].
Our choice leads to a multiscale type model that exploits the best features of the
macroscopic and microscopic approaches. Multiscale models has been already con-
sidered in several papers. We refer, for instance, to [10, 16] where the macroscopic
LWR model is merged with the classical microscopic follow the leader model. In
[12] the authors propose a multiscale approach obtained by coupling a first order
macroscopic model with a second order microscopic one that is used only under spe-
cific traffic conditions. The interested reader can find other examples of multiscale
models in [7, 15, 18, 20, 24]. Hereafter we cite some works closer to our goals. In [9],
the LWR model is combined with an ordinary differential equation representing the
trajectory of a slow vehicle acting as a moving bottleneck. This approach can be
considered as a way to include real trajectory data in a macroscopic traffic model
and is therefore comparable with our scopes. We also refer to [8] and the references
therein, to mention a robust method of traffic estimation involving mixed fixed and
mobile sensor data using the Hamilton-Jacobi equations.

Once the traffic state variables have been estimated, they can be used as input
for the so-called emission models, which evaluate the mass of pollutants emitted.
In this respect, in [19, 36] the authors provide general frameworks to integrate
macroscopic traffic flow models and microscopic emission models. In [2, 3] the
traffic modeling relies on the LWR model and a reaction-diffusion model describes
the spread of carbon monoxide in the air with a source term associated with traffic
dynamics. In the recent work [17] the authors analyze a reaction-diffusion model,
based on LWR traffic dynamics, to control nitrogen oxides emissions. In [30] the
authors suggest a new methodology to estimate in real-time the emission rates
of pollutants and describe their diffusion in air. Furthermore, in [4] the authors
propose a computational tool to estimate pollutant emissions due to vehicular traffic
using second order traffic models. This approach approximates emissions well when
a large amount of data is available to feed the traffic model. The present work
extends this method by including microscopic data in the second order macroscopic
traffic model, and provides a good estimate of pollutant emissions even when few
data is available.

1.2. Background and motivations. In order to exploit as much information as
possible, we consider traffic models that take into account different and heteroge-
neous traffic data available along a road. A single source of data is generally not
sufficient to estimate and forecast traffic volumes on a road. In Figure 1 on the left
we provide an example of the partial information coming from GPS data; speed is
observed for a limited number of vehicles and only at specific points in time and
space. At the same time, in Figure 1 on the right we show an example of flux data
coming from a fixed sensor; this type of data is not enough to correctly calculate
traffic quantities such as densities, as it only provides average speed values or noisy,
time-sampled flow information.

To deal with these two types of data, we have followed the approach proposed
in [11], which is an effective and efficient way of coupling macroscopic and micro-
scopic variables to estimate traffic volumes. This approach allows us to perform
data fusion directly at the model level: Eulerian flow data measured by stationary
sensors is used as boundary condition for the differential equations describing the
traffic dynamics, while the Lagrangian data from the GPS sensor is used to correct
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Figure 1. A sample of a GPS trajectory dataset (left) and of flux
data coming from a fixed sensor (right). The data was provided by
Autovie Venete S.p.A and are not publicly available.

macroscopic quantities in real time. More precisely, let p = p(t) be the position
of a single vehicle along the road at time t. Starting from the conservation law of
vehicles density ρ = ρ(x, t),

∂tρ+ ∂x(ρU) = 0, (1)

the measured trajectory p = p(t) is directly encoded in the time- and space-
dependent speed law U as

U(x, t, ρ; p) = χ(x− p(t)) 2ṗ(t)u(ρ)

ṗ(t) + u(ρ)
+
(
1− χ(x− p(t))

)
u(ρ),

if ṗ(t) + u(ρ) 6= 0, otherwise U = 0. Here, u = u(ρ) is a given speed function
depending only on the density and χ(ξ) is a smooth, non-negative function such
that χ(ξ) = 1 for |ξ| ≤ ` and χ(ξ) = 0 when |ξ| ≥ L, for two fixed constant `, L
with ` < L. Thus, when the point (x, t) is sufficiently far from the position of the
vehicle p = p(t) (χ = 0), then U is defined by the velocity function u(ρ) as in the
LWR model, otherwise it is given by the harmonic mean between u and the velocity
ṗ(t) of the vehicle.

We extend this idea to the case of more trajectory data available. We propose
two ways to incorporate the Lagrangian data of N vehicles. In the first one, the
velocity function U takes into account only the speed ṗk(t) of the κ-vehicle closest
to the point x at time t; in the second one, it depends on the mean speed of the
set of vehicles closest to point x. The difference between the two approaches only
shows up when several vehicles with different speeds are close to each other. In
both cases, the resulting flow function F = ρU is strictly concave with respect to
ρ. We do not investigate the model from an analytical point of view. We need U to
inherit reasonable properties of u and ṗ, such as positivity and boundedness, and
we still refer to [11] for analytical aspects.

In absence of real trajectory data, the macroscopic traffic model introduced above
can be coupled with a microscopic one. Lagrangian data, in fact, can be generated
from a microscopic model and then included in the velocity function U as previously
described. One therefore obtains a multiscale type model capable of describing some
traffic phenomena generally captured only by a detailed, microscopic description of
the dynamics.
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The proposed approaches can be easily applied to other traffic models. We can
thus incorporate the information from N Lagrangian data into the family of Generic
Second Order Model (GSOM) [23] described by{

∂tρ+ ∂x(ρV) = 0

∂tw + V∂xw = 0,

where ρ(x, t) is the density of vehicles, w(x, t) is a vehicle/driver property or invari-
ant, which is conserved along trajectories, and V is the velocity field. By taking
into account the Lagrangian information, V = V(x, t, ρ, w; p) is defined as

V(x, t, ρ, w; p) = χ(x− pκ(t))
2ṗκ(t)v(ρ, w)

ṗκ(t) + v(ρ, w)
+
(
1− χ(x− pκ(t))

)
v(ρ, w)

if ṗκ(t) + v(ρ, w) 6= 0, otherwise V = 0. Here p = (p1(t), . . . , pN (t)) is the vector of
positions of the N vehicles and κ = κ(x, t) is the index of the closest vehicle to point
x at time t. The function v = v(ρ, w) is a given analytical function which describes
the macroscopic velocity field in the native (without tracking vehicles) second order
model.

1.3. Emissions estimate. The use of a second order model leads to good approx-
imations of the acceleration of vehicles and consequently to the estimate of traffic
emissions at ground level, that is one of the main goal of our work. Most emission
models are based on both vehicle speed and acceleration, see for instance [6, 32] and
references therein. Here we explore the use of two types of formula which compute
the emissions associated with the motion of vehicles. The models we consider have
been introduced in [26] and [1], respectively. In both formulas the contribution of
the Lagrangian data is incorporated in the terms of speed and acceleration eval-
uated by the traffic model. Specifically, by computing the acceleration function
a = a(x, t) as the time material derivative of the new function V introduced above
it directly depends on the acceleration p̈κ(t) of the nearest vehicle.

We compare the two emission models and we show how the integration of real
data affects their results. We observe that the integration of trajectory data into the
macroscopic traffic model increases the order of accuracy of the emission estimate,
even when there are few data available. In particular, the formula proposed in [26]
gives better results.

We conclude our study with a real-life application using trajectory and fixed
sensors data provided by Autovie Venete S.p.A. on the Italian A4 (Trieste-Venice)
highway. With this test we link heterogeneous traffic source data to emission es-
timates along a road network, and at the same time we provide an approximation
of the source term that feeds air pollutant diffusion and chemical reaction models.
The numerical results show how the GPS data influences the solution of the traffic
model and gives good reproductions of the emission peaks at the macroscopic scale.

1.4. Main goal. In summary, we propose a second order traffic model that re-
turns macroscopic traffic quantities by incorporating microscopic information. Mi-
croscopic trajectories are included in the definition of the velocity field in order to
perturb the velocity and acceleration values at the macroscopic level. This method-
ology combines the computational efficiency of a macroscopic model with the ac-
curacy of a microscopic representation. This makes it particularly suitable as an
input for estimating the mass of emitted pollutants when an aggregate description
is required. With a few Lagrangian trajectories, it is in fact possible to reproduce



TRAFFIC EMISSION ESTIMATE VIA HETEROGENEOUS DATA 867

significant emission variations at the macroscopic scale. The procedure is very flex-
ible and can be used with real measurements or with vehicle trajectories generated
by Lagrangian models.

1.5. Paper organization. In Section 2 we propose two possible extensions of the
first order LWR model to integrate Lagrangian data from N vehicles. A numerical
test is proposed to show the differences between the two approaches. In Section
3, we apply the ideas given in the previous section to the family of GSOM. Then,
we compute the acceleration as the material derivative of the velocity function,
making explicit its dependence on the acceleration of the single vehicles. In Section
4 we describe two models to estimate the emissions produced by vehicular traffic.
In Section 5.1 and 5.2, we propose numerical tests to show how the integration of
Lagrangian data into the GSOM impacts on the traffic dynamic and on the estimate
of emissions, respectively. We conclude with Section 5.3, which describes the use of
GPS and fixed sensors data provided by Autovie Venete S.p.A. on a portion of the
Italian highway network. Finally, in Appendix A we report two technical proofs.

2. A macroscopic first order model embedding Lagrangian data. Assume
to know the trajectory of N vehicles, and let p = (p1(t), . . . , pN (t)) be the vector of
their positions at time t. Following [11], we assume pi = pi(t), to be continuous and
smooth functions such that ṗi ≥ 0 for i = 1, · · · , N and a.e. t ∈ R+. We propose two
approaches to incorporate information from the vehicles into the velocity function
of the conservation law (1).

(CV) Closest Vehicle. We define U in (1) as

U(x, t, ρ; p) =

{
χ(x− pκ(t)) 2ṗκ(t)u(ρ)

ṗκ(t)+u(ρ)
+
(
1− χ(x− pκ(t))

)
u(ρ) if (ṗκ, u) 6= (0, 0)

0 otherwise,

(2)

where pκ(t) is the position of the κ-vehicle closest to point x. With a slight
abuse of notation, we have

κ = κ(x, t) = arg min{|x− pi(t)|, i = 1, . . . N}. (3)

(ACVs) Average on the Closest Vehicles. For each vehicle position pi(t), i =
1, . . . , N , we set

Ui(x, t, ρ; p) =

{
χ(x− pi(t)) 2ṗi(t)u(ρ)

ṗi(t)+u(ρ)
+
(
1− χ(x− pi(t))

)
u(ρ) if (ṗi, u) 6= (0, 0)

0 otherwise.

We introduce the function φ(x, t) that counts the number of vehicles whose
position at time t is close to point x, i.e. such that χ(x− pi(t)) > 0,

φ(x, t) = #{i ∈ {1, . . . , N} : χ(x− pi(t)) > 0}. (4)

We then define the function U in (1) as the average value of the speeds of the
closest vehicles, that is

U(x, t, ρ; p) =


1

φ(x, t)

φ(x,t)∑
i=1

Ui(x, t, ρ; p) if φ(x, t) > 0

u(ρ) if φ(x, t) = 0.

(5)
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The two approaches are different only when two or more trajectories are very close
to each other, otherwise they coincide.

We use the same assumptions made in [11], namely: ρ ∈ [0, ρmax], u = u(ρ) is
a regular and non increasing function with u(ρmax) = 0, f(ρ) = ρu(ρ) is strictly
concave in ρ and, for each z > 0 the function ρzu/(z + u) is strictly concave in ρ; the
flux function F(x, t, ρ) = ρU(x, t, ρ; p), with U in (2) or (5), is strictly concave with
respect to ρ. Thus, there exists a unique density value σ(x, t) where the flux reaches
its maximum F(x, t, σ) = Fmax(x, t) and we can define the sending S = S(x, t, ρ)
and receiving R = R(x, t, ρ) functions in the standard way [21],

S =

{
F(x, t, ρ) if ρ ≤ σ(x, t)

Fmax(x, t) if ρ > σ(x, t)
R =

{
Fmax(x, t) if ρ ≤ σ(x, t)

F(x, t, ρ) if ρ > σ(x, t).
(6)

The critical density σ(x, t) is defined by ∂ρF(x, t, σ) = 0. In the (CV) case, for
(x, t) such that χ(x − p(t)) 6= 0 or χ(x − p(t)) 6= 1, it is implicitly defined by the
non-linear relation

2ṗ(t)χ(x− p(t))
(
ṗ(t)u(σ) + u2(σ) + ρṗ(t)uρ(σ)

)
+
(

1− χ(x− p(t))
)(
u(σ) + ρuρ(σ)

)(
ṗ(t) + u(σ)

)2
= 0.

(7)

Also in the (ACVs) case the computation of σ requires the solution of a non-linear
problem,

φ(x,t)∑
i=1

[
2ṗi(t)χ(x− pi(t))

(
ṗi(t)u(σ) + u2(σ) + ρṗi(t)uρ(σ)

)
+
(

1− χ(x− pi(t))
)(
u(σ) + ρuρ(σ)

)(
ṗi(t) + u(σ)

)2]
= 0.

(8)

In both cases, for each point (x, t), the calculation of σ = σ(x, t) must be done
numerically.

Remark 2.1. Numerical solvers for nonlinear equations such as (7) or (8) have a
high computational cost. Since the critical density σ is the maximum point of the
flow function F , one can reduce the complexity of the computation by sampling the
values of F = F(·, ·, ρ) into a vector and applying a search for the maximum value
of the vector that returns the corresponding density index.

To highlight the differences between the two proposed models (CV) and (ACVs),
in Figure 2 we plot different curves F(x, t, ρ) with one or more trajectory data. We
set u(ρ) = umax(ρmax − ρ)/ρmax and

χ(ξ) =


0 if |ξ| > L

(ξ + L)/(L− `) if −L ≤ ξ < −`
1 if −` ≤ ξ ≤ `
(ξ − L)/(`− L) if ` < ξ ≤ L.

(9)

In Figure 2 on the left we fix the time t and we plot the curves F(x, t, ρ) in the
case of a single trajectory data. In this case the two approaches (CV) and (ACVs)
coincide, and we observe that the critical density σ(x, t) increases with χ(x− p(t))
while Fmax(x, t) decreases. In Figure 2 on the right, we compare the flux function
F(x, t, ρ) given by the (CV) and (ACVs) approaches assuming to have three vehicles
travelling with different speed and close enough to influence the velocity function
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(5). The solid line represents the flux function F(x, t, ρ) with the (ACVs) approach
on the cell x where all the three vehicles contribute to the velocity computation,
i.e. φ(x, t) = 3. The dotted lines, instead, represent the flux function with the
(CV) model in the cells x where χ(x − pκ(t)) = 1, κ ∈ {1, 2, 3}. We observe that
σ(x, t) increases with the decrease of vehicle velocity. Indeed, for small velocities
the vehicles need more time to fill the road, thus we obtain higher values of the
critical density.

(ACVs)

Figure 2. Left: flux function F(x, t, ρ) at fixed t as ρ and x
change; the circles represent (σ(x, t),Fmax(x, t)) as x changes.
Right: comparison of the flow function given by the (CV) and
(ACVs) approaches, assuming to have three vehicles travelling with
different speed and close enough to have φ(x, t) > 1; the solid line
represents the flux obtained by the (ACVs) formula; the dotted
lines represent the flux obtained with the (CV) formula with clos-
est vehicle moving with velocity ṗκ = 90, 50, 5 km/h.

Let us consider now a numerical grid on a road [a, b]. Let Nx be the number of
cells [xj−1/2, xj+1/2) of size ∆x, and Nt + 1 the number of intervals of length ∆t
into which we divide the period of time [0, T ]. Let ρnj = ρ(xj , t

n) be the density of
vehicles into the cell xj at time tn, defined as the cell average

ρnj =
1

∆x

∫ xj+1/2

xj−1/2

ρ(x, tn)dx.

To approximate the model (1) we use the Cell Transmission Model (CTM) [13].
The numerical scheme has the following structure

ρn+1
j = ρnj −

∆t

∆x
(Fnj+1/2 − F

n
j−1/2), (10)

with the numerical flux Fnj+1/2 defined as

Fnj+1/2 = min{S(xj , t
n, ρnj ), R(xj+1, t

n, ρnj+1)}, (11)

where S and R are the sending and receiving functions introduced in (6). At each
time step n and for each cell centered in xj , the critical densities σ(xj , t

n) must
be computed numerically. As observed in Remark 2.1, the computational costs are
reduced by calculating the values Fnj (ρ) = F(xj , t

n, ρ) as ρ ∈ [0, ρmax] varies and
applying a search for the maximum of these values to compute the index l such that
σ(xj , t

n) ≈ ρl. For instance, on the MATLAB platform the max function allows to
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efficiently compute the index of the maximum of the sampled flux values and is
significantly faster than the function fsolve required to solve non-linear equations
as (7) or (8).

With standard arguments it is possible to prove the following properties of the
scheme (10)-(11). Both results given in the next Proposition 2.2 and 2.3 apply to
the (CV) and (ACVs) models. For completeness, in Appendix A we give the details
of the proofs for the (CV) approach.

Proposition 2.2. The approximate solution ρn = (. . . , ρnj−1, ρ
n
j , ρ

n
j+1, . . .) con-

structed via the scheme (10)-(11) satisfies the bounds

0 ≤ ρnj ≤ ρmax for all j ∈ Z, n ∈ N

if the following Courant-Friedrichs-Levy (CFL) condition holds:

∆t

∆x
max
(x,t,ρ)

∣∣∂ρF(x, t, ρ)
∣∣ ≤ 1. (12)

Proposition 2.3. The stability of the scheme is guaranteed by the condition

∆t ≤ ∆x

max
{

sup(x,t) ṗκ(x,t)(t), u
max
} (13)

where ṗκ is the velocity of the κ-th vehicle, with κ defined in (3), and umax is the
maximum velocity value given by the analytical model.

Remark 2.4. If all the trajectories on the road have a speed always lower than
the parameter umax = u(0) of the analytical model, then we use the standard CFL
condition ∆t ≤ ∆x/umax.

Now we propose an example to show the differences between the two approaches
(CV) and (ACVs). Recall that u(ρ) = umax(ρmax − ρ)/ρmax. We fix the following
parameters: ρmax = 100 veh/km, umax = 90 km/h, a = 0, b = 3 km, ∆x = 0.1 km,
T = 1 min. The time step ∆t = 0.2 s is chosen to satisfy the CFL condition in (13).
The function χ in (2) is defined in (9) with ` = 2∆x and L = 6∆x. We test two
different initial data, namely a rarefaction wave and a shock one, given by

ρ0(x) =

{
45 if x < 1.5

30 if x ≥ 1.5
and ρ0(x) =

{
20 if x < 1.5

40 if x ≥ 1.5.

Since the two definitions of U in (2) and (5) differ for φ(x, t) > 1 with φ in (4),
we fix the trajectories of three vehicles as

p1(t) = 1 + 10t, p2(t) = 1.001 + 25t and p3(t) = 1.002 + 50t,

so that φ(xk, t) > 1 for some cells xk and time t. In Figure 3 we compare the results
at different times starting from the rarefaction wave on the top and the shock one
on the bottom. Let us consider the rarefaction case: the main differences between
the solutions to (1) with U in (2) and (5) can be observed in plots (a), (b) and
(c), i.e. when the three vehicles are really close to each other (φ(x, t) > 1). Indeed,
the solutions related to U in (2) (red-solid lines) show oscillations with higher picks
than those related to (5) (blue-dotted lines), where the velocity value is averaged.
At the final time of the simulation, plot (d), the two solutions are quite similar,
since the three vehicles are far enough from each other (φ(x, t) ≤ 1 for each x) and
the two definitions of U in (2) and (5) coincide. A similar analysis holds for the
shock wave initial data. Therefore, the main difference between the two dynamics
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(red-solid and blue-dotted lines) concerns the height of the peaks of the oscillations
caused by the individual behavior of the tracked vehicles.
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Figure 3. Comparison between model (1) with velocity function
U defined in (2) and (5), red-solid and blue-dotted lines respec-
tively, at different times of the simulation starting from a rarefac-
tion wave (top) and shock one (bottom).

We conclude this section by highlighting another important feature of the model
described above. The proposed approach also allows the coupling of a macroscopic
model with a microscopic one. Put simply, trajectory data can be generated from a
microscopic model, and then included in the velocity function U following the (CV)
or (ACVs) methodology. By coupling, for example, the first order macroscopic
model (1) with a second order microscopic one of the follow-the-leader type, the
resulting multiscale model would have the following form

∂tρ+ ∂x(ρU(x, t, ρ; p)) = 0

ṗi(t) = Vi(t) i = 1, . . . , N

V̇i(t) = A(pi(t), pi+1(t), Vi(t), Vi+1(t)) i = 1, . . . , N − 1

V̇N (t) = 0,

(14)

where the N -th vehicle is the leader which has a special dynamics, and the function
A represents the acceleration to be defined, see for instance [38].

We propose a numerical test, to show how the model (14) can reproduce typical
traffic phenomena. In Figure 4 on the left, we generate trajectories by the second
order microscopic model used in [12] (equations (1)-(6)-(7)), which is specifically
designed to reproduce stop & go waves. Starting from a constant initial density
along a road, in Figure 4 on the right we observe how the microscopic dynamics
cause a variation on the macroscopic density, leading to the reproduction of the
stop & go phenomenon at the macroscopic level. In this simulation, we have used
the (CV) approach. For completeness, in Figure 5 we superpose the density profile
obtained with the (CV) method to the (ACVs) one. The two profiles are very
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similar because the not-perturbed vehicles generated by the microscopic dynamics
are all moving at the same speed.
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Figure 4. Left: Trajectories generated by the second order mi-
croscopic model used in [12]. Right: Evolution in space and time
of the macroscopic density ρ = ρ(x, t) obtained by the multiscale
model (14)-(2) with the N = 50 trajectories given on the left.
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Figure 5. Evolution of the density ρ = ρ(x, t) along a road at
time t = 50∆t (left) and t = T (right), obtained by solving (14)
with U defined in (2) and (5), represented by red-solid and blue-
dotted lines, respectively.

The advantage of using a model of the type proposed in (14) is clear from Figure
6, where a small sample of microscopic data is sufficient to describe a stop & go
wave that is difficult to simulate through a macroscopic model (particularly of the
first order).

3. A macroscopic second order model embedding Lagrangian data. In
this section we apply the ideas introduced in Section 2 to the Generic Second Order
Models (GSOM) [23], described by{

∂tρ+ ∂x(ρV) = 0

∂tw + V∂xw = 0,
(15)
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Figure 6. Left: A sample of the trajectories drawn in Figure 4-
left. Right: Evolution in space and time of the density ρ = ρ(x, t)
obtained by solving (14)-(2) with only the N = 5 trajectories given
on the left.

where ρ(x, t) is the density of vehicles and w(x, t) is a property of vehicles ad-
vected by the velocity function V. Similarly to the first order (CV) case, given
N vehicles with known trajectory p = (p1(t), . . . , pN (t)), the velocity function
V = V(x, t, ρ, w; p) is defined as previously given in the introduction by

V(x, t, ρ, w; p) = χ(x− pκ(t))
2ṗκ(t)v(ρ, w)

ṗκ(t) + v(ρ, w)
+
(
1− χ(x− pκ(t))

)
v(ρ, w) (16)

if ṗκ(t) + v(ρ, w) 6= 0 and V(x, t, ρ, w; p) = 0 if ṗκ(t) + v(ρ, w) = 0, with κ = κ(x, t)
given in (3). Following [14], we assume that the flux function Q(ρ, w) = ρv(ρ, w)
satisfies these properties: Q(ρ, w) ∈ C1 and Q(ρmax, w) = 0 for each w; the flux
is strictly concave with respect to ρ and it is non-decreasing with respect to w for
each ρ. The flux function Q defines the velocity function as v(ρ, w) = Q(ρ, w)/ρ.
The assumptions on Q imply that the function v is regular and it is non-increasing
with respect to ρ.

As a consequence of the properties of Q and v, the flux function Q(x, t, ρ, w) =
ρV(x, t, ρ, w; p) with V in (16) is strictly concave with respect to the density ρ.
Thus, as in the first order case, there exists a unique density value σ = σ(x, t, w)
where Q reaches its maximum Qmax(x, t, w) = Q(x, t, σ, w) with respect to ρ and
we can extend the definition of sending and receiving functions in (6) as

S =

{
Q(x, t, ρ, w) if ρ ≤ σ(x, t, w)

Qmax(x, t, w) if ρ > σ(x, t, w)
R =

{
Qmax(x, t, w) if ρ ≤ σ(x, t, w)

Q(x, t, ρ, w) if ρ > σ(x, t, w),

with σ(x, t, w) critical density obtained by numerically solving the non-linear equa-
tion ∂ρQ(x, t, σ, w) = 0, for each triple of values (x, t, w), see Remark 2.1.

Under the same numerical setting introduced in Section 2, for j = 0, . . . , Nx− 1,
n = 0, . . . , Nt, we extend the scheme (10) to

ρn+1
j = ρnj −

∆t

∆x
(Qnj+1/2 −Q

n
j−1/2)

wn+1
j = wnj −

∆t

∆x
Vnj (wnj − wnj−1),

(17)



874 CATERINA BALZOTTI AND MAYA BRIANI

with Vnj = V(xj , t
n, ρnj , w

n
j ; p) and

Qnj−1/2 = min{S(xj−1, t
n, ρnj−1, w

n
j−1), R(xj , t

n, ρnj , w
n
j )}.

Since the variable w is advected forward by the motion of vehicles travelling with
positive velocity, the second equation has been approximated with an up-wind finite
difference scheme.

With computations similar to the first order case given in Proposition 2.2 and
2.3, the following CFL condition

∆t ≤ ∆x

max(x,t,ρ,w) V(x, t, ρ, w)

guarantees the stability of the scheme (17). Specifically, we get

∆t ≤ ∆x

max
{

sup(x,t) ṗκ(x,t)(t), V
max
} , (18)

where ṗκ is the velocity of the κ-th vehicle, with κ defined in (3), and V max is the
maximum velocity value given by the analytical model, i.e. V max = maxw v(0, w).

The finite volume formulation given in (17) allows for easy handling of flow and
velocity data from fixed sensors. In order to exploit this information, the sensor
data are used as boundary conditions on the incoming side of a road. Usually,
sensor data are aggregated per minute and need to be interpolated to be available
at each numerical time step tn. Let Qnsens and Vnsens be the sensor flux and speed
data after interpolation, respectively. There are two main ways to include the real
data into the numerical scheme (17): i) replace Qn−1/2 = Qnsens in the first cell

[x−1/2, x1/2] making sure that the sensor datum is an admissible value with respect
to the analytical bounds; ii) fix the density value ρn0 = Qnsens/Vnsens and use it in the
calculation of Qn−1/2. In both cases, once the density at the left boundary has been

computed, we estimate wn0 such that v(ρn0 , w
n
0 ) = Vnsens.

In the following, we employ the first approach i) that uses the sensor data in an
almost pure form and avoids the additional approximation needed to calculate the
density.

3.1. Acceleration estimate. One of the main advantages of second order models
is their greater accuracy in approximating velocity, which allows improvements in
the estimate of vehicle acceleration.

Let us consider the model (15), with the velocity function V in (16). We compute
the acceleration function a = a(x, t) as the material derivative (D/Dt = d/dt+ v ·
d/dx) of V = V(x, t, ρ(x, t), w(x, t); p) with respect to the time t:

a(x, t) =
DV
Dt

= Vt + Vρρt + Vwwt +
(
Vx + Vρρx + Vwwx

)
V(x, t).

Therefore, from (15),

a(x, t) = Vρ(ρt + Vρx) + Vw(wt + Vwx) + Vt + VVx = −ρVρVx + Vt + VVx. (19)

For (ṗ(t), v(ρ, w)) 6= (0, 0) we have

Vρ = χ(x− p(t)) 2vρṗ
2

(ṗ+ v)2
+ (1− χ(x− p(t)))vρ

Vx = χ′(x− p(t))v(ṗ− v)

ṗ+ v
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Vt = χ′(x− p(t))ṗv v − ṗ
ṗ+ v

+ χ(x− p(t)) 2p̈v2

(ṗ+ v)2
,

where χ′(·) is the first derivative of χ with respect to its argument. Let us observe
that the acceleration formula directly depends on the acceleration p̈(t) of the vehicle
that is influencing the speed function of the model.

4. Emissions estimate from traffic quantities. Here we focus on the estimation
of pollutants production at ground level due to vehicular traffic, whose impact on
air quality is a long-standing and complex problem. Following [4], we propose a
computational approach that combines the traffic simulation model with an emission
one. We focus our attention on NOx emissions, which are dangerous to human
health and are precursors of the ozone, that also has negative effects on health
[31, 35].

Once approximated the density, velocity and acceleration of vehicles, we use
them to estimate the emissions produced by vehicular traffic. Here we consider
two microscopic emission models and we follow [4] to extend them to macroscopic
variables.

Let us consider a vehicle i moving at speed vi and subject to a certain acceleration
ai at time t. The first microscopic emission model considered (see [26]), estimates
the emissions associated with the motion of the vehicle as

Ei(t) = max{E0, f1 + f2vi(t) + f3vi(t)
2 + f4ai(t) + f5ai(t)

2 + f6vi(t)ai(t)} (20)

where f1–f6 are coefficients that depend on the type of vehicle, fuel and pollutant
considered. In Table 1 we collect the coefficients associated with NOx emissions
for a petrol car, and we refer to [26, Table 2] for an exhaustive list of coefficients
related to other types of vehicles and pollutants.

Vehicle mode f1
[
g
s

]
f2
[

g
m

]
f3
[

g s
m2

]
f4
[
g s
m

]
f5
[
g s3

m2

]
f6
[
g s2

m2

]
If ai(t) ≥ −0.5 m/s2 6.19e-04 8e-05 -4.03e-06 -4.13e-04 3.80e-04 1.77e-04
If ai(t) < −0.5 m/s2 2.17e-04 0 0 0 0 0

Table 1. Coefficients in equation (20) for NOx emissions of an
internal combustion engine car.

The second emission model is based on [1]. For

vi(t) = [1 vi(t) v2i (t) v3i (t)]T , ai(t) = [1 ai(t) a2i (t) a3i (t)]
T ,

the emissions associated with the vehicle i are estimated by

Ei(t) = exp(vTi (t) · P · ai(t)), (21)

where P is the following 4× 4 matrix (see [37, Appendix A1])

P = 0.01


−1488.31 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737
0.0020 0.0038 0.0091 −0.0016

 .
To extend these two models to the macroscopic case, we consider M vehicles in a

stretch of road moving at the same speed v̄(t) and subject to the same acceleration
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ā(t). The emission rates associated with traffic in (20) are modified in

E(t) = M max{E0, f1 + f2v̄(t) + f3v̄(t)2 + f4ā(t) + f5ā(t)2 + f6v̄(t)ā(t)}, (22)

while from (21) we obtain

E(t) = M exp(v̄T (t) · P · ā(t)), (23)

with

v̄(t) = [1 v̄(t) v̄2(t) v̄3(t)]T , ā(t) = [1 ā(t) ā2(t) ā3(t)]T .

Hereafter we refer to the emission model (22) as the E-max-formula and to
(23) as the E-exp-formula. In Figure 7 we show a comparison between these two
formulations at a microscopic level, observing that in this example their results are
quite similar. The details of this numerical test are described in Section 5.2.
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Figure 7. Comparison between the microscopic E-max-formula
and the E-exp-formula (see Section 5.2).

5. Numerical tests. This section is devoted to the numerical tests. First, we
focus on the second order model (15), then we analyze emission models and finally,
we propose an application on a road network representing a portion of the Italian
A4 motorway, combining real GPS data and fixed sensors.

5.1. Traffic dynamics. Let us begin with a test to illustrate the features of the sec-
ond order traffic model (15)-(16). First of all, we choose the Collapsed-Generalized-
Aw-Rascle-Zhang (CGARZ) model [14] among the family of GSOM. In the CGARZ
model the definition of the flow function is characterized by the distinction between
the free and congested flow traffic regime. Hence, we define the flux function as

Q(ρ, w) =

{
Qf (ρ) if ρ ≤ ρf
Qc(ρ, w) if ρ > ρf

for a given density threshold ρf separating the two phases and

Qf (ρ) = g(ρ), Qc(ρ, w) = (1− θ(w))f(ρ) + θ(w)g(ρ),

where, following [4], we set

f(ρ) =
V max

ρmax
ρf (ρmax − ρ), g(ρ) =

V max

ρmax
ρ(ρmax − ρ), θ(w) =

w − wL
wR − wL

, (24)
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for wL and wR minimum and maximum given value of w, respectively. With these
choices, the functions Q(ρ, w) and v(ρ, w) = Q(ρ, w)/ρ satisfy the hypotheses re-
quired by model (15).

The numerical simulations are performed with the CTM scheme (17). We set
ρmax = 100 veh/km, ρf = 10 veh/km, V max = 90 km/h, wL = g(ρf ) and wR =
g(ρmax/2). The parameters a, b, ∆x, T , ∆t, the function χ and its parameters `
and L, are the same used for the test proposed in Section 2.

We consider three vehicles and simulate their trajectory as follows

p1(t) = 0.5 + 15t, p2(t) = 1 + 20t, p3(t) = 1.2 + 22t.

We then fix the initial data

ρ0(x) = 20 veh/km, w0(x) =

{
wR if x < 1.5

wL if x ≥ 1.5.

Figure 8 shows the final time of the simulation. We observe that the discontinuity
in the variable w generates a rarefaction wave on the right half of the road. The
presence of the GPS trajectories, instead, produces non-classical shocks which are
well captured by the CTM scheme.
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Figure 8. Effects of monitored slow vehicles on the second order
model (15), see Section 5.1.

5.2. Application to emissions. In this section we propose a test to show how the
integration of GPS data impacts the estimate of emissions due to vehicular traffic.
To this end, we consider N vehicles moving according to the following equations
during the time interval [0, T ]:

xi(t) = cV max
(
t− T

kiπ
cos
(kiπt
T

)
+

T

kiπ

)
+ x0,i

vi(t) = cV max
(

sin
(kiπt
T

)
+ 1
)

ai(t) = cV max T

kiπ
cos
(kiπt
T

)
,

(25)

with c = 0.3, ki = 20+5(i−1)/(N−1) and x0,i = 1+0.05(i−1). With this choice, the
vehicles are initially equally spaced every 50 m and then are subjected to different
accelerations and decelerations, which we expect will affect the emissions. We fix
T = 20 min and the length of the road equal to 10 km. Our analysis is then focused
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on a stretch of the road, specifically the interval [4 km, 7 km], which is empty both
at the beginning and at the end of the simulation, see Figure 9.
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Figure 9. Vehicle trajectories (25) on a stretch of the road.

In order to compare microscopic quantities with macroscopic ones, we first derive
the macroscopic density and velocity from vehicle trajectories through a kernel
density estimation (KDE). We use the Parzen-Rosenblatt window method [27, 29],
which associates a density distribution with the position of the vehicles and then
derives the global density by adding these distributions. More precisely, let xi(t)
and νi(t) be the position and velocity of the N vehicles, respectively. We define

ρ̃(x) =

N∑
i=1

δ(x− xi(t)),

where δ is the Dirac delta function, so that∫
R
ρ̃(x)dx =

N∑
i=1

∫
R
δ(x− xi(t))dx = N.

In order to recover the smooth density and velocity ρ and ν, we introduce the
Gaussian kernel

K(x) =
1

2πh
exp

(
− x2

2h2

)
,

where h is a smoothing parameters, which is chosen to obtain an almost constant
density profile for equidistant vehicles. We then define

ρ(x, t) =

∫
R
K(x− ξ)ρ̃(ξ)dξ =

N∑
i=1

K(x− xi(t))

ν(x, t) =

∑N
i=1 νi(t)K(x− xi(t))∑N
i=1K(x− xi(t))

.

With this methodology we are able to reconstruct the initial density, ρ0 = ρ(x, 0),
and velocity, ν0 = ν(x, 0), of the macroscopic model (15). Once ρ0 and ν0 are
known, we recover w0 such that v(ρ0, w0) = ν0.

The aim of this test is to compare the macroscopic emissions associated with the
traffic model (15) with the microscopic ones given by vehicle trajectories. Indeed, we
estimate the traffic quantities ρnj and vnj by means of the CTM scheme introduced
in Section 3, and the acceleration anj as described in Section 3.1. We then use
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these quantities in (22) and (23) to obtain the macroscopic emissions with the two

proposed E-max-formula and E-exp-formula, denoted by Enj and Ênj , respectively.
At the same time, the microscopic velocity and acceleration given in (25) are used
in (20) and (21) to recover the microscopic emissions eni and êni for each vehicle i.
We then compute the total amount of emissions along the road at time tn as

Entot =

Nx∑
j=1

Enj and entot =

N∑
i=1

eni ,

similarly for Êntot and êntot. Furthermore, we are interested in analyzing the effects
on emissions of the number of tracked vehicles in model (15). To this end, let

us introduce Ñ as the number of vehicles which influence the macroscopic traffic

model. We perform three simulations: in the first one Ñ coincides with N , hence
all the vehicles used for the microscopic dynamic influence the macroscopic model;

then we consider only one vehicle out of two for model (15), hence Ñ = N/2, and

finally one in four, Ñ = N/4.
For our simulations, we fix a 10 km long road and a time horizon of 20 minutes.

The model parameters are the same of the first numerical test of Section 5.1. The
bandwidth h of the KDE is fixed as h = 100 m. We use homogeneous Dirichlet
boundary conditions on the left and homogeneous Neumann conditions on the right,
which correspond to allow vehicles to leave the road. We then focus on the interval
[4 km, 7 km].

On the top plots of Figure 10 we compare the density of vehicles at t = 10 min
computed with model (15) and the one estimated through the KDE techniques.
The black and fuchsia points represent vehicles position; in particular, the fuchsia
points identify the vehicles which are tracked in model (15). From the plots we
observe that the macroscopic model (15) (blue-solid line) produces some peaks in
correspondence of vehicles position, but the profile of the KDE density (red-dotted
line) is quite well-captured. The accuracy of the results increases with the number of

monitored vehicles Ñ . The yellow line with circles represents the density associated
with (15) without considering the trajectory data, obtained by setting V = v(ρ, w).
We observe that the lack of GPS data produces a density profile completely different
from the one recovered by microscopic data.

In the central (bottom) plots of Figure 10 we compare Entot (Êntot), with and
without trajectory data, and entot (êntot) during the whole simulation. We observe
that the trend and the absolute values of emission rates using the E-max-formula
(22) are well captured by model (15), even when the number of tracked vehicles
decreases. The total emission profile obtained from the model without GPS data is
smoother than the other two since the dynamics do not take into account any vehicle
acceleration or deceleration. On the other hand, the macroscopic E-exp-formula
(23) well catches the behavior of emission rates but overestimates the absolute
values.

Finally, in Table 2 we estimate the absolute error in L1 norm at the final time

of simulation,
∥∥ENttot − e

Nt
tot

∥∥
1

and
∥∥ÊNttot − ê

Nt
tot

∥∥
1
, with and without real trajectory

data for Ñ = N,N/2, N/4. Note that the error associated with the model without

real data is not influenced by Ñ , thus we report a unique value in the third and
last column of the table. For the E-max-formula, the error slightly grows with the

decrease of Ñ and we gain an order of magnitude using the model with real data.
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(a) Density Ñ = 41
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(b) Density Ñ = 20
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(c) Density Ñ = 10
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(d) E-max-f Ñ = 41
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(e) E-max-f Ñ = 20
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(f) E-max-f Ñ = 10
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(g) E-exp-f Ñ = 41
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(h) E-exp-f Ñ = 20
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Figure 10. Section 5.2 tests. Density profile at t = 10 min (top)
and total amount of emissions associated with traffic dynamics us-
ing the E-max-formula (22) (center) and the E-exp-formula (23)

(bottom) for different Ñ .

For the E-exp-formula the error seems not to be affected by the number of tracked
vehicles and is higher than the one obtained with the first emission formula.

To sum up, we can give a good approximation of emissions even when few real
trajectory data are available. Moreover, the E-max-formula (22) allows for a better
approximation of macroscopic emissions than the E-exp-formula (23) compared to
the ground-truth emissions obtained using (20) and (21). Therefore, in the rest of
the paper we will use only the E-max-formula.

Remark 5.1. The results of the tests described above are not in contrast with
those proposed in [4, Section 3.1], where the CGARZ model without GPS data is
used with the NGSIM dataset [34]. Indeed, the latter contains data for more than
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Ñ

∥∥ENt
tot − eNttot

∥∥
1

∥∥ÊNt
tot − êNttot

∥∥
1

With GPS Without GPS With GPS Without GPS

41 4e-03 - 3e-02 -
20 6e-03 2e-02 3e-02 5e-02
10 8e-03 - 3e-02 -

Table 2. Absolute error in L1 norm between the two proposed
macroscopic and microscopic emission models with and without

real trajectory data for different Ñ .

5000 vehicles in 500 meters of road during 45 minutes of data recording. Hence,
the large amount of real data allows quite accurate approximations of the emissions
just using the CGARZ model with initial data and boundary conditions recovered
from the real trajectories of vehicles.

5.3. A real-life application with fixed sensors and GPS data. To conclude,
we propose an application of traffic model (15) using real trajectory and fixed sensors
data provided by Autovie Venete S.p.A. on the Italian A4 (Trieste-Venice) highway.
The latter is a two lane motorway network travelled by light and heavy vehicles
(cars and trucks). In Figure 11 we draw a sketch of the network with three diverge
and three merge junctions connecting six roads. The triangles represent the fixed
sensors which record the flux of vehicles that enter the network. Since we have
access to more real truck trajectories than car ones, here we focus only on the
dynamic of heavy vehicles and the goal is to apply the methodology described
above to estimate the NOx emission rates in a real-life scenario. The model can be
used in the same way with real trajectory data of cars or other vehicle classes. As
already discussed at the end of Section 5.2, we use the E-max-formula (22) for a
more precise approximation of macroscopic emission rates. We use the coefficients
f1 − f6 in (22) calibrated for trucks, see [26, Table 2].

1 2

4 3

5
6

D3

D2

D1

M2

M3

M1

Figure 11. Section 5.3 test. Sketch of the highway network, where
the roads are numbered from 1 to 6, the triangles represent the fixed
sensors, the diverge junctions are represented by points D1, D2, D3
and the merge ones by points M1, M2, M3.

First of all we describe the main features of the network. We have three incoming
roads (1, 3 and 5) and three outgoing roads (2, 4 and 6). The dynamic of vehicles
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along each road is described by the model (15). We use the notation ρnr,j to identify
the density on road r in cell xj at time tn; similarly for the variable w. A special
treatment is required at junctions, which are divided into two types: the diverge
junctions, that divide a road in two, and the merge ones, which join two roads into
one. Diverge junctions are ruled by a distribution coefficient that specifies the per-
centage of vehicles which prefer one road rather than the other one. For instance,
junction D1 has a certain distribution parameter αD1 defining the percentage of
vehicles which continue their path from road 1 to road 2, while 1− αD1 represents
vehicles which continue on road 6. Similarly for the other diverge junctions. Follow-
ing [5], merge junctions are characterized by a priority rule that establishes which
of the two roads sends more flow of vehicles. We denote by βM1, βM2 and βM3 these
parameters in [0, 1], and we calibrate them as a property of the network.

Now we describe the treatment of real data and we begin with data from GPS
devices. In Figure 12 we show an example of real trajectory data related to heavy
vehicles on the six roads of the network. This data provides information on the
position and velocity of vehicles at various times. The time interval of the recorded
positions is not constant and can vary from a few seconds to many minutes. In
order to integrate the trajectory data into the numerical scheme, once a vehicle is
located into a monitored road, we need to know its position with respect to the
time step ∆t. To this end, we linearly interpolate the given data to reconstruct
missing information when necessary. Furthermore, this data is used to estimate the
distribution parameters αD1, αD2 and αD3 of diverge junctions. Indeed, we use the
trajectory data to reconstruct the main paths along the network to compute the
percentage of vehicles that at the junction continue towards one road rather than
the other one. The analysis of the paths of heavy vehicles during one month of data
allowed us to estimate αD1 = 0.78, αD2 = 0.78 and αD3 = 0.48.

In addition to GPS data, there are fixed sensors along the highway network
that record the flow and speed of vehicles crossing it every minute. We denote the
sensor data on road r by Qr,sens and Vr,sens. As mentioned ad the end of Section
3, we use sensors data for the boundary conditions on the incoming side of the
roads entering the network, i.e. roads 1, 3 and 5. Indeed, we modify the incoming
numerical flux of scheme (17) in the first cell of these roads. Specifically, since the
sensor data is given every minute, we interpolate it in a piecewise constant way,
thus we define Qnr,sens = Qr,sens(t̂), where t̂ = b60n∆tc is the minute corresponding
to tn. Then we compute the density ρnr,0 by applying (17) with Qnr,−1/2 = Qnr,sens.
Once computed the density, we estimate wnr,0 such that v(ρnr,0, w

n
r,0) = Vnr,sens, with

V nr,sens = Vr,sens(b60n∆tc) velocity value captured by the sensor. In Figure 13 we
show the variation in time of the flux of heavy vehicles for the three sensors.

To simulate the traffic dynamics we proceed as follows: first, we estimate the ini-
tial condition starting from an empty network; then, we approximate the dynamics
of vehicles by means of model (15). To estimate the initial traffic state, we start
from an empty network with w = (wL + wR)/2. As explained above, the traffic
state on the incoming boundary of roads entering the network, (ρnr,0, w

n
r,0, y

n
r,0) for

r ∈ {1, 3, 5}, is estimated from sensors data. Moreover we assume homogeneous
Neumann conditions on the outgoing side of roads 2, 4 and 6, hence vehicles are
free to leave the network. The roads are then filled for half an hour through model
(15) with both trajectory and sensors data, using the CTM scheme introduced in
Section 2. The traffic state after half an hour of simulation is the initial state for
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(c) Road 3
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(d) Road 4
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(e) Road 5
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(f) Road 6

Figure 12. Section 5.3 test. Example of real trajectory data
recorded on 27/08/2021. The size of the space-time circles is pro-
portional to vehicles velocity. The data were provided by Autovie
Venete S.p.A and are not publicly available.
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(a) Sensor on road 1
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(b) Sensor on road 3
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(c) Sensor on road 5

Figure 13. Section 5.3 test. Variation in time of the flux
per minute of heavy vehicles recorded by the three sensors on
27/08/2021. The data were provided by Autovie Venete S.p.A and
are not publicly available.

model (15), and we use it to approximate the dynamics and then estimate vehicular
emissions via (22).

In our test we consider the network depicted in Figure 11. We use again the
CGARZ model with the flux function defined at the beginning of Section 5. Let
us denote by Lr the length of road r, r = 1, . . . , 6. According to the properties
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of the highway, we fix L1 = L4 = 41 km, L2 = L3 = L4 = L5 = 36 km, βM1 =
βM3 = 0.2, βM2 = 0.5, V max = 90 km/h and ρmax = 56 veh/km. In particular, by
assuming that the length of each heavy vehicle is 18 m (length + safety distance),
the maximum density ρmax is computed by dividing the total employable space (two
lanes) by the space occupied by the vehicles, thus ρmax = 56 veh/km. Moreover, we
set ρf = 10 veh/km, wL = g(ρf ) = 739 and wR = g(ρmax/2) = 1260, with g defined
in (24).

Once estimated the initial state, we consider a simulation with T = 1.5 h influ-
enced by the trajectory data represented in Figure 12. In Figure 14 we show the
density of vehicles along the network at different times, excluding the six junctions
and focusing only on the main roads. We observe that the inclusion of real trajec-
tory data allows model (15) to capture the formation of small congestions, mainly
on the horizontal roads, which could not be observed otherwise.
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(d) Time t = 90 min

Figure 14. Section 5.3 test. Density of vehicles at different times
of the simulation.

In Figure 15 we draw the variation in time of the total emissions produced along
roads 2 and 3, where the dynamics are mainly influenced by the presence of GPS
data. To explain the different trend of the curves, we need to look at the traffic
dynamics after 60 min of simulation, see Figure 14(c). Here we observe a slowing
vehicle at the end of road 1 that forces the macroscopic dynamics to slow down
abruptly. Therefore, few trucks enter road 2, causing the sharp decrease in emissions
shown in Figure 15 (blue line). This phenomenon is not captured by the model
without GPS data (red line). Then, the congestion at the end of road 1 slowly melts
away and the trucks cross the intersection towards road 2, causing the slowdown still
visible at the end of the simulation, see Figure 14(d). The trend of the two emission
curves, calculated with and without GPS data (blue and red line respectively), differ
from then on, since the first model is able to detect significant changes in traffic
speed and acceleration. On road 3, instead, the presence of real data produces
higher emission values than the model without vehicle trajectories.

In Figure 16, we further investigate the dynamics on the last 15 km of road 3,
drawing the density, speed, acceleration and NOx emissions estimated at different
times. Note that the direction of motion is from right to left, according to the
network depicted in Figure 11. We observe that the presence of real trajectory
data is responsible for the sudden changes in speed and acceleration that strongly
influence the density and the emissions estimates.

Finally, we analyze the diffusion of NOx pollutants into the air. Let us denote
by ψ the concentration of NOx in unit of weight per unit of volume. First of
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Figure 15. Section 5.3 test. Total emissions on road 2 (left) and
road 3 (right).

all we assume that ψ is constant along the z-axis, in order to reduce to a two-
dimensional problem on a domain Ω in which the network is located. More precisely,
we set Ω = [−Lx, Lx] × [−Ly, Ly] where Lx = 15 km and Ly = 5 km; hence we
focus our attention on a rectangle around the junctions that involves only the four
horizontal roads, see Figure 17. The domain Ω is discretized through a grid of
steps ∆x = ∆y = 10 m; to do this, we divide each cell of the traffic dynamics
(100 m long) into 10 smaller cells that inherit the density, velocity, acceleration
and emissions previously computed. Then, we use the emissions obtained from the
traffic dynamics as source term of the following diffusion problem

∂ψ

∂t
(x, y, t)− µ∆ψ(x, y, t) = S(x, y, t) in Ω× (0, T ]

ψ(x, y, 0) = 0 in Ω,
(26)

where µ is the diffusion coefficient, fixed as µ = 10−8 km2/h for aerosols [33]. To de-
fine the source term S we exploit the emission rates Er(x, t) computed through (22)
on the horizontal roads of the network. Since the traffic model is one-dimensional
in space, we trivially extend the emissions into the y-axis as

E(x, y, t) =

{
Er(x, t) if x ∈ [ar, br], y ∈ [cr, dr], r = 1, . . . , 4, t ∈ [0, T ]

0 otherwise,

where [ar, br] and [cr, dr] are the horizontal and vertical length of the road r in Ω,
respectively (in our one-dimensional configuration dr − cr = ∆y). Then, the source
term S is defined as S(x, y, t) = E(x, y, t)/∆x3.

The diffusion problem (26) is numerically solved with an explicit finite difference
scheme. In Figure 18 we show the source term of NOx emissions and their diffu-
sion in air. In the top plots we observe several red peaks corresponding to high
amounts of NOx emissions due to the traffic dynamics. The red peaks on road 3
are connected to the high emission values shown in the last column of Figure 16.
The bottom plots show the spread of NOx concentration in Ω. We observe that the
diffusion of pollutants is slower than the source term, and is strongly influenced by
microscopic information. Indeed, the presence of real data allows us to take into
account variations in speed and acceleration that we would not be aware of without
the trajectory data. Therefore, the use of GPS data enables us to approximate the
source term well and to reproduce at macroscopic level the emission peaks due to
unpredictable traffic dynamics.
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(b) Density t = 67 min
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(c) Density t = 85 min
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(d) Speed t = 2 min
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(e) Speed t = 67 min
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(f) Speed t = 85 min
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(g) Acceleration t = 2 min
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(h) Acceleration t = 67 min
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(i) Acceleration t = 85 min
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(j) Emissions t = 2 min
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(k) Emissions t = 67 min
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(l) Emissions t = 85 min

Figure 16. Section 5.3 test. Density, speed, acceleration and NOx

emissions on the last 15 km of road 3 at different times.
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Figure 17. Section 5.3 test. Domain Ω built around the junctions
involving the four horizontal roads.
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Figure 18. Section 5.3 test. Source term of NOx emissions (top)
and diffusion of NOx concentration into the air (bottom) at differ-
ent times. The dashed red lines are used to identify the four roads
in Ω.

6. Conclusions. In this paper, we proposed a second order macroscopic traffic
model that integrates multiple trajectory data into the velocity function as a tool
to compute traffic quantities for estimating emissions. The combination of a macro-
scopic model with microscopic data is suggested by the computational efficiency of
the former and the high accuracy of the latter. The proposed numerical tests show
that, even when trajectory data are sparse, they make it possible to reproduce
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variations in speed and acceleration that otherwise would not be observable. As a
result, we obtained more accurate approximations of emissions.

In the near future we plan to improve the study by distinguishing between light
and heavy vehicles. We will consider macroscopic multi-class models and appropri-
ate emission formulas that are calibrated with respect to the vehicle types.

Appendix A. Technical proofs.

Proof of Proposition 2.2. It is sufficient to prove that under condition (12) the
method is monotone. Let

H(j, n,ρn) = ρnj −
∆t

∆x
(Fnj+1/2 − F

n
j−1/2).

Below we check that

∂

∂ρnl
H(j, n,ρn) ≥ 0 for all l, j,ρn.

We have

∂

∂ρnl
H(j, n,ρn) =



∆t

∆x

∂Fnj−1/2

∂ρnj−1
if l = j − 1

1 +
∆t

∆x

∂

∂ρnj

(
Fnj−1/2 − F

n
j+1/2

)
if l = j

−∆t

∆x

∂Fnj+1/2

∂ρnj+1

if l = j + 1.

By construction, the sending and receiving function in (6) are monotone in ρ, i.e.
∂S(·, ·, ρ)/∂ρ ≥ 0 and ∂R(·, ·, ρ)/∂ρ ≤ 0.

In the following we set Snj = S(xj , t
n, ρnj ) and Rnj = R(xj , t

n, ρnj ). For l = j − 1,
we have

∂Fnj−1/2

∂ρnj−1
=


0 if Rnj ≤ Snj−1
∂Snj−1
∂ρnj−1

≥ 0 if Rnj > Snj−1.

Similarly, for l = j + 1

∂Fnj+1/2

∂ρnj+1

=


0 if Snj ≤ Rnj+1

∂Rnj+1

∂ρnj+1

≤ 0 if Snj > Rnj+1.

Therefore, in both cases l = j ± 1, ∂H(j, n,ρn)/∂ρnl ≥ 0. When l = j, we have to
check that

1+
∆t

∆x

∂

∂ρnj

(
Fnj−1/2−F

n
j+1/2

)
= 1+

∆t

∆x

∂

∂ρnj

(
min{Snj−1, Rnj }−min{Snj , Rnj+1}

)
≥ 0.

(27)
We analyze the following four cases:

i) If Snj−1 ≤ Rnj and Snj ≤ Rnj+1, then

∂

∂ρnj

(
min{Snj−1, Rnj } −min{Snj , Rnj+1}

)
=

∂

∂ρnj

(
Snj−1 − Snj

)
= − ∂

∂ρnj
Snj ≤ 0.
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Thus, to obtain the inequality (27), we assume

1− ∆t

∆x

∣∣∣ ∂
∂ρnj

Snj

∣∣∣ ≥ 0,

where Snj = F(xj , t
n, ρnj ) or Snj = Fmax(xj , t

n). This leads to the condition

1− ∆t

∆x

∣∣∣ ∂
∂ρ
F(xj , t

n, ρ)
∣∣∣ ≥ 0.

ii) If Snj−1 ≤ Rnj and Snj > Rnj+1, then

∂

∂ρnj

(
min{Snj−1, Rnj } −min{Snj , Rnj+1}

)
=

∂

∂ρnj

(
Snj−1 −Rnj+1

)
= 0.

Hence, (27) follows.
iii) If Snj−1 > Rnj and Snj > Rnj+1, then

∂

∂ρnj

(
min{Snj−1, Rnj } −min{Snj , Rnj+1}

)
=

∂

∂ρnj

(
Rnj −Rnj+1

)
=
∂Rnj
∂ρnj

≤ 0.

Therefore, we assume

1− ∆t

∆x

∣∣∣ ∂
∂ρnj

Rnj

∣∣∣ ≥ 0,

where Rnj = F(xj , t
n, ρnj ) or Rnj = Fmax(xj , t

n). This leads again to

1− ∆t

∆x

∣∣∣ ∂
∂ρ
F(xj , t

n, ρ)
∣∣∣ ≥ 0.

iv) If Snj−1 > Rnj and Snj ≤ Rnj+1, then

∂

∂ρnj

(
min{Snj−1, Rnj } −min{Snj , Rnj+1}

)
=

∂

∂ρnj

(
Rnj − Snj

)
.

Moreover,

∂

∂ρnj

(
Rnj − Snj

)
=


∂

∂ρnj

(
Fmax(xj , t

n)−F(xj , t
n, ρnj )

)
if ρnj ≤ σnj

− ∂

∂ρnj

(
Fmax(xj , t

n)−F(xj , t
n, ρnj )

)
if ρnj > σnj

=


−
∂F(xj , t

n, ρnj )

∂ρnj
< 0 if ρnj ≤ σnj

∂F(xj , t
n, ρnj )

∂ρnj
< 0 if ρnj > σnj .

Hence, we need again

1− ∆t

∆x

∣∣∣∂F(xj , t
n, ρ)

∂ρ

∣∣∣ ≥ 0.

Summing up, if

1− ∆t

∆x

∣∣∣∂F(x, t, ρ)

∂ρ

∣∣∣ ≥ 0 for all (x, t, ρ) ∈ R× R+ × [0, ρmax],

then the operator H(j, n,ρ) is non-decreasing with respect to all the components
of ρ. Thus,

if 0 ≤ ρnj ∀j ∈ Z ⇒ 0 = H(j, n,0) ≤ H(j, n,ρn) = ρn+1
j ∀ j ∈ Z,
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if ρnj ≤ ρmax ∀j ∈ Z ⇒ ρn+1
j = H(j, n,ρn) ≤ H(j, n,ρmax) = ρmax ∀ j ∈ Z,

from which the thesis follows.

Proof of Proposition 2.3. The flux function F(x, t, ρ) = ρU(x, t, ρ), with U as in
(2), satisfies ∂ρF = U + ρ∂ρU . Since ∂ρU ≤ 0 by construction, we have

∂F(x, t, ρ)

∂ρ
≤ max

(x,t,ρ)
U(x, t, ρ) for all (x, t, ρ) ∈ R× R+ × [0, ρmax].

Let us consider the single trajectory pκ(t), with κ = κ(x, t) defined in (3), then

U(x, t, ρ) = χ(x− pκ(t))
2ṗκ(t)u(ρ)

ṗκ(t) + u(ρ)
+
(
1− χ(x− pκ(t))

)
u(ρ)

≤ max{ũ(x, t, ρ), u(ρ)},
where

ũ(x, t, ρ) =
2ṗκ(t)u(ρ)

ṗκ(t) + u(ρ)
and u(ρ) ≤ umax = u(0).

By simple computations we have

ũ(x, t, ρ) ≤ 2ṗκ(t)u(ρ)

ṗκ(t) + u(ρ)
≤ ṗκ(t) + u(ρ)

2
≤ max

{
sup
t
ṗκ(t), umax

}
,

which depends on the selected trajectory pκ(t) at each point (x, t). Therefore, for
all (x, t, ρ) ∈ R× R+ × [0, ρmax]

∂F(x, t, ρ)

∂ρ
≤ max

{
sup
(x,t)

ṗκ(x,t)(t), u
max
}

and thus we can assume the CFL condition
∆t

∆x
≤ 1

max
{

sup(x,t) ṗκ(x,t)(t), u
max
} .
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