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ABSTRACT. In this paper we compare the notion of stochastic two-scale conver-
gence in the mean (by Bourgeat, Mikeli¢ and Wright), the notion of stochastic
unfolding (recently introduced by the authors), and the quenched notion of sto-
chastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we
introduce stochastic two-scale Young measures as a tool to compare mean and
quenched limits. Moreover, we discuss two examples, which can be naturally
analyzed via stochastic unfolding, but which cannot be treated via quenched
stochastic two-scale convergence.

1. Introduction. In this paper we compare quenched stochastic two-scale con-
vergence [38] with the notion of stochastic unfolding [30, 19], which is equivalent
to stochastic two-scale convergence in the mean [6]. In particular, we introduce
the concept of stochastic two-scale Young measures to relate quenched stochastic
two-scale limits with the mean limit and discuss examples of convex homogeniza-
tion problems that can be treated with two-scale convergence in the mean, but not
conveniently in the quenched setting of two-scale convergence.

Two-scale convergence has been introduced in [32, 1, 25] for homogenization
problems (partial differential equations or variational problems) with periodic co-
efficients. The essence of two-scale convergence is that the two-scale limit of an
oscillatory sequence captures oscillations that emerge along the sequence and that
are to leading order periodic on a definite microscale, typically denoted by € > 0.
It is especially well-suited for problems where oscillations of solutions solely stem
from prescribed oscillations of the coefficients or the data. For instance, this is the
case for equations with a monotone structure or convex variational problems. In
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contrast, problems that feature pattern formation to leading order (e.g., noncon-
vex variational problems or singular partial differential equations with non-convex
domain) typically cannot be conveniently treated with two-scale convergence. An-
other well established method for periodic homogenization is periodic unfolding, see
[9, 35, 27, 10] as well as [36, 3] for the periodic modulation method, which is re-
lated. These methods build on an isometric operator—the periodic unfolding (or
dilation) operator. It allows us to embed oscillatory sequences into a larger two-
scale space and to transform an oscillatory problem into an “unfolded” problem
on the two-scale space. The latter often features a better separation of macro-
and microscopic properties, which often is convenient for the analysis. We refer to
[14, 7, 28, 8, 15, 24, 26] for various interesting applications of this method. Both
notions are closely linked, since weak convergence of “unfolded” sequence in the
two-scale space is equivalent to weak two-scale convergence, see [5].

In this paper we are interested in stochastic homogenization, i.e. problems with
random coeflficients with a stationary distribution. The first stochastic homoge-
nization result has been obtained by Papanicolaou and Varadhan in [33] (and inde-
pendently by Kozlov [23]) for linear, elliptic equations with stationary and ergodic
random coefficients on R%. In their seminal paper, Papanicolaou and Varadhan
introduce a functional analytic framework, which, by now, is the standard way to
model random coefficients. We briefly recall it in the special case of convex inte-
gral functionals with quadratic growth: Let (2, F, P) denote a probability space of
parameter fields w € Q and let 7, : Q — Q, € R?, denote a measure preserving
and ergodic group action, see Assumption 2.1 for details. A standard model for
a convex, integral functional with a stationary, ergodic, random microstructure on
scale £ > 0 is then given by the functional £¥ : H*(Q) — R U {co},

E¢(u) = /QV (wa,Vu(m)) — f(z)u(z) dx

where @ C R? denotes an open and bounded domain, f € L?(Q), and V (w, F) is an
integrand that is measurable in w € €, convex in F € R, and satisfies a quadratic
growth condition. A classical result [11] shows that in the homogenization limit
e — 0, the functionals I'-converge to the homogenized functional Epom : H(Q) —
R U {oo}, given by

Ehom (u) = /QVhom(Vu(w)) — f(z)u(z) dz,

where Viom is a deterministic, convex integrand and characterized by a homogeniza-
tion formula, see (31) below. There are different natural choices for the topology
when passing to this limit:

o In the mean setting, minimizers u¥’ of £, w € (2, are viewed as random fields
(w, ) = u¥(z) in L2(Q; HY(Q)) and one considers I-convergence of the aver-
aged functional L?(Q; H'(Q)) 3 u — [, &-(u) dP w.r.t. strong convergence in
L?(2xQ). In fact, the first result in stochastic homogenization [33] establishes
convergence of solutions in this mean sense.

e In the quenched setting, one studies the limiting behavior of a minimizer
ue € HY(Q) of &2 for fixed w € Q. One then considers I'-convergence of £¥
w.r.t. strong convergence in L?(Q) for P-a.a. w € Q.

Similarly, two variants of stochastic two-scale convergence have been introduced as
generalizations of periodic two-scale convergence (for the sake of brevity, we restrict
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the following review to the Hilbert-space case p = 2, and note that the following
extends to LP(Q2 x Q) with p € (1,00)):
e In [6, 2] the mean variant has been introduced as follows: We say that a

sequence of random fields (u.) C L?(Q x Q) stochastically two-scale converges
in the mean to u € L*(Q2 x Q), if

lim e (w, ) (2w, ) dP(w)dx = / u(w, )p(w, z) dP(w)dz, (1)
=0 Joxg : axQ
for all admissible test functions ¢ € L?(Q x Q), see Remark 1 for details.

e More recently, Zhikov and Pyatnitskii introduced in [38] a quenched variant:
We say that a sequence (u.) C L?(Q) quenched stochastically two-scale con-
verges to u € L?(Q x Q) w.r.t. to a fixed parameter field wy € Q, if

lim [ we(z)p(rzw, z) do = / u(w, 2)p(w, ) dP(w)dz,
e—0 Q € QxQ

for all admissible test functions ¢ € L?(2x Q). Note that the two-scale limit u
a priori depends on wy. In fact, in [37] (see also [16]) quenched two-scale con-
vergence has been introduced in a very general setting that includes the case
of integration against random, rapidly oscillating measures, which naturally
emerge when describing coefficients defined relative to random geometries.
In this work, we restrict our considerations to the simplest case where the
random measure is the Lebesgue measure.

Similarly to the periodic case, stochastic two-scale convergence in the mean can
be rephrased with help of a transformation operator, see [30, 19, 34], where the
stochastic unfolding operator T : L*>(Q x Q) — L*(Q x Q),

Teu(w, z) = u(T-zw, z), (2)

has been introduced. As in the periodic case, it is a linear isometry and it turns out
that for a bounded sequence (u.) C L*(Q x @), stochastic two-scale convergence in
the mean is equivalent to weak convergence of the unfolded sequence T.u.. As we
demonstrate below in Section 4.1, the stochastic unfolding method leads to a very
economic and streamlined analysis of convex homogenization problems. Moreover,
it allows us to derive two-scale functionals of the form £(u, x) = [, fQ V(w, Vu(z)+
X(w,x))dx dP as a I'-limit of &, see Theorem 4.1 for details. In contrast to the
periodic case, where the unfolding operator is an isometry from L?(R%) to L%(YxR9)
(with ) denoting the unit torus), in the random case it is not possible to interpret
(2) as a continuous operator from L?(Q) to L?(Q x Q). Therefore, quenched two-
scale convergence cannot be characterized via stochastic unfolding directly.

In the present paper we compare the different notions of stochastic two-scale
convergence. Although the mean and quenched notion of two-scale convergence
look quite similar, it is non-trivial to relate both. As a main result, we intro-
duce stochastic two-scale Young measures as a tool to compare quenched and mean
limits, see Theorem 3.12. The construction invokes a metric characterization of
quenched stochastic two-scale convergence, which is a tool of independent interest,
see Lemma 3.6. As an application we demonstrate how to lift a mean two-scale
homogenization result to a quenched statement, see Section 4.3. Moreover, we
present two examples that can only be conveniently treated with the mean notion
of two-scale convergence. In the first example, see Section 4.1, the assumption of er-
godicity is dropped (as it is natural in the context of periodic representative volume
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approximation schemes). In the second example we consider a model that invokes a
mean field interaction in form of a variance-type regularization of a convex integral
functional with degenerate growth, see Section 4.2.

Structure of the paper. In the following section we present the standard
setting for stochastic homogenization. In Section 3 we provide the main properties of
the stochastic unfolding method, present the most important facts about quenched
two-scale convergence and present our results about Young measures. In Section 4
we present examples of stochastic homogenization and applications of the methods
developed in this paper.

2. Standard model of random coefficients. In the following we briefly recall
the standard setting for stochastic homogenization. Throughout the entire paper
we assume the following:

Assumption 2.1. Let (2, F, P) be a complete and separable probability space. Let
T = {Ta}yepre denote a group of invertible measurable mappings 7, : Q — € such
that:

(i) (Group property). o = Id and 7,4, = 7, 0 7, for all x,y € R%.
(i4) (Measure preservation). P(t_,E) = P(E) for all E € F and x € RY.
(iti) (Measurability). (w,z) — T,w is (F ® L(RY), F)-measurable, where L(R?)
denotes the Lebesgue o-algebra.

We write (-) to denote the expectation fQ -dP. By the separability assumption
on the measure space it follows that LP(£2) is separable for p > 1. The proof of the
following lemma is a direct consequence of Assumption 2.1, thus we omit it.

Lemma 2.2 (Stationary extension). Let ¢ : Q@ — R be F-measurable. Let Q C R?
be open and denote by L(Q) the corresponding Lebesgue o-algebra. Then S :
QAxQ =R, Sp(w,z) = p(r,w) defines an F @ L(Q)-measurable function — called
the stationary extension of p. Moreover, if @ is bounded, for all 1 < p < oo the
map S : LP(2) — LP(Q x Q) is a linear injection satisfying

1
1Sellzrxq) = Q17 [¢llr(0)-
We say (Q, F, P, 1) is ergodic ({-) is ergodic), if
every shift invariant A € F (i.e. 7,4 = A for all 2 € RY) satisfies P(A) € {0,1}.

In this case the celebrated Birkhoff’s ergodic theorem applies, which we recall in
the following form:

Theorem 2.3 (Birkhoft’s ergodic Theorem [12, Theorem 10.2.11)). Let (-) be ergodic
and ¢ :  — R be integrable. Then for P-a.a. w € Q it holds: Sp(w,-) is locally
integrable and for all open, bounded sets Q@ C R% we have

lim /Q S, £)dz = Ql() (3)
Furthermore, if ¢ € LP(Q) with 1 < p < oo, then for P-a.a. w € § it holds:
Sp(w,-) € LY, (RY), and provided p < oo it holds Sp(w, =) — (@) weakly in LY, (RY)
ase — 0.
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Stochastic gradient. For p € (1,00) consider the group of isometric operators
{U, : 2 € R?} on LP(2) defined by U,p(w) = ¢(7,w). This group is strongly con-
tinuous (see [22, Section 7.1]). For i = 1, ..., d, we consider the 1-parameter group of
operators {Upe, : h € R} and its infinitesimal generator D; : D; C LP(2) — LP(£2)

. Uhe,- Y =@
Dip = lim ———,
750 h
which we refer to as stochastic derivative. D; is a linear and closed operator and its
domain D; is dense in LP(2). We set WP(Q) = N%_; D; and define for p € W1P(Q)
the stochastic gradient as Dy = (Ds¢, ..., Dap). In this way, we obtain a linear,
closed and densely defined operator D : W'P(Q) — LP(2)¢, and we denote by

L}t () :=R(D) C LP(Q)" (4)

the closure of the range of D in LP(2)¢. We denote the adjoint of D by D* : D* C
L1(Q)? — L(Q) where here and below ¢ := 577 denotes the dual exponent. It is
a linear, closed and densely defined operator (D* is the domain of D*). We define
the subspace of shift invariant functions in L?(Q) by

L (Q)={peLP(Q):Uyp=¢ forallze Rd},

mv

and denote by Py, : LP(Q) — L () the conditional expectation with respect
to the o-algebra of shift invariant sets {A ceF:m,A=Aforall z € Rd}. P, a
contractive projection and for p = 2 it coincides with the orthogonal projection
onto L2 (2). The following well-known equivalence holds:

(-) is ergodic & LY (Q) ~R & Py f = (f).

mv

Random fields. We introduce function spaces for functions defined on 2 x @
as follows: For closed subspaces X C LP(Q2) and Y C L”(Q), we denote by X ® Y
the closure of

n
X®Y = {Zg@mi o, eX,meY,ne N}
i=1

in LP(Q x Q). Note that in the case X = LP(Q)) and Y = LP(Q), we have X @ Y =
LP(Q2 x Q). Up to isometric isomorphisms, we may identify LP(Q x @) with the
Bochner spaces LP(£2; LP(Q)) and LP(Q; LP(2)). Slightly abusing the notation, for
closed subspaces X C LP(Q2) and Y C W'P(Q), we denote by X ® Y the closure of

XéY = {Z(pmi e X,meY,ne N}
i=1

in LP(Q; WHP(Q)). In this regard, we may identify u € LP(Q) ® WP(Q) with the

pair (u, Vu) € LP(Q x Q)'*9. We mostly focus on the space LP(Q2 x Q) and the

above notation is convenient for keeping track of its various subspaces.

3. Stochastic two-scale convergence, unfolding and Young measures. In
the following we first discuss two notions of stochastic two-scale convergence and
their connection through Young measures. In particular, Section 3.1 is devoted to
the introduction of the stochastic unfolding operator and its most important prop-
erties. In Section 3.2 we discuss quenched two-scale convergence and its properties.
Section 3.3 presents the results about Young measures.
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3.1. Stochastic unfolding and two-scale convergence in the mean. In the
following we briefly introduce the stochastic unfolding operator and provide its main
properties, for the proofs and detailed studies we refer to [30, 19, 34, 31].

Lemma 3.1 ([19, Lemma 3.1)). Lete > 0,1 < p < 00, g = p’%l, and Q C R? be
open. There exists a unique linear isometric isomorphism
Te: LP(2x Q) — LP(OQx Q)
such that
Yu € LP(Q) ® Q) : (Teuw)(w, ) = u(T-2w, 7) a.e. inQxQ.

Moreover, its adjoint is the unique linear isometric isomorphism T : L1(Q x Q) —
L1(Q x Q) that satisfies (T u)(w, z) = u(Tzw,x) a.e. in Q x Q for all u € LI(Q) ®
LY(Q), q = ;21 )

Definition 3.2 (Unfolding and two-scale convergence in the mean). The operator
Te : LP(Q x Q) — LP(2 x Q) in Lemma 3.1 is called the stochastic unfolding

operator. We say that a sequence (u.) C LP(Q2 x Q) weakly (strongly) two-scale
converges in the mean in LP(2 x Q) to u € LP(Q x Q) if (as € — 0)

Teue = u weakly (strongly) in LP(Q x Q).
In this case we write u. — u (e 2 u) in LP(2 x Q).
Remark 1 (Equivalence to stochastic two-scale convergence in the mean). Sto-
chastic two-scale convergence in the mean was introduced in [6]. In particular, it

is said that a sequence of random fields u. € LP(Q x Q) stochastically two-scale
converges in the mean if

ti [ et a)etrzwagie) = ( [ ufenpofe e ) )

for any ¢ € L1(Q x Q), q = ﬁ, that is admissible, i.e., in the sense that the
transformation (w,z) — ¢(7zw, ) is well-defined. For a bounded sequence u. €
LP(Q x @), (5) is equivalent to Tcu. — u weakly in LP(Q2 x @), i.e., to weak
stochastic two-scale convergence in the mean. Indeed, with help of 7; (and its
adjoint) we might rephrase the integral on the left-hand side in (5) as

( [ o @) =( / (Toue)ds ) (6)

which proves the equivalence.
We summarize some of the main properties:

Proposition 1 (Main properties). Let p € (1,00), ¢ = ﬁ and Q C R? be open.
(i) (Compactness, [19, Lemma 3.4].) If imsup, g ||ue| rxq) < 00, then there

exists a subsequence € and uw € LP(Q x Q) such that ue 2w in LP(Q2 x Q).
(i) (Limits of gradients, [19, Proposition 3.7]) Let (u.) be a bounded sequence
in LP(Q) ® WYP(Q). Then, there exist u € LY (Q) @ WIP(Q) and x €

L7 () ® LP(Q) such that (up to a subsequence)

ugiuian(QxQ), VUEAVu—i—XmLp(QxQ)d. (7)

If, additionally, (-) is ergodic, then u = Ppyu = (u) € WHP(Q) and (u.) — u
weakly in WHP(Q).
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(iii) (Recovery sequences, [19, Lemma 4.3]) Let uw € LY (Q) ® WHP(Q) and x €
LP

Pot () ® LP(Q). There exists uc € LP(Q) @ W'P(Q) such that

ue Bu, Vue > Vu+y in LP(Q2 x Q).
If additionally u € LP_ () @ Wy (Q), we have u. € LP(Q) @ W, *(Q).

mnv

3.2. Quenched two-scale convergence. In this section, we recall the concept of
quenched stochastic two-scale convergence (see [38, 16]). The notion of quenched
stochastic two-scale convergence is based on the individual ergodic theorem, see
Theorem 2.3. We thus assume throughout this section that

(-) is ergodic.

Moreover, throughout this section we fix exponents p € (1,00), ¢ := and an

_p_
p—1’
open and bounded domain @ C R%. We denote by (%7, || - || #») the Banach space
LP(£2 x @) and the associated norm, and we write (#P)* for the dual space. For the
definition of quenched two-scale convergence we need to specify a suitable space of
test-functions in %9 that is countably generated. To that end we fix sets Yo and
Pq such that
o g is a countable set of bounded, measurable functions on (€2, F) that contains
the identity 1o = 1 and is dense in L!(Q) (and thus in L"(Q) for any 1 < r <
e 9o C C(Q) is a countable set that contains the identity 1o = 1 and is dense
in L'(Q) (and thus in L™(Q) for any 1 < r < 00).

We denote by

A = {pw,z) = pa(w)pe(®) : va € Ya,pq € Yo}

the set of simple tensor products (a countable set), and by %, the Q-linear span
of &7, i.e.

m
Do = { Z/\jgoj :meEN, A, , A €Q, 01,...,0m € }.

j=1
We finally set

9 = spane/ =span%, and 2 :=span(%g)
(the span of 2 seen as a subspace of &), and note that 2 and %, are dense subsets
of #1, while the closure of 2 in %7 is isometrically isomorphic to L?(Q). Let us
anticipate that & serves as our space of test-functions for stochastic two-scale con-
vergence. As opposed to two-scale convergence in the mean, “quenched” stochastic

two-scale convergence is defined relative to a fixed “admissible” realization wgy € .
Throughout this section we denote by

)y the set of admissible realizations;
it is a set of full measure determined by the following lemma:

Lemma 3.3. There exists a measurable set Qo C Q with P(Qg) = 1 s.t. for all
o, € A, all wo € Qo, and r € {p, q} we have with (T ¢)(w,z) := p(T2w, T),

limsup [[(72¢) (wo, )| -(@) < Il
e—0

and tiy [ (o0 )i = { | o en.2) i),

e—0 Q



234 MARTIN HEIDA, STEFAN NEUKAMM AND MARIO VARGA

Proof. This is a simple consequence of Theorem 2.3 and the fact that < is countable.
O

For the rest of the section € is fixed according to Lemma 3.3.

The idea of quenched stochastic two-scale convergence is similar to periodic
two-scale convergence: We associate with a bounded sequence (u.) C LP(Q) and
wo € Qo, a sequence of linear functionals (u.) defined on . We can pass (up to a
subsequence) to a pointwise limit U, which is again a linear functional on 2 and
which (thanks to Lemma 3.3) can be uniquely extended to a bounded linear func-
tional on £9. We then define the weak quenched wgy-two-scale limit of (uc) as the
Riesz-representation u € &P of U € (#7)*.

Definition 3.4 (quenched two-scale limit, cf. [38, 17]). Let (u.) be a sequence in
LP(Q), and let wy € Qg be fixed. We say that u. converges (weakly, quenched)

wo-two-scale to u € AP, and write ugiwou, if the sequence u, is bounded in L?(Q),
and for all ¢ € Z we have

lim ng(x)(ﬁ*go)(wo,x)dx:/Q/Qu(x,w)ga(w,x)dde(w). (8)

e—0

Lemma 3.5 (Compactness). Let (uc) be a bounded sequence in LP(Q) and wy € €.

Then there exists a subsequence (still denoted by €) and uw € BP such that usgwou
and
zr < limi
ullzr < lim inf lluellLe Q) (9)

and ue — {u) weakly in LP(Q).

(For the proof see Section 3.2.1).

For our purpose it is convenient to have a metric characterization of two-scale
convergence.

Lemma 3.6 (Metric characterization). (i) Let {¢;};en denote an enumeration
of the countable set {m : o € Do}. The vector space Lin(2) :={U : 9 —
R linear} endowed with the metric
U( % — Vi)l
U(p) = Vieg)l +1

d(U,V;Lin(2 Z 27
jeEN

is complete and separable.
(i) Let wy € Qo. Consider the maps

J L IM(Q) » Lin(2),  (Ju)(p) = /Q u(@) (T2 ) (wo, ) da,

Jo : B — Lin(2), (Jou)(p) == </ u<p>.
Q
Then for any bounded sequence u. in LP(Q) and any u € AP we have usiwou
if and only if J<°ue — Jou in Lin(2).
(For the proof see Section 3.2.1).

Remark 2. Convergence in the metric space (Lin(2), d(-, -, Lin(2)) is equivalent to
pointwise convergence. (Z?)* is naturally embedded into the metric space by means
of the restriction J : (#%)* — Lin(2), JU = U|g. In particular, we deduce that
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for a bounded sequences (Uy) in (%7)* we have Uy, — U if and only if JU, — JU
in the metric space. Likewise, P (resp. LP(Q)) can be embedded into the metric
space Lin(2) via Jy (resp. J¥° with € > 0 and wg € €y arbitrary but fixed), and
for a bounded sequence (u) in %P (resp. LP(Q)) weak convergence in AP (resp.
LP(Q)) is equivalent to convergence of (Jyuy) (resp. (J¥°uy)) in the metric space.

Lemma 3.7 (Strong convergence implies quenched two-scale convergence). Let
(ue) be a strongly convergent sequence in LP(Q) with limit uw € LP(Q). Then for all

wp € Qo we have usiwou,
(For the proof see Section 3.2.1).

Definition 3.8 (set of quenched two-scale cluster points). For a bounded sequence
(ue) in LP(Q) and wy € Qp we denote by €% (wo, (u:)) the set of all wy-two-scale
cluster points, i.e. the set of u € #? with Jou € (3, {Jé‘“)u8 e < %} where the
closure is taken in the metric space (Lin(2),d(,;Lin(2))).

We conclude this section with two elementary results on quenched stochastic
two-scale convergence:

Lemma 3.9 (Approximation of two-scale limits). Let u € BP. Then for all wy €

Qo, there exists a sequence us € LP(Q) such that u. iwo u as e — 0.

(For the proof see Section 3.2.1).
Similar to the slightly different setting in [17] one can prove the following result:

Lemma 3.10 (Two-scale limits of gradients). Let (u.) be a sequence in WP(Q)

and wy € Qo. Then there exist a subsequence (not relabeled) and functions u €

WhP(Q) and x € LY () ® LP(Q) such that u. — u weakly in W'*(Q) and
ugiwou and VuEAWOVu + x ase—0.

3.2.1. Proofs.

Proof of Lemma 3.5. Set Cy := hm Sup lluc || r (@) and note that Cy < oo. By pass-

ing to a subsequence (not relabeled) we may assume that Cy = hm mf lluell 2 (q)-
Fix wo € Q. Define linear functionals U, € Lin(2) via

ww:é%mmwwwwm

Note that for all ¢ € &, (u-(p)) is a bounded sequence in R. Indeed, by Hélder’s
inequality and Lemma 3.3,

limsup |ue ()| < limsup [Jue || Lo (@) |72 (wo, )l za(q) < Collellza.  (10)
e—0 e—0

Since &7 is countable we can pass to a subsequence (not relabeled) such that u.(p)

converges for all ¢ € &/. By linearity and since 9 = span(%/), we conclude that

ue () converges for all p € P, and U(p) := lin% ue () defines a linear functional on
e—

2. In view of (10) we have |U(p)| < Co||¢|| s, and thus U admits a unique exten-
sion to a linear functional in (#7)*. Let u € %P denote its Riesz-representation.

2
Then u.—,,u, and

lullsor = U]l o)+ < Co =l [ | o
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Since 1o € Zq we conclude that for all pg € P we have

[ e(orate)ds = welanp) - Utag) = { JRCERE i)
= /Q (u(2)) pq() da.

Since (ug) is bounded in LP(Q), and Yo C LP(Q) is dense, we conclude that
ue — (u) weakly in LP(Q). O

Proof of Lemma 3.6. We use the following notation in this proof <7 := {m :
v € D}

(i) Argument for completeness: If (U;) is a Cauchy sequence in Lin(%), then for
all p € o, (U;(p)) is a Cauchy sequence in R. By linearity of the U;’s this implies
that (U;(y)) is Cauchy in R for all ¢ € . Hence, U; — U pointwise in 2 and
it is easy to check that U is linear. Furthermore, U; — U pointwise in % implies
U; — U in the metric space.

Argument for separability: Consider the (injective) map J : (#7)* — Lin(2)
where J(U) denotes the restriction of U to . The map J is continuous, since for
all U,V € (#19)" and € 4 we have |(JU)(9) — (JV)(@)] < U=Vl o). |l =
|U — V|(#q) (recall that the test functions in @ are normalized). Since (%9)*
is separable (as a consequence of the assumption that F is countably generated),
it suffices to show that the range R(J) of J is dense in Lin(2). To that end
let U € Lin(2). For k € N we denote by U, € (%7)* the unique linear func-
tional that is equal to U on the the finite dimensional (and thus closed) sub-
space span{¢1,...,pr} C ZAB? (where {¢;} denotes the enumeration of <7 ), and
zero on the orthogonal complement in 9. Then a direct calculation shows that
d(U, J(Uk); Lin(2)) < 37 277 =27%. Since k € N is arbitrary, we conclude that
R(J) C Lin(2) is dense.

(ii) Let ue denote a bounded sequence in LP(Q) and v € %P. Then by definition,
ugi\wou is equivalent to J¢°u. — Jou pointwise in &, and the latter is equivalent
to convergence in the metric space Lin(2). O

Proof of Lemma 3.7. This follows from Hélder’s inequality and Lemma 3.3, which

imply for all ¢ € &/ the estimate

lim sup /Q (e (&) — (@) T2 (w0, @) da

e—0

%
< lim sup <||u5 — || Lr (@) (/ |72 o (wo, x) |4 dx) ) =0.
e—0 Q
O

Proof of Lemma 3.9. Since Z (defined as in Lemma 3.6) is dense in %P, for any
d > 0 there exists vs € Zp with ||u — vs||lzr < d. Define vs.(x) := T Fvs(wo, ).
Let ¢ € 9. Since vs and ¢ (resp. vsp) are by definition linear combinations of
functions (resp. products of functions) in &/, we deduce from Lemma 3.3 that
(vs,e)e is bounded in LP(Q), and that

[Tt = [ Ttenn = ([ )
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By appealing to the metric characterization, we can rephrase the last convergence
statement as d(JL°vs ¢, Jovs; Lin(Z)) — 0. By the triangle inequality we have
d(JZ%vse, Jou; Lin(2)) < d(Jvs¢, Jovs; Lin(2)) + d(Jovs, Jow; Lin(2)).

The second term is bounded by ||vs — u||z» < §, while the first term vanishes for

£ | 0. Hence, there exists a diagonal sequence u. := vs(,. (bounded in LP(Q))
such that there holds d(J¢°u., Jou; Lin(2)) — 0. The latter implies ugi\wou by
Lemma 3.6. O

3.3. Young measures generated by two-scale convergence. In this section
we establish a relation between quenched two-scale convergence and two-scale con-
vergence in the mean (in the sense of Definition 3.2). The relation is established by
Young measures: We show that any bounded sequence u. in %P — viewed as a func-
tional acting on test-functions of the form 7 *¢ — generates (up to a subsequence)
a Young measure on %P that (a) concentrates on the quenched two-scale cluster
points of u., and (b) allows to represent the two-scale limit (in the mean) of u.. In
entire Section 3.3 we assume that

(-} is ergodic.

Also, throughout this section we fix exponents p € (1,00), ¢ := and an open

_p_
p—1’
and bounded domain @ C R Furthermore, we frequently use the objects and
notations introduced in Section 3.2.

Definition 3.11. We say v := {1} is a Young measure on AP, if for all w € €,
v,, is a Borel probability measure on %#? (equipped with the weak topology) and

w i V,(B) is measurable for all B € B(#"),
where B(%P) denotes the Borel-o-algebra on %P (equipped with the weak topology).

Theorem 3.12. Let u. denote a bounded sequence in JBP. Then there exists a
subsequence (still denoted by €) and a Young measure v on %P such that for all
wo € Qo,

Vy, &S concentrated on €% (wo, (u6 (wo, ))) ,

bz [ ([ ol an) apge)
Q \Jar
Moreover, we have

u2u wher@u::// vdv, (v)dP(w).
Q J p

Finally, if there exists 4 : Q — 9P measurable and v, = 64 for P-a.a. w €,
then up to extraction of a further subsequence (still denoted by ) we have

and

11?1 _>1(I)1f [le

ug(w)iwﬂ(w) for P-a.a. w € Q.

(For the proof see Section 3.3.1).

In the opposite direction we observe that quenched two-scale convergence implies
two-scale convergence in the mean in the following sense:

Lemma 3.13. Consider a family {(u¥)}weq of sequences (u¥) in LP(Q) and sup-
pose that:

(i) There exists u € BP s.t. for P-a.a. w € Q we have u?i\wu.
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(ii) There exists a sequence (Ug) in BP s.t. u¥(z) = U.(w,z) for a.a. (w,z) €
QxQ.

(iii) There exists a bounded sequence (xc) in LP(2) such that |[uf||Lr0) < Xxe(w)
for a.a. w € Q.

Then @i = u weakly two-scale (in the mean).

(For the proof see Section 3.3.1).

To compare homogenization of convex integral functionals w.r.t. stochastic two-
scale convergence in the mean and in the quenched sense, we appeal to the following
result:

Lemma 3.14. Let h: Qx Q x R — R be such that for all ¢ € RY, h(-,-,€) is F®
B(R%)-measurable and for a.a. (w,z) € Q x Q, h(w,z,-) is convez. Let (u.) denote
a bounded sequence in JBP that generates a Young measure v on JBP in the sense of
Theorem 5.12. Suppose that he : Q@ — R, he(w) := — [, min {0, A(T2w, z, uc(w, x)) } dzx
is uniformly integrable. Then

liminf//h(wa,Lus(w,x))dde(w)
QJQ

e—0
Z/Q/@ </Q/Qh(w,z,u(@,x)>dxdp(a)> dv,(v) dP(w). (11)

(For the proof see Section 3.3.1).

Remark 3. In [18, Lemma 5.1] it is shown that h satisfying the assumptions of
Lemma 3.14 satisfies the following property: For P-a.a. wy € g we have: For any
sequence (ug) in LP(Q) it holds

ugiwou = liminf h(Tzwo,x,uE(x))dxz//h(w,x,u(w,ac))dde(w).
e—0 Q € QJg
(12)

3.3.1. Proof of Theorem 3.12 and Lemmas 3.1/ and 3.13. We first recall some no-
tions and results of Balder’s theory for Young measures [4]. Throughout this section
M is assumed to be a separable, complete metric space with metric d(-,; .#).

Definition 3.15. e We say a function s : Q — .# is measurable, if it is F —
B(A# )-measurable where B(.#') denotes the Borel-o-algebra in ./ .

e A function h: Q x A4 — (—o0,+0o0] is called a normal integrand, if h is F ®
B(A#)-measurable, and for all w € Q the function h(w,-) : # — (—00, +0o0]
is lower semicontinuous.

e A sequence s. of measurable functions s. : @ — .# is called tight, if there
exists a normal integrand h such that for every w € 2 the function h(w, ) has
compact sublevels in ./ and limsup,__,q [, h(w, s:(w)) dP(w) < oc.

e A Young measure in .2 is a family p := {pw},cq of Borel probability mea-
sures on .# such that for all B € B(.#) the map Q@ > w — p,(B) € R is
F-measurable.

Theorem 3.16 ([4, Theorem I|). Let s. : Q — 4 denote a tight sequence of
measurable functions. Then there exists a subsequence, still indexed by e, and a
Young measure p : Q — M such that for every normal integrand h : Q X A —
(=00, +00] we have

liminf [ A(w, 5. (w)) dP(w) > /Q ///[ h(w, €)djto (€)dP(w) (13)

e—0 Q
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provided that the negative part h (-) = | min{0, h(-, s-(+))}| is uniformly integrable.
Moreover, for P-a.a. w € Qg the measure p,, is supported in the set of all cluster
points of sc(w), i.e. in Upe; {sc(w) : € < 3} (where the closure is taken in A ).

In order to apply the above theorem we require an appropriate metric space in
which two-scale convergent sequences and their limits embed:

Lemma 3.17. (i) We denote by 4 the set of all triples (U,e,r) with U €
Lin(2),e >0, r > 0. .# endowed with the metric

d((U1,e1,71), (U, €2,12); M) := d(U1, Usg; Lin(2)) + |e1 — 2| + [r1 — 72|

is a complete, separable metric space.
(11) For wg € Qo we denote by A“° the set of all triples (U,e,r) € M such that

(14)

U— Jou  for some u € LP(Q) with ||ul|prq) < 1 in the case € > 0,
Jou  for some u € BP with ||u||zer < r in the case e = 0.

Then AM“° is a closed subspace of M .
(iii) Let wy € Qo, and (U,e,r) € A#*“°. Then the function u in the representation
(14) of U is unique, and

lullzr@ = _sup  |U(P)| ife>0,

0€, |lellza<l (15)
[ul|z» = sup U(p)l  ife=0.

PED, |lollma<l

(iv) For wy € Qq the function || - ||w, : A*° — [0,00),

1
( sup U()|P +e+71P)7  if (Ue,r) €M, >0,

||<U557T)‘|w0 = ©€D, |lpllma<l K
sup  |U(@)P +7P)7 if (Ue,r) € M, e =0,
v€D, |lpllma<l

1s lower semicontinuous on M “°.
(v) For all (u,e) with u € LP(Q) and € > 0 we have s := (Ju, ¢, ||ull1r(q)) €

A0 and ||8]|w, = (2Hu||’£,)(Q) +E)%. Likewise, for all (u,e) with u € P and

e =0 we have s = (Jou, €, ||ul||z») and ||s]lw, = 2%||u\|@p
(vi) For all R < oo the set {(U,e,r) € A : ||(U,e,r)||w, < R} is compact in

M.
(vii) Let wo € Qo and let us denote a bounded sequence in LP(Q). Then the triple
5c = (J&Ue, €, ||ucl|Lr(@)) defines a sequence in .#“°. Moreover, we have

Se = So in M as e — 0 if and only if so = (Jou,0,r) for some u € PP,

r > ||lullge, and uaiwou.

Proof. (i) This is a direct consequence of Lemma 3.6 (i) and the fact that the
product of complete, separable metric spaces remains complete and separable.
(ii) Let sp := (Uk, ek, rr) denote a sequence in .#“° that converges in .# to
some sg = (Up,ep,70). We need to show that sy € .Z*“°. By passing to
a subsequence, it suffices to study the following three cases: e, > 0 for all

k € Ny, e =0 for all k£ € Ny, and 9 = 0 while ¢, > 0 for all kK € N.

Case 1: ¢, > 0 for all k € Ng.

W.l.o.g. we may assume that infy e, > 0. Hence, there exist uy € LP(Q) with
Up = Juy. Since 1, — r, we conclude that (uy) is bounded in LP(€2). We
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thus may pass to a subsequence (not relabeled) such that u; — ug weakly in
L?(@), and

uollLr (@) < limkinf lukllLr () < lilgnrk =7y. (16)

Moreover, U, — U in the metric space Lin(2) implies pointwise convergence
on 2, and thus for all g € Zg we have Ui(lapq) = fQ uRpQ — fQ UPQ-
We thus conclude that Us(lopg) = [,uopq. Since Zq C LI(Q) dense,
we deduce that up — ug weakly in LP(Q) for the entire sequence. On the
other hand the properties of the shift 7 imply that for any o € Zq we have
@Q(Tawo) — @Q(Tgo\}o) in L9(Q). Hence, for any ¢ € Zq and pg € Zg
we have

Uilensa) = | mew)pa@)alrs o) de

= | wo@ea()patrs o) dr = 12 (sosa)

and thus (by linearity) Uy = J&0uy.

Case 2: g, = 0 for all k € Ng.
In this case there exist a bounded sequence w; in AP with U, = Jou for
k € N. By passing to a subsequence we may assume that up — ug weakly in
PP for some ug € AP with

luol| e < limkinf lue, || ze < To. (17)

This implies that Uy = Jour — Joup in Lin(2). Hence, Uy = Jyup and we
conclude that so € .#Z“0.

Case 3: ¢ >0 for all k € N and g9 =0.
There exists a bounded sequence uy in LP(Q). Thanks to Lemma 3.5, by

passing to a subsequence we may assume that ukiwouo for some u € %P
with
luollze < liminf |juk[Lr(q) < 7o (18)

Furthermore, Lemma 3.6 implies that J£ur — Joup in Lin(2), and thus
Uy = Joug. We conclude that sg € .#“°.
We first argue that the representation (14) of U by w is unique. In the case
e > 0 suppose that u,v € LP(Q) satisfy U = J¥u = J<v. Then for all
vg € Yo we have fQ(u —v)pg = Ju(lopg) — J<v(lapg) = U(lapg) —
U(1lapg) =0, and since Zo C L(Q) dense, we conclude that u = v. In the
case € = ( the statement follows by a similar argument from the fact that 2
is dense A1.

To see (15) let u and U be related by (14). Since 2 (resp. Z) is dense in
Li(Q) (resp. A7), we have

lullzr@)y = sup |fQu<pdde\ = sup U(p)| ife>0,
v€D, |lellaa<l 0€D, |lpllaa<l

l|wl|zr = sup | Jo JqupdzdP| = sup |U(p)| ife=0.
0€D, |lollaa<l 0€D, |l¢llaad<l

Let s = (Ug,er, ) denote a sequence in .Z“° that converges in .# to a
limit sg = (Up, €0,70). By (ii) we have sg € .#“°. For k € Ny let uy in LP(Q)
or AP denote the representation of Uy in the sense of (14). We may pass to
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a subsequence such that one of the three cases in (ii) applies and (as in (ii))

either uy weakly converges to ug (in LP(Q) or %P), or ukiwouo. In any of

these cases the claimed lower semicontinuity of || - |, follows from e, — &,
T, — o, and (15) in connection with one of the lower semicontinuity estimates
(16) — (18).

(v) This follows from the definition and duality argument (15).

(vi) Let si denote a sequence in .Z“°. Let uy, in LP(Q) or %P denote the (unique)
representative of Uy in the sense of (14). Suppose that ||sgllw, < R. Then
(rr) and (ey) are bounded sequences in R>g, and supy, ||ug| < sup, e < 0o
(where || - || stands short for either || - [|1r(g) or || - [|#»). Thus we may pass
to a subsequence such that r, — rg, €k — €¢, and one of the following three
cases applies:

e Case 1: infyen, € > 0. In that case we conclude (after passing to a further
subsequence) that uj, — ug weakly in LP(Q), and thus Uy, — Uy = J&ug
in Lin(2).

e Case 2: g, =0 for all k € Ny. In that case we conclude (after passing to
a further subsequence) that ug — up weakly in #P(Q), and thus U, —
Uy = Joug in Lin(2).

e Case 3: ¢ > 0 for all K € N and g9 = 0. In that case we conclude (after
passing to a further subsequence) that ukiwouo, and thus U, — Uy =
JQ’LL() in Lin(@).

In all of these cases we deduce that so = (Up,e0,70) € A4“°, and s — so in
M.

(vii) This is a direct consequence of (ii) — (vi), and Lemma 3.6.

Now we are in position to prove Theorem 3.12

Proof of Theorem 3.12. Let M, #*°, J*° etc. be defined as in Lemma 3.17.

Step 1. (Identification of (uc) with a tight .4 -valued sequence). Since u. € AP,
by Fubini’s theorem, we have u.(w,-) € LP(Q) for P-a.a. w € Q. By modifying
u. on a null-set in Q x @ (which does not alter two-scale limits in the mean), we
may assume w.l.o.g. that u.(w,-) € LP(Q) for all w € . Consider the measurable
function s, : Q — # defined as

se(w) = (Jéuus(wa ), €, [Jue(w, ')HLP(Q)) if we Qq
) ' (0,0,0) else.

We claim that (s.) is tight. To that end consider the integrand h : Q x A4 —
(—00, +00] defined by

[(U,e,r)||P, if weQyand (U,e,r) € #Y,
+00 else.

h(w, (U,e,r)) = {
From Lemma 3.17 (iv) and (vi) we deduce that h is a normal integrand and h(w,

)
has compact sublevels for all w € Q. Moreover, for all wy € Qp we have s.(wg) €
A and thus h(wo, s=(wo)) = 2[|ue(wo, *)||7,(q) + ¢ Hence,

| 1o 52(0)) AP () = 2uclly +=.

We conclude that (s.) is tight.
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Step 2. (Compactness and definition of v). By appealing to Theorem 3.16 there
exists a subsequence (still denoted by ¢) and a Young measure p that is generated
by (sc). Let @1 denote the first component of w, i.e. the Young measure on Lin(2)
characterized for w € 2 by

/L i T (6 / F(6) dpio(€

for all f : Lin(2) — R continuous and bounded, where .#Z > £ = (£1,&,&3) —
&1 € Lin(2) denotes the projection to the first component. By Balder’s theorem,
I is concentrated on the limit points of (s.(w)). By Lemma 3.17 we deduce that
for all w € Qp any limit point so(w) of s¢(w) has the form so(w) = (Jou, 0, r) where
0<r<ooand ue€ %P is a w-two-scale limit of a subsequence of uc(w,-). Thus,
M1 w is supported on {Jou : u € €L (w, (ue(w,-))} which in particular is a subset of
(#%)*. Since Jy : BP — (#7)* is an isometric isomorphism (by the Riesz-Frechét
theorem), we conclude that v = {v,}ueq, Vw(B) := p1,,(JoB) (for all Borel sets
B C %P where SBP is equipped with the weak topology) defines a Young measure
on AP, and for all w € Qq, v, is supported on €2 (w, (u.(w,-)).

Step 3. (Lower semicontinuity estimate). Note that h : Q x .# — [0, +00],

SUPLcT o)<t U (PP ifw € Qo and (Ue,r) € 4%, e >0,
h(w, (U,e,7)) := { SUDgeq. |o|ma<1 U if w e Qo and (U,e,r) € A4, e =0,
+00 else.

defines a normal integrand, as can be seen as in the proof of Lemma 3.17. Thus
Theorem 3.16 implies that

imint [ s @) aP@) = [ [ .6 dua(©dP).

In view of Lemma 3.17 we have sup ez |, 0 <1 |(JEue) (W, ) (@) = [lue(w, ) e (q)
for w € Qp, and thus the left-hand side turns into lim inf. o ||u.||%,,. Thanks to the
definition of v the right-hand side turns into [, [, |v]|%, dvw(v)dP(w).

Step 4. (Identification of the two-scale limit in the mean). Let ¢ € %y. Then
h:Qx . # —[0,+0],

U if Qo, (U. w

e (2, o= { () ifw e, (Uer) <.

+oo else.
defines a normal integrand. Since h(w,s.(w)) = fQ Ue (w, )T p(w, z) do for P-
a.a. w € £, we deduce that |h(,s.(-))| is uniformly integrable. Thus, (13) applied
to +h and the definition of v imply that

lim//Qus(w,m)(ﬂ*cp)(w,x)dxdp(w) = lim [ h(w,s:(w))dP(w)

e—=0 Q e—=0 Q

/ h(w, v) dv (v) dP(w)
Q J pr

/ /@ < / W> dv,,(v) dP(w).

Set u = [;, [, vdv,(v)dP(w) € %P. Then Fubini’s theorem yields

;%//ugwx o) (w,z) dzdP(w) = </ngp>.
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Since span(%) C %9 dense, we conclude that U2

Step 5. Recovery of quenched two-scale convergence. Suppose that v, is a delta
distribution on %P, say v, = dg(.,) for some measurable @ : 2 — %P. Note that
h: Qx4 —[0,4+00],

h(wa (Uv & T)) = _d(U7 JOa(w); Lln(g))

is a normal integrand and |h(-, sc(+))| is uniformly integrable. Thus, (13) yields

limsup/Qd(J;"us(w, -), Jot(w); Lin(2)) dP(w)

e—0

= —liminf | h(w,s.(w))dP(w)

IN

e—0 Q
—/ / hMw, Jov) dvy, (v) dP(w) = —/ hMw, Jot(w)) dP(w) = 0.
oJar Q

Thus, there exists a subsequence (not relabeled) such that d(J¢ ue (w, -), Jou(w); Lin(2)) —

0 for a.a. w € Q. In view of Lemma 3.6 this implies that ugiwa(w) for a.a. w €
Q. 0

Proof of Lemma 3.1/. Step 1. Representation of the functional by a lower semicon-
tinuous integrand on M .

For all wy € Qo and s = (U,e,r) € .A#*“° we write 7*°(s) for the unique represen-
tation w in AP (resp. LP(Q)) of U in the sense of (14). We thus may define for
w € Qg and s € A“° the integrand

Ti(wo, 8) == fQ h(T§w71‘, (7v0s)(x)) dx if s=(U,¢,s) with e > 0,
0,8) = fQ fQ h(w,z, (70s)(z)) de dP(w) if s = (U,e,s) with e = 0.

We extend h(wo, -) to .# by +oo, and define h(w,-) = 0 for w € Q\ Q. We claim
that h(w,-) : # — (—o0,+00] is lower semicontinuous for all w € Q. It suffices to
consider wy € Qp and a convergent sequence s = (U, ek, %) in #“°. For brevity
we only consider the (interesting) case when ej, | g9 = 0. Set uy := 7“°(s;). By
construction we have

h(wo,sk):/ h(Tiwo,uk(wo,ac))dx,
Q

and

h(wo,so):/Q/Qh(w,m,uo(w,x))dmdp(w).

Since s — sp and € — 0, Lemma 3.17 (vi) implies that uk%wouo, and since h
satisfies 12 from Remark 3, we conclude that limkinf h(wo, sk) > h(wo, So), and thus

h is a normal integrand.

Step 2. Conclusion. As in Step 1 of the proof of Theorem 3.12 we may associate
with the sequence (u.) a sequence of measurable functions s. : 2 — .# that (after
passing to a subsequence that we do not relabel) generates a Young measure g on
A . Since by assumption u. generates the Young measure v on AP, we deduce that
the first component pq satisfies v, (B) = puw(JoB) for any Borel set B. Applying
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(13) to the integrand h of Step 1, yields

hminf/ /h(Tﬁwo,ug(wo,x))dde(w)
QJQ

e—0

:hminf/ﬂﬁ(w,ss(w)) dP(w)

e—0

> /Q /j/ R, €) diao(€) dP ()

:/Q/@ (/Q/Qh(@,x,v(w,x))dxdp(w)) dv,,(v) dP(w).

Proof of Lemma 3.15. By (ii) and (iii) the sequence (@) is bounded in %P and
thus we can pass to a subsequence such that (u.) generates a Young measure v. Set
@ := [ [, vdv,(v) dP(w) and note that Theorem 3.12 implies that . 2 i weakly
two-scale in the mean. On the other hand the theorem implies that v,, concentrates
on the quenched two-scale cluster points of (u¥) (for a.a. w € Q). Hence, in view of
(1) we conclude that for a.a. w € § the measure v, is a Dirac measure concentrated
on u, and thus @ = u a.e. in Q x Q. O

O

4. Convex homogenization via stochastic unfolding. In this section we re-
visit a standard model example of stochastic homogenization of integral functionals
from the viewpoint of stochastic two-scale convergence and unfolding. In particular,
we discuss two examples of convex homogenization problems that can be treated
with stochastic two-scale convergence in the mean, but not with the quenched vari-
ant. In the first example in Section 4.1 the randomness is nonergodic and thus
quenched two-scale convergence does not apply. In the second example, in Section
4.2, we consider a variance-regularization to treat a convex minimization problem
with degenerate growth conditions. In these two examples we also demonstrate the
simplicity of using the stochastic unfolding operator. Furthermore, in Section 4.3
we use the results of Section 3.3 to further reveal the structure of the previously
obtained limits in the classical ergodic case with non-degenerate growth with help
of Young measures. In particular, we show how to lift mean homogenization results
to quenched statements.

4.1. Nonergodic case. In this section we consider a nonergodic stationary medium.
Such random ensembles arise naturally, e.g., in the context of periodic representa-
tive volume element (RVE) approximations, see [13]. For example, we may consider
a family of i.i.d. random variables {@(z)},czq. A realization of a stationary and
ergodic random checkerboard is given by

WiRI SR, w(@) = 3 Liyyen@a(z)),
€24
where |z] € Z9 is the integer part of x and y € [J is the center of the checkerboard
chosen uniformly from O = [0,1)%. For L € N, we may consider the map 7z, : w
wr, given by mrw(z) = w(x) for x € [0,L)? and 7yw is L-periodically extended.
The push forward of the map =y defines a stationary and nonergodic probability
measure, that is a starting point in the periodic RVE method. Another standard
example of a nonergodic structure may be obtained by considering a medium with
a noncompatible quasiperiodic microstructure, see [38, Example 1.2].
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In this section we consider the following situation. Let p € (1,00) and Q@ C R?
be open and bounded. We consider V : Q x Q@ x R? = R and assume:

(A1) V(-,-, F) is F ® L(Q)-measurable for all F € R%.
(A2) V(w,z,-) is convex for a.a. (w,z) € Q X Q.
(A3) There exists C' > 0 such that

1
6|F|p - C<V(w,z,F) <C(F|P+1)
for a.a. (w,7) € 2 x Q and all F € R%.
We consider the functional

£ IPQ) @ WP(Q) 5 R, & </ V(raw, z, Vu(w, J;))dx> (19)

Under assumptions (A1)-(A3), in the limit € — 0 we obtain the two-scale func-
tional

&0 (L6 () @ W 7(Q) X (L () @ 17(Q)) — R,

Eolu, X) </ V(w, 2, Vu(w,2) + x(, m))d;v> (20)

Theorem 4.1 (Two-scale homogenization). Let p € (1,00) and Q C R? be open
and bounded. Assume (A1)-(A3).

(i) (Compactness and liminf inequality.) Let u. € LP(Q) @ Wy P(Q) be such
that limsup,_,o & (u:) < oo. There exist (u,x) € (Lf’nv(Q)@)Wol’p(Q)) X

(LD, () ® LP(Q)) and a subsequence (not relabeled) such that
ue 2 uin LP(Q x Q), Vue 2 Vu+y in LP(Q2 x Q), (21)
lim_j(r)lf Ec(ue) > Eo(u, x)- (22)
€

(1) (Limsup inequality.) Let (u,x) € (Lf’nv (Q) ® Wol’p(Q)> (Lgot(Q) ® LP(Q)).
There exists a sequence u. € LP(Q) @ Wy (Q) such that

usiuinLP(QxQ), VuEiVu+xin LP(Q2 x Q), (23)
lim sup & (ue) < Eo(u, x)- (24)
e—0

Proof of Theorem j.1. (i) The Poincaré inequality and (A3) imply that u. is bounded
in LP(2) @ WP(Q). By Proposition 1 (ii) there exist u € LY (2) ® WP(Q) and

X € Lpot () @ LP(Q) such that (21) holds. Also, note that Ppnyu. — u weakly
in LP(Q) @ W'(Q) and Pyyue € LP._(Q) ® Wy *(Q), which implies that u also

has 0 boundary values, i.e., u € L* _(Q) ® Wy*(Q). Finally, we note that, see [19,
Proposition 3.5 (i)],

</V7’wwwix> </v wx))> for any v € LP(Q x Q),

(25)
and thus using the convexity of V' we conclude

liminf &, (ue) = lim inf </ V(w,x,’TEVUE)> > Eo(u, ).
e—0 Q

e—0
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(ii) The existence of a sequence u. with (23) follows from Proposition 1 (iii).
Furthermore, (25) and the growth assumption (A3) yield
lim &, (ue) = lim </ V(w,xﬂ;VuE)> = &o(u, X).
e—0 Q

e—0

This concludes the claim, in particular, we even show a stronger result stating
convergence of the energy. O

Remark 4 (Convergence of minimizers). We consider the setting of Theorem 4.1.
Let u. € LP(Q) @ W, *(Q) be a minimizer of the functional

L M) @ Wi (Q) = R, T.(u) = Ea(u) - < /Q uefadm> ,

where f. € LY(Q x Q) and f. % f with f € L9(Q) and 1 + 1 = 1. By a standard
argument from the theory of I'-convergence Theorem 4.1 (cf. [34, Corollary 7.2])
implies that there exist a subsequence (not relabeled), u € L2, (Q) x Wy**(Q), and

X € Lo () ® LP(Q) such that u, A uin LP(Qx Q), Vue A Vu+y in LP(Qx Q),
and

lim minZ, = lim 7 (u:) = Zo(u, x) = minZy,
e—0 e—0

(Q) @ W, P(Q) — R is given by Zo(u) = & (u) — Jo fudz. This, in
particular, rigorously justifies the formal two-scale expansion Vu.(z) & Vug(w, )+

X(Tzw, ).

where Zo : LP

mnv

Remark 5 (Uniqueness). If V(w,z,-) is strictly convex the minimizers are unique
and the convergence in the above remark holds for the entire sequence.

4.2. Variance-regularization applied to degenerate growth. In this section
we consider homogenization of convex functionals with degenerate growth. More
precisely, we consider an integrand V that satisfies (A1), (A2) and the following
assumption (as a replacement of (A3)):

(A3’) There exists C' > 0 and a random variable A\ € L*(£2) such that
__1\p1
<>\ p—1> <C (26)

and
AWIFP - C <V(w,z,F) < CA(W)|FIP+1)
for a.a. (w,2) € Q x Q and all F € R4,

Moreover, we assume that (-) is ergodic. For ¢ > 0 we consider the following
functional

EL'OxQ) = RU{c0},  &(u)= </QV(T§w,:B7Vu)dx>,

for u € X, and & (u) = oo otherwise. Here X, denotes the closure of {u €eLP(Q)® W&”’(Q)}
w.r.t. the weighted norm

lella, = </ )\(Tgw)|Vu|pda:>p
Q

Recently, in [29, 20, 21] it shown that & Mosco-converges to the functional

Ehom : LNQ) — RU {00}, Enom (u) := /Q Vhom (2, Vu(z)) dz,
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foru e Wol’p(Q) and Epom (1) = 0o otherwise, where Viom : @ x RY — R is given by
the homogenization formula,

Vhom(z, F) = inf (V(w,z, F + x(w))), (27)

XELgot(Q)

for z € Q and F € R?. Moreover, it is shown that Viom is a normal convex in-
tegrand that satisfies a standard p-growth condition. Note that the assumption
(A3’) in comparison to (A3) makes a genuine difference in regard to the homoge-
nization formula (27). In particular, in the setting of assumption (A3) minimizers
are attained due to the coercivity of the underlying functional in L}, (Q2). It is thus
easy to see that the homogenized integrand satisfies p-growth condition as well, see
Section 4.3 below. On the other hand, in the setting of this section assuming (A3’),
(27) is a degenerate minimization problem and a priori minimizers will only have
finite first moments. An additional argument is required to infer that Viem in (27)
is non-degenerate, in particular, in [29, Theorem 3.1] it is shown that there exists a
constant C’ > 0 such that for all z € Q and F € R? we have

1
5|F|p - O/ S ‘/hom(x7F) S C/ (|F|p + 1) . (28)

One of the difficulties in the proof of the homogenization result for & is due to
the fact that the domain of the functionals are e-dependent. Moreover, assumption
(A3’) only yields equicoercivity in L' ()@ W, (Q), while the limit E,om is properly
defined on W'P(Q). Therefore, in practice it is convenient to regularize the problem:
For § > 0 we consider the regularized homogenization formula

Viom,s(z, F) = inf (V(w,z, F+ x(w)) + d§|x(w)|?) .
XELY ()

pot

It is simple to show that the infimum on the right-hand side is attained by a unique
minimizer. We also consider the corresponding regularized homogenized integral
functional

Eroms : L1(Q) > RU{oc},  Enoms(u) i= / Viom.s (V) da,
Q

for u € WyP(Q) and Epom,s(u) = 0o otherwise. Furthermore, thanks to (A3’), it is
relatively easy to see that this regularization is consistent:

Lemma 4.2. Letp € (1,00) and Q C R be open and bounded. Assume (A1), (A2)
and (A3’). Then, for all x € Q and F € R%, we have

lim Viom,s(z, F) = Vhom(z, F). (29)
6—0

Moreover, Enom,s Mosco converges to Enom as § — 0, i.e., the following statements

hold:
(i) If us — u weakly in L'(Q), then

lim inf Ehom,s(Us5) > Enom ().
6—0
(ii) For any u € L*(Q) there exists a sequence us € L*(Q) such that
us —u  strongly in L'(Q),  Enom.s(Us) — Enom(u).

Proof. Let F € RY and z € Q. Since § > 0, we have Viom s(7, F) > Viom(z, F). On

the other hand, we consider a minimizing sequence x, € L .(©2) in (27), e.g.,

(V(w, 2, F + x2)) < Vhom(x, F) + 1.
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We have
Vhom,s(z, F') < (V(w,z, F + xz) + 3|xn[”") < Vhom(w, F) + 1+ (|xy|") -

Letting first § — 0 and then n — 0, we conclude (29).

We further consider a sequence us such that us — u weakly in L'(Q) as § — 0.
We assume without loss of generality thatlimsupg_,, Enom,s(us) < co. This, in particular,
with the help of (28) and the Poincaré inequality implies that lim sup;_,  ||us ||Wg,p(Q) < 00.

Thus, up to a subsequence, we have us — u weakly in VVO1 P(Q). Using this, we
obtain
lim inf Eyom,s(us) > liminf Epom (us) > Enom (1)-
6—0 §—0

The first inequality follows by (29) and the second is a consequence of the fact that
Viom (2, +) is convex and of Fatou’s Lemma. We conclude that (i) holds.

If w ¢ dom(Epom), we simply choose us = u. On the other hand, for u €
dom (Epom) = Wy P(Q), (29) and the dominated convergence theorem yield

lim Ehom,s(4) = Ehom ().
0—0
This means that (ii) holds. O

In the following we introduce a variance regularization of the original functional
E. that removes the degeneracy of the problem and thus can be analyzed by the
standard strategy of Section 4.1. For § > 0, we consider & 5 : L} (2 x Q) — R,

Ees(u) = </Q V(rzw, z, Vu(z)) + §|Vu(z) — (Vu(z)) |pd:v> , (30)

for u € LP(Q) @ Wy P(Q) and &. 5 = oo otherwise. Due to the structure of the
additional term, we call it a variance-regularization and we note that it only be-
comes active for non-deterministic functions. For fixed § > 0, the functional &, 5 is
equicoercive on LP(Q) @ WyP(Q):

Lemma 4.3. Let p € (1,00) and Q C R? be open and bounded. Assume (A1) and
(A3°). Then there exists C = C(Q,p) > 0 such that, for allu € LP(Q) @ WP (Q),

it holds ;
</Q |Vu> +6</Q |Vu|p> < O(Ees(u)+1).

Proof. By Jensen’s and Holder’s inequalities we have

( /Q |Vudx>ps|cz|’” /Q (vul” < 1Qr = (x > ( /Q AV,

where we use the notation Ac(z,w) = A(7zw). Furthermore, using (A3’), we con-
clude that

( /. Vulde) < CQ.p) (Eus) +1).

In the end, using the variance-regularization we obtain

20 /Q var) < /Q Vu- (v P) + /Q (IVul)?
< % (Eeo(u) +1) + C(Ee5(u) +1).

This concludes the proof. O
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The regularization on the e-level is also consistent. In particular, we show that in
the limit 6 — 0, we recover £. We discuss the mean functionals & 5 and &, since
the former does not admit a well-defined pointwise evaluation in w for the reason
of the nonlocal variance term. Also, for the same reason the quenched version of
stochastic two-scale convergence is not suitable for this setting and we apply the
unfolding procedure. On the other hand, the homogenization of £, can be conducted
on the level of typical realizations, that was in fact studied in [29, 20, 21].

Lemma 4.4. Letp € (1,00) and Q C R? be open and bounded. Assume (A1), (A2)
and (A3’). Then, E 5 Mosco converges to E. as 6 — 0 i.e., the following statements
hold:

(i) If us — u weakly in L'(Q x Q), then
liminf & 5(us) > & (u).
6—0

(ii) For any u € L*(Q x Q) there exists a sequence us € L'(Q x Q) such that
us — u  strongly in L'(Q x Q), Ees(us) = E(u).
Proof. (i) Let us be a sequence such that us — u weakly in L'(Q2x Q). Without loss
of generality we assume that lim sups_, & 5(us) < co. This and the proof of Lemma
4.3 imply that the sequence /\5% Vus is bounded in LP(Q x Q) with tlrie notation

Ae(7,w) = A(Tzw). This means that, up to a subsequence, we have A Vus — 9
weakly in LP(Q x Q) for some ¢ € LP(2x Q). Thus, for an arbitrary n € L>®(Q2xQ),
we have

</ Vu(;ndx> = </ )\E"Vu(s)\s_pndw> — </ w)\e_pndx> as e — 0.
Q Q Q

This means that Vus converges weakly in L'(Q x Q) and since us — u weakly in
L' (2 x Q) we may conclude that Vus — Vu weakly in L'(Q x Q). This yields

liminf & s5(us) > liminf & (us) > & (u).
6—0 0—0

(ii) For an arbitrary u € dom(&,) C X,, we find a sequence u,, € LP(Q) ® Wol’p(Q)
such that, for n — 0,

u, —u strongly in L*(Q) @ W, (Q), </Q |V, — Vu|pdm> — 0.

Using this and the dominated convergence theorem, we conclude that

71}13}3 E(uy) = E(u).

This in turn yields

limsup limsup |&; 5(uy,) — £ (u)| = 0.
n—0 6—0

We extract a diagonal sequence 1(d) — 0 as 6 — 0 such that us := u,s) satisfies
us — u strongly in L'(Q x Q) and &. s(us) — E-(u). This concludes the proof. [

The homogenization of the regularized functional &, s boils down to a very similar
simple argumentation as in Section 4.1.

Theorem 4.5. Let p € (1,00) and Q C R? be open and bounded. Assume (A1),
(A2) and (A3’). For all 6 > 0, as € = 0, .5 Mosco converges to Enom,s i1 the
following sense:
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(i) Let u. € LP(2) @ WyP(Q) be such that limsup,_,o & 5(us) < co. Then there
exist (u, x) € Wy P(Q) x (LP:(Q) ® LP(Q)) and a subsequence (not relabeled)
such that

ue 2uin LP(Q x Q), Vue = Vu+ y in LP(Q x Q).
(ii) If uc € LY(2 x Q), u € LY(Q) and Toue — u weakly in L*( x Q), then

.. > )
llgélf 85,6(“5) = 5hom,5 (u)

(iii) For any u € L*(Q), there exists a sequence u. € L*(Q x Q) such that
Teue — u  strongly in LY(Q x Q),  E:5(ue) — Enom.s(u).

Proof. (i) The statement follows analogously to the proof of Theorem 4.1 (i).

(i) Let Tzu. — u weakly in L'(Q2 x Q). We may assume without loss of generality
that limsup,_,( &- 5(ue) < co. In this case, Lemma 4.3 implies that u. is bounded
in LP(Q) ® WO1 P(Q). We may proceed analogously to Theorem 4.1 and Remark 5
to obtain

liminf & 5(ue) > Enom,s ().
e—0

(ii) This part is analogous to Theorem 4.1 and Remark 5. O

The results of Lemmas (4.2) and (4.4), Theorem (4.5) and [29, 20, 21] can be
summarized in the following commutative diagram:

£; 3V e

e=0{ L(—0)
5110m,5 (6:;0) ghom

The arrows denote Mosco convergence in the corresponding convergence regimes.

4.3. Quenched homogenization of convex functionals. In this section we
demonstrate how to lift homogenization results w.r.t. two-scale convergence in the
mean to quenched statements at the example of Section 4.1. Throughout this sec-
tion we assume that (-) is ergodic. For w € Q we define £ : Wol’p(Q) — R,

E¥(u) ::/QV (T%QJ,CL‘,VU(!L‘)) dz,

with V satisfying (A1)-(A3). The goal of this section is to relate two-scale limits
of “mean”-minimizers, i.e. functions u. € LP(Q) ® Wol’p(Q) that minimize &, with
limits of “quenched”-minimizers, i.e. families {u.(w)}y,ecq of minimizers to £~ in
WyP(Q). We also remark that if V(w,x,) is strictly convex u. and {u.(w)}
may be identified since minimizers of both functionals & and £¢ are unique.

Before presenting the main result of this section, we remark that in the ergodic
case, the limit functional (20) reduces to a single-scale energy

Ehom : Wy P(Q) = R, Enom(u) = / Vaom (2, Vu(x))dz,

weN

Q
where the homogenized integrand Vi, is given for z € R and F € R? by
Viom(z, F) = inf (V(w,z, F+ x(w))). (31)
X got(Q)

In particular, we may obtain an analogous statement to Theorem 4.1 where we
replace & with Epom. The proof of this follows analogously with the only difference
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that in the construction of the recovery sequence we first need to find x such that
Eo(u, x) = Ehom(u). This is done by a usual measurable selection argument, cf. [34,
Theorem 7.6].

Theorem 4.6. Let p € (1,00), Q C R? be open and bounded, and (-) be ergodic.
Assume (A1)-(A3). Let u. € LP(Q) @ Wy (Q) be a minimizer of E.. Then there
exists a subsequence such that (uc,Vu.) generates a Young measure v in B =
(#P) 4 in the sense of Theorem 3.12, and for P-a.a. w € €, v,, concentrates on
the set {(u, Vu+x) : Eo(u,x) = min 50} of minimizers of the limit functional.
Moreover, if V(w,x,-) is strictly convex for all x € Q and P-a.a. w € S, then the
minimizer u. of & and the minimizer (u, x) of & are unique, and for P-a.a. w € Q
we have (for a not relabeled subsequence)

UE(W7 ) — u weakly in WLP(Q)? ’LLE(CU7 ')Awuy VUE(W7 )E\wvu + X

and min &Y = EZ (ue(w, ) = Eo(u, x) = min &.

Remark 6 (Identification of quenched two-scale cluster points). If we combine
Theorem 4.6 with the identification of the support of the Young measure in The-
orem 3.12 we conclude the following: There exists a subsequence such that (u., Vu,)
two-scale converges in the mean to a limit of the form (ug, Vuo+xo) with Ey(uo, xo0) =
min&y, and for a.a. w € O the set of quenched w-two-scale cluster points
P (W, (ue(w, ), Vue(w,-))) is contained in { (u, Vu + x) : &(u,x) = min& }.
In the strictly convex case we further obtain that € (w, (us(w,-), Vue(w,-))) =
{(u, Vu + x)} where (u, x) is the unique minimizer to &. Note, however, that our
argument (that extracts quenched two-scale limits from the sequence of “mean”
minimizers) involves an exceptional P-null-set that a priori depends on the selected
subsequence. This is in contrast to the classical result in [11] which is based on a
subadditive ergodic theorem and states that there exists a set of full measure '
such that for all w € Q' the minimizer v to £ weakly converges in WP (Q) to the
deterministic minimizer u of the reduced functional &y, for any sequence £ — 0.

In the proof of Theorem 4.6 we combine homogenization in the mean in form of
Theorem 4.1, the connection to quenched two-scale limits via Young measures in
form of Theorem 3.12, and a recent result described in Remark 3 by Nesenenko and
the first author.

Proof of Theorem /.6. Step 1. (Identification of the support of v).
Since u. is a sequence of minimizers, by Corollary 4 there exists a subsequence
(not relabeled) and minimizers (u, ) € Wy (Q) x (L2, () @ LP(Q)) of & such

pot
that that u. — u in LP(Q x Q), Vue A Vu+ y in LP(2 x Q)?, and

gi_rg%) min&, = il_I)I(l) Ec(ue) = Eo(u, x) = min &. (32)
In particular, the sequence (ue, Vu.) is bounded in #. By Theorem 3.12 we may
pass to a further subsequence (not relabeled) such that (u., Vu.) generates a Young
measure v on A. Since v, is supported on the set of quenched w-two-scale cluster
points of (uc(w,-), Vue(w,-)), we deduce from Lemma 3.10 that the support of
v, is contained in %y = {€ = (&,6) = (W, Vu' + ') : v € WiP(Q), x €
L7 () ® LP(Q) } which is a closed subspace of #. Moreover, thanks to the relation
of the generated Young measure and stochastic two-scale convergence in the mean,
we have (u,X) = [ [, (1.6 — V&) 1(d€) dP(w). Furthermore, Lemma 3.14
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implies that

;EI%)SE(uE)>/§2/%</S)/C2V(®,x,§2)dde(@)> v (d€) dP(w).

In view of (32) and the fact that v, is supported in %y, we conclude that
min &y > / Eo(&1,8& — V&) v, (dE) dP(w) > miné’o/ / v, (d§)dP(w).
Q J B Q J By

Since [, f%O Ve (d€)dP(w) = 1, we have [, f@o |€o0(&1, &2 — V&) — min & v, (d€) dP(w) =
0, and thus we conclude that for P-a.a. w € g, v,, concentrates on {(u, Vu + x) :
Eo(u, x) = min & }.
Step 2. (The strictly convex case).

The uniqueness of u. and (u, x) is clear. From Step 1 we thus conclude that v, =
0¢ where £ = (u, Vu+y). Theorem 3.12 implies that (u.(w, -), Vus (w, ~))iw(u, Vu+
x) (for P-a.a. w € Q). By Lemma 3.14 we have for P-a.a. w € Q,

limiélfé':(ue(w, ) > Eo(u, x) = min &.
e—

On the other hand, since u.(w,-) minimizes £, we deduce by a standard argument
that for P-a.a. w € (),

lim min £ = lim &Y (u. (w, ) = & (u, x) = min &.
e—0 e—0

O
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