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Abstract. In this paper we compare the notion of stochastic two-scale conver-

gence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic

unfolding (recently introduced by the authors), and the quenched notion of sto-
chastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we

introduce stochastic two-scale Young measures as a tool to compare mean and

quenched limits. Moreover, we discuss two examples, which can be naturally
analyzed via stochastic unfolding, but which cannot be treated via quenched

stochastic two-scale convergence.

1. Introduction. In this paper we compare quenched stochastic two-scale con-
vergence [38] with the notion of stochastic unfolding [30, 19], which is equivalent
to stochastic two-scale convergence in the mean [6]. In particular, we introduce
the concept of stochastic two-scale Young measures to relate quenched stochastic
two-scale limits with the mean limit and discuss examples of convex homogeniza-
tion problems that can be treated with two-scale convergence in the mean, but not
conveniently in the quenched setting of two-scale convergence.

Two-scale convergence has been introduced in [32, 1, 25] for homogenization
problems (partial differential equations or variational problems) with periodic co-
efficients. The essence of two-scale convergence is that the two-scale limit of an
oscillatory sequence captures oscillations that emerge along the sequence and that
are to leading order periodic on a definite microscale, typically denoted by ε > 0.
It is especially well-suited for problems where oscillations of solutions solely stem
from prescribed oscillations of the coefficients or the data. For instance, this is the
case for equations with a monotone structure or convex variational problems. In
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contrast, problems that feature pattern formation to leading order (e.g., noncon-
vex variational problems or singular partial differential equations with non-convex
domain) typically cannot be conveniently treated with two-scale convergence. An-
other well established method for periodic homogenization is periodic unfolding, see
[9, 35, 27, 10] as well as [36, 3] for the periodic modulation method, which is re-
lated. These methods build on an isometric operator—the periodic unfolding (or
dilation) operator. It allows us to embed oscillatory sequences into a larger two-
scale space and to transform an oscillatory problem into an “unfolded” problem
on the two-scale space. The latter often features a better separation of macro-
and microscopic properties, which often is convenient for the analysis. We refer to
[14, 7, 28, 8, 15, 24, 26] for various interesting applications of this method. Both
notions are closely linked, since weak convergence of “unfolded” sequence in the
two-scale space is equivalent to weak two-scale convergence, see [5].

In this paper we are interested in stochastic homogenization, i.e. problems with
random coefficients with a stationary distribution. The first stochastic homoge-
nization result has been obtained by Papanicolaou and Varadhan in [33] (and inde-
pendently by Kozlov [23]) for linear, elliptic equations with stationary and ergodic
random coefficients on Rd. In their seminal paper, Papanicolaou and Varadhan
introduce a functional analytic framework, which, by now, is the standard way to
model random coefficients. We briefly recall it in the special case of convex inte-
gral functionals with quadratic growth: Let (Ω,F , P ) denote a probability space of
parameter fields ω ∈ Ω and let τx : Ω → Ω, x ∈ Rd, denote a measure preserving
and ergodic group action, see Assumption 2.1 for details. A standard model for
a convex, integral functional with a stationary, ergodic, random microstructure on
scale ε > 0 is then given by the functional Eωε : H1(Q)→ R ∪ {∞},

Eωε (u) =

ˆ
Q

V
(
τ x

ε
ω,∇u(x)

)
− f(x)u(x) dx

where Q ⊂ Rd denotes an open and bounded domain, f ∈ L2(Q), and V (ω, F ) is an
integrand that is measurable in ω ∈ Ω, convex in F ∈ Rd, and satisfies a quadratic
growth condition. A classical result [11] shows that in the homogenization limit
ε → 0, the functionals Γ-converge to the homogenized functional Ehom : H1(Q) →
R ∪ {∞}, given by

Ehom(u) =

ˆ
Q

Vhom(∇u(x))− f(x)u(x) dx,

where Vhom is a deterministic, convex integrand and characterized by a homogeniza-
tion formula, see (31) below. There are different natural choices for the topology
when passing to this limit:

• In the mean setting, minimizers uωε of Eωε , ω ∈ Ω, are viewed as random fields
(ω, x) 7→ uωε (x) in L2(Ω;H1(Q)) and one considers Γ-convergence of the aver-
aged functional L2(Ω;H1(Q)) 3 u 7→

´
Ω
Eε(u) dP w.r.t. strong convergence in

L2(Ω×Q). In fact, the first result in stochastic homogenization [33] establishes
convergence of solutions in this mean sense.

• In the quenched setting, one studies the limiting behavior of a minimizer
uε ∈ H1(Q) of Eωε for fixed ω ∈ Ω. One then considers Γ-convergence of Eωε
w.r.t. strong convergence in L2(Q) for P-a.a. ω ∈ Ω.

Similarly, two variants of stochastic two-scale convergence have been introduced as
generalizations of periodic two-scale convergence (for the sake of brevity, we restrict
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the following review to the Hilbert-space case p = 2, and note that the following
extends to Lp(Ω×Q) with p ∈ (1,∞)):

• In [6, 2] the mean variant has been introduced as follows: We say that a
sequence of random fields (uε) ⊂ L2(Ω×Q) stochastically two-scale converges
in the mean to u ∈ L2(Ω×Q), if

lim
ε→0

ˆ
Ω×Q

uε(ω, x)ϕ(τ x
ε
ω, x) dP (ω)dx =

ˆ
Ω×Q

u(ω, x)ϕ(ω, x) dP (ω)dx, (1)

for all admissible test functions ϕ ∈ L2(Ω×Q), see Remark 1 for details.
• More recently, Zhikov and Pyatnitskii introduced in [38] a quenched variant:

We say that a sequence (uε) ⊂ L2(Q) quenched stochastically two-scale con-
verges to u ∈ L2(Ω×Q) w.r.t. to a fixed parameter field ω0 ∈ Ω, if

lim
ε→0

ˆ
Q

uε(x)ϕ(τ x
ε
ω0, x) dx =

ˆ
Ω×Q

u(ω, x)ϕ(ω, x) dP (ω)dx,

for all admissible test functions ϕ ∈ L2(Ω×Q). Note that the two-scale limit u
a priori depends on ω0. In fact, in [37] (see also [16]) quenched two-scale con-
vergence has been introduced in a very general setting that includes the case
of integration against random, rapidly oscillating measures, which naturally
emerge when describing coefficients defined relative to random geometries.
In this work, we restrict our considerations to the simplest case where the
random measure is the Lebesgue measure.

Similarly to the periodic case, stochastic two-scale convergence in the mean can
be rephrased with help of a transformation operator, see [30, 19, 34], where the
stochastic unfolding operator Tε : L2(Ω×Q)→ L2(Ω×Q),

Tεu(ω, x) = u(τ− x
ε
ω, x), (2)

has been introduced. As in the periodic case, it is a linear isometry and it turns out
that for a bounded sequence (uε) ⊆ L2(Ω×Q), stochastic two-scale convergence in
the mean is equivalent to weak convergence of the unfolded sequence Tεuε. As we
demonstrate below in Section 4.1, the stochastic unfolding method leads to a very
economic and streamlined analysis of convex homogenization problems. Moreover,
it allows us to derive two-scale functionals of the form E(u, χ) =

´
Ω

´
Q
V (ω,∇u(x)+

χ(ω, x)) dx dP as a Γ-limit of Eε, see Theorem 4.1 for details. In contrast to the
periodic case, where the unfolding operator is an isometry from L2(Rd) to L2(Y×Rd)
(with Y denoting the unit torus), in the random case it is not possible to interpret
(2) as a continuous operator from L2(Q) to L2(Ω × Q). Therefore, quenched two-
scale convergence cannot be characterized via stochastic unfolding directly.

In the present paper we compare the different notions of stochastic two-scale
convergence. Although the mean and quenched notion of two-scale convergence
look quite similar, it is non-trivial to relate both. As a main result, we intro-
duce stochastic two-scale Young measures as a tool to compare quenched and mean
limits, see Theorem 3.12. The construction invokes a metric characterization of
quenched stochastic two-scale convergence, which is a tool of independent interest,
see Lemma 3.6. As an application we demonstrate how to lift a mean two-scale
homogenization result to a quenched statement, see Section 4.3. Moreover, we
present two examples that can only be conveniently treated with the mean notion
of two-scale convergence. In the first example, see Section 4.1, the assumption of er-
godicity is dropped (as it is natural in the context of periodic representative volume
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approximation schemes). In the second example we consider a model that invokes a
mean field interaction in form of a variance-type regularization of a convex integral
functional with degenerate growth, see Section 4.2.

Structure of the paper. In the following section we present the standard
setting for stochastic homogenization. In Section 3 we provide the main properties of
the stochastic unfolding method, present the most important facts about quenched
two-scale convergence and present our results about Young measures. In Section 4
we present examples of stochastic homogenization and applications of the methods
developed in this paper.

2. Standard model of random coefficients. In the following we briefly recall
the standard setting for stochastic homogenization. Throughout the entire paper
we assume the following:

Assumption 2.1. Let (Ω,F , P ) be a complete and separable probability space. Let
τ = {τx}x∈Rd denote a group of invertible measurable mappings τx : Ω → Ω such
that:

(i) (Group property). τ0 = Id and τx+y = τx ◦ τy for all x, y ∈ Rd.
(ii) (Measure preservation). P (τ−xE) = P (E) for all E ∈ F and x ∈ Rd.

(iii) (Measurability). (ω, x) 7→ τxω is
(
F ⊗ L(Rd),F

)
-measurable, where L(Rd)

denotes the Lebesgue σ-algebra.

We write 〈·〉 to denote the expectation
´

Ω
· dP . By the separability assumption

on the measure space it follows that Lp(Ω) is separable for p ≥ 1. The proof of the
following lemma is a direct consequence of Assumption 2.1, thus we omit it.

Lemma 2.2 (Stationary extension). Let ϕ : Ω→ R be F-measurable. Let Q ⊂ Rd
be open and denote by L(Q) the corresponding Lebesgue σ-algebra. Then Sϕ :
Ω×Q→ R, Sϕ(ω, x) := ϕ(τxω) defines an F ⊗ L(Q)-measurable function – called
the stationary extension of ϕ. Moreover, if Q is bounded, for all 1 ≤ p < ∞ the
map S : Lp(Ω)→ Lp(Ω×Q) is a linear injection satisfying

‖Sϕ‖Lp(Ω×Q) = |Q|
1
p ‖ϕ‖Lp(Ω).

We say (Ω,F , P, τ) is ergodic (〈·〉 is ergodic), if

every shift invariant A ∈ F (i.e. τxA = A for all x ∈ Rd) satisfies P (A) ∈ {0, 1} .

In this case the celebrated Birkhoff’s ergodic theorem applies, which we recall in
the following form:

Theorem 2.3 (Birkhoff’s ergodic Theorem [12, Theorem 10.2.II]). Let 〈·〉 be ergodic
and ϕ : Ω → R be integrable. Then for P -a.a. ω ∈ Ω it holds: Sϕ(ω, ·) is locally
integrable and for all open, bounded sets Q ⊂ Rd we have

lim
ε→0

ˆ
Q

Sϕ(ω, xε ) dx = |Q|〈ϕ〉 . (3)

Furthermore, if ϕ ∈ Lp(Ω) with 1 ≤ p ≤ ∞, then for P -a.a. ω ∈ Ω it holds:
Sϕ(ω, ·) ∈ Lploc(Rd), and provided p <∞ it holds Sϕ(ω, ·ε ) ⇀ 〈ϕ〉 weakly in Lploc(Rd)
as ε→ 0.
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Stochastic gradient. For p ∈ (1,∞) consider the group of isometric operators{
Ux : x ∈ Rd

}
on Lp(Ω) defined by Uxϕ(ω) = ϕ(τxω). This group is strongly con-

tinuous (see [22, Section 7.1]). For i = 1, ..., d, we consider the 1-parameter group of
operators {Uhei : h ∈ R} and its infinitesimal generator Di : Di ⊂ Lp(Ω)→ Lp(Ω)

Diϕ = lim
h→0

Uheiϕ− ϕ
h

,

which we refer to as stochastic derivative. Di is a linear and closed operator and its
domain Di is dense in Lp(Ω). We set W 1,p(Ω) = ∩di=1Di and define for ϕ ∈W 1,p(Ω)
the stochastic gradient as Dϕ = (D1ϕ, ...,Ddϕ). In this way, we obtain a linear,
closed and densely defined operator D : W 1,p(Ω)→ Lp(Ω)d, and we denote by

Lppot(Ω) := R(D) ⊂ Lp(Ω)d (4)

the closure of the range of D in Lp(Ω)d. We denote the adjoint of D by D∗ : D∗ ⊂
Lq(Ω)d → Lq(Ω) where here and below q := p

p−1 denotes the dual exponent. It is

a linear, closed and densely defined operator (D∗ is the domain of D∗). We define
the subspace of shift invariant functions in Lp(Ω) by

Lpinv(Ω) =
{
ϕ ∈ Lp(Ω) : Uxϕ = ϕ for all x ∈ Rd

}
,

and denote by Pinv : Lp(Ω) → Lpinv(Ω) the conditional expectation with respect
to the σ-algebra of shift invariant sets

{
A ∈ F : τxA = A for all x ∈ Rd

}
. Pinv a

contractive projection and for p = 2 it coincides with the orthogonal projection
onto L2

inv(Ω). The following well-known equivalence holds:

〈·〉 is ergodic ⇔ Lpinv(Ω) ' R ⇔ Pinvf = 〈f〉.

Random fields. We introduce function spaces for functions defined on Ω × Q
as follows: For closed subspaces X ⊂ Lp(Ω) and Y ⊂ Lp(Q), we denote by X ⊗ Y
the closure of

X
a
⊗ Y :=

{
n∑
i=1

ϕiηi : ϕi ∈ X, ηi ∈ Y, n ∈ N

}
in Lp(Ω×Q). Note that in the case X = Lp(Ω) and Y = Lp(Q), we have X ⊗ Y =
Lp(Ω × Q). Up to isometric isomorphisms, we may identify Lp(Ω × Q) with the
Bochner spaces Lp(Ω;Lp(Q)) and Lp(Q;Lp(Ω)). Slightly abusing the notation, for
closed subspaces X ⊂ Lp(Ω) and Y ⊂W 1,p(Q), we denote by X ⊗ Y the closure of

X
a
⊗ Y :=

{
n∑
i=1

ϕiηi : ϕi ∈ X, ηi ∈ Y, n ∈ N

}
in Lp(Ω;W 1,p(Q)). In this regard, we may identify u ∈ Lp(Ω)⊗W 1,p(Q) with the
pair (u,∇u) ∈ Lp(Ω × Q)1+d. We mostly focus on the space Lp(Ω × Q) and the
above notation is convenient for keeping track of its various subspaces.

3. Stochastic two-scale convergence, unfolding and Young measures. In
the following we first discuss two notions of stochastic two-scale convergence and
their connection through Young measures. In particular, Section 3.1 is devoted to
the introduction of the stochastic unfolding operator and its most important prop-
erties. In Section 3.2 we discuss quenched two-scale convergence and its properties.
Section 3.3 presents the results about Young measures.
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3.1. Stochastic unfolding and two-scale convergence in the mean. In the
following we briefly introduce the stochastic unfolding operator and provide its main
properties, for the proofs and detailed studies we refer to [30, 19, 34, 31].

Lemma 3.1 ([19, Lemma 3.1]). Let ε > 0, 1 < p < ∞, q = p
p−1 , and Q ⊂ Rd be

open. There exists a unique linear isometric isomorphism

Tε : Lp(Ω×Q)→ Lp(Ω×Q)

such that

∀u ∈ Lp(Ω)
a
⊗ Lp(Q) : (Tεu)(ω, x) = u(τ− x

ε
ω, x) a.e. in Ω×Q.

Moreover, its adjoint is the unique linear isometric isomorphism T ∗ε : Lq(Ω×Q)→
Lq(Ω×Q) that satisfies (T ∗ε u)(ω, x) = u(τ x

ε
ω, x) a.e. in Ω×Q for all u ∈ Lq(Ω)

a
⊗

Lq(Q), q := p
p−1 .

Definition 3.2 (Unfolding and two-scale convergence in the mean). The operator
Tε : Lp(Ω × Q) → Lp(Ω × Q) in Lemma 3.1 is called the stochastic unfolding
operator. We say that a sequence (uε) ⊂ Lp(Ω × Q) weakly (strongly) two-scale
converges in the mean in Lp(Ω×Q) to u ∈ Lp(Ω×Q) if (as ε→ 0)

Tεuε → u weakly (strongly) in Lp(Ω×Q).

In this case we write uε
2
⇀ u (uε

2→ u) in Lp(Ω×Q).

Remark 1 (Equivalence to stochastic two-scale convergence in the mean). Sto-
chastic two-scale convergence in the mean was introduced in [6]. In particular, it
is said that a sequence of random fields uε ∈ Lp(Ω × Q) stochastically two-scale
converges in the mean if

lim
ε→0

〈ˆ
Q

uε(ω, x)ϕ(τ x
ε
ω, x)dx

〉
=

〈ˆ
Q

u(ω, x)ϕ(ω, x)dx

〉
, (5)

for any ϕ ∈ Lq(Ω × Q), q = p
p−1 , that is admissible, i.e., in the sense that the

transformation (ω, x) 7→ ϕ(τ x
ε
ω, x) is well-defined. For a bounded sequence uε ∈

Lp(Ω × Q), (5) is equivalent to Tεuε ⇀ u weakly in Lp(Ω × Q), i.e., to weak
stochastic two-scale convergence in the mean. Indeed, with help of Tε (and its
adjoint) we might rephrase the integral on the left-hand side in (5) as〈ˆ

Q

uε(T ∗ε ϕ) dx

〉
=

〈ˆ
Q

(Tεuε)ϕdx
〉
, (6)

which proves the equivalence.

We summarize some of the main properties:

Proposition 1 (Main properties). Let p ∈ (1,∞), q = p
p−1 and Q ⊂ Rd be open.

(i) (Compactness, [19, Lemma 3.4].) If lim supε→0 ‖uε‖Lp(Ω×Q) <∞, then there

exists a subsequence ε′ and u ∈ Lp(Ω×Q) such that uε′
2
⇀ u in Lp(Ω×Q).

(ii) (Limits of gradients, [19, Proposition 3.7]) Let (uε) be a bounded sequence
in Lp(Ω) ⊗ W 1,p(Q). Then, there exist u ∈ Lpinv(Ω) ⊗ W 1,p(Q) and χ ∈
Lppot(Ω)⊗ Lp(Q) such that (up to a subsequence)

uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q)d. (7)

If, additionally, 〈·〉 is ergodic, then u = Pinvu = 〈u〉 ∈W 1,p(Q) and 〈uε〉⇀ u
weakly in W 1,p(Q).
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(iii) (Recovery sequences, [19, Lemma 4.3]) Let u ∈ Lpinv(Ω) ⊗W 1,p(Q) and χ ∈
Lppot(Ω)⊗ Lp(Q). There exists uε ∈ Lp(Ω)⊗W 1,p(Q) such that

uε
2→ u, ∇uε

2→ ∇u+ χ in Lp(Ω×Q).

If additionally u ∈ Lpinv(Ω)⊗W 1,p
0 (Q), we have uε ∈ Lp(Ω)⊗W 1,p

0 (Q).

3.2. Quenched two-scale convergence. In this section, we recall the concept of
quenched stochastic two-scale convergence (see [38, 16]). The notion of quenched
stochastic two-scale convergence is based on the individual ergodic theorem, see
Theorem 2.3. We thus assume throughout this section that

〈·〉 is ergodic.

Moreover, throughout this section we fix exponents p ∈ (1,∞), q := p
p−1 , and an

open and bounded domain Q ⊂ Rd. We denote by (Bp, ‖ · ‖Bp) the Banach space
Lp(Ω×Q) and the associated norm, and we write (Bp)∗ for the dual space. For the
definition of quenched two-scale convergence we need to specify a suitable space of
test-functions in Bq that is countably generated. To that end we fix sets DΩ and
DQ such that

• DΩ is a countable set of bounded, measurable functions on (Ω,F) that contains
the identity 1Ω ≡ 1 and is dense in L1(Ω) (and thus in Lr(Ω) for any 1 ≤ r <
∞).

• DQ ⊂ C(Q) is a countable set that contains the identity 1Q ≡ 1 and is dense
in L1(Q) (and thus in Lr(Q) for any 1 ≤ r <∞).

We denote by

A := {ϕ(ω, x) = ϕΩ(ω)ϕQ(x) : ϕΩ ∈ DΩ, ϕQ ∈ DQ}
the set of simple tensor products (a countable set), and by D0 the Q-linear span

of A , i.e.

D0 :=
{ m∑
j=1

λjϕj : m ∈ N, λ1, . . . , λm ∈ Q, ϕ1, . . . , ϕm ∈ A
}
.

We finally set

D := spanA = spanD0 and D := span(DQ)

(the span of DQ seen as a subspace of D), and note that D and D0 are dense subsets

of Bq, while the closure of D in Bq is isometrically isomorphic to Lq(Q). Let us
anticipate that D serves as our space of test-functions for stochastic two-scale con-
vergence. As opposed to two-scale convergence in the mean, “quenched” stochastic
two-scale convergence is defined relative to a fixed “admissible” realization ω0 ∈ Ω.
Throughout this section we denote by

Ω0 the set of admissible realizations;

it is a set of full measure determined by the following lemma:

Lemma 3.3. There exists a measurable set Ω0 ⊂ Ω with P (Ω0) = 1 s.t. for all
ϕ,ϕ′ ∈ A , all ω0 ∈ Ω0, and r ∈ {p, q} we have with (T ∗ε ϕ)(ω, x) := ϕ(τ x

ε
ω, x),

lim sup
ε→0

‖(T ∗ε ϕ)(ω0, ·)‖Lr(Q) ≤ ‖ϕ‖Br

and lim
ε→0

ˆ
Q

T ∗ε (ϕϕ′)(ω0, x)dx =

〈ˆ
Q

(ϕϕ′)(ω0, x) dx

〉
.
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Proof. This is a simple consequence of Theorem 2.3 and the fact that A is countable.

For the rest of the section Ω0 is fixed according to Lemma 3.3.

The idea of quenched stochastic two-scale convergence is similar to periodic
two-scale convergence: We associate with a bounded sequence (uε) ⊂ Lp(Q) and
ω0 ∈ Ω0, a sequence of linear functionals (uε) defined on D . We can pass (up to a
subsequence) to a pointwise limit U , which is again a linear functional on D and
which (thanks to Lemma 3.3) can be uniquely extended to a bounded linear func-
tional on Bq. We then define the weak quenched ω0-two-scale limit of (uε) as the
Riesz-representation u ∈ Bp of U ∈ (Bq)∗.

Definition 3.4 (quenched two-scale limit, cf. [38, 17]). Let (uε) be a sequence in
Lp(Q), and let ω0 ∈ Ω0 be fixed. We say that uε converges (weakly, quenched)

ω0-two-scale to u ∈ Bp, and write uε
2
⇀ω0

u, if the sequence uε is bounded in Lp(Q),
and for all ϕ ∈ D we have

lim
ε→0

ˆ
Q

uε(x)(T ∗ε ϕ)(ω0, x) dx =

ˆ
Ω

ˆ
Q

u(x, ω)ϕ(ω, x) dx dP (ω). (8)

Lemma 3.5 (Compactness). Let (uε) be a bounded sequence in Lp(Q) and ω0 ∈ Ω0.

Then there exists a subsequence (still denoted by ε) and u ∈ Bp such that uε
2
⇀ω0

u
and

‖u‖Bp ≤ lim inf
ε→0

‖uε‖Lp(Q), (9)

and uε ⇀ 〈u〉 weakly in Lp(Q).

(For the proof see Section 3.2.1).

For our purpose it is convenient to have a metric characterization of two-scale
convergence.

Lemma 3.6 (Metric characterization). (i) Let {ϕj}j∈N denote an enumeration
of the countable set { ϕ

‖ϕ‖Bq
: ϕ ∈ D0}. The vector space Lin(D) := {U : D →

R linear } endowed with the metric

d(U, V ; Lin(D)) :=
∑
j∈N

2−j
|U(ϕj)− V (ϕj)|
|U(ϕj)− V (ϕj)|+ 1

is complete and separable.
(ii) Let ω0 ∈ Ω0. Consider the maps

Jω0
ε : Lp(Q)→ Lin(D), (Jω0

ε u)(ϕ) :=

ˆ
Q

u(x)(T ∗ε ϕ)(ω0, x) dx,

J0 : Bp → Lin(D), (J0u)(ϕ) :=

〈ˆ
Q

uϕ

〉
.

Then for any bounded sequence uε in Lp(Q) and any u ∈ Bp we have uε
2
⇀ω0

u
if and only if Jω0

ε uε → J0u in Lin(D).

(For the proof see Section 3.2.1).

Remark 2. Convergence in the metric space (Lin(D), d(·, ·,Lin(D)) is equivalent to
pointwise convergence. (Bq)∗ is naturally embedded into the metric space by means
of the restriction J : (Bq)∗ → Lin(D), JU = U |D . In particular, we deduce that



STOCHASTIC TWO-SCALE CONVERGENCE AND YOUNG MEASURES 235

for a bounded sequences (Uk) in (Bq)∗ we have Uk
∗
⇀ U if and only if JUk → JU

in the metric space. Likewise, Bp (resp. Lp(Q)) can be embedded into the metric
space Lin(D) via J0 (resp. Jω0

ε with ε > 0 and ω0 ∈ Ω0 arbitrary but fixed), and
for a bounded sequence (uk) in Bp (resp. Lp(Q)) weak convergence in Bp (resp.
Lp(Q)) is equivalent to convergence of (J0uk) (resp. (Jω0

ε uk)) in the metric space.

Lemma 3.7 (Strong convergence implies quenched two-scale convergence). Let
(uε) be a strongly convergent sequence in Lp(Q) with limit u ∈ Lp(Q). Then for all

ω0 ∈ Ω0 we have uε
2
⇀ω0u.

(For the proof see Section 3.2.1).

Definition 3.8 (set of quenched two-scale cluster points). For a bounded sequence
(uε) in Lp(Q) and ω0 ∈ Ω0 we denote by CP(ω0, (uε)) the set of all ω0-two-scale

cluster points, i.e. the set of u ∈ Bp with J0u ∈
⋂∞
k=1

{
Jω0
ε uε : ε < 1

k

}
where the

closure is taken in the metric space
(
Lin(D), d(·, ·; Lin(D))).

We conclude this section with two elementary results on quenched stochastic
two-scale convergence:

Lemma 3.9 (Approximation of two-scale limits). Let u ∈ Bp. Then for all ω0 ∈
Ω0, there exists a sequence uε ∈ Lp(Q) such that uε

2
⇀ω0 u as ε→ 0.

(For the proof see Section 3.2.1).

Similar to the slightly different setting in [17] one can prove the following result:

Lemma 3.10 (Two-scale limits of gradients). Let (uε) be a sequence in W 1,p(Q)
and ω0 ∈ Ω0. Then there exist a subsequence (not relabeled) and functions u ∈
W 1,p(Q) and χ ∈ Lppot(Ω)⊗ Lp(Q) such that uε ⇀ u weakly in W 1,p(Q) and

uε
2
⇀ω0

u and ∇uε
2
⇀ω0
∇u+ χ as ε→ 0 .

3.2.1. Proofs.

Proof of Lemma 3.5. Set C0 := lim sup
ε→0

‖uε‖Lp(Q) and note that C0 <∞. By pass-

ing to a subsequence (not relabeled) we may assume that C0 = lim inf
ε→0

‖uε‖Lp(Q).

Fix ω0 ∈ Ω0. Define linear functionals Uε ∈ Lin(D) via

Uε(ϕ) :=

ˆ
Q

uε(x)(T ∗ε ϕ)(ω0, x) dx.

Note that for all ϕ ∈ A , (uε(ϕ)) is a bounded sequence in R. Indeed, by Hölder’s
inequality and Lemma 3.3,

lim sup
ε→0

|uε(ϕ)| ≤ lim sup
ε→0

‖uε‖Lp(Q)‖T ∗ε ϕ(ω0, ·)‖Lq(Q) ≤ C0‖ϕ‖Bq . (10)

Since A is countable we can pass to a subsequence (not relabeled) such that uε(ϕ)
converges for all ϕ ∈ A . By linearity and since D = span(A ), we conclude that
uε(ϕ) converges for all ϕ ∈ D , and U(ϕ) := lim

ε→0
uε(ϕ) defines a linear functional on

D . In view of (10) we have |U(ϕ)| ≤ C0‖ϕ‖Bq , and thus U admits a unique exten-
sion to a linear functional in (Bq)∗. Let u ∈ Bp denote its Riesz-representation.

Then uε
2
⇀ω0u, and

‖u‖Bp = ‖U‖(Bq)∗ ≤ C0 = lim inf
ε→0

‖uε‖Lp(Q).
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Since 1Ω ∈ DΩ we conclude that for all ϕQ ∈ DQ we haveˆ
Q

uε(x)ϕQ(x) dx = uε(1ΩϕQ)→ U(1ΩϕQ) =

〈ˆ
Q

u(ω, x)ϕQ(x) dx

〉
=

ˆ
Q

〈u(x)〉ϕQ(x) dx.

Since (uε) is bounded in Lp(Q), and DQ ⊂ Lp(Q) is dense, we conclude that
uε ⇀ 〈u〉 weakly in Lp(Q).

Proof of Lemma 3.6. We use the following notation in this proof A1 := { ϕ
‖ϕ‖Bq

:

ϕ ∈ D0}.
(i) Argument for completeness: If (Uj) is a Cauchy sequence in Lin(D), then for

all ϕ ∈ A1, (Uj(ϕ)) is a Cauchy sequence in R. By linearity of the Uj ’s this implies
that (Uj(ϕ)) is Cauchy in R for all ϕ ∈ D . Hence, Uj → U pointwise in D and
it is easy to check that U is linear. Furthermore, Uj → U pointwise in A1 implies
Uj → U in the metric space.

Argument for separability: Consider the (injective) map J : (Bq)∗ → Lin(D)
where J(U) denotes the restriction of U to D . The map J is continuous, since for
all U, V ∈ (Bq)∗ and ϕ ∈ A1 we have |(JU)(ϕ)−(JV )(ϕ)| ≤ ‖U−V ‖(Bq)∗‖ϕ‖Bq =
‖U − V ‖(Bq)∗ (recall that the test functions in A1 are normalized). Since (Bq)∗

is separable (as a consequence of the assumption that F is countably generated),
it suffices to show that the range R(J) of J is dense in Lin(D). To that end
let U ∈ Lin(D). For k ∈ N we denote by Uk ∈ (Bq)∗ the unique linear func-
tional that is equal to U on the the finite dimensional (and thus closed) sub-
space span{ϕ1, . . . , ϕk} ⊂ Bq (where {ϕj} denotes the enumeration of A1), and
zero on the orthogonal complement in Bq. Then a direct calculation shows that
d(U, J(Uk); Lin(D)) ≤

∑
j>k 2−j = 2−k. Since k ∈ N is arbitrary, we conclude that

R(J) ⊂ Lin(D) is dense.
(ii) Let uε denote a bounded sequence in Lp(Q) and u ∈ Bp. Then by definition,

uε
2
⇀ω0u is equivalent to Jω0

ε uε → J0u pointwise in D , and the latter is equivalent
to convergence in the metric space Lin(D).

Proof of Lemma 3.7. This follows from Hölder’s inequality and Lemma 3.3, which
imply for all ϕ ∈ A the estimate

lim sup
ε→0

ˆ
Q

|(uε(x)− u(x))T ∗ε ϕ(ω0, x)| dx

≤ lim sup
ε→0

(
‖uε − u‖Lp(Q)

(ˆ
Q

|T ∗ε ϕ(ω0, x)|q dx
) 1

q )
= 0.

Proof of Lemma 3.9. Since D (defined as in Lemma 3.6) is dense in Bp, for any
δ > 0 there exists vδ ∈ D0 with ‖u − vδ‖Bp ≤ δ. Define vδ,ε(x) := T ∗ε vδ(ω0, x).
Let ϕ ∈ D . Since vδ and ϕ (resp. vδϕ) are by definition linear combinations of
functions (resp. products of functions) in A , we deduce from Lemma 3.3 that
(vδ,ε)ε is bounded in Lp(Q), and thatˆ

Q

vδ,εT ∗ε ϕ(ω0, x) =

ˆ
Q

T ∗ε (vδϕ)(ω0, x)→
〈ˆ

Q

vδϕ

〉
.
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By appealing to the metric characterization, we can rephrase the last convergence
statement as d(Jω0

ε vδ,ε, J0vδ; Lin(D))→ 0. By the triangle inequality we have

d(Jω0
ε vδ,ε, J0u; Lin(D)) ≤ d(Jω0

ε vδ,ε, J0vδ; Lin(D)) + d(J0vδ, J0u; Lin(D)).

The second term is bounded by ‖vδ − u‖Bp ≤ δ, while the first term vanishes for
ε ↓ 0. Hence, there exists a diagonal sequence uε := vδ(ε),ε (bounded in Lp(Q))

such that there holds d(Jω0
ε uε, J0u; Lin(D)) → 0. The latter implies uε

2
⇀ω0

u by
Lemma 3.6.

3.3. Young measures generated by two-scale convergence. In this section
we establish a relation between quenched two-scale convergence and two-scale con-
vergence in the mean (in the sense of Definition 3.2). The relation is established by
Young measures: We show that any bounded sequence uε in Bp – viewed as a func-
tional acting on test-functions of the form T ∗ε ϕ – generates (up to a subsequence)
a Young measure on Bp that (a) concentrates on the quenched two-scale cluster
points of uε, and (b) allows to represent the two-scale limit (in the mean) of uε. In
entire Section 3.3 we assume that

〈·〉 is ergodic.

Also, throughout this section we fix exponents p ∈ (1,∞), q := p
p−1 , and an open

and bounded domain Q ⊂ Rd. Furthermore, we frequently use the objects and
notations introduced in Section 3.2.

Definition 3.11. We say ν := {νω}ω∈Ω is a Young measure on Bp, if for all ω ∈ Ω,
νω is a Borel probability measure on Bp (equipped with the weak topology) and

ω 7→ νω(B) is measurable for all B ∈ B(Bp),

where B(Bp) denotes the Borel-σ-algebra on Bp (equipped with the weak topology).

Theorem 3.12. Let uε denote a bounded sequence in Bp. Then there exists a
subsequence (still denoted by ε) and a Young measure ν on Bp such that for all
ω0 ∈ Ω0,

νω0 is concentrated on CP
(
ω0,
(
uε(ω0, ·)

))
,

and

lim inf
ε→0

‖uε‖pBp ≥
ˆ

Ω

(ˆ
Bp

‖v‖pBp dνω(v)

)
dP (ω).

Moreover, we have

uε
2
⇀u where u :=

ˆ
Ω

ˆ
Bp

v dνω(v)dP (ω).

Finally, if there exists û : Ω → Bp measurable and νω = δû(ω) for P -a.a. ω ∈ Ω,
then up to extraction of a further subsequence (still denoted by ε) we have

uε(ω)
2
⇀ωû(ω) for P -a.a. ω ∈ Ω.

(For the proof see Section 3.3.1).

In the opposite direction we observe that quenched two-scale convergence implies
two-scale convergence in the mean in the following sense:

Lemma 3.13. Consider a family {(uωε )}ω∈Ω of sequences (uωε ) in Lp(Q) and sup-
pose that:

(i) There exists u ∈ Bp s.t. for P -a.a. ω ∈ Ω we have uωε
2
⇀ωu.
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(ii) There exists a sequence (ũε) in Bp s.t. uωε (x) = ũε(ω, x) for a.a. (ω, x) ∈
Ω×Q.

(iii) There exists a bounded sequence (χε) in Lp(Ω) such that ‖uωε ‖Lp(Q) ≤ χε(ω)
for a.a. ω ∈ Ω.

Then ũε
2
⇀ u weakly two-scale (in the mean).

(For the proof see Section 3.3.1).

To compare homogenization of convex integral functionals w.r.t. stochastic two-
scale convergence in the mean and in the quenched sense, we appeal to the following
result:

Lemma 3.14. Let h : Ω×Q×Rd → R be such that for all ξ ∈ Rd, h(·, ·, ξ) is F ⊗
B(Rd)-measurable and for a.a. (ω, x) ∈ Ω×Q, h(ω, x, ·) is convex. Let (uε) denote
a bounded sequence in Bp that generates a Young measure ν on Bp in the sense of
Theorem 3.12. Suppose that hε : Ω → R, hε(ω) := −

´
Q

min
{

0, h(τ x
ε
ω, x, uε(ω, x))

}
dx

is uniformly integrable. Then

lim inf
ε→0

ˆ
Ω

ˆ
Q

h(τ x
ε
ω, x, uε(ω, x)) dx dP (ω)

≥
ˆ

Ω

ˆ
Bp

(ˆ
Ω

ˆ
Q

h(ω̃, x, v(ω̃, x)) dx dP (ω̃)

)
dνω(v) dP (ω). (11)

(For the proof see Section 3.3.1).

Remark 3. In [18, Lemma 5.1] it is shown that h satisfying the assumptions of
Lemma 3.14 satisfies the following property: For P -a.a. ω0 ∈ Ω0 we have: For any
sequence (uε) in Lp(Q) it holds

uε
2
⇀ω0

u ⇒ lim inf
ε→0

ˆ
Q

h(τ x
ε
ω0, x, uε(x))dx ≥

ˆ
Ω

ˆ
Q

h(ω, x, u(ω, x)) dx dP (ω).

(12)

3.3.1. Proof of Theorem 3.12 and Lemmas 3.14 and 3.13. We first recall some no-
tions and results of Balder’s theory for Young measures [4]. Throughout this section
M is assumed to be a separable, complete metric space with metric d(·, ·; M ).

Definition 3.15. • We say a function s : Ω → M is measurable, if it is F −
B(M )-measurable where B(M ) denotes the Borel-σ-algebra in M .

• A function h : Ω×M → (−∞,+∞] is called a normal integrand, if h is F ⊗
B(M )-measurable, and for all ω ∈ Ω the function h(ω, ·) : M → (−∞,+∞]
is lower semicontinuous.

• A sequence sε of measurable functions sε : Ω → M is called tight, if there
exists a normal integrand h such that for every ω ∈ Ω the function h(ω, ·) has
compact sublevels in M and lim supε→0

´
Ω
h(ω, sε(ω)) dP (ω) <∞.

• A Young measure in M is a family µ := {µω}ω∈Ω of Borel probability mea-
sures on M such that for all B ∈ B(M ) the map Ω 3 ω 7→ µω(B) ∈ R is
F-measurable.

Theorem 3.16 ([4, Theorem I]). Let sε : Ω → M denote a tight sequence of
measurable functions. Then there exists a subsequence, still indexed by ε, and a
Young measure µ : Ω → M such that for every normal integrand h : Ω ×M →
(−∞,+∞] we have

lim inf
ε→0

ˆ
Ω

h(ω, sε(ω)) dP (ω) ≥
ˆ

Ω

ˆ
M

h(ω, ξ)dµω(ξ)dP (ω) , (13)
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provided that the negative part h−ε (·) = |min{0, h(·, sε(·))}| is uniformly integrable.
Moreover, for P -a.a. ω ∈ Ω0 the measure µω is supported in the set of all cluster

points of sε(ω), i.e. in
⋃∞
k=1 {sε(ω) : ε < 1

k} (where the closure is taken in M ).

In order to apply the above theorem we require an appropriate metric space in
which two-scale convergent sequences and their limits embed:

Lemma 3.17. (i) We denote by M the set of all triples (U, ε, r) with U ∈
Lin(D), ε ≥ 0, r ≥ 0. M endowed with the metric

d((U1, ε1, r1), (U2, ε2, r2); M ) := d(U1, U2; Lin(D)) + |ε1 − ε2|+ |r1 − r2|

is a complete, separable metric space.
(ii) For ω0 ∈ Ω0 we denote by M ω0 the set of all triples (U, ε, r) ∈M such that

U =

{
Jω0
ε u for some u ∈ Lp(Q) with ‖u‖Lp(Q) ≤ r in the case ε > 0,

J0u for some u ∈ Bp with ‖u‖Bp ≤ r in the case ε = 0.
(14)

Then M ω0 is a closed subspace of M .
(iii) Let ω0 ∈ Ω0, and (U, ε, r) ∈M ω0 . Then the function u in the representation

(14) of U is unique, and
‖u‖Lp(Q) = sup

ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)| if ε > 0,

‖u‖Bp = sup
ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)| if ε = 0.
(15)

(iv) For ω0 ∈ Ω0 the function ‖ · ‖ω0
: M ω0 → [0,∞),

‖(U, ε, r)‖ω0 :=


(

sup
ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)|p + ε+ rp
) 1

p if (U, ε, r) ∈M ω0 , ε > 0,(
sup

ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)|p + rp
) 1

p if (U, ε, r) ∈M ω0 , ε = 0,

is lower semicontinuous on M ω0 .
(v) For all (u, ε) with u ∈ Lp(Q) and ε > 0 we have s := (Jω0

ε u, ε, ‖u‖Lp(Q)) ∈
M ω0 and ‖s‖ω0

=
(
2‖u‖pLp(Q) + ε

) 1
p . Likewise, for all (u, ε) with u ∈ Bp and

ε = 0 we have s = (J0u, ε, ‖u‖Bp) and ‖s‖ω0
= 2

1
p ‖u‖Bp .

(vi) For all R < ∞ the set {(U, ε, r) ∈ M ω0 : ‖(U, ε, r)‖ω0
≤ R} is compact in

M .
(vii) Let ω0 ∈ Ω0 and let uε denote a bounded sequence in Lp(Q). Then the triple

sε := (Jω0
ε uε, ε, ‖uε‖Lp(Q)) defines a sequence in M ω0 . Moreover, we have

sε → s0 in M as ε → 0 if and only if s0 = (J0u, 0, r) for some u ∈ Bp,

r ≥ ‖u‖Bp , and uε
2
⇀ω0u.

Proof. (i) This is a direct consequence of Lemma 3.6 (i) and the fact that the
product of complete, separable metric spaces remains complete and separable.

(ii) Let sk := (Uk, εk, rk) denote a sequence in M ω0 that converges in M to
some s0 = (U0, ε0, r0). We need to show that s0 ∈ M ω0 . By passing to
a subsequence, it suffices to study the following three cases: εk > 0 for all
k ∈ N0, εk = 0 for all k ∈ N0, and ε0 = 0 while εk > 0 for all k ∈ N.

Case 1: εk > 0 for all k ∈ N0.
W.l.o.g. we may assume that infk εk > 0. Hence, there exist uk ∈ Lp(Q) with
Uk = Jω0

εk
uk. Since rk → r, we conclude that (uk) is bounded in Lp(Ω). We
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thus may pass to a subsequence (not relabeled) such that uk ⇀ u0 weakly in
Lp(Q), and

‖u0‖Lp(Q) ≤ lim inf
k
‖uk‖Lp(Q) ≤ lim

k
rk = r0. (16)

Moreover, Uk → U in the metric space Lin(D) implies pointwise convergence
on D , and thus for all ϕQ ∈ DQ we have Uk(1ΩϕQ) =

´
Q
ukϕQ →

´
Q
u0ϕQ.

We thus conclude that U0(1ΩϕQ) =
´
Q
u0ϕQ. Since DQ ⊂ Lq(Q) dense,

we deduce that uk ⇀ u0 weakly in Lp(Q) for the entire sequence. On the
other hand the properties of the shift τ imply that for any ϕΩ ∈ DΩ we have
ϕΩ(τ ·

εk
ω0) → ϕΩ(τ ·

ε0
ω0) in Lq(Q). Hence, for any ϕΩ ∈ DΩ and ϕQ ∈ DQ

we have

Uk(ϕΩϕQ) =

ˆ
Q

uk(x)ϕQ(x)ϕΩ(τ x
εk
ω0) dx

→
ˆ
Q

u0(x)ϕQ(x)ϕΩ(τ x
ε0
ω0) dx = Jω0

ε0 (ϕΩϕQ)

and thus (by linearity) U0 = Jω0
ε0 u0.

Case 2: εk = 0 for all k ∈ N0.
In this case there exist a bounded sequence uk in Bp with Uk = J0uk for
k ∈ N. By passing to a subsequence we may assume that uk ⇀ u0 weakly in
Bp for some u0 ∈ Bp with

‖u0‖Bp ≤ lim inf
k
‖uεk‖Bp ≤ r0. (17)

This implies that Uk = J0uk → J0u0 in Lin(D). Hence, U0 = J0u0 and we
conclude that s0 ∈M ω0 .

Case 3: εk > 0 for all k ∈ N and ε0 = 0.
There exists a bounded sequence uk in Lp(Q). Thanks to Lemma 3.5, by

passing to a subsequence we may assume that uk
2
⇀ω0u0 for some u ∈ Bp

with

‖u0‖Bp ≤ lim inf
k
‖uk‖Lp(Q) ≤ r0. (18)

Furthermore, Lemma 3.6 implies that Jω0
εk
uk → J0u0 in Lin(D), and thus

U0 = J0u0. We conclude that s0 ∈M ω0 .
(iii) We first argue that the representation (14) of U by u is unique. In the case

ε > 0 suppose that u, v ∈ Lp(Q) satisfy U = Jω0
ε u = Jω0

ε v. Then for all
ϕQ ∈ DQ we have

´
Q

(u− v)ϕQ = Jω0
ε u(1ΩϕQ)− Jω0

ε v(1ΩϕQ) = U(1ΩϕQ)−
U(1ΩϕQ) = 0, and since DQ ⊂ Lq(Q) dense, we conclude that u = v. In the
case ε = 0 the statement follows by a similar argument from the fact that D
is dense Bq.

To see (15) let u and U be related by (14). Since D (resp. D) is dense in
Lq(Q) (resp. Bq), we have
‖u‖Lp(Q) = sup

ϕ∈D, ‖ϕ‖Bq≤1

|
´
Q
uϕdx dP | = sup

ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)| if ε > 0,

‖u‖Bp = sup
ϕ∈D, ‖ϕ‖Bq≤1

|
´

Ω

´
Q
uϕdx dP | = sup

ϕ∈D, ‖ϕ‖Bq≤1

|U(ϕ)| if ε = 0.

(iv) Let sk = (Uk, εk, rk) denote a sequence in M ω0 that converges in M to a
limit s0 = (U0, ε0, r0). By (ii) we have s0 ∈M ω0 . For k ∈ N0 let uk in Lp(Q)
or Bp denote the representation of Uk in the sense of (14). We may pass to
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a subsequence such that one of the three cases in (ii) applies and (as in (ii))

either uk weakly converges to u0 (in Lp(Q) or Bp), or uk
2
⇀ω0u0. In any of

these cases the claimed lower semicontinuity of ‖ · ‖ω0 follows from εk → ε0,
rk → r0, and (15) in connection with one of the lower semicontinuity estimates
(16) – (18).

(v) This follows from the definition and duality argument (15).
(vi) Let sk denote a sequence in M ω0 . Let uk in Lp(Q) or Bp denote the (unique)

representative of Uk in the sense of (14). Suppose that ‖sk‖ω0 ≤ R. Then
(rk) and (εk) are bounded sequences in R≥0, and supk ‖uk‖ ≤ supk rk < ∞
(where ‖ · ‖ stands short for either ‖ · ‖Lp(Q) or ‖ · ‖Bp). Thus we may pass
to a subsequence such that rk → r0, εk → ε0, and one of the following three
cases applies:
• Case 1: infk∈N0 εk > 0. In that case we conclude (after passing to a further

subsequence) that uk ⇀ u0 weakly in Lp(Q), and thus Uk → U0 = Jω0
ε0 u0

in Lin(D).
• Case 2: εk = 0 for all k ∈ N0. In that case we conclude (after passing to

a further subsequence) that uk ⇀ u0 weakly in Bp(Q), and thus Uk →
U0 = J0u0 in Lin(D).
• Case 3: εk > 0 for all k ∈ N and ε0 = 0. In that case we conclude (after

passing to a further subsequence) that uk
2
⇀ω0u0, and thus Uk → U0 =

J0u0 in Lin(D).
In all of these cases we deduce that s0 = (U0, ε0, r0) ∈M ω0 , and sk → s0 in
M .

(vii) This is a direct consequence of (ii) – (vi), and Lemma 3.6.

Now we are in position to prove Theorem 3.12

Proof of Theorem 3.12. Let M , M ω0 , Jω0
ε etc. be defined as in Lemma 3.17.

Step 1. (Identification of (uε) with a tight M -valued sequence). Since uε ∈ Bp,
by Fubini’s theorem, we have uε(ω, ·) ∈ Lp(Q) for P -a.a. ω ∈ Ω. By modifying
uε on a null-set in Ω × Q (which does not alter two-scale limits in the mean), we
may assume w.l.o.g. that uε(ω, ·) ∈ Lp(Q) for all ω ∈ Ω. Consider the measurable
function sε : Ω→M defined as

sε(ω) :=

{(
Jωε uε(ω, ·), ε, ‖uε(ω, ·)‖Lp(Q)

)
if ω ∈ Ω0

(0, 0, 0) else.

We claim that (sε) is tight. To that end consider the integrand h : Ω ×M →
(−∞,+∞] defined by

h(ω, (U, ε, r)) :=

{
‖(U, ε, r)‖pω if ω ∈ Ω0 and (U, ε, r) ∈M ω,

+∞ else.

From Lemma 3.17 (iv) and (vi) we deduce that h is a normal integrand and h(ω, ·)
has compact sublevels for all ω ∈ Ω. Moreover, for all ω0 ∈ Ω0 we have sε(ω0) ∈
M ω0 and thus h(ω0, sε(ω0)) = 2‖uε(ω0, ·)‖pLp(Q) + ε. Hence,

ˆ
Ω

h(ω, sε(ω)) dP (ω) = 2‖uε‖pBp + ε.

We conclude that (sε) is tight.
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Step 2. (Compactness and definition of ν). By appealing to Theorem 3.16 there
exists a subsequence (still denoted by ε) and a Young measure µ that is generated
by (sε). Let µ1 denote the first component of µ, i.e. the Young measure on Lin(D)
characterized for ω ∈ Ω byˆ

Lin(D)

f(ξ) dµ1,ω(ξ) =

ˆ
M

f(ξ1) dµω(ξ),

for all f : Lin(D) → R continuous and bounded, where M 3 ξ = (ξ1, ξ2, ξ3) →
ξ1 ∈ Lin(D) denotes the projection to the first component. By Balder’s theorem,
µω is concentrated on the limit points of (sε(ω)). By Lemma 3.17 we deduce that
for all ω ∈ Ω0 any limit point s0(ω) of sε(ω) has the form s0(ω) = (J0u, 0, r) where
0 ≤ r < ∞ and u ∈ Bp is a ω-two-scale limit of a subsequence of uε(ω, ·). Thus,
µ1,ω is supported on {J0u : u ∈ CP(ω, (uε(ω, ·))} which in particular is a subset of
(Bq)∗. Since J0 : Bp → (Bq)∗ is an isometric isomorphism (by the Riesz-Frechét
theorem), we conclude that ν = {νω}ω∈Ω, νω(B) := µ1,ω(J0B) (for all Borel sets
B ⊂ Bp where Bp is equipped with the weak topology) defines a Young measure
on Bp, and for all ω ∈ Ω0, νω is supported on CP(ω, (uε(ω, ·)).
Step 3. (Lower semicontinuity estimate). Note that h : Ω×M → [0,+∞],

h(ω, (U, ε, r)) :=


supϕ∈D, ‖ϕ‖Bq≤1 |U(ϕ)|p if ω ∈ Ω0 and (U, ε, r) ∈M ω, ε > 0,

supϕ∈D, ‖ϕ‖Bq≤1 |U(ϕ)|p if ω ∈ Ω0 and (U, ε, r) ∈M ω, ε = 0,

+∞ else.

defines a normal integrand, as can be seen as in the proof of Lemma 3.17. Thus
Theorem 3.16 implies that

lim inf
ε→0

ˆ
Ω

h(ω, sε(ω)) dP (ω) ≥
ˆ

Ω

ˆ
M

h(ω, ξ) dµω(ξ)dP (ω).

In view of Lemma 3.17 we have supϕ∈D, ‖ϕ‖Bq≤1 |(Jωε uε)(ω, ·))(ϕ)| = ‖uε(ω, ·)‖Lp(Q)

for ω ∈ Ω0, and thus the left-hand side turns into lim infε→0 ‖uε‖pBp . Thanks to the
definition of ν the right-hand side turns into

´
Ω

´
Bp ‖v‖pBp dνω(v)dP (ω).

Step 4. (Identification of the two-scale limit in the mean). Let ϕ ∈ D0. Then
h : Ω×M → [0,+∞],

h(ω, (U, ε, r)) :=

{
U(ϕ) if ω ∈ Ω0, (U, ε, r) ∈M ω,

+∞ else.

defines a normal integrand. Since h(ω, sε(ω)) =
´
Q
uε(ω, x)T ∗ε ϕ(ω, x) dx for P -

a.a. ω ∈ Ω, we deduce that |h(·, sε(·))| is uniformly integrable. Thus, (13) applied
to ±h and the definition of ν imply that

lim
ε→0

ˆ
Ω

ˆ
Q

uε(ω, x)(T ∗ε ϕ)(ω, x) dx dP (ω) = lim
ε→0

ˆ
Ω

h(ω, sε(ω)) dP (ω)

=

ˆ
Ω

ˆ
Bp

h(ω, v) dνω(v) dP (ω)

=

ˆ
Ω

ˆ
Bp

〈ˆ
Q

vϕ

〉
dνω(v) dP (ω).

Set u :=
´

Ω

´
Bp v dνω(v)dP (ω) ∈ Bp. Then Fubini’s theorem yields

lim
ε→0

ˆ
Ω

ˆ
Q

uε(ω, x)(T ∗ε ϕ)(ω, x) dx dP (ω) =

〈ˆ
Q

uϕ

〉
.
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Since span(D0) ⊂ Bq dense, we conclude that uε
2
⇀u.

Step 5. Recovery of quenched two-scale convergence. Suppose that νω is a delta
distribution on Bp, say νω = δũ(ω) for some measurable ũ : Ω → Bp. Note that
h : Ω×M → [0,+∞],

h(ω, (U, ε, r)) := −d(U, J0ũ(ω); Lin(D))

is a normal integrand and |h(·, sε(·))| is uniformly integrable. Thus, (13) yields

lim sup
ε→0

ˆ
Ω

d(Jωε uε(ω, ·), J0ũ(ω); Lin(D)) dP (ω)

= − lim inf
ε→0

ˆ
Ω

h(ω, sε(ω)) dP (ω)

≤ −
ˆ

Ω

ˆ
Bp

h(ω, J0v) dνω(v) dP (ω) = −
ˆ

Ω

h(ω, J0ũ(ω)) dP (ω) = 0.

Thus, there exists a subsequence (not relabeled) such that d(Jωε uε(ω, ·), J0ũ(ω); Lin(D))→
0 for a.a. ω ∈ Ω0. In view of Lemma 3.6 this implies that uε

2
⇀ωũ(ω) for a.a. ω ∈

Ω0.

Proof of Lemma 3.14. Step 1. Representation of the functional by a lower semicon-
tinuous integrand on M .
For all ω0 ∈ Ω0 and s = (U, ε, r) ∈ M ω0 we write πω0(s) for the unique represen-
tation u in Bp (resp. Lp(Q)) of U in the sense of (14). We thus may define for
ω ∈ Ω0 and s ∈M ω0 the integrand

h(ω0, s) :=

{´
Q
h(τ x

ε
ω, x, (πω0s)(x)) dx if s = (U, ε, s) with ε > 0,´

Ω

´
Q
h(ω, x, (πω0s)(x)) dx dP (ω) if s = (U, ε, s) with ε = 0.

We extend h(ω0, ·) to M by +∞, and define h(ω, ·) ≡ 0 for ω ∈ Ω\Ω0. We claim
that h(ω, ·) : M → (−∞,+∞] is lower semicontinuous for all ω ∈ Ω. It suffices to
consider ω0 ∈ Ω0 and a convergent sequence sk = (Uk, εk, rk) in M ω0 . For brevity
we only consider the (interesting) case when εk ↓ ε0 = 0. Set uk := πω0(sk). By
construction we have

h(ω0, sk) =

ˆ
Q

h(τ x
εk
ω0, uk(ω0, x)) dx,

and

h(ω0, s0) =

ˆ
Ω

ˆ
Q

h(ω, x, u0(ω, x)) dx dP (ω).

Since sk → s0 and εk → 0, Lemma 3.17 (vi) implies that uk
2
⇀ω0

u0, and since h
satisfies 12 from Remark 3, we conclude that lim inf

k
h(ω0, sk) ≥ h(ω0, s0), and thus

h is a normal integrand.
Step 2. Conclusion. As in Step 1 of the proof of Theorem 3.12 we may associate
with the sequence (uε) a sequence of measurable functions sε : Ω→M that (after
passing to a subsequence that we do not relabel) generates a Young measure µ on
M . Since by assumption uε generates the Young measure ν on Bp, we deduce that
the first component µ1 satisfies νω(B) = µω(J0B) for any Borel set B. Applying
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(13) to the integrand h of Step 1, yields

lim inf
ε→0

ˆ
Ω

ˆ
Q

h(τ x
ε
ω0, uε(ω0, x)) dx dP (ω)

= lim inf
ε→0

ˆ
Ω

h(ω, sε(ω)) dP (ω)

≥
ˆ

Ω

ˆ
M

h(ω, ξ) dµω(ξ) dP (ω)

=

ˆ
Ω

ˆ
Bp

(ˆ
Ω

ˆ
Q

h(ω̃, x, v(ω̃, x)) dx dP (ω̃)
)
dνω(v) dP (ω).

Proof of Lemma 3.13. By (ii) and (iii) the sequence (ũε) is bounded in Bp and
thus we can pass to a subsequence such that (ũε) generates a Young measure ν. Set

ũ :=
´

Ω

´
Bp v dνω(v) dP (ω) and note that Theorem 3.12 implies that ũε

2
⇀ ũ weakly

two-scale in the mean. On the other hand the theorem implies that νω concentrates
on the quenched two-scale cluster points of (uωε ) (for a.a. ω ∈ Ω). Hence, in view of
(i) we conclude that for a.a. ω ∈ Ω the measure νω is a Dirac measure concentrated
on u, and thus ũ = u a.e. in Ω×Q.

4. Convex homogenization via stochastic unfolding. In this section we re-
visit a standard model example of stochastic homogenization of integral functionals
from the viewpoint of stochastic two-scale convergence and unfolding. In particular,
we discuss two examples of convex homogenization problems that can be treated
with stochastic two-scale convergence in the mean, but not with the quenched vari-
ant. In the first example in Section 4.1 the randomness is nonergodic and thus
quenched two-scale convergence does not apply. In the second example, in Section
4.2, we consider a variance-regularization to treat a convex minimization problem
with degenerate growth conditions. In these two examples we also demonstrate the
simplicity of using the stochastic unfolding operator. Furthermore, in Section 4.3
we use the results of Section 3.3 to further reveal the structure of the previously
obtained limits in the classical ergodic case with non-degenerate growth with help
of Young measures. In particular, we show how to lift mean homogenization results
to quenched statements.

4.1. Nonergodic case. In this section we consider a nonergodic stationary medium.
Such random ensembles arise naturally, e.g., in the context of periodic representa-
tive volume element (RVE) approximations, see [13]. For example, we may consider
a family of i.i.d. random variables {ω(z)}z∈Zd . A realization of a stationary and
ergodic random checkerboard is given by

ω : Rd → R, ω(x) =
∑
i∈Zd

1i+y+�(x)ω(bxc),

where bxc ∈ Zd is the integer part of x and y ∈ � is the center of the checkerboard
chosen uniformly from � = [0, 1)d. For L ∈ N, we may consider the map πL : ω 7→
ωL given by πLω(x) = ω(x) for x ∈ [0, L)d and πLω is L-periodically extended.
The push forward of the map πL defines a stationary and nonergodic probability
measure, that is a starting point in the periodic RVE method. Another standard
example of a nonergodic structure may be obtained by considering a medium with
a noncompatible quasiperiodic microstructure, see [38, Example 1.2].
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In this section we consider the following situation. Let p ∈ (1,∞) and Q ⊂ Rd
be open and bounded. We consider V : Ω×Q× Rd → R and assume:

(A1) V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ Rd.
(A2) V (ω, x, ·) is convex for a.a. (ω, x) ∈ Ω×Q.
(A3) There exists C > 0 such that

1

C
|F |p − C ≤ V (ω, x, F ) ≤ C(|F |p + 1)

for a.a. (ω, x) ∈ Ω×Q and all F ∈ Rd.
We consider the functional

Eε : Lp(Ω)⊗W 1,p
0 (Q)→ R, Eε(u) =

〈ˆ
Q

V (τ x
ε
ω, x,∇u(ω, x))dx

〉
. (19)

Under assumptions (A1)-(A3), in the limit ε → 0 we obtain the two-scale func-
tional

E0 :
(
Lpinv(Ω)⊗W 1,p

0 (Q)
)
×
(
Lppot(Ω)⊗ Lp(Q)

)
→ R,

E0(u, χ) =

〈ˆ
Q

V (ω, x,∇u(ω, x) + χ(ω, x))dx

〉
.

(20)

Theorem 4.1 (Two-scale homogenization). Let p ∈ (1,∞) and Q ⊂ Rd be open
and bounded. Assume (A1)-(A3).

(i) (Compactness and liminf inequality.) Let uε ∈ Lp(Ω) ⊗ W 1,p
0 (Q) be such

that lim supε→0 Eε(uε) < ∞. There exist (u, χ) ∈
(
Lpinv(Ω)⊗W 1,p

0 (Q)
)
×(

Lppot(Ω)⊗ Lp(Q)
)

and a subsequence (not relabeled) such that

uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q), (21)

lim inf
ε→0

Eε(uε) ≥ E0(u, χ). (22)

(ii) (Limsup inequality.) Let (u, χ) ∈
(
Lpinv(Ω)⊗W 1,p

0 (Q)
)
×
(
Lppot(Ω)⊗ Lp(Q)

)
.

There exists a sequence uε ∈ Lp(Ω)⊗W 1,p
0 (Q) such that

uε
2→ u in Lp(Ω×Q), ∇uε

2→ ∇u+ χ in Lp(Ω×Q), (23)

lim sup
ε→0

Eε(uε) ≤ E0(u, χ). (24)

Proof of Theorem 4.1. (i) The Poincaré inequality and (A3) imply that uε is bounded
in Lp(Ω)⊗W 1,p(Q). By Proposition 1 (ii) there exist u ∈ Lpinv(Ω)⊗W 1,p(Q) and
χ ∈ Lppot(Ω) ⊗ Lp(Q) such that (21) holds. Also, note that Pinvuε ⇀ u weakly

in Lp(Ω) ⊗W 1,p(Q) and Pinvuε ∈ Lpinv(Ω) ⊗W 1,p
0 (Q), which implies that u also

has 0 boundary values, i.e., u ∈ Lpinv(Ω)⊗W 1,p
0 (Q). Finally, we note that, see [19,

Proposition 3.5 (i)],〈ˆ
Q

V (τ x
ε
ω, x, v(ω, x))

〉
=

〈ˆ
Q

V (ω, x, Tεv(ω, x))

〉
for any v ∈ Lp(Ω×Q),

(25)
and thus using the convexity of V we conclude

lim inf
ε→0

Eε(uε) = lim inf
ε→0

〈ˆ
Q

V (ω, x, Tε∇uε)
〉
≥ E0(u, χ).
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(ii) The existence of a sequence uε with (23) follows from Proposition 1 (iii).
Furthermore, (25) and the growth assumption (A3) yield

lim
ε→0
Eε(uε) = lim

ε→0

〈ˆ
Q

V (ω, x, Tε∇uε)
〉

= E0(u, χ).

This concludes the claim, in particular, we even show a stronger result stating
convergence of the energy.

Remark 4 (Convergence of minimizers). We consider the setting of Theorem 4.1.

Let uε ∈ Lp(Ω)⊗W 1,p
0 (Q) be a minimizer of the functional

Iε : Lp(Ω)⊗W 1,p
0 (Q)→ R, Iε(u) = Eε(u)−

〈ˆ
Q

uεfεdx

〉
,

where fε ∈ Lq(Ω×Q) and fε
2→ f with f ∈ Lq(Q) and 1

p + 1
q = 1. By a standard

argument from the theory of Γ-convergence Theorem 4.1 (cf. [34, Corollary 7.2])

implies that there exist a subsequence (not relabeled), u ∈ Lpinv(Ω)×W 1,p
0 (Q), and

χ ∈ Lppot(Ω)⊗Lp(Q) such that uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+χ in Lp(Ω×Q),

and
lim
ε→0

min Iε = lim
ε→0
Iε(uε) = I0(u, χ) = min I0,

where I0 : Lpinv(Ω) ⊗W 1,p
0 (Q) → R is given by I0(u) = E0(u) −

´
Q
fudx. This, in

particular, rigorously justifies the formal two-scale expansion ∇uε(x) ≈ ∇u0(ω, x)+
χ(τ x

ε
ω, x).

Remark 5 (Uniqueness). If V (ω, x, ·) is strictly convex the minimizers are unique
and the convergence in the above remark holds for the entire sequence.

4.2. Variance-regularization applied to degenerate growth. In this section
we consider homogenization of convex functionals with degenerate growth. More
precisely, we consider an integrand V that satisfies (A1), (A2) and the following
assumption (as a replacement of (A3)):

(A3’) There exists C > 0 and a random variable λ ∈ L1(Ω) such that〈
λ−

1
p−1

〉p−1

< C (26)

and
λ(ω)|F |p − C ≤ V (ω, x, F ) ≤ C(λ(ω)|F |p + 1)

for a.a. (ω, x) ∈ Ω×Q and all F ∈ Rd.
Moreover, we assume that 〈·〉 is ergodic. For ε > 0 we consider the following
functional

Eε : L1(Ω×Q)→ R ∪ {∞} , Eε(u) =

〈ˆ
Q

V (τ x
ε
ω, x,∇u)dx

〉
,

for u ∈ Xε and Eε(u) =∞ otherwise. Here Xε denotes the closure of
{
u ∈ Lp(Ω)⊗W 1,p

0 (Q)
}

w.r.t. the weighted norm

‖u‖λε
:=

〈ˆ
Q

λ(τ x
ε
ω)|∇u|pdx

〉 1
p

.

Recently, in [29, 20, 21] it shown that Eε Mosco-converges to the functional

Ehom : L1(Q)→ R ∪ {∞} , Ehom(u) :=

ˆ
Q

Vhom(x,∇u(x)) dx,
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for u ∈W 1,p
0 (Q) and Ehom(u) =∞ otherwise, where Vhom : Q×Rd → R is given by

the homogenization formula,

Vhom(x, F ) = inf
χ∈Lp

pot(Ω)
〈V (ω, x, F + χ(ω))〉 , (27)

for x ∈ Q and F ∈ Rd. Moreover, it is shown that Vhom is a normal convex in-
tegrand that satisfies a standard p-growth condition. Note that the assumption
(A3’) in comparison to (A3) makes a genuine difference in regard to the homoge-
nization formula (27). In particular, in the setting of assumption (A3) minimizers
are attained due to the coercivity of the underlying functional in Lppot(Ω). It is thus
easy to see that the homogenized integrand satisfies p-growth condition as well, see
Section 4.3 below. On the other hand, in the setting of this section assuming (A3’),
(27) is a degenerate minimization problem and a priori minimizers will only have
finite first moments. An additional argument is required to infer that Vhom in (27)
is non-degenerate, in particular, in [29, Theorem 3.1] it is shown that there exists a
constant C ′ > 0 such that for all x ∈ Q and F ∈ Rd we have

1

C ′
|F |p − C ′ ≤ Vhom(x, F ) ≤ C ′ (|F |p + 1) . (28)

One of the difficulties in the proof of the homogenization result for Eε is due to
the fact that the domain of the functionals are ε-dependent. Moreover, assumption
(A3’) only yields equicoercivity in L1(Ω)⊗W 1,1

0 (Q), while the limit Ehom is properly
defined onW 1,p(Q). Therefore, in practice it is convenient to regularize the problem:
For δ > 0 we consider the regularized homogenization formula

Vhom,δ(x, F ) = inf
χ∈Lp

pot(Ω)
〈V (ω, x, F + χ(ω)) + δ|χ(ω)|p〉 .

It is simple to show that the infimum on the right-hand side is attained by a unique
minimizer. We also consider the corresponding regularized homogenized integral
functional

Ehom,δ : L1(Q)→ R ∪ {∞} , Ehom,δ(u) :=

ˆ
Q

Vhom,δ(∇u) dx,

for u ∈ W 1,p
0 (Q) and Ehom,δ(u) =∞ otherwise. Furthermore, thanks to (A3’), it is

relatively easy to see that this regularization is consistent:

Lemma 4.2. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Assume (A1), (A2)
and (A3’). Then, for all x ∈ Q and F ∈ Rd, we have

lim
δ→0

Vhom,δ(x, F ) = Vhom(x, F ). (29)

Moreover, Ehom,δ Mosco converges to Ehom as δ → 0, i.e., the following statements
hold:

(i) If uδ ⇀ u weakly in L1(Q), then

lim inf
δ→0

Ehom,δ(uδ) ≥ Ehom(u).

(ii) For any u ∈ L1(Q) there exists a sequence uδ ∈ L1(Q) such that

uδ → u strongly in L1(Q), Ehom,δ(uδ)→ Ehom(u).

Proof. Let F ∈ Rd and x ∈ Q. Since δ > 0, we have Vhom,δ(x, F ) ≥ Vhom(x, F ). On
the other hand, we consider a minimizing sequence χη ∈ Lppot(Ω) in (27), e.g.,

〈V (ω, x, F + χη)〉 ≤ Vhom(x, F ) + η.



248 MARTIN HEIDA, STEFAN NEUKAMM AND MARIO VARGA

We have

Vhom,δ(x, F ) ≤ 〈V (ω, x, F + χη) + δ|χη|p〉 ≤ Vhom(x, F ) + η + δ 〈|χη|p〉 .
Letting first δ → 0 and then η → 0, we conclude (29).

We further consider a sequence uδ such that uδ ⇀ u weakly in L1(Q) as δ → 0.

We assume without loss of generality thatlim supδ→0 Ehom,δ(uδ) <∞. This, in particular,

with the help of (28) and the Poincaré inequality implies that lim supδ→0 ‖uδ‖W1,p
0 (Q)

<∞.

Thus, up to a subsequence, we have uδ ⇀ u weakly in W 1,p
0 (Q). Using this, we

obtain
lim inf
δ→0

Ehom,δ(uδ) ≥ lim inf
δ→0

Ehom(uδ) ≥ Ehom(u).

The first inequality follows by (29) and the second is a consequence of the fact that
Vhom(x, ·) is convex and of Fatou’s Lemma. We conclude that (i) holds.

If u /∈ dom(Ehom), we simply choose uδ = u. On the other hand, for u ∈
dom(Ehom) = W 1,p

0 (Q), (29) and the dominated convergence theorem yield

lim
δ→0
Ehom,δ(u) = Ehom(u).

This means that (ii) holds.

In the following we introduce a variance regularization of the original functional
Eε that removes the degeneracy of the problem and thus can be analyzed by the
standard strategy of Section 4.1. For δ > 0, we consider Eε,δ : L1(Ω×Q)→ R,

Eε,δ(u) =

〈ˆ
Q

V (τ x
ε
ω, x,∇u(x)) + δ|∇u(x)− 〈∇u(x)〉 |pdx

〉
, (30)

for u ∈ Lp(Ω) ⊗ W 1,p
0 (Q) and Eε,δ = ∞ otherwise. Due to the structure of the

additional term, we call it a variance-regularization and we note that it only be-
comes active for non-deterministic functions. For fixed δ > 0, the functional Eε,δ is

equicoercive on Lp(Ω)⊗W 1,p
0 (Q):

Lemma 4.3. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Assume (A1) and

(A3’). Then there exists C = C(Q, p) > 0 such that, for all u ∈ Lp(Ω)⊗W 1,p
0 (Q),

it holds 〈ˆ
Q

|∇u|
〉p

+ δ

〈ˆ
Q

|∇u|p
〉
≤ C

(
Eε,δ(u) + 1

)
.

Proof. By Jensen’s and Hölder’s inequalities we have〈ˆ
Q

|∇u|dx
〉p
≤ |Q|p−1

ˆ
Q

〈|∇u|〉p ≤ |Q|p−1

〈
λ
− 1

p−1
ε

〉p−1 〈ˆ
Q

λε|∇u|p
〉
,

where we use the notation λε(x, ω) = λ(τ x
ε
ω). Furthermore, using (A3’), we con-

clude that 〈ˆ
Q

|∇u|dx
〉p
≤ C(Q, p) (Eε,δ(u) + 1) .

In the end, using the variance-regularization we obtain

2−p
〈ˆ

Q

|∇u|p
〉
≤

〈ˆ
Q

|∇u− 〈∇u〉 |p
〉

+

ˆ
Q

〈|∇u|〉p

≤ C

δ
(Eε,δ(u) + 1) + C

(
Eε,δ(u) + 1

)
.

This concludes the proof.
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The regularization on the ε-level is also consistent. In particular, we show that in
the limit δ → 0, we recover Eε. We discuss the mean functionals Eε,δ and Eε, since
the former does not admit a well-defined pointwise evaluation in ω for the reason
of the nonlocal variance term. Also, for the same reason the quenched version of
stochastic two-scale convergence is not suitable for this setting and we apply the
unfolding procedure. On the other hand, the homogenization of Eε can be conducted
on the level of typical realizations, that was in fact studied in [29, 20, 21].

Lemma 4.4. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Assume (A1), (A2)
and (A3’). Then, Eε,δ Mosco converges to Eε as δ → 0 i.e., the following statements
hold:

(i) If uδ ⇀ u weakly in L1(Ω×Q), then

lim inf
δ→0

Eε,δ(uδ) ≥ Eε(u).

(ii) For any u ∈ L1(Ω×Q) there exists a sequence uδ ∈ L1(Ω×Q) such that

uδ → u strongly in L1(Ω×Q), Eε,δ(uδ)→ Eε(u).

Proof. (i) Let uδ be a sequence such that uδ ⇀ u weakly in L1(Ω×Q). Without loss
of generality we assume that lim supδ→0 Eε,δ(uδ) <∞. This and the proof of Lemma

4.3 imply that the sequence λ
1
p
ε ∇uδ is bounded in Lp(Ω × Q) with the notation

λε(x, ω) = λ(τ x
ε
ω). This means that, up to a subsequence, we have λ

1
p
ε ∇uδ ⇀ ψ

weakly in Lp(Ω×Q) for some ψ ∈ Lp(Ω×Q). Thus, for an arbitrary η ∈ L∞(Ω×Q),
we have〈ˆ

Q

∇uδηdx
〉

=

〈ˆ
Q

λ
1
p
ε ∇uδλ

− 1
p

ε ηdx

〉
→
〈ˆ

Q

ψλ
− 1

p
ε ηdx

〉
as ε→ 0.

This means that ∇uδ converges weakly in L1(Ω × Q) and since uδ ⇀ u weakly in
L1(Ω×Q) we may conclude that ∇uδ ⇀ ∇u weakly in L1(Ω×Q). This yields

lim inf
δ→0

Eε,δ(uδ) ≥ lim inf
δ→0

Eε(uδ) ≥ Eε(u).

(ii) For an arbitrary u ∈ dom(Eε) ⊂ Xε, we find a sequence uη ∈ Lp(Ω)⊗W 1,p
0 (Q)

such that, for η → 0,

uη → u strongly in L1(Ω)⊗W 1,1
0 (Q),

〈ˆ
Q

λε|∇uη −∇u|pdx
〉
→ 0.

Using this and the dominated convergence theorem, we conclude that

lim
η→0
Eε(uη) = Eε(u).

This in turn yields

lim sup
η→0

lim sup
δ→0

|Eε,δ(uη)− Eε(u)| = 0.

We extract a diagonal sequence η(δ) → 0 as δ → 0 such that uδ := uη(δ) satisfies

uδ → u strongly in L1(Ω×Q) and Eε,δ(uδ)→ Eε(u). This concludes the proof.

The homogenization of the regularized functional Eε,δ boils down to a very similar
simple argumentation as in Section 4.1.

Theorem 4.5. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Assume (A1),
(A2) and (A3’). For all δ > 0, as ε → 0, Eε,δ Mosco converges to Ehom,δ in the
following sense:
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(i) Let uε ∈ Lp(Ω)⊗W 1,p
0 (Q) be such that lim supε→0 Eε,δ(uε) <∞. Then there

exist (u, χ) ∈W 1,p
0 (Q)×

(
Lppot(Ω)⊗ Lp(Q)

)
and a subsequence (not relabeled)

such that

uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q).

(ii) If uε ∈ L1(Ω×Q), u ∈ L1(Q) and Tεuε ⇀ u weakly in L1(Ω×Q), then

lim inf
ε→0

Eε,δ(uε) ≥ Ehom,δ(u).

(iii) For any u ∈ L1(Q), there exists a sequence uε ∈ L1(Ω×Q) such that

Tεuε → u strongly in L1(Ω×Q), Eε,δ(uε)→ Ehom,δ(u).

Proof. (i) The statement follows analogously to the proof of Theorem 4.1 (i).
(ii) Let Tεuε → u weakly in L1(Ω×Q). We may assume without loss of generality

that lim supε→0 Eε,δ(uε) < ∞. In this case, Lemma 4.3 implies that uε is bounded

in Lp(Ω) ⊗W 1,p
0 (Q). We may proceed analogously to Theorem 4.1 and Remark 5

to obtain

lim inf
ε→0

Eε,δ(uε) ≥ Ehom,δ(u).

(ii) This part is analogous to Theorem 4.1 and Remark 5.

The results of Lemmas (4.2) and (4.4), Theorem (4.5) and [29, 20, 21] can be
summarized in the following commutative diagram:

Eε,δ
(δ→0)→ Eε

(ε→ 0) ↓ ↓ (ε→ 0)

Ehom,δ
(δ→0)→ Ehom

The arrows denote Mosco convergence in the corresponding convergence regimes.

4.3. Quenched homogenization of convex functionals. In this section we
demonstrate how to lift homogenization results w.r.t. two-scale convergence in the
mean to quenched statements at the example of Section 4.1. Throughout this sec-
tion we assume that 〈·〉 is ergodic. For ω ∈ Ω we define Eωε : W 1,p

0 (Q)→ R,

Eωε (u) :=

ˆ
Q

V
(
τ x

ε
ω, x,∇u(x)

)
dx,

with V satisfying (A1)-(A3). The goal of this section is to relate two-scale limits

of “mean”-minimizers, i.e. functions uε ∈ Lp(Ω)⊗W 1,p
0 (Q) that minimize Eε, with

limits of “quenched”-minimizers, i.e. families {uε(ω)}ω∈Ω of minimizers to Eωε in

W 1,p
0 (Q). We also remark that if V (ω, x, ·) is strictly convex uε and {uε(ω)}ω∈Ω

may be identified since minimizers of both functionals Eε and Eωε are unique.
Before presenting the main result of this section, we remark that in the ergodic

case, the limit functional (20) reduces to a single-scale energy

Ehom : W 1,p
0 (Q)→ R, Ehom(u) =

ˆ
Q

Vhom(x,∇u(x))dx,

where the homogenized integrand Vhom is given for x ∈ Rd and F ∈ Rd by

Vhom(x, F ) = inf
χ∈Lp

pot(Ω)
〈V (ω, x, F + χ(ω))〉 . (31)

In particular, we may obtain an analogous statement to Theorem 4.1 where we
replace E0 with Ehom. The proof of this follows analogously with the only difference
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that in the construction of the recovery sequence we first need to find χ such that
E0(u, χ) = Ehom(u). This is done by a usual measurable selection argument, cf. [34,
Theorem 7.6].

Theorem 4.6. Let p ∈ (1,∞), Q ⊂ Rd be open and bounded, and 〈·〉 be ergodic.

Assume (A1)-(A3). Let uε ∈ Lp(Ω) ⊗W 1,p
0 (Q) be a minimizer of Eε. Then there

exists a subsequence such that (uε,∇uε) generates a Young measure ν in B :=
(Bp)1+d in the sense of Theorem 3.12, and for P -a.a. ω ∈ Ω, νω concentrates on
the set

{
(u,∇u + χ) : E0(u, χ) = min E0

}
of minimizers of the limit functional.

Moreover, if V (ω, x, ·) is strictly convex for all x ∈ Q and P -a.a. ω ∈ Ω, then the
minimizer uε of Eε and the minimizer (u, χ) of E0 are unique, and for P -a.a. ω ∈ Ω
we have (for a not relabeled subsequence)

uε(ω, ·) ⇀ u weakly in W 1,p(Q), uε(ω, ·)
2
⇀ωu, ∇uε(ω, ·)

2
⇀ω∇u+ χ,

and min Eωε = Eωε (uε(ω, ·))→ E0(u, χ) = min E0.

Remark 6 (Identification of quenched two-scale cluster points). If we combine
Theorem 4.6 with the identification of the support of the Young measure in The-
orem 3.12 we conclude the following: There exists a subsequence such that (uε,∇uε)
two-scale converges in the mean to a limit of the form (u0,∇u0+χ0) with E0(u0, χ0) =
min E0, and for a.a. ω ∈ Ω the set of quenched ω-two-scale cluster points
CP(ω, (uε(ω, ·),∇uε(ω, ·))) is contained in

{
(u,∇u + χ) : E0(u, χ) = min E0

}
.

In the strictly convex case we further obtain that CP(ω, (uε(ω, ·),∇uε(ω, ·))) =
{(u,∇u+ χ)} where (u, χ) is the unique minimizer to E0. Note, however, that our
argument (that extracts quenched two-scale limits from the sequence of “mean”
minimizers) involves an exceptional P -null-set that a priori depends on the selected
subsequence. This is in contrast to the classical result in [11] which is based on a
subadditive ergodic theorem and states that there exists a set of full measure Ω′

such that for all ω ∈ Ω′ the minimizer uωε to Eωε weakly converges in W 1,p(Q) to the
deterministic minimizer u of the reduced functional Ehom for any sequence ε→ 0.

In the proof of Theorem 4.6 we combine homogenization in the mean in form of
Theorem 4.1, the connection to quenched two-scale limits via Young measures in
form of Theorem 3.12, and a recent result described in Remark 3 by Nesenenko and
the first author.

Proof of Theorem 4.6. Step 1. (Identification of the support of ν).
Since uε is a sequence of minimizers, by Corollary 4 there exists a subsequence

(not relabeled) and minimizers (u, χ) ∈ W 1,p
0 (Q) × (Lppot(Ω) ⊗ Lp(Q)) of E0 such

that that uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q)d, and

lim
ε→0

min Eε = lim
ε→0
Eε(uε) = E0(u, χ) = min E0. (32)

In particular, the sequence (uε,∇uε) is bounded in B. By Theorem 3.12 we may
pass to a further subsequence (not relabeled) such that (uε,∇uε) generates a Young
measure ν on B. Since νω is supported on the set of quenched ω-two-scale cluster
points of (uε(ω, ·),∇uε(ω, ·)), we deduce from Lemma 3.10 that the support of

νω is contained in B0 := {ξ = (ξ1, ξ2) = (u′,∇u′ + χ′) : u′ ∈ W 1,p
0 (Q), χ ∈

Lppot(Ω)⊗Lp(Q)} which is a closed subspace of B. Moreover, thanks to the relation
of the generated Young measure and stochastic two-scale convergence in the mean,
we have (u, χ) =

´
Ω

´
B0

(ξ1, ξ2 − ∇ξ1) νω(dξ) dP (ω). Furthermore, Lemma 3.14
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implies that

lim
ε→0
Eε(uε) ≥

ˆ
Ω

ˆ
B

(ˆ
Ω

ˆ
Q

V (ω̃, x, ξ2) dx dP (ω̃)
)
νω(dξ) dP (ω).

In view of (32) and the fact that νω is supported in B0, we conclude that

min E0 ≥
ˆ

Ω

ˆ
B0

E0(ξ1, ξ2 −∇ξ1) νω(dξ) dP (ω) ≥ min E0
ˆ

Ω

ˆ
B0

νω(dξ)dP (ω).

Since
´

Ω

´
B0

νω(dξ)dP (ω) = 1, we have
´

Ω

´
B0
|E0(ξ1, ξ2−∇ξ1)−min E0| νω(dξ) dP (ω) =

0, and thus we conclude that for P -a.a. ω ∈ Ω0, νω concentrates on {(u,∇u+ χ) :
E0(u, χ) = min E0}.
Step 2. (The strictly convex case).

The uniqueness of uε and (u, χ) is clear. From Step 1 we thus conclude that νω =

δξ where ξ = (u,∇u+χ). Theorem 3.12 implies that (uε(ω, ·),∇uε(ω, ·))
2
⇀ω(u,∇u+

χ) (for P -a.a. ω ∈ Ω). By Lemma 3.14 we have for P -a.a. ω ∈ Ω,

lim inf
ε→0

Eωε (uε(ω, ·)) ≥ E0(u, χ) = min E0.

On the other hand, since uε(ω, ·) minimizes Eωε , we deduce by a standard argument
that for P -a.a. ω ∈ Ω,

lim
ε→0

min Eωε = lim
ε→0
Eωε (uε(ω, ·)) = E0(u, χ) = min E0.
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