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Abstract. Here, we study the existence and the convergence of solutions for

the vanishing discount MFG problem with a quadratic Hamiltonian. We give

conditions under which the discounted problem has a unique classical solution
and prove convergence of the vanishing-discount limit to a unique solution up

to constants. Then, we establish refined asymptotics for the limit. When those
conditions do not hold, the limit problem may not have a unique solution and

its solutions may not be smooth, as we illustrate in an elementary example.

Finally, we investigate the stability of regular weak solutions and address the
selection problem. Using ideas from Aubry-Mather theory, we establish a se-

lection criterion for the limit.

1. Introduction. Mean-field games (MFG) model systems with many rational
noncooperative players, describe the player’s optimal strategies and determine the
statistical properties of their distribution. These games are often determined by a
system of a Hamilton-Jacobi equation coupled with a transport or Fokker-Planck
equation. In the study of stationary Hamilton-Jacobi equations, a standard method
to obtain a solution is to consider the vanishing discount problem. This was the
strategy used originally in [31] in the study of homogenization problems. For second-
order MFG, the existence of a solution for the discounted problem was shown, for
example, in [20] and [8] and for first-order MFG in [16] in the sense of weak solu-
tions and in [3] using variational methods. In the second-order case, the vanishing
discount limit was studied in [4]. In the first-order case, the theory is not as much
developed and the vanishing discount limit has not been examined previously. Here,
our goal is to study the limit behavior as ε→ 0 of the following discounted first-order
stationary mean-field game.
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Problem 1. Let Td be the d-dimensional flat torus identified with [0, 1]d. Let
V : Td → R, V ∈ C1,α(Td), g : [0,∞) → R ∪ {−∞}, g ∈ C1,α((0,+∞)), with
g strictly increasing, and fix a discount rate, ε > 0. Find uε,mε : Td → R with
mε(x) > 0 such that{

εuε + 1
2 |Du

ε|2 + V (x) = g(mε) in Td,

εmε − div(mεDuε) = ε in Td.
(1.1)

We say that (uε,mε) is a classical solution of the preceding problem if uε ∈
C2,α(Td) and mε ∈ C1,α(Td) with mε > 0. As we show in Proposition 3.1, mε

cannot vanish, hence, mε > 0. As in the case of Hamilton-Jacobi equations, we
expect that, as ε→ 0, the solutions of (1.1) converge, maybe through subsequences
after adding a suitable constant to uε, to a solution of the following first-order MFG.

Problem 2. With g, V as in Problem 1, find u,m : Td → R with m > 0 and
H ∈ R such that 

1
2 |Du|

2 + V (x) = g(m) + H̄ in Td,
−div(mDu) = 0 in Td,
m(x) > 0,

∫
Td mdx = 1.

(1.2)

Because (1.2) is invariant under addition of constants to u, we can prescribe the
additional normalization condition ∫

Td
udx = 0.

According to [16] (also see [17]), Problem 2 admits weak solutions under suitable
polynomial growth conditions of g, see Corollary 6.3 in [16]. Here, in Section 7,
under a different set of hypothesis and using a limiting argument, we establish the
existence of solutions for Problem 2. A natural question in the analysis of the limit
ε → 0 is the selection problem; that is, whether the sequence (uε,mε) converges
(not just whether a subsequence converges) and if so, what is the limit among all
possible solutions of (1.2). This matter is our main focus here.

For Hamilton-Jacobi equations, the discounted problem corresponds to the fol-
lowing control problem. Let x(t) ∈ Rd be the state of an agent at the time t. This
agent can change its state by choosing a control v ∈ L∞([0,∞),Rd). Thus, its
trajectory, x(t), is determined by ẋ(t) = v(t), with initial condition x(t) = x ∈ Td.
The agent selects the control to minimize the cost functional

J(x; v) =

∫ ∞
0

e−εtL(x(t), ẋ(t)) dt,

for a given Lagrangian, L : Td × Rd → R. The value function, uε, is given by

uε(x) = inf
v
J(x; v),

where the infimum is taken over v ∈ L∞([0,+∞),Rd).
The Hamiltonian, H : Td×Rd → R, corresponding to this control problem is the

Legendre transform of L; that is,

H(x, p) = sup
v∈Rd

−p · v − L(x, v).

Under standard coercivity and convexity assumptions on L, uε is the unique viscos-
ity solution of the discounted Hamilton-Jacobi equation,

εuε +H(x,Duε) = 0 in Td.
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For coercive Hamiltonians, the results in [31] give that εuε is uniformly bounded
and that uε is equi-Lipschitz for ε > 0. Thus, uε −minTd u

ε uniformly converges to
a function, u, along subsequences, as ε→ 0. Moreover, εuε converges to a constant
−H̃. By stability of viscosity solutions, (u, H̃) solves the ergodic Hamilton-Jacobi
equation

H(x,Du) = H̃ in Td, (1.3)

where the unknowns are u : Td → R and H̃ ∈ R. However, the solution of (1.3) may
not be unique. Hence, the solution constructed above could depend on the particular
subsequence used to extract the limit. The study of the selection problem was
started in [19] using the discounted Mather measures introduced in [2]. The main
convergence result was established in [5]. Subsequently, several authors investigated
and extended those ideas in [1], [26], [27], and [34] . Recently, the case of non-convex
Hamiltonians was addressed in [21].

In MFGs, we consider a large population of agents where each agent seeks to op-
timize an objective function. Here, however, the running cost depends on statistical
information about the players, encoded in a probability density, m : Td×[0,∞)→ R.

In the model discussed here, the Lagrangian is L̂(x, p) = 1
2 |p|

2 − V (x) + g(m) and
each agent seeks to minimize the functional

Ĵ(x) =

∫ ∞
0

e−εt
[

1

2
|ẋ(t)|2 − V (x(t)) + g

(
m(x(t), t)

)]
dt.

Now, we suppose that the value function, uε := infv Ĵ, is smooth. Then, uε solves
the first equation in (1.1) and the optimal control is given by v(t) = −Duε(x(t)).
Because the players are rational, they use this optimal control. Here, ε represents the
rate at which players quit the game, which occurs at independent and memoryless
times. Furthermore, new players join the game randomly at a rate ε, as can be
seen by looking at the right-hand side of the second equation in (1.1). Then, in the
stationary configuration, the density, m, is determined by the second equation in
(1.1). Without an inflow of players, the only non-negative solution is trivial, m = 0.

The theory for second-order stationary MFG is now well developed and in many
cases the existence of smooth solutions can be established, see for example [25], [24],
[35], or [8]. For logarithmic nonlinearities, the existence of smooth solutions was
proven in [9]. However, this is a special case; as shown in Section 2, for first-order
MFG, the existence of smooth solutions may not hold (see also a detailed discussion
in [23] and [22]). Thus, in general, we need to consider weak solutions, see [7] or [16]
for an approach using monotone operators and [3] for a variational approach.

One of the difficulties of first-order stationary MFG is the lack of regulariz-
ing terms in both the Hamilton-Jacobi equation and in the transport equation.
Nonetheless, the MFG system behaves somewhat like an elliptic equation. Here,
we explore this effect and obtain conditions under which Problem 1 has classical
solutions. These conditions are given in the following two assumptions.

Assumption 1. g and V satisfy that g−1
(
g(1)− oscx∈TdV (x)

)
> 0.

Assumption 2. There exist constants C1 > 0, C2 > 0 and β ∈ R such that for all
z > 0,

g′(z) > C1z
β ,

g(z) 6 C2 +
1

2
zg(z).

Assumption 3. limz→+∞ g(z) = +∞.
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For β > −1, Assumption 2 imples the preceding assumption. This is not the
case for β < −1.

An example that satisfies the preceding assumptions is the following:

g(m) = mα (α > 0), V (x) = c sin(2πx) (0 < c < 1/2),

where d = 1 and V is extended by periodicity to R. The preceding two assumptions
are used to obtain lower bounds on the density and can be interpreted as follows.
Because g is increasing agents want to avoid crowded areas and prefer areas with low
density. However, if the oscillation of the potential is large, the trade-off between
a low-density area with high potential and a high-density area with low potential
may not pay-off. Hence, the control of the oscillation of V given in Assumption 1
implies that no point is totally avoided by the agents.

As we mentioned previously, the two preceding assumptions imply the existence
of a classical solution for Problem 1 as stated in the following theorem.

Theorem 1.1. Suppose that Assumptions 1-3 hold. Then, for each ε > 0, Problem
1 has a unique classical solution (uε,mε) with mε > 0.

The proof of this theorem is given in Section 5 using a continuation method
combined with the a priori estimates in Section 3 and the DeGiorgi-Nash-Moser
argument outlined in Section 4. As a corollary of the preceding theorem, we obtain
our first convergence result.

Corollary 1.2. Suppose that Assumptions 1-3 hold. Then, Problem 2 has a unique
classical solution (u,m, H̄), with m > 0 and

∫
Td udx = 0. Furthermore, let (uε,mε)

solve Problem 1. Then

uε−
∫
Td
uε dx→ u in C2,α(Td), mε → m in C1,α(Td), εuε → −H uniformly.

The proof of this corollary is given at the end of Section 5.
For second-order MFGs, the vanishing discount problem for mean-field games

was addressed in [4]. Inspired by the approach there, we consider the following
formal asymptotic expansion

uε − H̄/ε ∼ u+ λ+ εv, mε ∼ m+ εθ (1.4)

for the solution of Problem 1. Using this expansion in (1.1), assuming that (u,m, λ)
solves Problem 2, and matching powers of ε, we obtain the following problem that
determines the terms λ, v, and θ in (1.4). To simplify the presentation, we discuss
the case of C∞- solutions.

Problem 3. Let g be as in Problem 1 with g ∈ C∞ and let (u,m) be C∞- solutions
of Problem 2 with m > 0 and

∫
u = 0. Find v, θ : Td → R and λ ∈ R such that{

λ+ u+Du ·Dv = g′(m)θ in Td,

−div(mDv)− div(θDu) = 1−m in Td.
(1.5)

Remark 1.3. The normalization condition
∫
udx = 0 is required for the uniqueness

of the constant λ. Given a solution of (1.5), by adding a constant κ to u and
subtracting κ to λ, we produce another solution.

The existence of a solution to the preceding problem is established in Proposition
6.5 in Section 6. In that section, we prove the following improved asymptotic rate
of convergence.
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Theorem 1.4. Suppose Assumption 2 holds. Let (uε,mε) and (u,m, H̄), with
m > 0 and

∫
u = 0, be classical solutions of, respectively, Problems 1 and 2. Let

(v, θ, λ) be the corresponding classical solution to Problem 3. Then,

lim
ε→0

∥∥∥∥uε − H̄

ε
− u− λ

∥∥∥∥
∞

+ ‖mε −m‖∞ = 0.

Remark 1.5. The preceding theorem remains valid if we replace Assumption 2
with the weaker condition that for any z0 > 0 there exists γ(z0) > 0 such that

g′(z) > γ(z0)

for all z > z0.

In the last section of the paper, Section 7, we investigate the asymptotic behavior
of (uε,mε) as ε→ 0. Here, we work with weak solutions in the sense of the definition
below, and we consider the case where uniqueness of solution for Problem 2 may
not hold. In this case, we replace Assumption 1 and 2 the following assumption
that still allows the existence of solutions to be established.

Assumption 4. There exist positive constants, c1, c2 > 0, and a positive real num-
ber, α, such that

c1m
α−1 6 g′(m) 6 c2m

α−1

for all m > 0.

Remark 1.6. From the preceding hypothesis, we obtain that there exist positive
constants c̃1, c̃2 and C such that

c̃1m
α − C 6 g(m) 6 c̃2m

α + C.

Of course, if Assumption 1 does not hold, we cannot ensure the existence of
smooth solutions to Problem 1. Nonetheless, the existence of weak solutions for
Problem 1 was proven in [16].

Closely related existence results are also addressed in [3]. The results in [16]
requires less restrictive assumptions, albeit at the price of not having the uniqueness
result from [3]. For a comparison between these two notions of weak solutions, we
refer the reader to [16]. More precisely, we consider the following result.

Theorem 1.7 (from [16]). Suppose that Assumption 4 holds and α > d−4
2 if d > 8.

Then, Problem 1 has a weak solution (mε, uε) as follows. There exists a constant
C, independent of ε such that

1. mε > 0 and
∫
Td m

εdx = 1,

2. ‖(mε)
α+1
2 ‖W 1,2(Td) 6 C,

3. ‖uε −
∫
Td u

εdx‖W 1,2(Td) 6 C,

4.
∣∣ε ∫Td uεdx∣∣ 6 C,

5. ‖(mε)
α+1
2 Duε‖BV (Td) 6 C.

Moreover,

−εuε − |Du
ε|2

2
− V (x) + g(mε) > 0 (1.6)

in the sense of distributions, with

(−εuε − |Du
ε|2

2
− V (x) + g(mε))mε = 0, (1.7)
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almost everywhere. Furthermore,

εmε − div(mεDuε) = ε, (1.8)

in the sense of distributions and almost everywhere.

We note that in [16], the specific form of Hamiltonian H(x, p) = 1
2 |p|

2 + V (x)
was crucial to get the existence solutions with the properties above. Similar tech-
niques applied to Problem 2 yield the existence of a number H and functions (m,u)
satisfying estimates 1-3 and 5 in Theorem 1.7 such that

H − |Du|
2

2
− V (x) + g(m) > 0 (1.9)

in the sense of distributions, with

(H − |Du|
2

2
− V (x) + g(m))m = 0, (1.10)

almost everywhere. Furthermore,

−div(mDu) = 0, (1.11)

in the sense of distributions and almost everywhere.
When classical solutions are not available, we need to work with regular weak

solutions, as defined next.

Definition 1.8. A pair (mε, uε) is a regular weak solution of Problem 1 if it satisfies
(1.6), (1.7) and (1.8) in the preceding theorem and, in particular, the same estimates
1-5 with the same constants. Similarly, a triple (u,m,H) is a regular weak solution
of Problem 2 if it satisfies (1.9), (1.10), (1.11) and the estimates 1-5 in the preceding
theorem with the same constants.

In Section 7, Proposition 7.1, we consider a sequence of regular weak solution of
Problem 1 and show that, by extracting a subsequence if necessary, it converges to a
regular weak solution of Problem 2. In particular, this approach gives the existence
a regular weak solution for Problem 2.

Our selection result for regular weak solutions, proven in Section 7, is the follow-
ing theorem.

Theorem 1.9. Suppose that Assumption 4 holds and α > d−6
d+2 if d > 6. Let (uε,mε)

be a regular weak solution of Problem 1. Suppose that 〈uε〉⇀ ū in H1(Td) and that
mε ⇀ m̄ weakly in L1(Td). Let (u,m) be a regular weak solution of Problem 2.
Then, ∫

Td
(g(mε)− g(m))(mε −m)dx→ 0 (1.12)

and m̄ = m. Moreover, we have∫
Td
〈ū〉mdx 6

∫
Td
〈u〉mdx, (1.13)

where

〈f〉 = f(x)−
∫
Td
fdx.

The proof of the preceding theorem relies on ideas from Aubry-Mather theory in-
troduced in [19]. The paper ends with a short example that illustrates the preceding
result.
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2. Lack of uniqueness. Here, we examine the uniqueness of solutions of (1.2).
First, we use the uniqueness method by Lasry-Lions [29] to show that the probability
density, m, is unique. Thus, failure of uniqueness for (1.2) requires multiplicity
of solutions, u, of the Hamilton-Jacobi equation. Second, we revisit an example
from [23], where uniqueness does not hold. This example serves to illustrate the
selection principle derived in Section 7.

2.1. Lasry-Lions method. The monotonicity argument introduced by Lasry-Lions
(see, [28] or the lectures [30]), can be used to prove the uniqueness of solution for
MFGs in the time-dependent case and gives the uniqueness of m in the station-
ary problem. Here, we apply this technique to Problem 2. Let (u1,m2, H̄1) and
(u2,m2, H̄2) be classical solutions of (1.2). Then,{

1
2 |Du1|2 − 1

2 |Du2|2 + H̄1 − H̄2 = g(m1)− g(m2)

−div(m1Du1) + div(m2Du2) = 0.

Now, we multiply the first equation by (m1 − m2) and the second equation by
(u1 − u2). Next, subtracting the resulting identities and integrating by parts, we
obtain∫

Td
(m1 −m2)(g(m1)− g(m2)) +

1

2
(m1 +m2)|Du1 −Du2|2 dx = 0. (2.1)

Accordingly, m1 = m2 = m on Td because g is strictly increasing. Moreover,
Du1 = Du2 on m > 0. Hence, classical solutions (u,m, H̄) of (1.2) with m > 0 are
unique up to an additive term in u. Uniqueness may fail if m vanishes, as we show
in Section 2.2. A similar proof gives that (2.1) holds for the solutions of (1.1). By
Lemma 3.1, mε is positive. Hence, classical solutions of Problem 1 are unique.

2.2. An explicit example. Here, we show two distinct regular weak solutions to
(1.2). In the example below, the existence of a unique smooth solutions fails and m
vanishes at an interval.

Let g(m) = m, d = 1, and V (x) = π cos(2πx). Then, (1.2) becomes
1
2 |ux|

2 + π cos(2πx) = m+ H̄ in T,
−(mux)x = 0 in T,
m(x) > 0,

∫
m = 1.

(2.2)

From the second equation in (2.2), mux = c for some constant. We claim that,
mux = 0. Indeed, if c 6= 0, ux = c

m . This is not possible because
∫
T uxdx = 0.

Thus, u is constant on the set m > 0. From the first equation in (2.2) and taking
into account that

∫
Tmdx = 1, we have H̄ = 0 and, thus,

m(x) = (π cos(2πx))+.

The preceding expression vanishes in an interval, as can be seen in Figure 1.
On the other hand, from the first equation in (2.2), we see that u ∈ H1(T1) is a

regular weak solution if u satisfies

ux ≡ 0 a.e. on {0 < x < 1/4} ∪ {3/4 < x < 1}, (2.3)

and
|ux|2 6 −2π cos(2πx) a.e. on {1/4 < x < 3/4}. (2.4)

For example, We set the functions ũ and û by

ũx(x) =
√

(−2π cos(2πx))+ · χ{ 1
4<x<

1
2}
−
√

(−2π cos(2πx))+ · χ{ 1
2<x<

3
4}
,
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and

ûx(x) = −
√

(−2π cos(2πx))+ · χ{ 1
4<x<

3
8}∪{

1
2<x<

5
8}

+
√

(−2π cos(2πx))+ · χ{ 3
8<x<

1
2}∪{

5
8<x<

3
4}
,

where χ is the characteristic function. Then, we observe that (û,m, 0) and (ũ,m, 0)
satisfy (2.3) and (2.4). Thus, (ũ,m,H) and (û,m,H) are regular weak solutions.

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

m

Fig. 1. Density m for (2.2) which exhibits areas with no agents.

0.2 0.4 0.6 0.8 1.0
x

-2

-1

1

2

u˜x

(a) ũx

0.2 0.4 0.6 0.8 1.0
x

-2

-1

1

2

ûx

(b) ûx

Fig. 2. Two distinct solutions, û and ũ, of the Hamilton-Jacobi
equation in (2.2). Their gradients differ only when m vanishes.

3. Preliminary estimates. In this section, we establish preliminary a priori es-
timates for solutions of Problem 1. To simplify the notation, we denote by (u,m)
a solution of Problem 1, instead of (uε,mε). Here, we seek to establish bounds for
(u,m) that are uniform in ε. Accordingly, the bounds in this section depend only
on the data, g, V , and d but not on ε nor on the particular solution. First, we
show that m is a probability; that is, nonnegative and its integral is 1. Next, we
establish a lower bound and higher integrability for m. Finally, we prove Lipschitz
bounds for u, which give the regularity of the solutions in the one-dimensional case.
The higher dimensional case requires further estimates that are addressed in the
following section.

Proposition 3.1. Let (u,m) be a classical solution of Problem 1. Then, for every
x ∈ Td, m(x) > 0 and ∫

Td
mdx = 1. (3.1)
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Proof. First, we show the positivity. Suppose that x0 ∈ Td is such that m(x0) =
minx∈Td m(x) = 0. At this point, the second equation in (1.1) becomes

εm(x0)−Dm(x0)Du(x0)−m(x0)∆u(x0) = ε.

However, the left-hand side is 0, which is a contradiction. To check (3.1), we
integrate the second equation in (1.1) and use integration by parts. Then, we see
that

ε

∫
Td
mdx = ε.

Thus, we get the conclusion.

Next, we get a uniform lower bound for m.

Proposition 3.2. Suppose that Assumption 1 holds. Then, there exists a constant,
C > 0, such that for any classical solution, (u,m) of Problem 1, we have

‖εu‖L∞(Td) +

∥∥∥∥ 1

m

∥∥∥∥
L∞(Td)

6 C.

Proof. First, we bound ‖εu‖L∞(Td). Let x̃ ∈ Td be a minimum point of u. At this
point, Du(x̃) = 0 and ∆u(x̃) > 0. From the second equation in (1.1), we get

m(x̃) =
ε

ε−∆u(x̃)
.

Since m is positive, ∆u(x̃) < ε and, thus, m(x̃) > 1. Because g is increasing, it
follows from the first equation in (1.1) that

εu(x̃) > g(1)−max
x∈Td

V (x). (3.2)

Next, let x̂ ∈ Td be a maximum point of u. By an analogous argument, we get

εu(x̂) 6 g(1) + min
x∈Td

V (x).

Thus, ‖εu‖L∞(Td) 6 C.
Now, we address the lower bound for m. By the first equation in (1.1) and (3.2),

for all x ∈ Td, we have

g
(
m(x)

)
= εu(x) +

1

2
|Du(x)|2 + V (x)

> εu(x̃) + min
x∈Td

V (x) > g(1)− oscV.

Using Assumption 1, we get the lower bound for m.

In the following Lemma, we give an upper bound for m.

Lemma 3.3. Suppose that Assumptions 1 and 2 hold. Then, there exists a constant,
C > 0, such that for any classical solution, (u,m), of Problem 1, we have∫

Td

1 +m

2
|Du|2 +mβ+2 dx 6 C. (3.3)

Proof. First, we multiply the first equation in (1.1) by (1 − m) and the second
equation in (1.1) by u. Integrating by parts and adding the resulting identities, we
have ∫

Td

1 +m

2
|Du|2 +mg(m) dx =

∫
Td

(m− 1)V + g(m) dx. (3.4)
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Using Assumption 2, we get

∫
Td
mg(m) dx 6 C.

On the other hand, in light of Proposition 3.2, there exists 0 < m0 < m(x) for all
x ∈ Td. Furthermore, Assumption 2 guarantees that for all t > m0,

g(t) >
C

β + 1
tβ+1 − C

β + 1
m0

β+1 + g(m0).

Therefore, combining the preceding inequalities with (3.4), we obtain (3.3).

In the next proposition, we establish that u is Lipschitz continuous and get
uniform bounds for m using a technique introduced in [9].

Proposition 3.4. Suppose that Assumptions 1 and 2 hold. Then, there exists a
constant C > 0 such that for any classical solution, (u,m), of Problem 1, we have

‖Du‖L∞(Td) + ‖m‖L∞(Td) 6 C.

Proof. At first, we show the case d = 1. Multiplying the first equation by mxx and
the second by uxx, we obtain

{
εumxx + 1

2mxxu
2
x +mxxV = g(m)mxx

εmuxx − uxx(mux)x = εuxx.

Next, we subtract these equations and integrate by parts to get

∫
T
mu2

xx + g′(m)m2
x dx =

∫
T
mxVxdx 6 δ

∫
T
m2
xdx+

1

4δ

∫
T
V 2
x dx,

using a weighted Cauchy-Schwarz inequality with δ > 0. Because m is bounded by
below, taking δ > 0 sufficiently small, ‖mx‖L2(T) and ‖uxx‖L2(T) are bounded. In
view of (3.3), we get the desired result.

Next, we discuss the case d > 2. Take p > β. Multiplying the second equation
in (1.1) by div(mpDu), we obtain

∫
Td
εmdiv(mpDu) dx =

∫
Td

div(mDu)div(mpDu) dx. (3.5)

Differentiating the first equation in (1.1), we get

∑
j

uxjuxjxi = g′(m)mxi − εuxi − Vxi . (3.6)
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Next, we rewrite the right-hand side of (3.5) as follows:∫
Td

div(mDu)div(mpDu) =
∑
i,j

∫
Td

(muxi)xi(m
puxj )xj dx

=
∑
i,j

∫
Td

(muxi)xj (m
puxj )xi dx

=
∑
i,j

∫
Td
pmp−1(uximxi)(uxjmxj ) + pmpmxiuxjuxixj dx

+
∑
i,j

∫
Td
mpuximxjuxixj +mp+1u2

xixj dx

=
∑
i,j

∫
Td
pmp−1(uximxi)(uxjmxj ) + (p+ 1)mpmxiuxjuxixj +mp+1u2

xixj dx

=

∫
Td
pmp−1|Dm ·Du|2 + (p+ 1)g′(m)mp|Dm|2dx (3.7)

+

∫
Td
mp+1

∑
i,j

u2
xixj − (p+ 1)mp

∑
j

mxj (εuxj + Vxj ) dx,

using (3.6) in the last line. Combining (3.7) and (3.5), we obtain∫
Td
pmp−1|Dm ·Du|2 + (p+ 1)g′(m)mp|Dm|2 +mp+1

∑
i,j

u2
xixj dx

=

∫
Td
εmdiv(mpDu) + (p+ 1)mp

∑
j

mxj (εuxj + Vxj ) dx

=

∫
Td
εpmpDm ·Du+ (p+ 1)mpDm ·DV dx

6
∫
Td

εp

2

(
mp+1 +mp−1|Dm ·Du|2

)
+ (p+ 1)

[
δ|Dm ·DV |2mp+β + Cδm

p−β] dx,

where the last inequality follows from a weighted Cauchy inequality with δ > 0 and
β is the exponent in Assumption 2. For δ sufficiently small, there exists C that does
not depend on p, such that∫

Td
mp+β |Dm|2 dx 6 C

∫
Td
mp+1 6 C

∫
Td
mp+β+2 dx, (3.8)

where the last inequality is a consequence of
∫
Td m = 1 and p+ β + 2 > p+ 1.

For d > 2, 2∗ = 2d
d−2 is the Sobolev conjugated exponent to 2; if d = 2, we use the

convention that 2∗ is an arbitrarily large real number. Using Sobolev’s inequality
and (3.8), we gather that[∫

Td
(m

p+β+2
2 )2∗dx

] 1
2∗

6 C

[∫
Td
mp+β+2 + |Dm

p+β+2
2 |2 dx

]1/2

6 C(1 + |p+ β + 2|)
[∫

Td
mp+β+2 dx

]1/2

.

Thus, there exists a positive constant C > 0 such that for all q > β + 1,

‖m‖
L

2∗(q+1)
2

6 [C(1 + q)]
2
q+1 ‖m‖Lq+1 .
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Next, we take 1 < θ < 2∗/2 and define rn = θn + β + 1. In view of (3.3), ‖m‖r0
is bounded. Now we observe that rn

rn+1
< 2

2∗ . Thus, for each n ∈ N, there exists

0 < αn < 1 satisfying
rn
rn+1

= αn +
1− αn
2∗/2

.

By Hölder’s inequality and the above estimate with q + 1 = rn, we obtain

‖m‖rn+1
6 ‖m‖αnrn ‖m‖

1−αn
2∗rn/2

6 ‖m‖αnrn
{

(Crn)
2
rn ‖m‖rn

}1−αn

= (Crn)
2(1−αn)

rn ‖m‖rn .

Iterating the prior inequality, we get

‖m‖rn+1 6 ‖m‖r0
n∏
i=0

(Cri)
2(1−αi)

ri .

The right-hand side is bounded uniformly in n ∈ N because

log

(
n∏
i=0

(Cri)
2(1−αi)

ri

)
6

n∑
i=0

2

ri
[C + log(ri)] < +∞.

Hence, ‖m‖∞ is bounded. According to the first equation in (1.1), and using the
bound for εu in Proposition 3.2, we obtain that ‖Du‖∞ is also bounded.

When d = 1, we can get additional estimates for Du and m, as shown in the
next proposition. The case d > 2 is discussed in the next section.

Proposition 3.5. Suppose that Assumption 1 holds. Let d = 1. Then, there exists
a constant C > 0 such that for any classical solution, (u,m), of Problem 1, we have

‖ux‖C1,α(T) + ‖m‖C1,α(T) 6 C.

Proof. Differentiating the first equation in (1.1)and multiplying by m, we get

εmux + uxmuxx +mVx = g′(m)mmx.

Solving the second equation in (1.1) for muxx and substituting in the above identity,
we have

mx =
2εmux − εux +mVx.

(u2
x + g′(m)m)

. (3.9)

Because m is bounded by below, the denominator in the preceding expression does
not vanish. Thus, from the previous Proposition, the right-hand side is bounded.
Accordingly, ‖mx‖L∞(T) is bounded. Returning to the second equation (1.1), we see
that ‖uxx‖L∞(T) is bounded. Returning to (3.9), we see that ‖m‖C1,α(T) is bounded.
Thus, from the second equation in (1.1), we gather that ‖ux‖C1,α(T) is bounded.

4. Estimates in higher dimensions. Now, we obtain additional estimates for
the solutions of (1.1) in the case d > 2. As in the previous section, to simplify the
notation, we omit the ε in (uε,mε) and denote by (u,m) a solution of Problem 1.
First, by solving the first equation in (1.1) for m, we get

m = g−1

(
εu+

1

2
|Du|2 + V

)
.
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Next, replacing the resulting expression into the second equation in (1.1), we obtain

div

[
g−1

(
εu+

|Du|2

2
+ V

)
Du

]
− ε
[
g−1

(
εu+

|Du|2

2
+ V

)
− 1

]
= 0. (4.1)

Here, we apply the DeGiorgi-Nash-Moser regularity method to (4.1) to obtain our
estimates.

We begin by selecting k with 1 6 k 6 d. Differentiating (4.1) with respect to xk,
we conclude that v = uxk solves

(aijvxj )xi = φxk + ψxi , (4.2)

where

aij(x) = g−1

(
εu+

1

2
|Du|2 + V

)
δij + (g−1)′

(
εu+

1

2
|Du|2 + V

)
uxiuxj ,

φ(x) = ε

[
g−1(εu+

1

2
|Du|2 + V )− 1

]
,

ψ(x) = (g−1)′(εu+
1

2
|Du|2 + V )(εuxiuxk + uxiVxk),

and δij = 1 if i = j and δij = 0 otherwise. Because of Propositions 3.2 and 3.4,
there exists a constant, C > 0, such that for any classical solution, u, of (4.1), we
have ‖εu‖∞ + ‖Du‖∞ 6 C. Hence, we get

‖φ‖∞ + ‖ψ‖∞ 6 C. (4.3)

Moreover, using again Propositions 3.2 and 3.4, we see that there exists a constant
λ > 0 such that for all ξ ∈ Rd, we have

λ|ξ|2 6
d∑

i,j=1

aij(x)ξiξj 6
1

λ
|ξ|2. (4.4)

Next, we prove that v is Hölder-continuous and, thus, get higher regularity for
u.

Proposition 4.1. Suppose that Assumptions 1 and 2 hold. Let d > 2. Then, there
exist constants, C > 0 and 0 < α < 1, such that for any classical solution, u, of
(4.1), we have

‖Du‖C1,α(Td) 6 C.

Proof. Take R > 0. Let v solve (4.2). Write v = z + w where z is a solution of

(aijzxj )xi = φxk + ψxi , (4.5)

in B2R and z = 0 on ∂B2R. Therefore, w solves

(aijwxj )xi = 0, (4.6)

in B2R with w|B2R
= v.

We begin by establishing the following claim.

Claim 1. For d > 2, there exists a constant, C > 0, that depends only on the
bounds in (4.4) such that

‖z‖L∞(B2R) 6 CR for any R > 0.
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Remark 4.2. If d = 2, we get ‖z‖L∞(B2R) 6 C̄Rκ, for any κ < 1
2 . This difference

is due to the exponent 2∗ in dimension 2 being replaced by an arbitrarily large
constant. The argument that follows needs to be adapted accordingly, namely
the bound in (4.8) below, but the key steps remain unchanged. This case will be
omitted.

Let k > 0. By multiplying (4.5) by (z − k)+ and integrating by parts, we get∫
B2R

aijzxj (z − k)+
xi dx =

∫
B2R

φ(z − k)+
xk

+ ψ(z − k)+
xi dx. (4.7)

Set

A(k) = {z > k} ∩B2R.

It suffices to prove that we can choose a constant C > 0 satisfying |A(CR)| = 0.
Because (z − k)+

xi = 0 on A(k)C and (z − k)+
xi = zxi on A(k), we obtain from (4.7)

that ∫
A(k)

aijzxjzxi dx =

∫
A(k)

φzxk + ψzxi dx.

In view of (4.4) and the bounds in (4.3), we get∫
A(k)

|Dz|2 dx 6 C|A(k)|.

Next, using Sobolev’s inequality and taking into account that (z−k)+ = 0 on ∂B2R,
we conclude that, for any h > k,

(h− k)2|A(h)|2/2
∗
6

[∫
A(h)

[(z − k)+]2
∗

dx

]2/2∗

6

[∫
B2R

[(z − k)+]2
∗

dx

]2/2∗

6 C

∫
B2R

|D(z − k)+|2 dx 6 C

∫
A(k)

|Dz|2 dx.

Combining the two preceding estimates, we obtain

|A(h)| 6 C|A(k)| 2
∗
2

(h− k)2∗
.

Next, we take a sequence kn = M
(
1− 1

2n

)
, where

M =

(
C|A(0)| 2

∗
2 −12

(2∗)2
2∗−2

) 1
2∗

.

Using the above estimate, we obtain

|A(kn+1)| 6 C

(kn+1 − kn)2∗
|A(kn)|2

∗/2 6 C
22∗(n+1)

M2∗
|A(kn)|2

∗/2.

We now prove by induction that

|A(kn)| 6 |A(0)|2−nµ,

where µ = 2∗

2∗
2 −1

. The case n = 0 is clear. Assume our claim holds for some n, we

have to check that it holds for n+ 1. We have

|A(kn+1)| 6 C
22∗(n+1)

M2∗

(
|A(0)|2−nµ

)2∗/2
= |A(0)|2−(n+1)µ,

using our choice for M and µ.
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Finally, by considering the limit n→∞, we get |A(M)| = 0. If d > 2, we have

M = Ĉ|A(0)|1/d 6 Ĉ|B2R|1/d = C̄R. (4.8)

Thus, we get Claim 1.
Next, using the ellipticity bounds in (4.4), we apply the DeGiorgi-Nash-Moser

estimate (see, [18], Theorem 8.22) to (4.6) to establish the following claim.

Claim 2. We have

osc(
R

2
, w) 6 η osc(R,w),

for some constant 0 < η < 1, where we denoted

osc(R,w) := sup
BR

w − inf
BR

w.

Combining the two preceding claims, we obtain the following estimate:

osc(R/4, v) 6 CR+ osc(R/4, w) 6 ĈR+ η osc(R, v). (4.9)

Claim 3. There exist constants C > 0 and 0 < α < 1 such that for all 0 < R < 1,
we have

osc(R, v) 6 CRα.

Set

Mn = sup
1

4n+1 6R6 1
4n

osc(R, v)

Rα
,

where α satisfies 0 < α < − log η
log 4 .

Here, we prove by induction that there exist µ > 1 satisfying

Mn 6Mµ−n (4.10)

for some sufficiently large M > 0. We choose µ satisfying

1 < µ < min(41−α,
1

4αη
), (4.11)

and then we choose M > 2
4α ‖v‖L∞(Td) and such that[
Ĉ
( µ

41−α

)n+1

+ η4αMµ

]
6M. (4.12)

The prior choice of M is possible due to (4.11).
For n = 0, M0 6 2

4α ‖v‖L∞(Td) 6M . Next, we assume that (4.10) holds for some
n > 0 and verify that it also holds for n replaced by n + 1. Using (4.9), we have
that

Mn+1 6

[
Ĉ
( µ

41−α

)n+1

+ η4αMµ

]
µ−(n+1).

Using the defining property of M , (4.12), we get (4.10).
Finally, for 0 < R < 1, combining (4.9) and (4.10), we obtain

osc(R, v) 6 (4Ĉ + η4αM)Rα,

which establishes the claim.

Claim 4.

‖Du‖C1,α(Td) 6 C.
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Due to Claim 3, we get ‖Du‖C0,α(Td) 6 C. Since (4.2) is a uniformly elliptic
equation and the Hölder-norm of the coefficients is bounded. Therefore, it fol-
lows from Schauder’s estimate that ‖Dv‖C0,α(Td) 6 C. Hence, we conclude that
‖Du‖C1,α(Td) 6 C.

5. Existence of solution for the discounted problem. Here, we prove the
existence of a classical solution for (1.1), using the continuation method. In this
Section, we suppose Assumption 1-3.

5.1. Setting. A key difficulty is that g−1 may not always defined on the whole
real line. Thus, to perform the continuation method, we modify g as follows. We
consider the case where limz→0 g(z) < −∞. We begin by selecting m0 ∈ R satisfying
0 < m0 < min{1, g−1(g(1) − oscV )}. Then, we define an increasing funcion h :
(0,∞) → R satisfying g > h, h(z) → −∞ as z → 0 and Assumption 2. Let η be a
decreasing smooth function satisfying

η1(x) =

{
1 0 < x 6 1

2m0

0 x > m0

.

Now, we consider{
εuε + 1

2 |Du
ε|2 + V (x) = f(mε) in Td,

εmε − div(mεDuε) = ε in Td,
(5.1)

where
f(m) := η(m)h(m) + {1− η(m)}g(m).

Because f : (0,∞) → R is increasing and surjective, we can define its inverse
f−1 : R → (0,∞). Moreoever, f 6 g on (0,m0], and f = g on [m0,+∞). As (1.1)
and (4.1) are equivalent, and (5.1) is equivalent to

div

{
f−1(εu+

|Du|2

2
+ V )Du

}
− ε
{
f−1(εu+

|Du|2

2
+ V )− 1

}
= 0. (5.2)

We check that f satisfies both Assumption 1 and Assumption 2. Indeed, because
f−1 is positive, f−1(f(1)− oscV ) > 0. Next, we see that for all z > 0,

f(z) 6 η(z){C2 +
1

2
zh(z)}+ {1− η(z)}{C2 +

1

2
zg(z)} = C2 +

1

2
zf(z).

Finally, since g > h and η is decreasing, we have

f ′(z) = η′(z){h(z)− g(z)}+ η(z)h′(z) + {1− η(z)}g′(z)

> η(z)h′(z) + {1− η(z)}g′(z) > C1z
β .

Thus, we obtain the estimates in Section 3 and 4 for (5.1) and (5.2). In the case
limz→0 g(z) = −∞, we can omit this resetting.

Remark 5.1. Replacing g by f , we modify the behavior of g(z) as z → 0, to
define its inverse on the whole real line. However, thanks to the lower bound for mε

in Proposition 3.2, the above does not change the solution. Indeed, any classical
solution (uε,mε) to (5.1) solves (1.1) as shown in the proof of Theorem 1.1.

Remark 5.2. Without Assumption 3, we need to modify g(z) as z → +∞, in
addition to the preceding changes. However, this is more complicated because the
upper bound for mε is more qualitative than the lower bound. On the other hand,
typical examples of g are power or logarithm functions which satisfy Assumption 3.
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5.2. Continuation method. Here, we show the existence of classical solution
to (5.2), using the continuation method. We begin by defining an operator, J :
C2,α(Td)× [0, 1]→ C0,α(Td), by

J(u, λ) = div

[
f−1

(
εu+

|Du|2

2
+ λV

)
Du

]
− ε
[
f−1

(
εu+

|Du|2

2
+ λV

)
− 1

]
.

We set

Λ =
{
λ ∈ [0, 1] : ∃uλ ∈ C2,α(Td) : J(uλ, λ) = 0

}
. (5.3)

We claim that Λ = [0, 1]. First, we observe that 0 ∈ Λ. In fact, for u0 ≡ ε−1f(1),
we have J(u0, 0) = 0. Accordingly, Λ is non-empty. Thus, it suffices to check that
Λ is relatively open and closed in [0, 1], to get Λ = [0, 1]. In the next proposition,
we verify that Λ is a closed set.

Proposition 5.3. Consider the setting of Problem 1 and suppose that Assumptions
1-3 hold. Let Λ as in (5.3). Then, Λ is relatively closed in [0, 1].

Proof. Fix a sequence λn ∈ Λ converging to λ ∈ [0, 1] as n → ∞. We must
show that λ ∈ Λ. For that, take uλn satisfying J(uλn , λn) = 0. Proceeding as
in Section 3 and Section 4, replacing g and V by f and λnV respectively, we get
bounds for {uλn}n∈N. In particular, the a priori bounds in Proposition 3.5 (for
d = 1) or Proposition 4.1 (for d > 1) guarantee that there exists a subsequence of
{uλn}n∈N converging to some u ∈ C2,α(Td). By passing to the limit, we conclude
that J(u, λ) = 0. Accordingly, λ ∈ Λ.

Now, we show that Λ is relatively open. For each λ ∈ Λ, let uλ ∈ C2,α(Td) solve
J(uλ, λ) = 0 and set

mλ = f−1

(
εuλ +

|Duλ|2

2
+ λV

)
.

We consider the linearization of J around this solution and define Lλ : C2,α(Td)→
C0,α(Td) for φ ∈ C2,α(Td) by

Lλ(φ) =
∂J

∂µ
(uλ + µφ, λ)

∣∣∣∣
µ=0

(5.4)

= div
[
mλDφ+ (f−1)′(f(mλ))(εφ+Duλ ·Dφ)Duλ

]
− ε(f−1)′(f(mλ))(εφ+Duλ ·Dφ).

Lemma 5.4. Consider the setting of Problem 1. Let uλ ∈ C2,α(Td) solve J(uλ, λ) =
0 and let Lλ be given by (5.4). Then, Lλ is an isomorphism between C2,α(Td) and
C0,α(Td) .

Proof. We must prove that for any ξ ∈ C0,α(Td), the equation

div
[
mλDφ+ (f−1)′(f(mλ))(εφ+Duλ ·Dφ)Duλ

]
(5.5)

− ε(f−1)′(f(mλ))(εφ+Duλ ·Dφ) = ξ

has a unique solution, φ ∈ C2,α(Td). We define Bλ : H1(Td)×H1(Td)→ R by

Bλ[v, w] =

∫
Td
Dw

[
mλDv + (f−1)′(f(mλ))(εv +Duλ ·Dv)Duλ

]
+ ε

∫
Td
w(f−1)′(f(mλ))(εv +Duλ ·Dv)dx.
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Note that if v and w are smooth, Bλ becomes Bλ[v, w] = (Lλ(v), w)L2 . Using
Hölder inequality, we see that Bλ is bounded. Now, using Riesz’s Representation
Theorem, we see that there exists a bounded linear operator A : H1(Td)→ H1(Td)
such that Bλ[v, w] = (Av,w) for all w ∈ H1(Td). We divide the rest of the proof in
the following three claims.

Claim 1. There exists a constant, c > 0, such that ‖Av‖H1(Td) > c‖v‖H1(Td) for

all v ∈ H1(Td).

We establish this claim by contradiction. For that, suppose that there exists
{vn}n∈N ⊂ H1(Td) with ‖vn‖H1(Td) = 1 and Avn → 0. Then,

Bλ[vn, vn] = (Avn, vn)→ 0.

Next, we have

Bλ[vn, vn] =

∫
Td
mλ|Dvn|2 + (f−1)′(f(mλ)){εvn +Duλ ·Dvn}2dx.

Since mλ and (f−1)′ are positive, we see that Dvn → 0 and εvn + Duλ ·Dvn → 0
in L2(Td). Hence, we can construct a subsequence {vnk}k∈N satisfying vnk → 0 in
H1(Td), which contradicts ‖vn‖H1(Td) = 1.

Claim 2. The range of A, R(A), is closed and R(A) = H1(Td).

Take a sequence {zn}n∈N ⊂ R(A) that converges to z ∈ E. To prove the first
part of the claim, we begin by showing that z ∈ R(A). For that, take wn ∈ H1(Td)
satisfying zn = Awn. From the preceding claim, it follows that {wn}n∈N is a Cauchy
sequence converging to some w ∈ H1(Td). By the continuity of A, we have z = Aw.
Thus, z ∈ R(A).

Next, to establish the last part of the claim, suppose that R(A) 6= H1(Td). In
this case, there exists a non-zero vector, v ∈ R(A)⊥. Then, we get

0 = (Av, v) = Bλ[v, v] =

∫
Td
mλ|Dv|2 + (f−1)′(f(mλ)){εv +Duλ ·Dv}2 dx.

This contradicts v 6= 0.

Claim 3. (5.5) has a unique solution φ ∈ C2,α(Td).

To prove this last claim, we define a bounded linear functional, T : H1(Td)→ R,
by

T (w) =

∫
Td
ξw dx.

The Riesz Representation Theorem guarantees that there exists a unique ŵ ∈
H1(Td) satisfying T (w) = (ŵ, w) for all w ∈ H1(Td). Taking φ = A−1ŵ, we
get

Bλ[φ,w] = (Aφ,w)E = (ŵ, w)E = T (w);

that is, φ ∈ H1(Td) is the unique weak solution of (5.5). Because (5.5) is a uniformly
elliptic equation and the coefficients belong to C0,α(Td), we conclude that φ ∈
C2,α(Td).

To finish the proof of Theorem 1.1 we verify that Λ is relatively open. This is
achieved in the next proposition.

Proposition 5.5. Consider the setting of Problem 1 and suppose that Assumptions
1-3 hold. Let Λ as in (5.3). Then, Λ is relatively open in [0, 1].
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Proof. By the preceding lemma, Lemma 5.4, we can apply the implicit function
theorem (see [6]) to the operator J to conclude that Λ is open. Therefore, for

any λ ∈ Λ, there exists δ > 0 such that for any λ̂ ∈ (λ − δ, λ + δ), we can find

û ∈ C2,α(Td) such that J(û, λ̂) = 0.

By combining the previous results, we prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Since 1 ∈ Λ, there exists a classical solution uε for (5.2).
Take mε = f−1(εuε + 1

2 |Du
ε|2 + V ). Then, (uε,mε) solves (5.1). Arguing as

in Proposition 3.2, from (5.1) we obtain that mε > f−1 (f(1)− oscV ). By the
definition of f , noting that m0 < 1, we obtain that for all x ∈ Td

mε(x) > f−1 (f(1)− oscV ) = f−1 (g(1)− oscV ) > g−1 (g(1)− oscV ) > m0.

Because g(mε) = f(mε) on Td, (uε,mε) solves (1.1).
The identity (2.1) gives that (1.1) has a unique classical solution. Indeed, let

(uε1,m
ε
1) and (uε2,m

ε
2) be classical solutions to (1.1). Then,{
ε(uε1 − uε2) + 1

2 |Du
ε
1|2 − 1

2 |Du
ε
2|2 = g(mε

1)− g(mε
2)

ε(mε
1 −mε

2)− div(mε
1Du

ε
1) + div(mε

2Du
ε
2) = 0.

Now, we multiply the first equation by (mε
1 − mε

2) and the second equation by
(uε1 − uε2). Next, subtracting the resulting identities and integrating by parts, we
obtain ∫

Td
(mε

1 −mε
2)(g(mε

1)− g(mε
2)) +

1

2
(mε

1 +mε
2)|Duε1 −Duε2|2 dx = 0.

Accordingly, mε
1 = mε

2 on Td because g is strictly increasing. Moreover, Duε1 = Duε2
on m > 0. In view of positivity of mε, we see Duε1 = Duε2 on Td. Hence, from the
first equation in (1.1), uε1 = uε2 on Td.

Finally, we show that under Assumptions 1 and 2, we have the convergence of
the solutions of (1.1).

Proof of Corollary 1.2. The estimates in Section 3 and 4 do not depend on ε. There-
fore, we can extract a subsequence εj such that εju

εj converges uniformly to a
constant −H̄ and (uεj −

∫
Td u

εjdx,mεj ) converges to some (u,m) in C2,α × C1,α.

Therefore, (u,m, H̄) solves (1.2). By the results in Section 2, m and H̄ are uniquely
determined. Accordingly, the limit of εju

εj and mεj does not depend on the subse-
quence. Because of Proposition 3.2, we have that m > 0. Thus, there exists a unique
solution, (u,m, H̄) of (1.2) satisfying the additional condition

∫
Td udx = 0.

6. Refined asymptotics. Now, we investigate the asymptotic behavior of {uε −
H/ε}ε>0 and prove Theorem 1.4, thus improving the converge results in Corollary
1.2.

First, to address Problem 3, we consider the linearized discounted problem that
we state now.

Problem 4. Let g be as in Problem 1 with g ∈ C∞ and let (u,m) ∈ C∞(Td) ×
C∞(Td) solve Problem 2 with m > 0. Suppose that ε > 0. Given A,B ∈ C∞(Td),
find vε, θε : Td → R such that{

εvε + u+Du ·Dvε = g′(m)θε +A in Td,

εθε − div(mDvε)− div(θεDu) = 1−m+ div(B) in Td.
(6.1)
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Proposition 6.1. Suppose Assumption 2 holds. Then, Problem 4 has a unique
weak solution (vε, θε) ∈ H1(Td)× L2(Td).

Proof. Because m > 0, Assumption 2 (or the alternative assumption in Remark
1.5) gives that g′(m) is bounded by below. From the first equation in (6.1), we get

θε =
εvε + u+Du ·Dvε −A

g′(m)
. (6.2)

Using the previous expression for θε in the second equation in (6.1), we obtain

− div

(
mDvε +

εvε +Du ·Dvε

g′(m)
Du

)
+
ε(εvε +Du ·Dvε)

g′(m)
(6.3)

= 1−m+ div(B) + div

(
u−A
g′(m)

Du

)
− ε(u−A)

g′(m)
.

Therefore, it suffices to show that (6.3) has a weak solution. For that, we define a
bilinear form, K : H1(Td)×H1(Td)→ R, by

K[φ1, φ2] =

∫
Td
mDφ1 ·Dφ2 +

εφ1 +Du ·Dφ1

g′(m)
Du ·Dφ2 +

εφ2(εφ1 +Du ·Dφ1)

g′(m)
dx.

Because m and u are smooth with g′(m) bounded by below, we see that K is a
bounded bilinear form. Moreover, for all φ ∈ H1(Td),

K[φ, φ] =

∫
Td
m|Dφ|2 +

(Du ·Dφ+ εφ)2

g′(m)
dx.

Hence, K is coercive. Thus, applying the Lax-Milgram theorem, we see that (6.3)
has a unique weak solution, vε ∈ H1(Td). Then, using (6.2) and taking into account
that g′(m) is bounded by below, we obtain a weak solution θε ∈ L2(Td).

Proposition 6.2. Let (vε, θε) ∈ H1(Td)×L2(Td) be a weak solution of Problem 4.
Then, there exists a constant C > 0 independent of ε such that

‖εvε‖L2(Td) + ‖θε‖L2(Td) + ‖Dvε‖L2(Td) 6 C(‖A‖L2(Td) + ‖B‖L2(Td) + 1).

Proof. We multiply the first equation in (6.1) by θε and the second one by vε. Next,
we subtract the resulting expressions to get

uθε+θεDu ·Dvε+vεdiv(mDvε)+vεdiv(θεDu) = g′(m)|θε|2− (1−m)vε−vεdiv(B)+Aθε.

Integrating by parts, we obtain∫
Td
g′(m)|θε|2 +m|Dvε|2 dx =

∫
Td

(u−A)θε + (1−m)vε + vεdiv(B) dx.

Using Poincaré’s inequality, we conclude that∫
Td
m|Dvε|2 dx 6

∫
Td

(u−A)θε + (1−m)vε + vεdiv(B) dx

=

∫
Td

(u−A)θε + (1−m)

(
vε −

∫
vε dx

)
+ vεdiv(B) dx

6 ‖u‖L2(Td)‖θε‖L2(Td) + ‖A‖L2(Td)‖θε‖L2(Td)

+ ‖1−m‖L2(Td)‖Dvε‖L2(Td) + ‖B‖L2(Td)‖Dvε‖L2(Td).

Hence, taking into account that m is bounded by below,

‖Dvε‖2L2(Td) 6 C(‖θε‖L2(Td) + ‖A‖L2(Td)‖θε‖L2(Td) + ‖B‖2L2(Td)). (6.4)
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Arguing analogously, we obtain∫
Td
g′(m)|θε|2 dx 6 ‖u‖L2(Td)‖θε‖L2(Td) + ‖A‖L2(Td)‖θε‖L2(Td)

+ ‖1−m‖L2(Td)‖Dvε‖L2(Td) + ‖B‖L2(Td)‖Dvε‖L2(Td).

Hence, by (6.4),

‖θε‖2L2(Td) 6 C(‖A‖2L2(Td) + ‖B‖2L2(Td) + 1).

Combining the preceding inequality with (6.4), we have the estimate

‖Dvε‖2L2(Td) 6 C(‖A‖2L2(Td) + ‖B‖2L2(Td) + 1).

Finally, the first equation in (6.1) yields

‖εvε‖2L2(Td) 6 C(‖A‖2L2(Td) + ‖B‖2L2(Td) + 1).

Next, we bootstrap higher regularity for (vε, θε).

Proposition 6.3. Let (vε, θε) be a weak solution of Problem 4. Fix h ∈ {1, 2, , ..., d}
and let z = vεxh . Then, for each k ∈ N, there exists a constant Ck > 0 such that

‖z‖Hk(Td) 6 Ck(1 + ‖A‖Hk(Td) + ‖B‖Hk(Td)).

Proof. We begin by rewriting (6.3) as

−div

(
mDvε +

Du ·Dvε

g′(m)
Du

)
=− div

(
εvε

g′(m)
Du

)
− ε(εvε +Du ·Dvε)

g′(m)
+ 1−m

+ div(B) + div

(
u−A
g′(m)

Du

)
− ε(u−A)

g′(m)
.

Next, we fix h ∈ {1, 2, ..., d} and let z = vεxh . Differentiating the preceding equation
with respect to xh, we obtain

(aijzxj )xi = φxh + ψixi , (6.5)

where

aij = δijm+
uxiuxj
g′(m)

,

ψi = −mxhvxi −
Du ·Dvε

g′(m)
uxixh +

Du ·Dvε

g′(m)2
g′′(m)uximxh +

Dvε ·Duxh
g′(m)

uxi ,

and

φ =− div

(
εvε

g′(m)
Du

)
− ε(εvε +Du ·Dvε)

g′(m)
+ 1−m

+ div(B) + div

(
u−A
g′(m)

Du

)
− ε(u−A)

g′(m)
.

By the previous proposition, we know that

‖z‖L2(Td) 6 C(‖A‖L2(Td) + ‖B‖L2(Td) + 1).

Furthermore, we have the estimates

‖φ‖L2(Td) 6 C(‖A‖H1(Td) + ‖B‖H1(Td) + 1),

and

‖ψ‖L2(Td) 6 C(‖A‖L2(Td) + ‖B‖L2(Td) + 1).
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Let k > 0. Multiplying (6.5) by z and integrating by parts, we get∫
Td
aijzxjzxidx =

∫
Td
−φzxh +−hzxidx.

Because of the uniform ellipticity of aij , we get∫
Td
|Dz|2dx 6 C(‖φ‖L2(Td) + ‖h‖L2(Td))‖Dz‖L2(Td).

Hence,

‖Dz‖L2(Td) 6 C(‖φ‖L2(Td) + ‖h‖L2(Td)) 6 C(1 + ‖A‖H1(Td) + ‖B‖H1(Td)).

Therefore,
‖φ‖H1(Td) 6 C(‖A‖H2(Td) + ‖B‖H2(Td) + 1),

and
‖ψ‖H1(Td) 6 C(‖A‖H1(Td) + ‖B‖H1(Td) + 1).

The conclusion follows by iterating this argument for higher derivatives.

Proposition 6.4. Let (vε, θε) be a weak solution of Problem 4. Then, for each
k ∈ N, there exists a constant Ck > 0 such that

‖εvε‖Hk(Td) + ‖θε‖Hk(Td) 6 Ck(1 + ‖A‖Hk(Td) + ‖B‖Hk(Td)).

In particular, (vε, θε) is a classical solution of (6.1).

Proof. Differentiating the first equation in (6.1), we get

‖Dθ‖L2(Td) 6 C(1 + ‖A‖H1(Td) + ‖B‖H1(Td)).

The above implies

‖εvε‖H1(Td) 6 C(1 + ‖A‖H1(Td) + ‖B‖H1(Td)).

Iterating the preceding steps, we get the result.

Proposition 6.5. For ε > 0, let (vε, θε) be a weak solution of Problem 4 and assume
that

‖A‖L∞(Td) + ‖B‖L∞(Td) 6 Cε

for some constant C > 0. Then, there exists a solution (v, θ, λ) of Problem 3 and,
for each k ∈ N,

lim
ε→0

(
‖εvε − λ‖L∞(Td) + ‖θε − θ‖Hk(Td) +

∥∥∥∥(vε − ∫
Td
vε dx

)
− v
∥∥∥∥
Hk(Td)

)
= 0.

Proof. By the previous estimates on the solutions of Problem 4, we can choose a
subsequence such that εvε → −λ, θε → θ and vε −

∫
vε → v. Clearly, (v, θ, λ)

solves (1.5). Because the solution to (1.5) is unique, the limit is independent of the
particular sequence. Therefore, (vε, θε) converges to (v, θ).

Finally, we present the proof of Theorem 1.4.

Proof of Theorem 1.4. Fix k ∈ N and set

Ek = {(v, θ) ∈ Hk+1(Td)×Hk(Td), ‖εv‖Hk(Td) + ‖Dv‖Hk(Td) + ‖θ‖Hk(Td) 6 Ĉk},

where Ĉk is to be chosen later. For (v, θ) ∈ Ek, we find (v̂, θ̂) solving (6.1), where

A(x) =
−ε2v − ε2

2 |Dv|
2 + g(m+ εθ)− g(m)− εg′(m)θ

ε
,
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and

B(x) =
ε2θDv

ε
.

Because,

‖A‖Hk(Td) + ‖B‖Hk(Td) 6 CĈk
2
ε,

we obtain

‖εv‖Hk(Td) + ‖Dv‖Hk(Td) + ‖θ‖Hk(Td) 6 Ck(‖A‖Hk(Td) + ‖B‖Hk(Td) + 1)

6 Ck(1 + Ĉk
2
ε).

We can choose Ĉk such that, for ε small enough, the right-hand side is less than

Ĉk. Then, it holds that (v, θ) → (v̂, θ̂) has a fixed point (vε, θε). We remark that

(εvε + u+ H̄
ε ,m+ εθε) solves (1.1) and therefore it is equal to (uε,mε). Hence, by

the previous proposition, for suitably large k, as ε→ 0,

‖uε − H̄

ε
− u− λ‖∞ = ‖εvε − λ‖∞ → 0.

7. Convergence and selection. Now, we investigate the behavior of (uε,mε) as
ε → 0 in the case where Problem 2 may have multiple solutions; that is, when
Assumptions 1 and 2 do not hold. We are interested in which of the solutions of
Problem 2 arise as a limit of solutions of Problem 1. Without Assumptions 1 and
2, smooth solutions may not exist. Therefore, we need to work with weak solutions.
For Problem 1, weak solutions were shown to exist in [16]. In Section 7.1, we
review those existence results and use them to show the existence of a solution for
Problem 2. Then, in Section 7.2, we construct certain measures on phase space
that generalize Mather measures. Next, in Section 7.3, we prove our main selection
result, Theorem 1.9. We end the paper with a discussion of an explicit example, in
Section 7.4.

7.1. Regular weak solutions. We begin this section by proving the following
result on the stability of regular weak solutions. In particular, since the estimate of
regular weak solutions of Problem 1 was proved in [16], we obtain the existence of
regular weak solutions for Problem 2.

Proposition 7.1. Suppose that Assumption 4 holds and α > d−4
d if 4 < d. Let

(mε, uε) be a regular weak solution of Problem 1. Assume that mε ⇀ m weakly in
L1(Td), uε −

∫
uεdx ⇀ u weakly in W 1,2(Td), and that ε

∫
uε dx → −H. Then,

(m,u,H) is a regular weak solution of Problem 2.

Proof. Properties 1 and 3 in Theorem 1.7 are immediate; that is,

m > 0,

∫
Td
mdx = 1, ‖uε −

∫
Td
uεdx‖W 1,2(Td) 6 C.

From Property 2, we conclude that, through a subequence (mε)
α+1
2 , converges

weakly in W 1,2 to a function η(x). Moreover, by Rellich-Kondrachov theorem,

(mε)
α+1
2 → η in L2(Td) and extracting a further sequence if necessary also almost

everywhere. Therefore, mε → η
2

α+1 = m almost everywhere. Accordingly (mε)
α+1
2

converges to m
α+1
2 weakly in W 1,2(Td), strongly in L2(Td) and almost everywhere.

Consequently

‖m
α+1
2 ‖W 1,2(Td) 6 C.
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Next, we examine Property 5 in Theorem 1.7. By compactness, (mε)
α+1
2 Duε

converges weakly in BV, through a subsequence, to a function ψ ∈ BV with

‖ψ‖BV (Td) 6 C. Because (mε)
α+1
2 converges to m

α+1
2 strongly in L2(Td) and Duε

converges weakly to Du in L2(Td), we have for any ϕ ∈ C∞(Td)∫
Td
ϕ(mε)

α+1
2 Duεdx→

∫
Td
ϕm

α+1
2 Dudx.

Therefore,

ψ = m
α+1
2 Du.

Finally, we address the limit properties corresponding to (1.6), (1.7) and (1.8).
We take a smooth function, ϕ ∈ C∞(Td), multiply (1.8) by ϕ and integrate. Because∫

Td
ε(mε − 1)ϕdx→ 0,

we have ∫
Td
mεDϕDuεdx→ 0.

Because of Rellich-Kondrachov theorem∫
Td

(mε)q
α+1
2 dx→

∫
Td
mq α+1

2 dx,

for any q < 2∗. In particular, for α in the range of Assumption 4 this implies
mε → m strongly in L2(Td). Using the weak convergence of uε in W 1,2(Td) we
conclude that ∫

Td
mDϕDudx = 0.

Next, we select a smooth non-negative function, ϕ > 0, multiply (1.6) by ϕ, and
integrate in Td. We have∫

Td
(εuε − V (x))ϕdx→

∫
Td

(
−H − V (x)

)
ϕdx.

Moreover, by convexity

lim inf
ε→0

∫
Td

|Duε|2

2
ϕdx >

∫
Td

|Du|2

2
ϕdx.

Finally, we observe that∫
Td
g(mε)− g(m)dx =

∫
Td

∫ 1

0

g′(smε + (1− s)m)(mε −m)dx.

For any α > 0, we can select p and p′ such that 1
p + 1

p′ + 1, p(α − 1) < 2∗

2 (α + 1),

and p′ < 2∗

2 (α+ 1). Next, we estimate

‖g′(smε + (1− s)m)‖Lp 6 C(‖mε‖Lp(α−1) + ‖m‖Lp(α−1)) 6 C.

Therefore, since ‖mε −m‖Lp′ → 0, we conclude that∫
Td
g(mε)− g(m)dx→ 0.

Proposition 7.2. Suppose that Assumption 4 holds. Let (mε, uε) be a regular weak
solution of Problem 1. Then, there exists a constant C > 0 independent of ε such
that ∫

Td
|Duε|2mε +mεg(mε)dx 6 C. (7.1)
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Proof. Because of properties 1 and 2 in Theorem 1.7, Assumption 4 implies that∫
Td
mεg(mε)dx 6 C.

Then, (7.1) follows by integrating (1.7).

Remark 7.3. If Assumptions 4 holds, a similar estimate holds for regular weak
solutions (m,u,H) of Problem 2. Namely, there exists a constant C > 0 such that∫

Td
|Du|2m+mg(m)dx 6 C.

7.2. Mather measures. We begin by introducing a class of phase-space proba-
bility measures called Mather measures, see [32] and [33]. These measures were
introduced in the context of Lagrangian mechanics and later used to examine the
properties of Hamilton–Jacobi equations in [12, 13, 14, 15] and in [10, 11]. In
the context of the selection problem, generalized Mather measures were first used
in [19]. As previously, we suppose that Assumption 4 holds. Accordingly, we work
with regular weak solutions of Problems 1 and 2.

Fix a regular weak solution (uε,mε) of Problem 1 and a regular weak solution
(u,m) of Problem 2. Next, we rewrite (1.1) as{

εuε + 1
2 |Du

ε|2 +W ε(x) = 0 in Td,

εmε − div(mεDuε) = ε in Td,

where W ε(x) = V (x)− g(mε) and, assuming without loss of generality that H = 0,
we rewrite (1.2) as {

1
2 |Du|

2 +W (x) = 0 in Td,

−div(mDu) = 0 in Td,

where W (x) = V (x)− g(m).

Proposition 7.4. Suppose that Assumption 4 holds. Let (uε,mε) be a regular
weak solution of Problem 1. Let Lε = 1

2 |v|
2 −W ε(x) with W ε(x) = V (x) − g(mε).

Consider the phase-space measure, µε, the ε-Mather measure, determined by∫
Td×Rd

φ(x, v) dµε =

∫
Td
φ(x,−Duε)mε dx

for all φ ∈ C(Td × Rd). Then, µε satisfies the discounted holonomy condition∫
Td×Rd

(−εϕ(x) + vDxϕ(x)) dµε = −ε
∫
Td
ϕdx (7.2)

for all ϕ ∈ C1(Td). Moreover, we have∫
Td×Rd

Lε(x, v) dµε = ε

∫
Td
uε dx. (7.3)

Proof. Because (1.8) holds in the sense of distributions, the discounted holonomy
condition for µε, (7.2), follows immediately. Next, recall that if mε is an integrable
non-negative function then L2

1+mε(Td), the space of all measurable functions f :

Td → R that satisfy ∫
Td
|f |2(1 +mε)dx <∞,
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is a Hilbert space. Moreover, if ηδ is a standard mollifier, we have

ηδ ∗ f → f

in L2
1+mε(Td). Due to (1.6) and (1.7), we have

Duε ∈ L2
1+mε(Td).

Accordingly, because of (7.2), we have∫
Td×Rd

−ε(ηδ ∗ uε) + vDx(ηδ ∗ uε) dµε = −ε
∫
Td

(ηδ ∗ uε) dx.

Taking the limit δ → 0, we obtain∫
Td×Rd

−εuε + vDxu
ε dµε = −ε

∫
Td
uε dx. (7.4)

Taking into account the definition of Lε and using the identities (1.7) and (7.4), we
conclude that∫

Td×Rd
Lε(x, v) dµε =

∫
Td×Rd

1

2
|v|2 −W ε(x) dµε

=

∫
Td

(
1

2
|Duε|2 −W ε(x)

)
mε dx+

∫
Td×Rd

vDxu
ε − εuε dµε + ε

∫
Td
uε dx

= ε

∫
Td
uε dx.

Remark 7.5. From (7.2) and (7.3), we conclude that µε is a discounted Mather
measure with trace dx in the sense of the definition in [19].

Similarly, for Problem 2, we have the following result.

Proposition 7.6. Suppose that Assumption 4 holds. Let (u,m,H) be a regular
weak solution of Problem 2. Assume without loss of generality that H = 0. Let
L = 1

2 |v|
2 −W with W (x) = V (x) − g(m). Consider the phase-space measure, µ,

the Mather measure, determined by∫
Td×Rd

φ(x, v) dµ =

∫
Td
φ(x,−Du)mdx,

for all φ ∈ C(Td × Rd). Then, µ satisfies the holonomy constraint∫
Td×Rd

vDxϕ(x) dµ = 0

for all ϕ ∈ C1(Td). Moreover∫
Td×Rd

L(x, v) dµ =

∫
Td

(
1

2
|Du|2 −W (x)

)
mdx = 0.

Proof. The proof is analogous to the one of Proposition 7.4
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7.3. Selection. The goal of this section is to prove Theorem 1.9 and, hence, estab-
lish a selection criterion for the limit of uε and prove the convergence of mε. Our
proof is inspired by the one in [19].

Proof of Theorem 1.9. Let (uε,mε) be a regular weak solution of Problem 1. Sup-
pose that uε −

∫
uεdx ⇀ ū in H1(Td) and that mε ⇀ m̄ weakly in L1(Td). Note

that due to the bounds in Theorem 1.7, we have that mε → m̄ strongly in Lp for
p < 2∗

2 (α + 1). Let (u,m) be a regular weak solution of Problem 2. Let µε and µ
be the Mather measure constructed in the previous section in Propositions 7.4 and
7.6.

For any v ∈ Rd and almost every x ∈ Td, we have

−v · p− Lε(x, v) 6
1

2
|p|2 +W ε(x),

where W ε is as in Proposition 7.4. Consider a standard mollifier ηδ, and let p =
D(ηδ ∗ u). Then, for v ∈ Rd and almost every x ∈ Td,

−v ·D(ηδ ∗ u)− Lε(x, v) +W −W ε 6
1

2
|D(ηδ ∗ u)|2 +W ε +W −W ε (7.5)

=
1

2
|D(ηδ ∗ u)|2 +W,

where W is as in Proposition 7.6. Integrating the left-hand side of the preceding
expression with respect to µε and using the holonomy condition, (7.2), and (7.3),
we obtain∫

Td×Rd
v ·D(ηδ ∗ u)− Lε(x, v) +W −W εdµε (7.6)

= −ε
∫
Td

(ηδ ∗ u)mεdx+ ε

∫
Td

(ηδ ∗ u)dx− ε
∫
Td
uεdx+

∫
Td

(W −W ε)mεdx

= −ε
∫
Td

(ηδ ∗ u)mεdx+ ε

∫
Td

(ηδ ∗ u)dx− ε
∫
Td
uεdx+

∫
Td

(W −W ε)mεdx.

Next, we integrate the right-hand side of (7.5) and use Jensen’s inequality to obtain

∫
Td×Rd

1

2
|D(ηδ ∗ u)|2 +Wdµε 6

∫
Td×Rd

1

2
ηδ ∗ (|Du|2) +Wdµε 6

∫
Td×Rd

−ηδ ∗W +Wdµε,

(7.7)

taking into account (1.9). Because W ∈ Lα+1
α (Td), ηδ ∗W → W in L

α+1
α (Td) as

δ → 0. Therefore, taking into account that mε ∈ Lα+1(Td), we have∫
Td×Rd

−ηδ ∗W +Wdµε → 0,

as δ → 0. Therefore, combining (7.5), (7.6), and (7.7), and by considering the limit
δ → 0, we conclude that

−ε
∫
Td
umεdx+ ε

∫
Td
udx− ε

∫
Td
uεdx+

∫
Td

(W −W ε)mεdx 6 0. (7.8)

On the other hand, we observe that, for all v ∈ Rd and almost every x ∈ Td,

εuε + v ·D(ηδ ∗ uε)− L(x, v) +W ε −W 6 εuε +
1

2
|D(ηδ ∗ uε)|2 +W +W ε −W.
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Integrating with respect to µ and proceeding in a similar manner, we obtain

ε

∫
Td
uεmdx+

∫
Td

(W ε −W )mdx 6 0. (7.9)

Next, from (7.8), we gather

−ε
∫
Td
〈u〉mεdx− ε

∫
Td
uεdx+

∫
Td

(W −W ε)mεdx 6 0.

Finally, from (7.9), we get

ε

∫
Td
〈uε〉mdx+ ε

∫
Td
uεdx+

∫
Td

(W ε −W )mdx 6 0.

Adding the above two inequalities, we obtain

ε

(∫
Td
〈uε〉mdx−

∫
Td
〈u〉mεdx

)
+

∫
Td

(W −W ε)(mε −m)dx 6 0. (7.10)

By Sobolev’s inequality, we have 〈uε〉, 〈u〉 ∈ L2∗(Td), uniformly in ε. Moreover,

m,mε ∈ L
2∗
2 (α+1)(Td), uniformly in ε. In the range of α, we observe m,mε ∈

L(2∗)′(Td), where (2∗)′ is the Hölder’s conjugate of 2∗. Therefore,
∫
〈uε〉mdx and∫

〈u〉mεdx are bounded uniformly in ε. Consequently, the first term in the left-hand
side of (7.10) converges to 0. Hence, we obtain (1.12). Moreover, because the second
term is non-negative, we conclude by the monotonicity of g that∫

Td
〈uε〉mdx−

∫
Td
〈u〉mεdx 6 0.

Hence, (1.13) holds.

7.4. An explicit example. Finally, in this subsection, we present an application
of our selection criterion. We consider the following discount problem:{

εuε + 1
2 |u

ε
x|2 + π cos(2πx) = mε in T1,

εmε − (mεuεx)x = ε in T1,
(7.11)

Thus d = 1, V (x) = π cos(2πx), and g(m) = m. The associated limit problems of
(7.11) is (2.2) in Section 2.2. By Theorem 1.7, there exists a regular weak solution
(uε,mε) ∈ H1(T1)×H1(T1), of (7.11). We note that uε−

∫
Td u

εdx converges along

subsequence weakly in H1(T1). In view of Proposition 7.1, the limit is a regular
weak solution of (2.2). However, regular weak solutions for (2.2) are not unique, as
we show in Section 2.2.

By (1.13), we get the following result:

Proposition 7.7. Let (uε,mε) be regular weak solution of (7.11). Suppose that
uε −

∫
uεdx → ū as ε → 0 weakly in H1(T1). Let (u,m) be any regular weak

solution of (2.2). Then, ∫
T1

〈ū〉m dx 6
∫
T1

〈u〉m dx.

Using the above criterion, we can show that uε−
∫
T1 u

εdx fully converges weakly

in H1(T1) sense and we can detect the unique limit of uε −
∫
T1 u

εdx, as we show
now.
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Proposition 7.8. Let ũ ∈ H1(T1) be determined by

ũx =
√

(−2π cos(2πx))+ · χ{1/4<x<1/2} −
√

(−2π cos(2πx))+ · χ{1/2<x<3/4},

and ũ(0) = 0. Then ũ is the unique minimizer of
∫
T1〈u〉m dx over all regular weak

solutions u of (2.2).

Proof. Let u be any regular weak solution of (2.2). Because the quantities∫
T1〈u〉m dx is invariant by addition of a constant to u, we can assume u(0) = ũ(0) =

0, without loss of generality. Moreover, because of (2.3) and by periodicity, we have
u(x) = ũ(x) = 0 for x ∈ [0, 1/4] ∪ [3/4, 1]. Then,∫

T1

〈u〉 dm =

∫
T1

um dx−
(∫

T1

u dx

)(∫
T1

m dx

)
=

∫
[1/4,3/4]

um dx−
∫
T1

u dx = −
∫
T1

u dx.

Hence, it suffices to discuss the quantities of −
∫
T1 u dx.

Because of (2.4), we can see that ũ(x) > u(x) in x ∈ [1/4, 1/2]. On the other
hand, it holds that ũ(x) > u(x) in x ∈ [1/2, 3/4]. Indeed, suppose that there exists
x0 ∈ [1/2, 3/4] and solution u0 such that ũ(x0) < u0(x0). Then, it follows from
(2.4) that u0(3/4) > ũ(3/4) = 0, which is a contradiction. Thus, ũ(x) > u(x) for
x ∈ T1 and we see

∫
T1 ũ dx >

∫
T1 u dx.
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