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Abstract. This paper presents a development of the mathematical theory

of swarms towards a systems approach to behavioral dynamics of social and

economical systems. The modeling approach accounts for the ability of social
entities are to develop a specific strategy which is heterogeneously distributed

by interactions which are nonlinearly additive. A detailed application to the

modeling of the dynamics of prices in the interaction between buyers and sellers
is developed to describe the predictive ability of the model.

1. Aims and plan of the paper. A recent literature has shown a rapidly grow-
ing interest towards a systems approach to social dynamics and behavioral econ-
omy, where mathematical sciences are deemed to capture the complexity features
of these systems under the influence of individual and collective human behav-
iors. As observed in [4], the emerging point of view is the interaction between
economics, psychology, and sociology, which is no longer grounded on the tradi-
tional assumption of rational behaviors. Indeed, the scientific community supports
the assumption that economics can be highly affected by rational or even irrational
behaviors [1, 10, 41, 55, 56].

The general framework of behavioral economy is delivered in the books [58, 59]
by Richard Thaler, Nobel laureate. Additional hints suggest to go beyond the con-
cept of rationality and to explore the role of ethical and unethical behaviors [34, 36,
52, 53] which might lead to important social injustice, even in the wealth distribu-
tion. According to Angus Deaton [28], the dynamics of economy should not hide
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the important role of welfare distribution and social inequalities. In some cases,
mathematical models might contribute to anticipate the discovery of rare events,
say black swans [57], which might be induced by several concomitant and interactive
causes [16].

A recent approach refers to developments of the mathematical tools of the kinetic
theory and statistical mechanics towards the study of behavioral systems, social
and economical. The development is achieved by taking mathematical models, for
instance Fokker-Planck or Boltzmann equation [33], of the classical kinetic theory in
the case of space homogeneity and replacing the velocity variable by new variables
deemed to model social or economical expressions. This approach is documented
in the book [49], where this topic has been developed from the modeling issues to
computational tools.

We have selected, out of the recent literature, five interesting papers as examples
of applications on opinion formation [6, 22], on the interaction between wealth
distribution and the dynamics of collective knowledge [50] and on price and good
exchange dynamics in financial markets [23, 24], where the last two papers chase
objectives analogous to those of our paper. In detail, a deep analysis of stock
prices, considering the role of opinions mainly in the behavior of the chartist agents
is developed in [23], while a structure incorporating the Edgeworth box tool, which
the authors employ in the presence of an agent-based system, characterizes [24]. In
both cases, an appropriate set of hypotheses coming from the literature in strictly
related to the results.

A parallel alternative appears to be the so-called kinetic theory of active par-
ticles, where the common feature with respect to [49] is that the dependent vari-
able, deemed to model the state of the overall system, is a probability distribution
function over the state of the interacting entities viewed as active (living) agents
(particles). A systematic use of theoretical tools of stochastic, evolutionary game
theory is applied to model interactions. This multiscale vision leads to differential
structures suitable to capture the complexity features of living entities.

The aforementioned theoretical approach has been focused in [3] to the study
of the dynamics of systems within the framework of behavioral economy. Detailed
hints have been given in [3] to indicate how the overall systems can be subdivided
into groups of interest, called functional subsystems, each of them expressing a spe-
cific social and/or economical strategy, and subsequently how these groups interact
at various levels. This article refers to a general conceptual framework [17], where
mathematics interacts with the so-called soft sciences. More recent developments
are available in the surveys [4, 25, 31] as well as in the book [12], which combines
tools of the mathematical kinetic theory with theoretical tools of behavioral game
theory [37, 40, 48].

Mathematical models derived by the kinetic theory approach [12, 17] refer to
opinion formation on networks [30], to the role of nonlinear interactions in wealth
dynamics[29], and to a mathematical interpretation of Acemoglu’s trapping dynam-
ics [32]. Additional literature has been developed to show how interactions between
welfare policy and spread of political opinions might lead to radicalization [16], evo-
lutionary economy [14], as well as to the interactions between welfare policy and
onset and propagation of criminality [13, 26]. The role of exogenous networks has
been studied in [43, 44]. An important feature of the mathematical theory is that
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interactions are nonlinearly additive and are allowed to depend on the probabil-
ity distribution function, namely on the dependent variable. This specific feature
generates conceptual difficulties which challenge mathematical sciences.

The mathematical approaches which have been outlined above have marched in
parallel to classical agents methods [19, 35, 38, 39, 41, 42], and nonlinear dynamical
systems [9, 18, 20]. All different approaches present advantages as well as drawbacks
so that it is worth developing scientific investigation to discover possible alternatives
to the mathematical tools that have been briefly presented above.

Our paper is devoted to develop an approach based on a suitable development
of the theory of swarms arguably initiated by the celebrated paper by Cucker and
Smale [27] with the aim of developing a systems approach to behavioral dynamics
of social and economical systems. The contents of our paper also accounts for
some pioneer articles that have already introduced a swarm approach to model
financial markets [2, 7, 8] as well as to the derivation of kinetic type models from
the underlying description of interactions by individual based models [15]. In more
detail, our paper is mainly focused on modeling and simulations with application
to the study of price sequences, while the contents are presented throughout three
more sections.

Section 2 presents our main theoretical result, namely the development of a
systems approach based on the differential structures, derived by mathematical
structures of the swarms theory, suitable to describe the dynamics of models of socio-
economical systems inspired by the visionary Cucker-Smale theory of swarms [27].

Section 3 deals with a well defined case study, selected as a possible benchmark
to test the approach proposed in this paper in view of further applications. In more
detail, a model of price dynamics accounting for heterogeneous individual behaviors.
Some sample simulations are developed to test the predictive ability of the model.
It is shown that the approach leads to a consistent descriptive ability by employing
a very parsimonious set of economic bases.

Section 4 looks at research perspectives focusing both on possible applications in
behavioral economy, specifically the dynamics on networks and on space in general,
modeling external actions, and on the interaction of price dynamics and other social-
economical dynamics.

2. Towards a swarms theory of social economical systems. This section is
devoted to the derivation of a differential system, inspired by the theory of swarms,
to model a broad variety of social-economical systems. As it is known, modeling
and simulations of real systems are developed, with predictive purposes or with ex-
plorative aims, to investigate the scenario of the possible trends of socio-economical
systems depending on the parameters of models.

As mentioned in Section 1, we refer to the mathematical structures of swarm
theory. Let us consider the dynamics of a swarm of N interacting self-propelled
particles whose individual state is simply defined by position xi and velocity vi.
The formal differential structure suitable to describe the dynamics is a system of
2 · N · 3 ordinary differential equations, where the time derivative of xi is the
velocity vi, while the time derivative of vi, namely the acceleration is given by a
phenomenological model Fi(x,v) which is a psycho-mechanical acceleration acting
on the i–th particle based on the action of other particles, while x and v denote,
respectively the set of all positions and velocities. Generally, the dynamics is in
three space dimensions.
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The scientific literature on swarms has been arguably initiated by physicists,
while the interest of mathematicians has been boosted by the visionary paper [27].
An overview of the vast literature on this topic is far beyond the aims of our paper
which consists in understanding how the structure delivered by the classical math-
ematical theory of swarms [6] can be modified towards the modeling of social and
economical systems. Of course, the first step consists in setting the variables that
can describe the individual state of the interacting entities. If particles are viewed
as agents which carry a certain social variable, for instance a social or political
opinion, an analogous structure has been used to study and control the dynamics of
the collective behavior of one or more populations [46, 51]. The concept of topolog-
ical interactions in swarms has been introduced in [11], by which interactions occur
with a fixed number of individuals rather than with those included in an influence
domain.

Our approach refers to a large system of interacting individual living entities,
called active particles, in short a-particles, subdivided into different groups of inter-
est which, according to [4], can be called functional subsystems, in short FSs. This
subdivision accounts for different objectives in each FS or for a different strategy
to pursue them. This objective-strategy can be called activity which corresponds
to the individual state of each individual entity.

The kinetic theory approach, briefly mentioned in Section 1, presents a number
of advantages, but also some withdraws. For instance, the derivation of models
requires the assumption of continuity of the dependent variable, which is the prob-
ability distribution function over the activity variable, can be admissible only for
very many active particles. The dynamics is studied under the assumption that a-
particles can communicate independently of their localization, hence space dynamics
is not accounted for. Interactions occur either within each functional subsystem or
across them. Proliferative/destructive events are not taken into account, hence the
total number of a-particles is constant in time within each functional subsystem.

Firstly, a general mathematical structure is derived with the aim of providing
the conceptual basis for the derivation of models, subsequently some constructive
concepts are given as a first step towards the derivation of specific models, as the
derivation of models can be achieved by a detailed modeling of interactions to
be inserted into the aforementioned structure, and finally some hints towards the
modeling of interactions are brought to the attention of the interested reader in
view of the next section where a specific application is studied. This new conceptual
approach leading should account, at least, of the following features:

- Social entities are able to develop a specific strategy which is heterogeneously
distributed.

- Interactions are nonlinearly additive, can modify the activity in each FS.

- Asymmetric interactions can be taken into account.

The search for a general framework suitable to provide the conceptual basis
to derive models of social/economical behavioral systems. We refer to a system
constituted by N individual entities, called a-particles, each expressing a specific
scalar social-economical function, called activity, while these entities belonging to
the same FS express the same activity according to a commonly shared strategy.
The development to the case of vector variables is treated later.

The rationale towards the derivation of models is proposed as follows:
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1. A-particles are grouped into n FSs labeled by the subscripts i = 1, . . . , n,
while the subscript j = 1, . . . , Ni identifies individually the activity variable
of each, of the Ni a-particles in the i-th FS. The term ij-particle is used to
denote a particle in the i-th FS with activity uj . Consequently, uij denotes
the activity level of an ij-particle, while an acceleration vij corresponds to the
activity uij to account for rapid variation of the said activity.

2. The intensity by which each ij-particle expresses its activity is modeled by
the variable uij ∈ Du = [0, 1] for each i-th FS, where uij = 0 and uij =
1 correspond, respectively, to the minimal and maximal levels of the said
activity. Asymmetries might be present in Du so that this feature must be
taken into account in the modeling approach.

3. Each particle feels the individual actions, corresponding both to micro-micro
(individual based) interactions, from the other particles and the actions of
each functional subsystem viewed as a whole, corresponding to micro-macro
(mean field) interactions. In the general case both actions can occur across
FSs.

4. Both micro-micro and micro-macro interactions depend nonlinearly on the
microscopic state of the interacting pairs and on the mean value of the ac-
tivity of the interacting micro and macro systems, respectively. Interactions
can cause modification of the activity, while since proliferative and destruc-
tive events are not taken into account, the total number of a-particles mi is
constant in time within each FS.

5. The derivation of specific models is in two steps, firstly a mathematical struc-
ture is derived accounting, still at a formal level, the interaction dynamics
described in the above items, and subsequently by a detailed modeling of
interactions referring to the specific system object of the modeling approach.

According to this representation m-order moments in each i-thFS can be com-
puted by

Emi =
1

Ni

Ni∑
j=1

umij with N =

n∑
i=1

Ni, and Em = {Emi }, (1)

where first and second order moments provide the expected (or mean) activity
and variance, respectively, while higher order moments give an information on the
distortion.

Let us now introduce the following quantities deemed to model, still at a formal
level, interactions:

ηpqij models the interaction rate of individual based interactions between ij-particles
and pq-particles;

µpij models the micro-macro interaction rate between ij-particles and p-functional
subsystem;

ϕpqij denotes the micro-micro action, which occurs with rate ηpqij , of a pq-particle
over an ij-particle;

ψpij denotes the micro-macro action, which occurs with rate µpij of a p-functional
subsystem over an ij-particle.

The mathematical structure is obtained modeling the action given by the product
η ϕ for the micro-micro interactions and by µψ for the micro-macro interactions and
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by equating the overall action to the acceleration of the variable uij . Supposing that
the interaction rates and the actions depend only on the states of the interacting
entities, micro-scale actions depends also on the speeds, and macro-scale actions are
expressed by first order moment, yields:

duij
dt

= vij ,

dvij
dt

=

n∑
p=1

Np∑
q=1

ηpqij (u,v)ϕpqij (u,v) +

n∑
p=1

µpij(u,Ep)ψ
p
ij(u,Ep),

(2)

where u = u(t) and v = v(t) denote, respectively, the set of all states uij and speed
of growth vij , while, as mentioned, Ni denotes the number of particles in the i-th
FS, and n the number of FSs.

The mathematical structure (2), as mentioned, can be viewed as a formal frame-
work towards the derivation of specific models by specializing the said structure by
a detailed modeling of interactions. The derivation can be developed only referring
to well defined case studies which might invoke as simplification of (2). Two dif-
ferent cases, among various possible ones, are reported below having in mind the
dynamics of price formation.

Case 1. The following types of interactions are significant: micro-micro only across
FSs and micro-macro only within the same FS. The mathematical structure can be
particularized as follows:

duij
dt

= vij ,

dvij
dt

=

n∑
p=1

Np∑
q=1

ηpqij (u,v)ϕpqij (u,v) + µiij(u,Ei)ψiij(u,Ei).
(3)

Case 2. The following types of interactions are significant: micro-micro only within
the same FS and micro-macro only across FSs. The mathematical structures is as
follows: 

duij
dt

= vij ,

dvij
dt

=

Ni∑
q=1

ηiqij (u,v)ϕiqij(u,v) +

n∑
p=1

µipij (u,Ep)ψ
ip
ij (u,Ep).

(4)

Some additional technical indications, somehow inspired to the rationale which
guides the kinetic theory of active particles [12], can be given towards this aim.

Selection of the functional subsystems: The overall system is subdivided into
groups, called i-functional subsystem, in short i-FS, within which individual entities,
called ij-particles, share the same objective and the strategy to achieve it.

Interaction domain: Each ij-particle has an interaction domain Dij ⊆ Du which
depends both on the i-FS and on the j-activity. This domain can be asymmetric
with respect to the variable u.

Sensitivity: Each ij-particle has a sensitivity domain Ωij ⊆ Dij defined by a criti-
cal number nc of particles or FS in Dij which is necessary to acquire the information
transferred from the field particles to the ij-particle. Asymmetric interactions cor-
respond to Ωij ⊂ Dij .
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Interaction rates: The micro-micro interaction rate decays with a distance be-
tween the state of the ij-particle and the iq-particles in the sensitivity domain, while
the macro-micro interaction rate decays with a distance between the state of the
ij-particle and the first order moment of the iq-particles in the sensitivity domain.

Actions: All actions act in the sensitivity domain. The micro-micro action over
the ij-particle is applied by all iq-particles, namely by particles of the same FS,
while the macro-micro action over the ij-particle is applied by all p-FSs, with p 6= i
which act by the mean value of each FS.

The choice of the issue of price formation as a starting application for our method-
ological framework has two pillars: the possibility of creating clear boundaries to
our search path; the significativeness of the results also in the presence of those
boundaries.

Synthetically, the price formation in the real world—with both heterogeneity
and realistic person to person interactions—is a puzzle. In an orthodox way, the
explanation that the price theory suggests that the price formation is a classic
microeconomic concept that uses the abstraction of supply and demand functions.
The intersection of the two functions determines the appropriate price for a good or
service. This construction allows for price adjustments as market conditions change,
modifying the functions.

Using such mechanical aggregate explanation, what is missing is the role of in-
dividual agents, as buyers and sellers, in bargaining. The Appendix A of a recent
book [45] is dedicated precisely to this problem, developing an agent-based model in
the perspective of a simplified Hayekian market. This market structure is necessary
for the macro model of the book [45], where agents’ interaction is strategic for the
construction of the simulation model, focusing correctly on the agents. The model,
in this way, produces complex price sequences. A very interesting analysis of the
so-called Hayek’s market algorithm is in Bowles, Kirman, and Sethi [21].

A step ahead is in Nieddu [47], where the framework of the agents’ behavior
is sounder, following the Brownian Motion model to define agents’ behavior [54],
again generating an interesting price path over time.

Here, with the mathematical swarm particle perspective—with a rigorous for-
mal background—we look for a further step in the fundamental analysis of price
formation.

Is this step worth to be done? Recent literature ([60], [61]) demonstrates the
centrality of price theory in the development of economic modeling.

3. On a case study: The dynamics of economic price series. Let us consider,
as a simple - it might be the simplest - case study to show how the theory of active
particle swarms, proposed in Section 2, can be applied and tested for a dynamics of
a market where N sellers and M buyers trade one specific good only. The activity
variables are the price assigned by each seller for this good, while the activity for
each buyer is the price which they accept to pay for the good. In general, M is of

a higher order of magnitude with respect to N and the following parameter ε =
N

M
expresses this ratio.

We consider two populations, sellers and buyers, viewed as functional subsystems
with n = 2, each corresponding to their specific role and to the related activity they
express, being understood that the assignment of the two prices are heterogeneously
distributed within each FS. The formal structure can be defined according to the
mathematical tools proposed in the preceding section, however some simplifications
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of the notations will be applied accounting for the overall structure of the system
which simply consists of two FSs, as follows:

• us, s = 1, . . . , N corresponds to first functional subsystem (sellers), where each
s-firm expresses the price us of the product (good) offered for sale.

• wb, b = 1, . . . ,M corresponds the second functional subsystem (buyers), where
each b-buyer expresses the price wb that he/she accepts to pay.

• The variables which define the activities of each of the two FSs are the vectors:

u = (u1, . . . , us, . . . , uN ) and w = (w1, . . . , w2b, . . . , wM ),

while the corresponding speeds are

v = (v1, . . . , vs, . . . , vN ) and z = (z1, . . . , zb, . . . , zM ),

where if both prices and related speeds are normalized with respect to their highest
value at initial time t = 0, we can assume that u,v ∈ [0, 1]N and w, z ∈ [0, 1]M .
The dynamics can, however, generate higher values.

• Micro-micro interactions take place only across functional subsystems, but not
within the same FS. By these interactions, firms and customers adjust the price by
direct contacts.

• Macro-micro interactions take place within the same functional subsystems, but
not across FSs. By these interactions, sellers adjust the price according to the mean
stream of sellers, while customers adjust the price accounting for the mean stream
of buyers.

The mathematical structure corresponding to the setting given in the preceding
subsection is a particularization of the general structure of Eq. (2) as follows:

dus
dt

= vs,

dwb
dt

= zb,

dvs
dt

=
1

M

M∑
q=1

ηqs(us, w2q)ϕ
q
s(us, wq, vs, zq) + µs(us,E1)ψs(us,E1),

dzb
dt

=
1

N

N∑
q=1

ηqb (wb, uq)ϕ
q
b(wb, uq, zb, vq) + µb(wb,E2)ψb(ub,E2),

(5)

for s = 1, . . . N and b = 1, . . . ,M . Equation (5) provides the framework to derive a
specific model by a detailed description of the interactions.

Remark 1. The system presents asymmetry features which arise as the sellers’
prices are public (one could think of price tags), while buyers’ prices are unknown
to the sellers. Therefore, the modeling of the interaction rates for the sellers should
not include any attenuation related to the distance with respect to the buyers’
prices, as these are inaccessible to them. On the other hand the interaction rates
for the buyers should include some attenuation related to the distance with respect
to the sellers’ prices, as these are accessible to them.

The following assumptions, which take into account Remark 3.1, are proposed
towards a minimal model to describe interactions:

1. The interaction rates for both micro-micro and macro-micro interactions asym-
metrically decay with increasing metrics modeling the distance between the
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interacting entities starting from the same rates η0 and µ0. In addition, when
ε decreases as M increases with respect to N the interaction rates η and µ
both decrease by the so called sticking price effect :

ηbs
∼= η0,

ηsb
∼= η0 exp

(
− 1

ε

|us − wb|
wb

)
,

(6)

and 
µs ∼= µ0

µb ∼= µ0 exp

(
− 1

ε

|wb − E2|
wb

)
.

(7)

2. The actions ϕ and ψ correspond to a dynamics of consensus driven by the
distance between the sellers’ and buyers’ prices, in the micro-micro interaction,
and between the local price and the global one, in the micro-macro interaction.
The following model of interaction is proposedϕ

b
s
∼= αussign(wb − us),

ϕsb
∼= β (us − wb),

(8)

and ψs
∼= γ (E1 − us),

ψb ∼= δ (E2 − ub).
(9)

Replacing the description of interactions delivered in (6)–(9) into the general
structure (structure-model) yields:

dus
dt

= vs,

dwb
dt

= zb,

dvs
dt

=
α

M

M∑
q=1

us sign(wb − us) + ε1 (E1 − us),

dzb
dt

=
β

N

N∑
q=1

exp

(
− 1

ε

|us − wb|
wb

)
(us − wb)

+ε2 exp

(
− 1

ε
|wb−E2|
wb

)
(E2 − ub),

(10)

where time has been scaled with respect to η0 and ε = µ0

η0
and ε1 = ε γ and ε2 = ε δ.

Remark 2. The sticking effect denotes that, as in the macro-offer curve analysis,
the underlying difficulty to move prices, not only decreasing them by the so-called
“menu costs”. The action is equal to zero when extreme values are assigned to the
prices, while if the price is higher than zero and lower than one, then a consensus
dynamics occur, for instance if the buyer with price b interacts with a firm offering
a price s > b the the action over the buyer is to increase the price and to the seller
to reduce it.
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3.1. Simulation results. Some essential premises to read the simulation results:

(i) we have no accounting effects on households’ and firms’ economy, so we con-
sider price levels only as ordered numbers, accepting them also to be negative;

(ii) we are operating in a short term perspective as defined in economics: NB,
what is relevant is not the length of the period under analysis, but the hy-
pothesis that the productive factors are not changing (capital and labor, here
represented by the number of sellers);

(iii) consistently with the (ii) statement, we do not consider new sellers’ entries or
existent sellers’ exits in or from the market;

(iv) the statements (ii) and (iii) consequence is that any automatic price control
mechanism is missing; instead, allowing the entry and exit mechanism, if prices
go too high new sellers (firms) enter in the market increasing the offer side
and lowering the prices, and vice versa;

(v) both in our construction and in reality—when price are exposed by the sellers
(e.g., in the mall)—, buyers coordination is easier than that of the sellers,
which ignore the reservation prices of the buyers (the max price that a buyer
accepts to pay); sellers blindly react step by step to their successes (made a
sale) or failures (no sale) in dealing;

(vi) consistently with (v), buyers very well coordinate their reservation prices be-
cause they see all the set of the sellers, which on turn receive the reactions
of all the other buyers; sellers instead have to act on the basis of information
collected observing buyers’ decision without seeing their internal reservation
prices; certainly, they have micro-macro (mean field) interactions with the
other sellers;

(vii) observing the price standard-deviation within buyers and within sellers—
relatively to different ratios buyers to sellers (in increasing order)—we can
find a proxy of the market power of the buyers. As the ratio increases, the
power of the buyers is imposing the sellers to differentiate their price proposals,
while buyers’ results are quite compact.

3.2. Dynamic of mean prices with different buyers to sellers ratios. Figure
1 reports, in order of increasing ratios between buyers to sellers, the mean prices of
the buyers (their reservation prices) and of the sellers (the exposed prices) in two
simulation runs. In both cases, a realistic cyclical market emerges, with a more
regular behavior in the second case, where we have a higher ratio buyers/sellers.

0 5000 10000 15000 20000
T

400

200

0

200

400

600

0 5000 10000 15000 20000
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Figure 1. 1.0, 5.0 ratios: 10/50 buyers (red) and 10/10 sellers (blue), mean

price sequences; blue line hides in large part the red one
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Figure 2 reports zoom on the final part of the two runs, showing how sellers fail
to coordinate while buyers have very close prices, consistently with (vi) above.
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Figure 2. 1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), zoom on
individual price sequences. Y axes do not share the same scale

3.3. Standard deviation of mean prices within buyers (red) and within
sellers (blue) over time, reported by buyers to sellers ratios. We examine
now how prices are differentiating within agents in each time step. In Figure 3,
we follow the increasing ratios buyers to sellers. The two plots show that the
standard deviation, measuring price differentiation within the agents’ groups, is
low and stable for the buyers and more relevant and quickly increasing for the
sellers’ group. Then it decreases if the ratio is 1.0, but keeps to be relevant if the
ratio is 5.0, consistently with (v), (vi), and (vii) above.
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Figure 3. 1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), standard

deviation of mean prices within buyers and within sellers over time

3.4. A lens on coordination. The graphs appearing in Figures 4 and 5 are meant
to offer, for buyers and sellers respectively, a visual representation of the degree of
coordination (either in- or counterphase) between agents belonging to the same FS.

Formally, the graphs are heatmaps based on the correlation coefficient between
individual time series of the prices. Blue tiles and red tiles show coordination and
counter-coordination, respectively, for pairs of agents1. Washed out colors appear in
the case of non-coordinated pairs, white representing perfect absence of correlation.

Each row represents a different scenario in terms of buyers-to-sellers ratio: top
to bottom, 10 buyers / 10 sellers, 50 buyers / 10 sellers.

1Diagonals are filled with ones by construction.
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Figure 4. Buyers

Each column, left to right, captures a different moment in the simulation, each
one comprising a 500-steps long window: the beginning, a middle point, the end
(steps [0-500], [9750-10250], [19500-20000]).

Buyers appear to be systematically well-coordinated (featuring a slight de-co-
herence in the final period for the 10 buyers / 10 sellers scenario).

Sellers appear to start moving in sync and end up losing synchronization along
the way (even quicker for the 50:10 scenario).

4. Critical analysis, and research perspectives. A new mathematical ap-
proach, based on theoretical tools of swarms’ theory, has been proposed in this
paper and applied to modeling the dynamics of prices induced by the interactions
between buyers and firms. Simulations have shown the ability to capture interesting
features of the dynamics. Our approach goes beyond the continuity assumptions
needed by the kinetic theory methods.

The flexibility of the proposed method to capture specific features of economical
systems, motivates to develop further applications and economical studies. Bearing
this perspective in mind, let us remain at a methodological level and let us outline
some technical developments somewhat related to the application studied in our
paper. The following specific hints are selected according to the authors’ bias among
various possible ones.

1. Modeling external effects by adding functional subsystem actions with the
ability to modify price dynamics, from advertising by firms to political-econo-
mical control. Asymmetric actions should be taken into account also in this
case.



SWARMS DYNAMICS APPROACH TO BEHAVIORAL ECONOMY 365

0 2 4 6 8

0

2

4

6

8

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) 10 10 1

0 2 4 6 8

0

2

4

6

8

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) 10 10 2

0 2 4 6 8

0

2

4

6

8

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) 10 10 3

0 2 4 6 8 10
0

2

4

6

8

10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) 50 10 1

0 2 4 6 8 10
0

2

4

6

8

10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) 50 10 2

0 2 4 6 8 10
0

2

4

6

8

10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) 50 10 3

Figure 5. Sellers

2. Modeling the interaction of price dynamics with additional dynamics such as
wealth distribution which definitely has a significant influence on the hetero-
geneous distribution of buyers followed with a feedback to seller firms.

3. Dynamics over networks to describe how the dynamics develop in nodes, and
how it propagates on the network, being in turn modified by collective effects
emerging from individual behaviors.

4. The mathematical structures proposed in our approach go beyond the cele-
brated Cucker-Smale approach, reviewed in [5]. Therefore a qualitative anal-
ysis of models appears to be an challenging objective worth to be developed
accounting for the additional nonlinearities included in our paper to account
for the attraction of individuals towards the mean value of the collectivity.

REFERENCES

[1] D. Acemoglu, D. Ticchi and A. Vindigni, Emergence and persistence of inefficient states,

Journal of European Economic Association, 9 (2011), 177–208.
[2] S.-M. Ahn, H.-O. Bae, S.-Y. Seung, Y. Kim and H. Lim, Application of flocking mechanisms to

the modeling of stochastic volatily, Math. Models Methods Appl. Sci., 23 (2013), 1603–1628.

[3] G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex
socio-economical systems by functional subsystems representation, Kinetic & Related Models,

1 (2008), 249–278.

[4] G. Ajmone Marsan, N. Bellomo and L. Gibelli, Stochastic evolutionary differential games
toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26

(2016), 1051–1093.

[5] G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler, Traffic,
crowds, and swarms: From kinetic theory and multiscale methods to applications and research

perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901–2005.

http://dx.doi.org/10.3386/w12748
http://www.ams.org/mathscinet-getitem?mr=MR3062922&return=pdf
http://dx.doi.org/10.1142/S0218202513500176
http://dx.doi.org/10.1142/S0218202513500176
http://www.ams.org/mathscinet-getitem?mr=MR2393277&return=pdf
http://dx.doi.org/10.3934/krm.2008.1.249
http://dx.doi.org/10.3934/krm.2008.1.249
http://www.ams.org/mathscinet-getitem?mr=MR3484569&return=pdf
http://dx.doi.org/10.1142/S0218202516500251
http://dx.doi.org/10.1142/S0218202516500251
http://www.ams.org/mathscinet-getitem?mr=MR4014449&return=pdf
http://dx.doi.org/10.1142/S0218202519500374
http://dx.doi.org/10.1142/S0218202519500374
http://dx.doi.org/10.1142/S0218202519500374


366 N. BELLOMO, S. DE NIGRIS, D. KNOPOFF, M. MORINI AND P. TERNA

[6] G. Albi, L. Pareschi, G. Toscani and M. Zanella, Recent advances in opinion modeling: Control
and social influence, Active Particles, Advances in Theory, Models, and Applications, Model.
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