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Abstract. In this paper, we construct approximated solutions of Differen-
tial Equations (DEs) using the Deep Neural Network (DNN). Furthermore, we

present an architecture that includes the process of finding model parameters

through experimental data, the inverse problem. That is, we provide a unified
framework of DNN architecture that approximates an analytic solution and its

model parameters simultaneously. The architecture consists of a feed forward

DNN with non-linear activation functions depending on DEs, automatic dif-
ferentiation [2], reduction of order, and gradient based optimization method.

We also prove theoretically that the proposed DNN solution converges to an

analytic solution in a suitable function space for fundamental DEs. Finally,
we perform numerical experiments to validate the robustness of our simplis-

tic DNN architecture for 1D transport equation, 2D heat equation, 2D wave
equation, and the Lotka-Volterra system.

1. Introduction. This paper marks the first step toward a comprehensive study on
deep learning architectures to solve forward-inverse problems for differential equa-
tions. Recent advances in deep learning show its capability to handle various types
of model problems in many disciplines. In particular, deep learning techniques have
been applied to understand data augmented differential equations. While most of
such studies have been centered around heuristics and modeling prospectives, to the
best of our knowledge, there is little to no theoretical analysis to confirm whether
the deep learning architectures give rise to the correct solutions to the governing
differential equations. An overreaching goal of this paper is to provide a compre-
hensive analysis of Deep Neural Networks (DNNs) to solve data-driven differential
equations. This paper reports a novel architecture leveraging recent progress in deep
learning techniques that solves forward-inverse problems for differential equations.
The paper further includes a convergence analysis and its experimental results for
our deep learning architecture.
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Forward-inverse problems (or inverse problems in short) for differential equa-
tions in this paper are related to data augmented differential equations. Namely,
we consider equations of states for physical systems as governing differential equa-
tions and model parameters such as advection rates, reaction diffusion coefficients,
for example, that need to be fitted by the given data. Hence numerical methods
solving forward-inverse problems typically become constraint problems that require
an ensemble of two steps, (1) solve the state equations, which is called the forward
problems and (2) find the correct model parameters that fit the given data set.
Inverse problem is an actively studied field and many numerical algorithms for the
inverse problems are robust enough to handle sufficiently large data sets, see for
example [1, 5, 15, 17, 19, 25, 26] references therein. However, such algorithms can
be computationally expensive and they may be too sophisticated for non-experts in
inverse problems to implement them. This calls for simplistic methods that unify
two steps in solving forward-inverse problems.

The contributions of this paper are three-fold. First, the DNN architecture pre-
sented in this paper highlights its simplistic approach to handling forward-inverse
problems simultaneously. Second, a rigorous analysis of the convergence of the DNN
solutions to the actual solutions for the governing problems is provided. Third, nu-
merical experiments validate the robustness of our simple architecture.

The paper comprises the followings. A short overview of related works on data-
driven differential equations and the problem formulation are presented in the rest
of Section 1. The methodology including the DNN architecture and loss function
is described in Section 2. Theoretical results are given in Section 3. Section 4 is
devoted to the experiments done for the problem. In Section 5, we conclude the
paper.

1.1. Background. There are many works to utilize an Artificial Neural Network
(ANN) to solve Differential Equations (DEs) in place of using well established nu-
merical methods such as finite difference, finite element, and finite volume meth-
ods. Those finite schemes are heavily depending on mesh-grid points, and they
may become a hindrance when the state equations reside in a domain with complex
geometry. As such, a mesh-free approximation using clever constructions of basis
functions has been introduced, see for example [10, 24], and references therein. The
concept of using ANN to solve DEs can be related to mesh-free approximations as
one can consider Multi-Layer Perceptrons (MLPs) as an approximation to solutions
to DEs.

The ANN structure was first introduced in [20]. Several studies follow to iden-
tify a class of functions that can be recognized by ANNs. The following is a brief
overview and a few highlights of such studies. Cybenko [8] established sufficient
conditions for which a continuous function can be approximated by finite linear
combinations of single hidden layer neural networks with the same univariate func-
tion. About the same time, Hornik et al [11] showed that measurable functions
can be approximated by multi-layer feedforward networks with a monotone sigmoid
function as the authors called them “universal approximators”. Cotter [6] extends
the result of [11] to new architectures, and later Li [18] showed that a MLP with
one hidden layer can approximate a function and its higher partial derivatives on a
compact set.

The concept of using ANN to solve DEs are not new, and it has gained much
attention recently. Some of the highlights include the following. Lagaris et al [13]
studied to solve DEs and PDEs using an ANN with architecture including 1 single
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layer and 10 units and they next extended in [14] their results to a domain with
complex geometry. Jianyu et al [16] used ANN with a radial basis function as an
activation function for Poisson equations. More recently, Berg et al in [4] used
a DNN to solve steady (time-independent) problems for a domain with complex
geometry in one and two space dimensions, and later in [3] they studied DNN
architectures to solve augmented Poisson equations (inverse problems) including
three space dimensions.

The recent work by Raissi et al [22] can be perhaps closely related to our work
in the sense that their DNN architectures (they called “continuous time models”)
resemble ours. We note however the aim of this paper is to establish a comprehensive
study that includes a rigorous convergence analysis of DNNs to solve forward-inverse
problems for DEs and PDEs. Since our convergence result is for linear equations
at this point, we present our experiments for the well known linear equations as
well. While our experiments cover simpler equations than those studied in [22], as
their focuses were on architectures for “data-efficient and physics informed learning
machines”, we hope that our result can enhance the experiments shown in [22]. We
believe our first comprehensive results can shed lights onto further studies toward
more complex and complicated systems using machine learning architectures.

1.2. Problem formulation. We consider the equations of states as the following
time dependent initial boundary value problems:

Lpu = 0, t ∈ (0, T ], x ∈ Ω, (1)

Iu = f, x ∈ Ω, (2)

Bu = g, t ∈ (0, T ], x ∈ ∂Ω, (3)

where Lp is a differential operator, p is a set of model parameters, Ω ⊂ Rd is a
bounded domain (for the position of the state u), ∂Ω is a boundary of Ω, f(x) is an
initial distribution, I is an initial operator, B is a boundary operator, and g(t, x) is
a boundary data. Next the governing equation is equipped with a set of observation
data, which may be provided from actual experiments, as following:

D = {(ti, xj , uij)|i = 1, 2, ..., n, j = 1, 2, ...,m}, (4)

where uij denotes the output value (observation from the experiment) at position
xj ∈ Ω and time 0 < ti ≤ T with the final time T . n and m refer the numbers of
time and spatial observations respectively. Since our experiments cover ODEs and
PDEs with one and two spatial dimensions, xj dependencies and the index j for
xj will be adjusted for each example. Since it is hard to find a realistic data, we
sample the observation data from analytic (or numerical) solution of the equations.

We apply DNNs to solve governing equations (1)-(3) and the observation data
(4). Our loss function includes the governing equation, observations, initial and
boundary conditions. The loss function is minimized by using the standard gra-
dient descent method. The results show that our DNN architecture can handle
much lesser numbers of observations compared to known numerical solvers such as
finite difference, element and volume methods. The results presented in this pa-
per demonstrate that our DNN architecture is perhaps the most simplistic way to
solve forward-inverse problems, yet robust enough to handle many different cases.
Furthermore, we establish the convergence result of forward-inverse problems for
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parabolic or hyperbolic linear PDEs with Dirichlet boundary conditions. Specifi-
cally we show that the sequence of DNN solutions converges to an analytic solution
in L∞(0, T ;H1

0 (Ω)) sense.

2. Methodology. This section provides our DNN architecture and the mathemat-
ical formulation of the training procedure.

2.1. DNN architecture. The DNN architecture can be written as a repeated
composition of some affine transformations and some nonlinear activation functions.
We denote by uN the DNN solution and assume that the architecture consists of
L + 1 layers. The first layer takes (t, x) as an input, and the last layer gives the
output value uN (t, x). The L − 1 layers between the first and the last layers are
called hidden layers. We have used common nonlinear activation functions such
as sigmoid, rectified linear units, and hyperbolic tangents through the DNN. Each
neuron in the DNN contains a bias except for the input neurons. In two consecutive
layers, the connections between neurons are written as weight matrices. Relations
between (l − 1)th and lth layers are defined by :

zlj =

Nl−1∑
k

wl
jkσl−1(zl−1

k ) + blj , (5)

where

• zl−1
k : the value of kth neuron in (l − 1)th layer

• Nl−1: the number of neurons in (l − 1)th layer
• blj : the bias of jth neuron in lth layer

• wl
jk: the weights between kth neuron in (l − 1)th layer and jth neuron in lth

layer
• σl−1 the activation function in (l − 1)th layer

For convenience, we denote z0 = (z0
1 , ..., z

0
N0

) as (t, x) and zL = (zL1 , ..., z
L
NL

) as
uN (t, x), respectively. The values Nl−1, L, and the form of σl−1 should be chosen
before training. In the training procedure, we have to calculate the optimal weights
and biases wl

jk, blj which minimize a suitable loss function.

2.2. Loss function. The training procedure of the DNN is equivalent to the op-
timization problem of the loss function with respect to the DNN parameters. We
denote the DNN solution by uN (t, x) = uN (t, x;w, b), where (w, b) are the set of
weights and biases defined in (5). Denote the number of grid points of time, spatial
variables, initial and boundary domains by Nt, Nx, I, Bt, Bx respectively. Now we
define the loss function using (1),

LossGE(w, b, p) =
1

T |Ω|

∫
[0,T ]

∫
Ω

|LpuN (t, x;w, b)|2dxdt

≈ 1

NtNx

Nt,Nx∑
i,j=1

|LpuN (ti, xj ;w, b)|2, (6)

where the last approximated sum is obtained by sampling a grid point {(ti, xj)|ti ∈
[0, T ], xj ∈ Ω, for i = 1, ..., Nt, j = 1, ..., Nx}. Note that the reason that we define
the above loss function is to find the optimal weights (w, b) which minimize LossGE .



DEEP NEURAL NETWORK APPROACH TO FORWARD-INVERSE PROBLEMS 251

However, (6) is not sufficient because it excludes information about initial and
boundary conditions. Therefore we define two loss functions from (2)-(3)

LossIC(w, b) =
1

|Ω|

∫
Ω

|IuN (0, x;w, b)− f(x)|2dx

≈ 1

I

I∑
i=1

|uN (0, xi;w, b)− f(xi)|2, (7)

LossBC(w, b) =
1

T |∂Ω|

∫
[0,T ]

∫
∂Ω

|BuN (t, x;w, b)− g(t, x)|2dSdt

≈ 1

BtBx

Bt,Bx∑
i,j=1

|uN (ti, xj ;w, b)− g(ti, xj)|2. (8)

Combining all loss functions (6)-(8) is still not enough because the solution of
DEs (1)-(3) could differ depending on the choice of the equation parameter p. Due
to this reason, we should make one additional loss function to calibrate p using the
observed data (4).

LossObs(w, b) =
1

|D|
∑

(ti,xj)∈D

|uij − uN (ti, xj ;w, b)|2. (9)

Finally, we define the forward loss and total loss as a summation of all three,
and four loss functions respectively. For the forward loss, the model parameter p is
considered to be fixed.

LossForward(w, b) = LossGE(w, b) + LossIC(w, b) + LossBC(w, b), (10)

LossTotal(w, b, p) = LossGE(w, b, p) + LossIC(w, b) + LossBC(w, b) + LossObs(w, b).
(11)

Figure 1. Network architecture.

3. Theoretical result. This section provides a theoretical proof that there exists
a sequence of weights such that the corresponding sequence of DNN solutions con-
verges to an analytic solution on any compact subset of the domain. We focus on
the DEs (1)-(3) where the existence and the uniqueness of solutions are guaranteed.
We establish the result in two steps. We first show that a sequence of DNN solutions
converges to an analytic solution for the corresponding model parameters, called the
forward problem. We next show that both the estimated parameter and the DNN
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Algorithm 1 Training

1: procedure train(number of epochs)
2: Initialize the nerural network.
3: for number of epochs do
4: sample z1, z2, ..., zm from uniform distribution over Ω
5: sample z1

I , z
2
I , ..., z

m
I from uniform distribution over {0} × Ω

6: sample z1
B , z

2
B , ..., z

m
B from uniform distribution over ∂Ω

7: sample k observation points z1
O, z

2
O, ..., z

k
O

8: Find the true value uj = up(zjO) for j = 1, 2, ..., k
9: Update the neural network by descending its stochastic gradient :

∇w,b[
1

m

m∑
i=1

[Lp(uN )(zi)2+(uN (ziI)−f(ziI))
2+(uN (ziB)− g(ziB))

2]+
1

k

k∑
j=1

(uN (zjO)−uj)
2]

10: end for
11: end procedure

solutions converge to the model parameter and the analytic solution simultaneously,
called the inverse problem.

3.1. Forward problem. For the forward problem, we fix the model parameter
p and denote the analytic solution to (1)-(3) by up. We also denote the DNN
solution obtained by using Algorithm 1 by uN . In uN , activation functions σ are
any non-polynomial functions in Ck(Rn).

Next we quote the following Definition 3.1 and Theorem 3.2 from [18]

Definition 3.1. Let In = [0, 1]n be the unit interval on Rn, k be a non-negative

integer. Then we say a function f is contained in Ĉk(In) if f ∈ Ck(U) for some
open set U containing In

Theorem 3.2. (Li, Theorem 2.1 in [18]) Let f ∈ Ĉk(In). Then, given ε > 0, we
can find parameters of a neural network uN , defined in (5) with L = 1, so that

‖Dkf −DkuN‖L∞(In) < ε

holds for any multi-index k = (k1, k2, ..., kn), |k1|+ |k2|+ ...+ |kn| ≤ k, and ki’s are
non-negative integers.

Remark 1. Since the above result can be generalized to multi-layer architectures
(for example, [11]) and to a general compact setK instead of In, we may assume that
the architecture contains only one hidden layer and the domain Ω is In (Ω = In).

Theorem 3.3. For a non-negative integer k, assume that the highest order of

linear operator (1) is k and up ∈ Ĉk(In), and the activation function σ(x) and
its (k-th order) derivatives are continuous and non-polynomials. Then, there exists
{mj , wj , bj}∞j=1 such that a sequence of the DNN solutions with mj nodes, denoted
by {uj(wj , bj)}∞j=1 satisfies

LossForward(wj , bj)→ 0 as j →∞ (12)

Proof. Let ε > 0 be given. By Theorem 3.2, there exists a neural network uj(x) =∑mj

i=1 w
1
i σ(w2

i x + bi) such that ‖Dkup − Dkuj‖∞ < ε, where k is a non-negative
multi-index up to differentiability of up. By integrating |Lpuj |2, |Iuj−f |2, |Buj−g|2
over [0, T ]× Ω, Ω, [0, T ]× ∂Ω respectively, we obtain the desired result.
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Remark 2. The assumption up ∈ Ĉk(In) in Theorem 3.3 is a strong condition.
Since we can also approximate it by a sequence of compactly supported smooth
functions in In, we can extend the assumption to a general Sobolev space.

The Theorem 3.3 states that we can always find parameters of a DNN architecture
which can reduce LossForward if the DE has a smooth analytic solution. However,
since we can not directly use information of an analytic solution, we next show
that the DNN architecture equipped with parameters which minimize LossForward

converges to an analytic solution in Theorem 3.4.

Theorem 3.4. Let Lp = ∂t + L in (1) be a second order parabolic operator and
Bu = 0 in (3) be a Dirichlet boundary condition. Also we define the DNN solution
uj = uj(t, x;wj , bj) with mj nodes and the corresponding loss LossForward(w, b).
Then, LossForward(w, b)→ 0 implies

uj(t, x;wj , bj)→ up in L∞([0, T ];H1
0 (Ω)), (13)

where up is a solution to (1)-(3)

Proof. First we assume that the activation function satisfies the Dirichlet boundary
condition by replacing it with b(x)σ(t, x), where b(x) is an arbitrary smooth function
that satisfies b = 0 on ∂Ω. By evaluating up − uj in (1)-(3), we have the following

∂t(up − uj) + L(up − uj) = εj(t, x), t ∈ (0, T ], x ∈ Ω,

I(up − uj) = ηj(x), x ∈ Ω,

B(up − uj) = 0, t ∈ (0, T ], x ∈ ∂Ω

Then the energy estimates for the second order parabolic equation (see Theorem 5,
Chapter 7 in [9]) are applied to obtain that

esssup
0≤t≤T

‖up − uj(·, t)‖H1
0 (Ω) + ‖up − uj‖L2([0,T ];H1

0 (Ω)) + ‖∂t (up − uj) ‖L2([0,T ];L2(Ω))

(14)

≤ C
(
‖εm‖L2([0,T ];L2(Ω)) + ‖ηm‖H1

0 (Ω)

)
,

where the constant C in (14) depends only on Ω, T and the coefficients of L.
Note that the right hand side in (14) is equivalent to LossForward(w, b). This
shows that the sequence of DNN solutions converges to the analytic solution when
LossForward(w, b)→ 0.

Remark 3. The convergence result also holds when Lp = ∂tt +L is a second order
hyperbolic operator, see [9].

3.2. Inverse problem.

Definition 3.5. Let P be the set of all possible model parameters. Define S :=
{up | p ∈ P} be the set of solutions corresponding to each model parameter p ∈ P .

Definition 3.6. We say the observation set Dp is clear if for any up, uq ∈ S,
up|Dp = uq|Dp if and only if p = q

Theorem 3.7. Let Losstotal(w, b, p) be the total loss defined in (11) and let the
observation set Dp with p ∈ P be given and clear. We assume that for given {εj}∞j=1

with εj → 0, there exists (mj , wj , bj , pj) such that LossTotal(wj , bj , pj) < εj, and
the parameter set {pj} is contained in P , then

uj(wj , bj)→ up a.e. and pj → p as j →∞ (15)
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Table 1. Information of grid and observation points.

Data Generation
Grid Range Number of Grid Points Number of Observations

1D Transport (t, x) ∈ [0, 1]× [0, 1] 17× 100 17
2D Heat (t, x, y) ∈ [0, 1]× [0, 1]× [0, 1] 100× 100× 100 13
2D Wave (t, x, y) ∈ [0, 1]× [0, 1]× [0, 1] 100× 100× 100 61

Lotka-Volterra t ∈ [0, 100] 20,000 40

Proof. We first divide the total loss into LossTotal = LossForward,pj
+ LossObs,pj

.
For j fixed, we set uNj,k

(wj,k, bj,k) as a DNN solution with k ≥ j nodes, where
(wj,k, bj,k) is a minimizer of LossForward defined in Definition 12. Then, Theorem
3.4 implies uNj,k

→ upj as k → ∞. Also, LossObs,pj → 0 implies pj → p by
definition of Dp

4. Experiments. In this section, we provide experimental results based on several
differential equations including 1D transport equation, 2D heat equation, 2D wave
equation, and the Lotka-Volterra system. For each equation, we have calculated an
analytic (if possible) or numerical solution with fixed model parameters in order
to generate a small amount of true solution points which will be regarded as the
observation points. We apply our DNN model to find an approximated solution
and the optimal equation parameter at the same time. In this step, we have used a
neural network with variable depth and width, and ReLU activations. We used the
Adam optimizer [12, 23] with (β1, β2) = (0.9, 0.999) in order to find the minimizer
w, b, and p defined in (11). Also, for higher order derivatives in (1) we have applied
the reduction of order technique to express it as a system of differential equations.
This step dramatically reduces the computational cost for calculating (6). For
example, the second-order PDE uxx = f can be replaced by vx = f together with
the equation v = ux. That is, we derive two first-order PDEs vx = f, ux = v from
one second-order PDE uxx = f , then the output layer of DNN should be changed
into (u, v). This method is applied to 2D Heat and Wave equations. Also, different
types of activation functions are used depending on the behavioral characteristics of
the governing equations. Finally, we provide two differences between 1) actual and
model output values and 2) actual and calculated model parameters. Observation
points were calculated from analytic (transport), series (heat, wave), numerical
(Lotka-Volterra) solution and sampled randomly among them.

In the rest of this section, we present the experimental results. For each figure,
top left, top right figures show our neural network solution and the analytic solution
respectively. Bottom left shows the absolute error between the neural network
solution and the analytic solution. Bottom right figure shows the convergence of
estimated parameters to the real parameters. We have implemented our method by
using Pytorch [21], which is one of the most famous machine learning library. We
first present the detailed experimental settings. Table 1 and 2 show the summarized
information of the number of grid points and DNN architectures respectively.

4.1. 1D transport equation. 1D transport equation consists of

∂tu+ a∂xu = 0, (16)

u(0, x) =

{
sin4 0.25 ∗ π(x− 0.1) if 0.1 ≤ x ≤ 0.5

0 otherwise
,
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Table 2. Neural network architecture

Neural Network Architecture
Fully Connected Layers Activation Functions Learning Rate

1D Transport 2(input)-128-256-128-1(output) ReLU 10−5

2D Heat 3(input)-128-128-1(output) Sin, Sigmoid 10−5

2D Wave 3(input)-128-256-128-1(output) Sin, Tanh 10−5

Lotka-Volterra 1(input)-64-64-2(output) Sin 10−4

where t ∈ [0,∞), x ∈ R, and a = π/10(' 0.314...). We have generated the observa-
tions from the analytic solution, by method of characteristics, of (16).

Figure 2. Experimental result for 1D transport equation.

4.2. 2D heat equation.

∂tu = a2 (∂xxu+ ∂yyu) , (17)

u(t, 0, y) = u(t, 1, y) = 0,

u(t, x, 0) = u(t, x, 1) = 0,

where t ∈ [0,∞), (x, y) ∈ [0, 1]× [0, 1], and a = 1. We have generated the observa-
tions from the partial sum of the series solution, by separation of variables, of (17).
We present two figures with different initial conditions.

4.3. 2D wave equation.

∂ttu = a2 (∂xxu+ ∂yyu) , (18)

u(0, x) = xy(1− x)(1− y),

∂tu(0, x, y) = 0,

u(t, 0, y) = u(t, 1, y) = 0,

u(t, x, 0) = u(t, x, 1) = 0,
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Figure 3. Experimental result for 2D heat equation with
u(0, x, y) = x(1− x)y(1− y).

Figure 4. Experimental result for 2D heat equation with
u(0, x, y) = 1, if (x, y) ∈ Ω, 0, otherwise.

where t ∈ [0,∞), (x, y) ∈ [0, 1] × [0, 1], and a = 1. We have generated the obser-
vations from the partial sum of the series solution, by separation of variables, of
(18)

4.4. Lotka-Volterra system.

u′(t) = αu− βuv, (19)

v′(t) = δuv − γv,
u(0) = 1, v(0) = 1,
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Figure 5. Experimental result for 2D wave equation.

Figure 6. Experimental result for Lotka-Volterra equation.

where t ∈ [0,∞), and α = 1, β = 0.4, δ = 0.4, γ = 0.1. We have generated the obser-
vations from a numerical solution by the Runge-Kutta method of (19). We used the
sin function as the activation function for Lotka-Volterra system. Considering the
periodic nature of the solution, the periodic activation function is a natural choice.

4.5. Stability condition. In this section, we address the Courant-Friedrichs-Lewy
(CFL) condition [7] which is a necessary condition while solving certain partial dif-
ferential equations numerically. However, we claim that violating the CFL condi-
tion has no bad effect of our algorithm. To clarify this, we compare the results of
transport equation with three different Courant numbers which all violate the con-
vergence condition. As we can see in figure 7, our method converges well regardless
of CFL condition. Note that our experiments in section 4.2 give nice results while
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Figure 7. Experimental result for CFL condition.

the settings violate the well known stability condition called the Von Neumann
stability condition.

5. Conclusion. First we summarize our theoretical results. For linear differen-
tial equations, we have shown that the DNN solution can reduce the proposed loss
function as much as we want. A key point in the proof is a continuation of the
Theorem 2.1 in [18] which states the fact that a linear combination of the dilated
activations can approximate the target function and the derivative of such a linear
combination can approximate its derivative in L∞ sense. Next we have proved that
the DNN which minimizes the loss converges to an analytic solution for linear par-
abolic or hyperbolic equations. In this step, we have applied basic energy estimates
for each equation. Theoretical results for the inverse problem is also included as
a continuation of the forward problem. We provide numerical experiments which
show that our method indeed works accurately. We emphasize that our method can
easily be implemented without any background knowledge about numerical anal-
ysis (for example, stability conditions) but about some libraries for implementing
neural networks. Although it performs well for fundamental DEs, it might be hard
to apply it to more complex equations. We have recognized that the error between
a NN solution and an analytic/numerical solution is slightly increasing depending
on time.

For future directions, we may consider two problems. First, we can use more
complicated neural network architectures such as CNN, RNN. Since we have dealt
with time dependent PDEs, the combination of CNN and RNN would be a great
choice for modelling. Second, the theoretical results for non-linear PDEs should
be explored. The convergence results of our work are only applicable to linear
PDEs. However, as in the experiment for the Lotka-Volterra system, our method is
successful in approximating solutions even for non-linear systems. We hope proper
convergence results for non-linear systems to be explored.
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