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ABSTRACT. We consider a phase field model of cell motility introduced in [40]
which consists of two coupled parabolic PDEs. We study the asymptotic be-
havior of solutions in the limit of a small parameter related to the width of
the interface (sharp interface limit). We formally derive an equation of motion
of the interface, which is mean curvature motion with an additional nonlin-
ear term. In a 1D model parabolic problem we rigorously justify the sharp
interface limit. To this end, a special representation of solutions is introduced,
which reduces analysis of the system to a single nonlinear PDE that describes
the interface velocity. Further stability analysis reveals a qualitative change in
the behavior of the system for small and large values of the coupling parame-
ter. Using numerical simulations we also show discontinuities of the interface
velocity and hysteresis. Also, in the 1D case we establish nontrivial traveling
waves when the coupling parameter is large enough.

1. Introduction. The problem of cell motility has been a classical subject in biol-
ogy for several centuries. It dates back to the celebrated discovery by van Leeuwen-
hoek in the 17th century who drastically improved the microscope to the extent
that he was able to observe motion of single celled organisms that moved due to
contraction and extension. Three centuries later this problem continues to attract
the attention of biologists, biophysicists and, more recently, applied mathemati-
cians. A comprehensive review of the mathematical modeling of cell motility can
be found in [27].

This work is motivated by the problem of motility (crawling motion) of eukaryotic
cells on substrates. The network of actin (protein) filaments (which is a part of
the cytoskeleton in such cells) plays an important role in cell motility. We are
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concerned with cell shape dynamics, caused by extension of the front of the cell
due to polymerization of the actin filaments and contraction of the back of the cell
due to detachment of these filaments. Modeling of this process in full generality is
at present a formidable challenge because several important biological ingredients
(e.g., regulatory pathways [27]) are not yet well understood.

In recent biophysical studies several simplified phase field models of cell motility
have been proposed. Simulations performed for these models demonstrated good
agreement with experiments (e.g., [40, 38] and references therein). Recall that phase
field models are typically used to describe the evolution of an interface between
two phases (e.g., solidification or viscous fingering). The key ingredient of such
models is an auxiliary scalar field, which takes two different values in domains
describing the two phases (e.g., 1 and 0) with a diffuse interface of a small width. An
alternative approach to cell motility involving free boundary problems is developed
n [22, 34, 5, 33, 32].

We consider the coupled system of parabolic PDEs, which is a modified version
of the model from [40] in the diffusive scaling (¢t — %t, x > ex):

Ope 1 .
FT Ape — 6—2W/(p5) —P.-Vp:+A(t) in Q, (1)
P 1 .
88t =eAP. — EPE — BV pe in Q, (2)

where

Ac( |Q|/( W'(p:) + P- - Vpa> (3)

The unknowns here are the scalar phase field function p. and the orientation vector
P.: Q is a bounded domain in R2?, ). is the Lagrange multiplier responsible for
preservation of volume. We study solutions of system (1)-(3) in the sharp interface
limit, when the parameter ¢ > 0 (which is, loosely speaking, the width of the
interface) tends to zero.

While system (1)-(3) represents a modified version of the model from [40], the
main features of the original model are preserved. First, the volume preservation
constraint in [40] is imposed by introducing a penalization parameter into the dou-
ble well potential. In (1)-(2) the volume preservation is enforced by the (dynamic)
Lagrange multiplier A. given by (3). Both ways of introducing volume preserva-
tion are equivalent in the sharp interface limit, see [1, 2, 8]. Second, for technical
simplicity we dropped two terms in the original equation for the orientation field
P. One of them, responsible for a stronger damping in the phase p. ~ 0, can be
added to (2) without any qualitative changes, while the second one, the so-called
~-term, leads to an enormous technical complication, even existence is very hard to
prove. Ref. [40] qualifies this term as a symmetry breaking mechanism, which is
important for initiation of motion, however it is observed in [40] that self-sustained
motion occurs even without y-term (page 3 in [40]). Third, our study reveals an-
other symmetry breaking mechanism in (1)-(2), emanated from asymmetry of the
potential W(p) (see Subsection 1.2). That is, the effect of 7-term is replaced, to
some extent, by asymmetry of the potential W. Note that symmetry of potential
W(p) = W(1 — p) reflects an idealized view that the two phases p ~ 0 and p ~ 1
are equivalent resulting in the symmetric profile of the interface with respect to
interchanging of the phases. In the model under consideration the phase p ~ 1
corresponds to the cell interior and p ~ 0 outside the cell, therefore the phases are
not equivalent and it is natural to assume that the potential W is asymmetric.
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Heuristically, system (1)-(3) describes the motion of a interface caused by the
competition between mean curvature motion (due to stiffness of interface) and the
push of the orientation field on the interface curve. The main issue is to determine
the influence of this competition on the qualitative behavior of the sharp interface
solution. The parameter § > 0 models this competition which is why it plays a key
role in the analysis of system (1)-(3).

1.1. Techniques. Recall the Allen-Cahn equation which is at the core of system
(D)-3), ) ,

Pe /

ot Ape — ?W (pe), (4)
where W (p) is the derivative of a double equal well potential W (p). We suppose
that

W(-) e C3(R), W(p) >0 when p ¢ {0,1},
(5)
W(p) =W'(p) =0 at {0,1}, W”(0) >0, W"(1) >0,

e.gs. W(p) = 1p?(p — 1)%. Equation (4) was introduced in [3] to model the motion

of the phase-antiphase boundary (interface) between two grains in a solid material.
Analysis of (4) as ¢ — 0 leads to the asymptotic solution that takes values p. ~ 0
and p. ~ 1 in the domains corresponding to two phases separated by an interface
of width of order e, the so-called sharp interface. Furthermore, it was shown that
this sharp interface obeys mean curvature motion. Recall that in this motion the
normal component of the velocity of each point of the surface is equal to the mean
curvature of the surface at this point. This motion has been extensively studied
in the geometrical community (e.g., [19, 21, 18, 7] and references therein). It also
received significant attention in PDE literature. Specifically [12] and [13] established
existence of global viscosity solutions (weak solutions) for the mean curvature flow.
Mean curvature motion of the interface in the limit ¢ — 0 was formally derived in
[15],[36] and then justified in [14] by using the viscosity solutions techniques. The
limit e — 0 was also studied for a stochastically perturbed Allen-Cahn equation (4)
in [23, 29].

Solutions of the stationary Allen-Cahn equation with the volume constraint were
studied in [26] by I'-convergence techniques applied to the stationary variational
problem corresponding to (4). It was established that the I-limiting functional
is the interface perimeter (curve length in 2D or surface area in higher dimen-
sions). Subsequently in the work [35] an evolutionary reaction-diffusion equation
with double-well potential and nonlocal term that describes the volume constraint
was studied. The following asymptotic formula for evolution of the interface I' in
the form of volume preserving mean curvature flow was formally derived in [35]:

1
K 0] e Kkds, (6)
where V' stands for the normal velocity of I'(¢) with respect to the inward normal,
denotes the curvature of T'(¢), |T'(¢)| is the curve length. Formula (6) was rigorously
justified in the radially symmetric case in [9] and in the general case in [11].
Three main approaches to the study of asymptotic behavior (sharp interface
limit) of solutions of phase field equations and systems have been developed.
When a comparison principle for solutions applies, a PDE approach based on
viscosity solutions techniques was successfully used in [14, 4, 17, 24] and other
works. This approach can not be applied to the system (1)-(3), because
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e equations (1)-(2) are coupled through spatial gradients,
e equation (1) contains the nonlocal (volume preservation) term A, given by
(3)-

Another technique used in such problems is I'-convergence (see [37, 23] and ref-
erences therein). This technique also does not work for the system (1)-(3). The
standard Allen-Cahn equation (4) is a gradient flow (in L? metric) with Ginzburg-
Landau energy functional, which is why one can use the I'-convergence approach.
However, there is no energy functional such that problem (1)-(3) can be written as
a gradient flow.

When none of the above elegant tools apply, one can use direct construction of
an asymptotic expansion followed by its justification via energy bounds [28]. In
Allen-Cahn type problems it typically requires a number of terms (e.g., at least five
in [11]) in the expansion. In this work we use some ingredients of this technique. We
construct an asymptotic formula (see e.g., (65)) with just two terms: the leading
one with the only unknown location of the interface and the corrector vanishing in
the limit ¢ — 0. This representation is supplemented with an additional condition
that the unknown term in the corrector is orthogonal to the eigenfunction of the
Allen-Cahn operator linearized around its standing wave (see (66)). This condition
defines the interface location implicitly (in a “weak form”, via an integral identity)
but it allows us to apply a Poincaré type inequality (142) in derivation of necessary
bounds for the corrector. This representation leads to a reduction of the coupled
system to a single singularly perturbed non-linear PDE which for e — 0 provides the
sharp interface limit. This approach is rigorously justified in the 1D model problem,
however we believe that this justification can be carried out in the 2D problem (1)-
(3). For small § it is implemented via the contraction mapping principle; for large
[ it requires more subtle stability analysis of a semigroup generated by a nonlinear
nonlocal operator.

1.2. Main results. The main objectives of this work are: prove well-posedness of
(1)-(3), reveal the effect of the coupling in (1)-(2) on the sharp interface limit, study
qualitative behavior of system (1)-(2) versus values of the parameter .

The first main result, Theorem 1, demonstrates that there is no finite time blow
up and that the sharp interface property of the initial data propagates in time.
Theorem 1 establishes existence of solutions to problem (1)-(3) on the time-interval
[0,7] for any T > 0 and sufficiently small ¢, ¢ < o(T). It also shows that a
sharp (width ¢) interface at ¢ = 0 remains sharp for ¢t € (0,7). This is proved by
combining a maximum principle with energy type bounds.

To study how coupling of equations (1)-(2) along with the nonlocal volume con-
straint (3) affect the sharp interface limit we use formal asymptotic expansions
following the method of [15]. In this way we derive the equation of motion for the
sharp interface,

1 1 1
V=r+ « D3(V) 0] e, (Ii-l— « @g(V)) ds, (7)
where ¢ is a constant determined by the potential W (p) and the function ®(V) is
a given function (obtained by solving (31)).

The parameter § in (2) can be thought of as the strength of coupling in system
(1)-(3). If B is small, then (1) and (7) can be viewed as a perturbation of Allen-Cahn
equation with volume preserving term and curvature driven motion (6), respectively.
Results of the work [25], which addresses (7) for small (subcritical) values of 8, show
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that curves evolving according to (7) behave similarly to those satisfying (6): they
become close to circles quite fast exhibiting a little shift compared with curvature
driven motion. On the other hand, if 5 is not small evolution of sharp interface
changes dramatically. In this case the function ¢gV' — ®5(V) is no longer invertible
and one can expect quite complicated behavior of the interface curve. As the first
step to study this case, it is natural to look for solutions for (1)-(3) with steady
motion. We can predict existence of such solutions based on our results for a 1D
analogue of (1)-(3). We prove that in the 1D case there exist traveling wave solutions
with nonzero velocities, provided that § is large enough and the potential W (p) has
certain asymmetry, e.g. W (p) = p*(p — 1)%(p* + 1). Existence of such traveling
waves is consistent with experimental observations of motility on keratocyte cells
which exhibit self-propagation along the straight line maintaining the same shape
over many times of its length [22].

Heuristically, for traveling waves with nonzero velocity, say V. > 0, the push
of P. on the front edge of the interface must be stronger than its pullback on the
rear edge. This asymmetry in P. comes forth with an asymmetry of W(p). We
show that the velocity V' = V, solves simultaneously equations coV = ®5(V) — A
and —coV = ®3(—V) — A, up to a small error. These equations are obtained in
the sharp interface limit on the front and rear edges of the interface, respectively;
—®g(—V) and —Pg(V) represent in these equations, loosely speaking, the push
(and pullback) of P. on the front and rear edges. Then eliminating A one derives
2¢qV = ®3(V) — ®3(—V), this yields the only solution V' = 0 unless the potential
has certain asymmetry (for symmetric potentials, e.g., W(p) = 1p?(p—1)?, one has
O3(V) = ®3(—V)). Theorem 2 justifies the equation 2¢oV = ®5(V) — ®g(—V) for
velocities of traveling waves in the sharp interface limit ¢ — 0. Its proof is based
on Schauder’s fixed point theorem.

Finally, we study the 1D model parabolic problem without any restrictions on
B, where the effects of curvature and volume preservation are mimicked by a given
forcing term F'(t). As already mentioned the main technical trick here is to intro-
duce a special (two term) representation of solutions which allows us to reduce the
study of the interface velocity to a single singularly perturbed nonlinear equation.
Linearization of this equation and spectral analysis of the corresponding generator
lead to a notion of stable and unstable velocities. The main result here, Theo-
rem 6, can be informally stated as follows. If the interface velocity V. belongs
to the domain of stable velocities it keeps varying continuously obeying the law
coVe(t) = ®g(Vo(t)) — F(t) + o(1) until it becomes unstable (if so). This theoretical
result is supplemented by numerical simulations which show that interface velocities
exhibit jumps and reveal existence of a hysteresis loop. Note that velocity jumps
were also observed in [40]. More precisely, the onset of cell motion was attributed
to the subcritical instability (see Fig. 3 and discussion below this figure on page
5 in [40]) which is a typical example of hysteresis [39]. Our stability analysis also
predicts that stationary solutions of (1)-(3) with circular shape of the phase field
functions are unstable in the case of asymmetric potentials and large enough /.
This conjecture is based on the fact that zero velocity is unstable in this case (see
Remark 7).

The paper is organized as follows. Section 2.1 is devoted to the well-posedness
of the problem (1)-(3). In Section 2.2 the equation for the interface motion (7) is
formally derived. Section 3 deals with traveling wave solutions. Section 4 contains
the rigorous justification of the sharp interface limit in the context of the model 1D
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problem. Some results obtained in this manuscript were announced in [6] without
proofs.

2. Well-posedness of the problem and formal derivation of the sharp
interface limit.

2.1. Bounds for the solution of (1)-(2) with e-transition layer on finite time
intervals. In this section we consider the system (1)-(3) supplemented with the
Neumann and the Dirichlet boundary conditions on 92 for p. and P., respectively,

Oype =0 and P. = 0 on 09Q. (8)
Introduce the following energy-type functionals

E.(t) := § [o|Vpe(z,t)Pda + 2 [, W(pe(z,1))da,

Fo(t) i= o (IP-(e, ) + | P, DI ) de
Assyme that system (1)-(2) is supplied with initial data that satisfy:
— eVt < po(2,0) < 14V, (10)

and
E.(0)+ F.(0) < C. (11)

The first condition (10) is a weakened form of a standard condition 0 < p.(z,0) <
1 for the phase field variable. If A, = 0, then the maximum principle implies
0 < pe(x,t) < 1 for t > 0. The presence of nontrivial . leads to an “extended
interval” for p..! The second condition (11) means that at ¢ = 0 the function p.
has the structure of an “e-transition layer”, that is, the domain €2 consists of three
subdomains: one where p. ~ 1 (inside the cell), another where p. ~ 0 (outside the
cell), and they are separated by a transition layer of width e (a diffusive interface).
Furthermore, it can be shown that the magnitude of the orientation field P. is small
everywhere except the e-transition layer (see (19)).

Theorem 1. (Bounds on finite time intervals) If the initial data p.(x,0), P:(z,0)
satisfy (10) and (11), then for any T > 0 the solution of (1)-(2) pe, P. with
boundary conditions (8) exists on the time interval (0,T) for sufficiently smalle > 0,
e < eo(T). Moreover, —*/* < p.(x,t) < 1+¢e'/* and

T 0pe2
5/0 /Q( 8t> dedt < O, E.(t)+F.(t) <C Vte (0,T), (12)

where C' is independent of t and €.

Remark 1. This theorem implies that if the initial data are well-prepared in the
sense of (10)-(11), then for 0 < ¢t < T the solution exists and has the structure
of an e-transition layer. Moreover, the bound on initial data (10) remains true for
t > 0. While it relies on a maximum principle argument, it also requires additional
estimates on A. as seen from (14) below. Note also that in the proof below the
interval of existence of the solution extends to [0, T¢], where T, can be estimated from
below by Cy|loge|. However, energy bounds (12) are proved only for T. = O(1).

IThe exponent 1/4 in (10) can be replaced by any positive number less than 1/2 as will be
seen in the proof the next theorem.
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Remark 2. A solution of (1)-(2) is understood as follows
pe € C(0, T} HY(Q), Bip. € L2((0,T) x ),
P. € L*(0,T; H (), 0,P- € L*((0,T) x Q)
and equations (1) and (2) hold in H=1() for almost all ¢ € [0, 7).

Proof. First multiply (1) by d¢p. and integrate over Q:

d 1 1
/ 10ipe|Pdz + — [ (5]Vpe|® + —=W(pe))dx = 7/ P. - Vp. Op.dx
Q dt Q 2 9 Q

1 1
<5 [ 1o0Pdss 5 [ PP VpPa
Q Q

(13)
Here we used the fact that, due to (3), the integral of d;p. over Q is zero and thus

/)\E(t)atpgdx =0.

Q
Next, using the maximum principle in (1) we get:

—2e% sup [Ae(7)] < pe < 14222 sup |Ao(7)]. (14)
7€(0,t] 7€(0,t]

Let T. > 0 be the maximal time such that
—eh<p.<1+eY* whent <T., (15)

and from now on assume that ¢ < 7.
Using (13), (15) and integrating by parts we obtain

d

g
GE+ 5 [wlar<e [(PPIA+ WIPRIVp) de (16)

We proceed by deriving an upper bound for the integral in the right hand side
of (16). By (1) we have

[ 080 IPP+IPP | [9p:de < [ (oupel|PPds+ [ 1P, Vol PP
Q Q Q

1
+ [ VoI VIRPlde + 55 [ W olIP P+ x| [ [P
Q e Jao Q

The following bounds are obtained by routine application of the Cauchy-Schwarz
and Young’s inequalities. For the sum of the first three terms in (17) we get,

3
1 1
ZIZ' gs/(atpg)zdx+s/ |P5|2|Vp5|2dx+—/ |P€|4dx+/ \V’P€|2|2dx+fE€.
1 Q Q 2¢ Jo Q €
Since (W' (p:))? < CW(pe) we also have

1 C 1 C 1
= [ W P2d<—/Wd —/P4d<—E —/P4d.
5 [ WlRPa < 5 [ Wids+ o [ (Plde< SB[ Rt
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Finally, in order to bound I5 we first derive,

1/2 1/2
A0 < S /W,os )dz)’ /|v,os| i) (/ P Pdr)
Q

(17)
C 1/2 2E ) /2
< =
*5<5> + /|P|dx) ,
then
C 1/2 1/2 3/2
e S(E) e () (e
¢ 2
< E+22 |P.|*dx + E2 + 2/3 |P|da:
Thus,

1
le‘ < §E£+E§+i/|])| d$+€/(3tpa)

1
+e/ |PE|2|VpE|2d:z:+/ |v{P€\2|2d:c,
Q Q

and using this inequality, (17) and (15) in (16), then substituting the resulting
bound in (13) we obtain, for sufficiently small ¢,

C
/|8tp€| dm+——< — B +E2+—/|P| dx+/|V|P| de. (18)

Now we obtain a bound for the last two terms in (18). Taking the scalar product
of (2) with 2kP. + 4|P.|?P., k > 0, integrating over { and using (15) we get
d

G | pe s ip )da:+e/(2k|VPE|2+4|VPE\2|PE\2+2‘V|P5\2|2)dx
Q

2
+f/(k|P5|2+2|PE|4)dx
€Ja
— <23k [ P Vpudo+45 [ pediv(P|PP)do
Q Q

gkCa/ |Vp5|2dx+ﬁ/ |P5|2dx—|—5/ |V P.|? |P€|2d:c+ﬁ/ |P.|2dz.
Q € Ja Q € Ja

We chose k := C7 + 1 to obtain

d
/|V\P| ] dx + = /\P|4da:<CE dt/(k|PE|2+|Pg|4)dx. (19)

Finally, introducing G. = E. + [,(4k|P.|? + | P-|*) dz, by (18) and (19) we have
the differential inequality,
dG.
dt
with a constant C' > 0 independent of . Considering the bounds on the initial
data and assuming that ¢ is sufficiently small, one can easily construct a bounded
supersolution G of (20) on [0,T] such that G(0) > G.. We now have, G. < C on
[0,T%] for sufficiently small e. By (14) and (17) we then conclude that T in (15)
actually coincides with T" when ¢ is small. The theorem is proved. O

< CG. +eG?, (20)
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2.2. Formal derivation of the sharp interface equation (7). In this section
we formally derive equation (7) for the 2D system (1)-(2). While the derivation is
analogous to the single Allen-Cahn equation (e.g., [36], [11]), the gradient coupling
in (1)-(2) results in a nonlinear term that modifies the mean curvature motion.
Assume that that initial data p.(x,0) converge to the characteristic function of
a smooth subdomain wy C 2 as € — 0. Next we want to describe the evolution
of the interface I'(t) = Ow; with ¢, where w; is the support of éll_% pe(z,t). We will

assume that the initial data coincide with initial values of asymptotic expansions
for p. and P: to be constructed below.

Let Xo(s,t) be a parametrization of I'(¢). In a vicinity of I'(¢) the parameters s
and the signed distance r to I'(¢) will be used as local coordinates, so that

x = Xo(s,t) +rv(s,t) = X(r,s,t), where v is an inward normal to I'(¢).
The inverse mapping to x = X (r, s,t) is given by
r = +dist(z, ['(t)), s=S(x,t),

where in the formula for r we choose + if € wy and —, if © ¢ w;. Recall that
T'(t) is the limiting location of interface as € — 0. Next we seek p. and P. in the
following forms in local coordinates (r, s):

r(z,t) r(z,t)

pelz,t) = p. < ,S(z,t),t> and P.(z,t) = P. ( ,S(x,t),t) . (21)

Introduce asymptotic expansions in local coordinates:

pe(z,8,t) = 0Oo(z,8,t)+¢ebi(z,s,t)+ ... (22)
P.(z,8,t) = Wo(z,s,t)+... (23)
() = AO&_( Y () + eAa(t) + ... (24)

Now, subbtltute (22)-(24) into (1) and (2). Collecting terms with likewise powers
of ¢ (¢72 and £7!) and equating them to zero we successively get,

920,
L= W (0) (25)
and
5291 " - 0ty 00y 06
9.2 +W"(00)601 = Vog—gﬂ(saﬂ—(‘l’o )87+/\0() (26)
ovy 0%V 06y
—Vo—— 92 02 W Ba’/, (27)
where k(s,t) is the curvature of T'o(t) and Vy(t) := —r is the limiting velocity.

The curvature x appears in the equation when one rewrites the Laplace operator in
(1) in local coordinates (r, s).

It is well-known that there exists a standing wave solution y(z) of (25) which
tends to 1 as z — oo and to 0 as z — —oo, respectively. Moreover, all derivatives of
the function 6y (z) exponentially decay to 0 as |z| — oo and 6] (z) is an eigenfunction
of the linearized Allen-Cahn operator Lu := —u” + W (0y)u corresponding to the
eigenvalue 0. Then multiplying (26) by 6;(z) and integrating over z we are lead to
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the solvability condition for (26):

) 2
coVo(s,t) = cok(s,t) + /(\IIO V) (38920) dz — Ao(t), where cg = / (800) dz.
R

0z
(28)
Next we obtain the formula for Ao(t). It follows from (3) that [, d;p. = 0. Substi-
tute expansion (22) for p. into fQ O¢p- = 0 and take into account the fact that

Bipe = —0), ( ) VO(; 4 oq).

Thus, in order to satisfy the condition fQ Otpe = 0 to the leading order, Vy(s,t)
must have

/ V(s 012 Xo(s, Olds = 0

Using this fact and integrating (28) with respect to s with the weight |%Xo(s, )],

we get
Xo(t) = / {COKJ(S,t) + /(\Ilo V) (%?:)2 dz} |%X0(s,t)\ds. (29)

Finally, the unique solution of (27) is given by Wo(z,s,t) = (2, Vo(s,t))v(s,t)
where 9 = (2, V) is the unique (bounded) solution of

R+ Vaah — ¢ — By = 0. (30)
The representation Wy(z, s,t) = ¥(z; Vo(s,t))v(s,t) yields

/\110 v(0h)dz = p(V /¢ 2, V)(05)%dz, (31)

where we have also taken into account the linearity of (30) in 8. Now substitute (31)
and (29) into equation (28) to conclude the derivation of sharp interface equation

(7)-

3. Traveling waves in 1D. In this section we study special solutions of system
(1)-(2) in the 1D case. Specifically, we look for traveling waves (traveling pulses).
Therefore it is natural to switch to the entire space R' setting. We show that, not
surprisingly, there are nonconstant stationary solutions, standing waves. However,
we prove that apart from standing waves there are true traveling waves when the
parameter [ is large enough and the potential W (p) has certain asymmetry, e.g.
W(p) = L(p* + p*)(p — 1), see also the discussion in Remark 4.

We are interested in (localized in some sense) solutions of (1)-(2) with p. =
pe(x — Vt), P. = P.(z — Vt). They satisfy the following stationary equations with
unknown constant velocity V and constant A:

!
0 = aa%ps + Vamps - WE(QPE)

A
— P.0pe + 2 (32)

1
0 = e0?P. +VO,P. — ~ P = BOupe. (33)
Let us postulate an ansatz for the phase field function p.. Given a > 0, we look
for solutions of (32)-(33) for sufficiently small € > 0 with p. having the form
Pe = Ge +EXe t+ €U, (34)

where

¢e :=0o((x +a)/e)0o((a—x)/e), xc:=x +(xF—x)oe,
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EX: exs

I/

14

FIGURE 1. Illustration of the ansatz (34). Function p. decays to
a non-zero constant of the order ¢ for x — +o0o0 and to a constant
slightly different from 1 for —a < 2 < a (solid). Dashed line
represents the limiting profile, which is the characteristic function
of (—a,a).

constants y- and xI are the smallest (in absolute value) solutions of W/ (ex2 ) = e\
and W' (1 + ex?) = e\, respectively, and u is the new unknown function vanishing
at +oo. The role of the constant xZ in (34) is to amend the first term of the
representation so that u decays at +oo. Similarly, xI is introduced to end up
with u which is exponentially close to one in (—a,a) away from points +a (see also
Fig. 1).

Substitute representation (34) in (32)-(33) to find after rescaling the variable
y := x/e and rearranging terms,

2w — W' (¢ )u == VOyoe + P-(0yde + e0yu) — A

(W (. +ox) — 326 +x2))

35
(W76 + exe +2u) = W' (ge + xc) — W(6:)u) v
— eV, (u+ xe),
and
OZP. + VO, P. — P. = B0,6. + B0, (x: + ). (36)

Note that the ansatz (34) yields the characteristic function of the interval (—a,a)
in the limit ¢ — 0, provided that uw = u. remains bounded. In this sense we seek
solutions with localized profiles of the phase field function p.. The idea of the
construction of traveling wave solutions is based on the observation that solvability
of the above equations (35) and (36) can be handled by local analysis near the
points +a. Indeed, setting z = y+a (35)-(36) and keeping only leading order terms
we (formally) obtain

O*u —W"(00(2))u = —VOy(2) + P.6) — X\ and 0?P. + VI, P. — P. = 0}(z).
Resolve the second equation to obtain P-(z) = 1(z, V'), then solvability of the first

equation (recall that 926} (z) — W" (0y(2))0;(z) = 0) requires that cgV = ®5(V) — A,
where we have used (31). Similarly, local analysis near the point a leads to the
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equation —cgV = ®g(—V) — A. Thus, we have reduced the infinite dimensional
system (35)-(36) to a two dimensional one.

In order to transform the above heuristics into a rigorous analysis we reset (35)-
(36) as a fixed point problem. To this end rewrite (35) in the following form,
introducing auxiliary functions 921)(;1/) = 0\(y + a/e) + 0((a/e — y) and 9&2)(;(;) =
00(y + a/e) — by(a/e —y),

6299) w" a 0(1)
8ju— W’l(d)s)u* Y 9(1 (¢) u+ H, /u9(2 G\, V, P.,u), (37)
where
29(1)  rom (1)
H. — ;2 W ($)02 — 6261 + 9,0 — W"(¢)0e e

and

629§1) —W" (. egl)
G(\,V,P.,u) = H. / ubPdy — o0 o)

= VOype + P-(9ype + 0yu) — eV, (u+ xe)
— A+ %(W/(¢6 + EXE) - a;((be + 5X5))
2 (W62 + oxe o+ cu) = W/ (e +exc) — W (82)u).

Note that the operator Q. in the left hand side of (37),

820" — W (¢.)6"
Q.u:= aju —W"(¢p)u — 2 PO (¢.) u+ Hg/uag)d

u

(38)

has two eigenfunctions Gél) and 0§2) corresponding to the zero eigenvalue.

Lemma 1. Let v, be any function from H'(R) orthogonal to both 9§1) and 9§2) mn
L?(R). Assume also that f. := Q.v. belongs to L>(R). Then for sufficiently small
€

[veller < Cllfell 2 (39)
with C' independent of € and v,.

Proof. Multiplying Q.v. by v. in L?(R) and representing v. as v. = 0w, (note
that 9£1) > 0) we derive

2
(Qeve,ve) 2 = / (26y9§1)8yw5 + le)agwg) Qél)wgdy = —/ (Hél)) (0,w.)?dy,
(40)
where the latter equality is obtained via integrating by parts, and the term with
H. vanishes thanks to orthogonality of v. to 99. Thus

2
[ (69) @y < 1 elelocl o (41)

The statement of Lemma 1 immediately follows if we prove the following inequality

/ vidy < C/ 2(0ywe ) dy (42)
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with C independent of € and v.. Indeed, using (42) in (41) we get

2
[ (69) @y < g+ et (43)

and combining (43) with

2
Joelie < [ (60) @y +C [ o2y

yields (39).
To prove (42) we use the Poincaré inequality (see Appendix A)

/ 2 2 (1) 2 2
(Oh(a/e £ 9)° fw. — (we)<Pdy < C [ (60) @)y (44)
with a constant C' independent of ¢ and

J (¥y(a/z % y))* wedy
J (6) dy

Due to orthogonality of 9§1>w5 to 99) and 99), we have

[ stase =0 wedy = [ 640y +a/2)00(a/z ~ pyuedy.

<w5>:|: =

Thanks to the exponential decay of 6, 04(y) < age *¥! (see, e.g., [28]), it follows

that
1/2

[ Oase 400 wads] < e ([ (00) wian) (45)

for sufficiently small ¢ and r > 0 independent of €. Combining (45) and (44) we
obtain (42), the Lemma is proved. O

Proposition 1. For sufficiently small € the operator QF adjoint to Q. (with respect

to the scalar product in L*(R)) has two eigenfunctions o) and 6 = 9P + qe
corresponding to the zero eigenvalue, with ||qz||g: = o(€). Moreover the equation
Q.u = f has a solution if and only if f € L?(R) is orthogonal to the eigenfunctions

0 and 0% of Q.
Proof. Given f € L*(R), consider the equation Q.u = f rewriting it in the form

9268 —w"(¢.)8
o

(1)
02— W (O)u+ (W"(0) — W"(6.)) u — —u+H. [udy = .

(46)
Since W (0) > 0, the equation 8§u—W”(O)u = f has the unique solution u = Gf for
every f € L?(R) with a bounded resolving operator G : L?(R) — L?(R). Moreover,
by applying the operator G to (46) we reduce this equation to v + Ku = Gf,
where K is a compact operator (this can be easily shown using the properties of
the function 6p). Thus we can apply the Fredholm theorem to study the solvability
of (46). Note that Q. does not have other eigenfunctions corresponding to the
zero eigenvalue besides 05;1) and 09). Indeed, existence of such an eigenfunction v,

orthogonal to 8, 62 in L*(R) and normalized by [v?dy = 1 would contradict
(41) derived in the proof of Lemma 1.



564 LEONID BERLYAND, MYKHAILO POTOMKIN AND VOLODYMYR RYBALKO

Consider now the eigenfunction 9§3) of QF orthogonal to 99), and represent it
as Hég) = 9§2) + g. with g. orthogonal to both 9§1) and 9§2). Then combining the
equality

Qg = H. [(0®)dy 0@ [ .62~ q.)ay
with Lemma 1 we obtain that ||gc||g1 = o(¢) as e — 0. O

Let us consider now for a given u € H'(R), V and A a solution P. of (35),
assuming that e is sufficiently small and ||ul|g: < M, |A| < M, |V]| < M for some
finite M. We represent P. in the form

P.(y) = Yo(y +a/e,V) —tho(a/e —y,—V) + Be (47)

and observe that B. can be estimated as follows,
/(ayBE)Qdy + /(BE)2dy < eCM|B.||> hence |B.||g: <eCiM.

Now consider u in the left hand side of (37) as an unknown function to write down
the solvability condition

/ G\ V, Pou)dPdy =0, k=1,3. (48)
Calculate leading terms of (48) for small € taking into account the fact that
W,(¢E +exe +eu) — W' (¢ + EXe) — 5W”(¢E)u = 0(52) (49)
and
W/(¢5 +ex:) - (32((;55 texe) = 5(WH(¢8)X£ - 33)(8) + 0(52)7 (50)

where O(¢?) in (49) and (50) stand for functions whose L>-norm is bounded by
Ce?. Note also that integrals

/ (W (62)xe — 2xe)60)dy = / (W (6)6) — 9200y dy, k= 1,3

tend to zero, when € — 0. Thus (48) can be rewritten as

0==35(V)+Ds(—V)—2XA+e®1(V, X, u) and 2coV = @5(V)—s(—V)+ePo(V, X, u),

(51)
where functions @, ®, and their first partial derivatives in V and A are uniformly
bounded by some constant depending on M only. Note that if Vj is a nondegenerate
root of the equation 2¢)V = ®g(V) — ®g(—V) then for sufficiently small €, in a
neighborhood of Vg and Ao = §(®3(Vo) + ®(—Vj)) there exists a unique pair Vz(u)
and A (u) solving (51) and depending continuously on wu.

Theorem 2. (Existence of traveling waves) Assume that the equation 2coV =
O3(V) — ®3(—V) has a nondegenerate root V. Then for sufficiently small e there
exists a function ue, with |ue||m < C and C being independent of €, a function
P. and constants V.= V., A = A\; such that p. given by (34) and P- are solutions
of (32)-(33). Moreover, the velocity V. and the constant A\ converge to Vi and
Ao == 2(Ps(Vo) + 5(—Vo)) as e — 0.

Proof. Consider the mapping u — Q-'G(\, Ve, P-,u), where \. = \.(u) and
Ve = Vo(u) solve (51), and P. is the solution of (36) with V' =V, and A = A.. The
operator Q. has two eigenfunctions 6‘9) and 952) corresponding to the zero eigenva-
lue, we choose v := Q-1G ()., Vi, P-,u) to be orthogonal to 9§1) and 9§2) in L?(R).
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Then the following holds. If |lul g1 < M, then [|Q7 G(A, V., Peyu)|| g < M for
large M and sufficiently small €. Indeed, by virtue of Lemma 1 it suffices to find an
appropriate bound for the norm ||G(Ac, Vz, P.,u)||r2. Considering formula (38) for
G(Ae, Vz, P.,u) observe that the only third line and terms VeOy¢. and P.0y¢. in
the second line have non vanishing norm in L?(R) as e — 0. Moreover, these norms
can be bounded by C' +eC; (M) with C independent of M, while the norm of other
therms can be estimated by eCo(M). Thus ||G(Ae, Ve, Psyu)|| 2 < C+eC3(M) and
using Lemma 1 we obtain

107 G (N, Ve, Poy) || n < Cy 4 Cs(M),
with Cy independent of M. It remains to choose M > C4 to conclude that
19 G\, Ve, Pey )| < M

for sufficiently small e.

Also, the mapping u — Q- 'G(Ac, Ve, P-,u) is continuous in H'. Thus, we can
apply the Schauder fixed point theorem provided we establish the compactness of
the mapping under consideration. To this end we consider a subset of functions u
which decay exponentially with their first derivatives:

[ull g < M, }

]CM,T = {u : ‘u|7 |ayu| S Me_T(‘yl_%) When |y| Z z?a

(52)
We claim that for some M > 0 and r > 0 the solution v of the equation Q.v =
G(Ae, Ve, P.,u) (orthogonal to 9§1) and 99)) belongs to K, for every u € Kas,
when ¢ is sufficiently small. Indeed, the required bound for the norm of v in H'(RR)
is already established. It remains to prove that v and 9yv decay exponentially when
ly| > 2a/e. To this end we observe first that

|P.| < C(1+eM)e " Wl=2a/9) for |y| > 2a/e, (53)

with C' > 0 independent of M and ¢, and r; > 0 depending on M only. The proof
of (53) is carried out in two steps. First, we multiply (36) by P., integrate on R and
apply the Cauchy-Schwarz inequality. As a result we get ||P:||pe < C||P:||g: <
C1(1 + eM). Second, observe that the function 6}(y) decays exponentially when
y — zoo. Therefore there exists Cy > Ci(1 + eM) and r; > 0 such that the
functions Py (y) := +Cqe "1 (¥1=20/2) gatisty

QZ('?;PE FVO,P. £ P. > p0y¢. + £80y(xe + u) for |y| > 2a/e.

This yields pointswise bounds —Cye~"1(I¥1=2¢/¢) < P_(y) < Cye~"1(IWI=29/2) for all
y < —2a/e and y > 2a/e. Next using (53) in the equation Q.v = G(\,V, P., u)
and arguing similarly one can establish that |v] < C(1 4 eCy(M))e2vl=20/2) for
ly| > 2a/e. Finally, taking an integral from —oo to y (or from y to +o0) of the
equation Q.v = G(\,V, P.,u) we get the required bound for d,v on (—o0, —2a/¢]
(or [2a/e, +0)).

Thus the image of the convex closed set Ky, under the mapping

U Qe_lG(/\E, Ve, P, u)

is contained in Kp,. Also, the equation Q.v = G(A., Ve, P:,u) provides the fol-
lowing bound [82v| < C(|ul,[dyul,|v],|dyv|) while |ul, |v|, [dyu| and |9,v| have
pointwise bounds with decay estimates for large y, both u and v being elements of
K s, This implies that the mapping u — Q- 1G(\., Ve, P-,u) is compact on Ky,
(in the topology of H*(R)). Thus there exists a fixed point of this mapping in Ky ..
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By(V), B=150 00(y)
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FIGURE 2. Left: ®5(V) for 8 =150 and Was(p) = 1p*(1+ p?)(p—
1)2, positive slope illustrates ®5(0) > 05 Right: 0o, standing wave
for the Allen-Cahn equation for Wy (p) = $p?(p — 1)? (dashed)
and Was(p) = 10(1 + p?)(p — 1)? (solid).

Since the principal part 0 = ®3(V) + ®3(—V) — 2X and 2¢oV = @3(V) — @5(—V)
of the system (51) is nondegenerate in the neighborhood of V; and A, we have
Ve —=Voyand \e - Agase — 0. O

Remark 3. Note that 1, = 0 and Ao = ®3(0) are always solutions of the principal
part of the system (51). Moreover one can establish a traveling wave (in fact
standing wave) solution with V. equal to zero exactly, by following the line of
Theorem 2 but considering subspace of even functions u € H'(R). The existence of
nontrivial traveling waves (with nonzero velocities) is granted by Theorem 2 in the
case when the equation 2¢oV = ®5(V) — ®g(—V) has a nonzero (nondegenerate)
root. Such a solution does not exist for the standard potential W (p) = 1p*(p —
1)2, in this case ®5(V) = ®3(—V) for all V due to the fact that ) is an odd
function. However, if the potential has two equally deep wells but possesses certain
asymmetry, e.g. W(p) = 1(p*+p*)(p—1)2, we have @5(V) > ®g(—V) for V > 0, so
that nontrivial solutions of 2¢yV = ®5(V) —®3(—V) do exist for sufficiently large 3,
> Baitical. The plot of the function ®5(V') for B = 1 and W (p) = 1(p*+p?)(p—1)2
is depicted in Fig. 2, as well as the corresponding standing wave.

Remark 4. As already mentioned, nontrivial traveling waves appear in the case
when W (p) has certain asymmetry, that, in particular, makes the derivative ®;(V')
of ®5(V') positive at V' = 0. The function ®g(V) depends on the potential W (p)
in a complex way. Its derivative at V' = 0 is given by ®3(0) = B [(66)*vv (y)dy
with 1y (y) solving (=0 + I)*1y = 6. The following representation ¥y (y) =
[ e 1¥==l(1+|y—2])0} (2)dz can be obtained in a standard way by using fundamental
solution, so that

1
- (@ = ~ W (6 ~
w50) =5 [ [ e OOt 1y(00) — (@)W () [T g, (54)
0o Jo W (6p)
b  dby : .
where y(0y) = | — === (this relation between y and 6 follows from the equa-
172 V/2W (6o)

tion 8 = \/2W (6p) obtained by multiplication of 6] = W’(y) by 6, and integration
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with respect to y). On the other hand, ®4 is a bounded function, therefore if the
right hand side of (54) is positive, then for sufficiently large 8 there are non-zero
solutions of equation 2¢qV = ®g(V) — ®5(-V).

In order to have more insight about this dependence assume that the diffusion
coefficient in equation (2) for P. is given by de, where § is a positive parameter
independent of €. This leads to redefining ®5(V') as follows,

Bs(V) = / N(B))2dy,  —80% — Vo + = —p8),

One can write down an asymptotic expansion of 1 and its derivative 1y with respect
to V at V = 0 for sufficiently small § > 0

b =—B0)— 6RO + ..., by =—PBOl — 2686 + ...
Then we have
®5(0) = 258 [ 67657y + 0(55),
which yields, after integrating by parts and using the relations (6)2 = 2W(6),
0= W'(6),
©;(0) = %ﬂaﬂ /0 W) A2 (p) + O(687). (55)

The integral in (55) can be interpreted as a measure of asymmetry of the potential
W (p), and nontrivial traveling waves emerge if this integral is positive and

360
8V20 [ W"(p) AW3/2(p) + 0(62)

ﬁ > ﬁcritical =

4. Sharp interface limit in 1D model problem. The equation of motion (7)
formally derived in Subsection 2.2 exhibits qualitative changes for large values of
the parameter 8. This is indicated, in particular, by the fact that the equation

oV — ®4(V) = —F, (56)

may have multiple roots V. Note that combining the curvature and integral (con-
stant) terms in (7) yields the equation of the form (56) with

1
F.—m/F(/@—&—(I)ﬁ(V))ds—n.

In this Section we analyze a 1D analogue of the original model and rigorously
derive a law of motion in the sharp interface limit. For given F(t) € C[0,T] we
consider bounded solutions of the system

0 w’ F(t

ap: :aﬁps— S(st) fPE(?mpEJr%, zeRY t>0,
OP. 1

a: = 0?P. — EPE — BOyp-.

Analysis of the 1D problem (57)-(58) is a necessary step for understanding the
original problem (1)-(2). Observe that motion of the interface in the 2D system (1)-
(2) occurs in the normal direction, and therefore it is essentially one-dimensional.
Thus, the 1D model (57)-(58) is anticipated to capture the main features of (1)-
(2). The effects of curvature and mass conservation in (7) are modeled by a given
function F'(t). We believe that qualitative conclusions obtained for the 1D problem
(57)-(58) apply for the 2D model (1)-(2).
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We study the asymptotic behavior of solutions to the system (57)-(58) as ¢ — 0
with “well-prepared” initial data for p.,

pe(2,0) = Op(z/e) + eve(z/e), (59)

where 6y is a standing wave solution of the Allen-Cahn equation (25) such that
fo(z) = 0 as z — —oo and 6p(z) — 1 as z = +o0o0. We seek p. in the form

pel,t) = by (x:(t)> + ew. (x:(t)t> . (60)

The z(¢t) in (60) can be viewed as a location of the interface. Remark 5 explains
that a choice of x. is not unique, however it is well defined in the limit ¢ — 0.

The main goal of this Section is to prove that x.(t) converges as € — 0 to zo(t),
whose velocity Vy(t) = 4o(t) solves the sharp interface equation

coVo(t) = (Vo(t)) — F(t), (61)

where ®(V) is the known nonlinear function given by (31). This equation can be
formally obtained in the limit € — 0 as in the Section 2.2.
Next for reader’s convenience we summarize key steps of the asymptotic analysis
of (57)-(58):
(i) Choice of a special representation. The function p. is represented in the form
x — x(t)

pe(x7t) = 90(3/) + EXE(:%t) + 5ua(y,t), Pe(xvt) = Qs(yat)v Y= f? (62)
where 6y and x. are known, and u., Q). are the new unknown functions.
Existence of z.(t) with estimates on u. uniform in ¢ and ¢ are established in
Section 4.2.

(ii) Reduction of the system to a single equation. The unknown function w. is
eliminated by showing that the third term in representation (62) is small.
Next, we split (). into two parts, Q. = A. + B., where B, depends on u. but
is small, and A. does not depend on wu.. Thus, the original system (57)-(58)
is reduced to

(co + o(L)Va(t) = / (6))? Acdy — F(t) + ol1),

0A.
ot
Taking the limit € — 0 in the system (63)-(64) is non-trivial because of the
product term V_(t)0,A..
(iii) Analysis of reduced problem. For sufficiently small 5 we prove that z.(t) —
xo(t) as e — 0 by the contraction mapping principle. For larger 3, system (63)-
(64) further reduces to a singularly perturbed non-linear non-local equation.
The limiting transition in this equation is based on the stability analysis of
the semigroup generated by the linearized operator.

= 0 A + Vo(t)9,Ac — A — 6.

4.1. Asymptotic representation for p.. In order to pass to the limit ¢ — 0 in
(57)-(58) we further specify v. in (60). Namely, we introduce the representation

pela,t) = by (x_:(t)> Fexe (x_:(t)t> +eu, (‘T’_f(t)t> . (65)

with the new unknown function u. satisfying

/%(y)ua(y, t)dy =0, (66)
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and xc(y,t) defined by

Xe(y:t) = X2 () + 60 (y) (x (1) — X2 (1),
where YT and x~ are solutions of the following ODEs

W1 +exd) W (ex2)
£

828,5)(: = + F(t)7 sgatxg_ = _f + F(t) (67)
with the initial data xZ(0) = F(0)/W”(1) and x- (0) = F(0)/W"(0).

The idea of the decomposition of the lower order term in (60) into two parts is
suggested by the observation that it is the most important to control behavior of p.
in the vicinity of the interface. So, ideally we would like to localize the analysis by
considering functions that are negligibly small outside the interface. However, the
right hand side F'(¢) prevents p. from being localized. The function x. absorbs this
nonlocal part of p.: the new unknown function u. decays at infinity and, therefore,
it allows one to work in Sobolev spaces on R. Note that the standard ODE methods
yield the following bounds

IXe (W, )] + [0y xe(y, 1) + 102X (y, )| < C VE€[0,T), y €R, (68)

moreover, thanks to the continuity of F(t) and a particular choice of the initial
values = (0) we have

£2||0sxe|lL~ — 0 uniformly on [0,T] as & — 0. (69)
Finally, we set Q.(y,t) := P-.(zc + €y, t).

Remark 5. The choice of z. in the representation (60) is not unique, e.g. its
perturbation with a term of order 2 still leads to an expansion of the form (60).
We introduced the additional orthogonality condition (66) which implicitly specifies
x<(t). This condition allows us to use Poincaré type inequalities (see Appendix A)
when deriving various bounds for u.. If the initial value of u. in the expansion (65)
does not satisfy (66), it can be fixed by perturbing the initial value z.(0) = 0 with
a higher order term. Indeed, this amounts to solving the equation

/ (Bo(y + :(0)/) — Oo(y)) O (y)dy = & / (X= (4, 0) = ve(y + 7(0)/2)) 05 (y)dy.
If ||ve|lr2 < C then the latter equation has a solution z.(0) and |z.(0)| = o(e).

4.2. Reduction of the system to a single equation. The following theorem
justifies the expansions (65) and will be used to obtain a reduced system for un-
knowns z.(t) and Q.(y,t) by eliminating u..

Theorem 3. (Validation of representation (65)-(66)) Let p. and P. be solutions
of problem (57)-(58) with initial data p.(x,0) = Og(x/e) + eve(x/e) and P-(z,0) =
pe(2), where

lvellz2 < C, |vellze < Ce, (70)
and
[Pellze) + [[Oypellre < C. (71)

Then there exists x.(t) such that the expansion (65)-(66) holds with ||uc(-,t)||L2 <
C fort e [0,T).
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Proof. Step 1. (coupled system for u., Q. and V. := &.) Note that the maximum
principle applied to (57) yields ||pe||r~ < C. This bound in conjunction with (68)
allow one to write down the expansion

2 —
w’ (90 + 5(X€ + UE)) = W/(QO 'H‘:Xa) +5W”(90)u6 +€2W”/(£5)X5u5 + %W'”(fe)uza

where &, and £, are some bounded functions (while & and ¢, depend on 6, x. and
e, this dependence is omitted for brevity). Then substituting the expansion (65)
into equation (57) leads to

O,
i ;t =0yue — W' (0o)us + Vol — Q:00 + Oy x-
W (00) — W' (B0 + exe) 29X
F(t) —
n . HE() et (72)

- 5WIH(§€)XEUE - %W”/(gs)ug
- 5@5(831)(6 + ayue) + 8‘/5(8@/)(5 + ayu&)'

This equation is coupled with that for Q).
0

€ ;ia = 85@8 + VeayQa - QE - ﬁelo - Eﬁ(ayXE + 8@;”8) (73)

Finally, considering the solution p. as a given function we differentiate (65) in time,

multiply by 6;(y) and integrate in y over R to obtain the equation for V.. Thanks
to (66) we get

Ve (co — 6/(uE + XE)%’dy) = 52/875)(5960@ — 5/8tp5(mg(t) + ey, t)0dy. (74)

Note that if we obtain a uniform in ¢ a priori bound of the form |[juc|| 2 < C with
C independent of ¢, (74) can be resolved with respect to . = V. to come up with
a well posed system (72)-(74).

Step 2. (energy estimates for u. and Q.) Represent u. as u. = Ojw,, then multiply
the equation (72) by u. and integrate in y over R. Since

[ (<02 w0y wedy = [ 620,002

and
/96u5dy =0, /6yxgu5dy =0, /Byugugdy =0,
we get
R
oY u?dy + /(06)2(3yw5)2dy < / (Ry — Q:0) — eQ:0yxe) ucdy

— 5/Q58yususdy + Cs/(uz + |u5|3)dy,

(75)

W'(0o) — W'(0o +ex:) 52%

where R; = 85)(5 + . Due to the construction of

€
Xe we have, |R1]|rz < C with C independent of € and ¢. Also, by a Poincaré type
inequality (see Appendix A)

[ @@,y = Coy ey
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with Cy, > 0 independent of u.. Thus (75) implies that

2
e“d Cy €
S luelts + Sl < O+ CulQulie + 5 [ 8,Quudy

C ue||?
w0 [lucpay+ G (P )

< C+ C1|Qell72 +€ll0yQell> + Coelluellfs

(76)
where we have also used the interpolation inequality [ |u|*dy < C|ju||g1||ul|?. which
yvields [ |u|*dy < C(||ul|%: + ||u]|$2). Next we derive differential inequalities

d
e Qe + 10yQel7z + 1QellZz < O+ Clfuc 72, (77)

d
e 10y Qell7z + 105Qe72 + 110y Q72 < C + Celfuc, (78)
by multiplying (73) by Q. and 85@67 and integrating on R.

Step 3. (uniform bound for ||uc||r2) We show that differential inequalities (76)-(78)
imply that ||uc||3. remains uniformly bounded on [0,7] when & > 0 is small. To this
end fix M > max{1, [|us(-,0)[|32}, to be specified later, and consider the first time
t=1€(0,T) when [Ju.(-,t)||2, reaches M (if any). We have, ||u.(-,t)||2, < M on
(0,%) and

d _
£||u€||2L2 >0 att=*1. (79)

It follows from (77) that [|Qc[|2. < C + Ce?’M — £2||Q.||2.; the same bound also
holds for ||0,yQ:||2.. Substitute these bounds in (76) and integrate from 0 to ¢ to
conclude that

t
/0 [uellZpdt < C (4 €*lluc(-,0)|Z> + el Qe(+, 0)lI72 +tM?))  (80)

with a constant C' independent of ¢, M and e. Now integrate (78) from 0 to ¢, in
view of (80) this results in the following pointwise inequality

1
10,Qcl =€ (24 S lucl- O +21Q:- O + 238 ) + 10,Qu( O

for all t € (0,t). Also, Gronwall’s inequality applied to (77) yields
|Qcll22 < C(A+ M)+ [|Q=(+,0)|2. V€ (0,7).

We substitute the latter two bounds into (76) and consider the resulting inequality
at t =t. In view of (79) we have that ||u(-,?)||z2 < |Ju(-, )| g and

lul-, DlFn < CA+1Q:(+,0)17> +€lloyQc(+,, 0)l[72 + e uc (-, 0) |72 +eM?),
where C' is independent of #, M and e. Thus, taking M bigger than
M = max{|Juc(-,0)|72, O+ [|Q-(+, 0)l[72 + ]9y Qc (-, 0)[[ 22 + *[luc (-, 0)[I72)},

e.g. M :=2M, and considering sufficiently small £ > 0 we see that [|[u(-,%)[|%2. < M.
This shows that [|u(-,%)[|2. < M on [0,T], and the Theorem is proved. O
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Note that as a bi-product of the above proof we obtained the integral bound

T
/ e |Zpndt < C, (81)
0

which plays an important role in the following derivation of a reduced system for
V. and Q..

The special form of the representation (65) (cf. (66)) together with estimates of
Theorem 3 and (81) allow us to derive a system of the form (63)-(64) for V. and
Q-. To this end multiply (72) by 6{(y) and integrate in y over R, this results in

(co+20.0) Velt) = [0 Aty + F() = 20.(0)+ 6.00), (52)
where A, is the solution of
0A. 5 ,
Eop = 0y Ac + Ve(t)0yAc — Ac — B0 (83)
with the initial condition A.(y,0) = p.(y)(= Q:(y,0)) and
@E(t) = - /(Xs + ue )0y dy,
0.0) = [ (52 + W €xeue + W€ ) iy
1
42 Q= 406y + [ Qu0,0xc + )i (34)
- Ix
R 2 € n/l
0:(t) = ¢ 9 Oody

with £, being a bounded function (as well as & and €_). It follows from (69) that 6.
uniformly converges to 0 as ¢ — 0 (|6c| < Ce if F is Lipschitz or W"(0) = W"(1)).
Next we show that O.(t) is bounded in L*>°(0,T") uniformly in € .

Proposition 2. Let conditions of Theorem 3 be satisfied, then O(t) introduced in
(84) is bounded uniformly in t € [0,T] and €.

Proof. By Theorem 3 the first term in (84) is bounded. To estimate the remaining
terms represent Q. as Q. = A. + B, where B, solves
0B.
ot

with zero initial condition. Multiply this equation by B. and integrate on R, then
multiply (85) by ang and integrate on R to obtain

€ = 8§BE + V.0yB: — Be — €f3(0yxe + Oyuc) (85)

d
eI Belliz + | BellZe < Ce*(1+ Jluc]72), (86)

d
210, Bellfe < Co(1+ el

After integrating these inequalities from 0 to ¢ we make use of (81) to derive
| Be||l3;1 < Ce. Also, Gronwall’s inequality applied to (86) yields ||B.||2, < Ce?.
Similarly, in order to bound ||A.||z2 and ||0yAc| L2 we first get

d
e (1AelZe + 10y A N1Z2) + (I AclZ2 + 19y Ac1Z2) < €,
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then apply Gronwall’s inequality to conclude that ||A.||3,, < C. Thus,
1
- / Qe — AE|(9(/))2dy+ ‘/Q&ay(XE + Us)aédy‘
1
= 1B+ | [+ uo, @)

C
< ZlBellpz + CQA A+ flullz2) (|4l + |1 Bell ) < Ch
O

From now on Oy, . and O, are regarded as given functions in the reduced system
(82)-(83), and their influence on the behavior of the system is small. Observe that
taking the formal limit as ¢ — 0 in the system (82)-(83) leads to (61). Indeed, the
formal limit as € — 0 in (83) is nothing but (30) whose unique solution is ¥ (y; V(t)).
Then substituting this function into the limit of (82) yields (61).

4.3. Sharp interface limit for small 3 by contraction mapping principle.
The following Theorem establishes the sharp interface limit for sufficiently small
B. We assume that initial data P.(cy,0) = A.(y,0) are bounded in L?(R) by a
constant C independent of e:

[A:(-,0)][r2 < C. (87)

Theorem 4. (Sharp Interface Limit for subcritical B) Let A, V. be solution of
the reduced system (82)-(83) with O.,0. € L>(0,T) and 6. converging to 0 in
L>(0,T) as e = 0. Assume also that (87) holds. Then there exists By > 0 (e.g., V
0 < Bo < 2/ max{[|(6))?|| 2, /0 }) such that for 0 < B < By

V(t) = Vo(t) in L*>(6,T) ase — 0, V6 >0, (88)
where Vy is the unique solution of (61).

Proof. Step 1. (Study of the boundary layer at t = 0). We show that the function
Ne(y,t) = Ae(y,t) — ¥(y, Vo(0)) behaves as a boundary layer at ¢ = 0. Since ¢
satisfies 074 + Vo (0)9y¢ — ¢ = Bbh, coVo(0) = [(0)*1bdy — F(0) and A, V. solve
(82)-(83), we have

1
e0yme =0 + VOyne — ne + aayw/(%)znedy

L
co + €0,

<F(0)(1 + 0. /cy) — F(t) — s% /(06)2A5 + €0, + 55> .

co
(89)
Multiply (89) by 7. and integrate on R,
ed 1
5 g MMl + 10yl Z2 + IInllZ < all(9/)2|IL2||3.1/¢||L2||77||%2
+C(|F(0) = F(t)| + [0c] +¢) (1 + [In]|72)-

Note that [|0,¥[|7. + [[¥[I7. = —B [ 5¢dy, therefore [|0,7. < B2|6h]l7./4 =
B2co/4. Thus, if B]|(6)2]|12 < 2, then for sufficiently small € and 0 < t < /2 we

have
ed

57 1Mze +wlnliz < C(1F©0) = F(t) + o] +¢) (90)
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with some w > 0 independent of €. Now apply Gronwall’s inequality to (90) to
obtain that

[l < Ce™1/% +-C max (IF(0) = F(O)] +16.]) + Ce ¥t € [0.v2)

in particular,
| Ac(-,vE) — (-, Vo(0))|lL2 — 0 ase — 0. (91)
Step 2. (Resetting of (82)-(83) as a fixed point problem). Consider an arbitrary
V € L*°(\/e,T) and define F. : L=(\/e,T) — L>®(\/e,T) by
1 - -
Fo(V)yi= —— [/(06)2(14 + 7 )dy — F(t) + €O + 0| , (92)
co + €0,

where A is the unique solution of

e A=0;A+VO,A— A—po,
{A(y, Ve) =1(y, Vo(0))
on R x (y/&,T] and 7. solves
{ edyile = 0271 + Vil — e,
Me(y, Ve) = Ac(y, ve) — 1 (y, Vo (0)).
Note that thanks to (91),

1 — 0, — 0. 95
e 17| 2 as € (95)

It follows from the construction of F. that V is a fixed point of this mapping.
Next we prove that, for sufficiently small 3, F. is a contraction mapping. Consider
Vi,Va € L®(/e,T) and let Ay, Ay be solutions of (93)-(94) with V' = V; and
V = V4, respectively. The function A := A; — A, solves the following problem

O A = 8;[1 + V10, A — A+ (Vi — V2)0, A,
A(y,Ve) = 0.
Multiplying equation (96) by A and integrating in y we get
ed - - _ _ _
5 I + AN + 10,41 = (Vi — Vo) [ 40, 40dy = (Ve ~ Vi) [ 420, Ady
Asl2, .
<Vi- V2|2% + 119, Al 7
(98)
On the other hand every solution A of (93)-(94), in particular A, satisfies
[A[l72 < coB?, te[VeT. (99)
Indeed, multiplying (93) by A and integrating in y we get

d
e Al + 2041 + 210,413 = =25 [ 84dy < cof® + 4]

which yields e £[|A||2. + [|A||2. < coB?, the latter inequality in turn implies that
| A]12, < |[¢)|2.e75+B%co(1—e /%) for t € [/z, T]. Observing that |92, < 8%co,
we are led to (99).

Substitute now (99) in (98) to conclude that

co
1F-(Vi) = Fe(Va)ll 2o (o) < 152HV1 ~ Vall T (y2m)- (100)
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Thus, for § < 2/,/co, F: is a contraction mapping.
Step 3. Since V. is a fixed point of the mapping F., we have

Ve = Voll oo (yzry = 1Fe(Ve) = Fe(Vo)ll Lo vz, + 1Fe(Vo) = Voll oo (2,1

0
< LOBIV. ~ Vollooe(vzzy + IF(V0) = Voll iy

Thus,
1
Ve = VollLoe vz < WHFE(VO) = Vollp=(vz1)- (101)
It remains to prove that
|F=(Vo) — Voll o (yz,m) — 0 as e — 0. (102)

Step 4. (Proof of (102)). First, we approximate V;(t), which can be a non-diffe-
rentiable function, by a smooth function. Namely, construct Vo.(t) € C[0,T], e.g.,
as a mollification of Vj(¢), such that

hm Voe = Vo in C[0,T] and ’ d Voe| <

C
.Vt e [0,T). 103
7z [0, 7] (103)
Let A be the solution of (93)-(94) with V' = V;(¢). Consider D.(y,t) := A(y,t) —
U(y, Voe(t)), it satisfies the following equality

O s Vou )

d
(’)V Voe + (VO - VOs) yd)(ya VOE( ))

dt

(104)
on Rx(y/¢,00). Since the right hand side of (104) converges to 0 in L>([0, T, L?(R))
and the norm of initial values || D.(y, v¢)|lL2 = |[¥(y, Vo(0)) = (y, Voe (v/€))|| L2 — 0
as € — 0, we have

€0 D. — 0, D, — Vo0, D, + D, =

max || De|lpz =0 when e — 0. (105)
te[ve,T]
Finally, since [(0})%¢(y, Voe)dy = coVo + F(t) + O(|Voe — Vo|) we see that
[Fe(Vo) = Vol < C(IVoe = Vol + [|Dellz2 + [l7ell 2 + [0 +€)
Then combining (95),(103) and (105) we establish (102), and the Theorem is proved.
O

4.4. Sharp interface limit for arbitrary g via stability analysis.

4.4.1. Reduction to a stability problem. For larger 8 the contraction principle no
longer applies and both analysis and the results become more complex. Here the
stability analysis of the semigroup generated by a non-local non self-adjoint operator
is used in place of the contraction mapping principle.

In the case where § is not small, solutions of (61) are no longer unique, see Fig.
3. However, the original PDE problem (57)-(58) (as well as the reduced system
(82)-(83) has the unique solution. This indicates that analysis for large S must be
complemented by a criterion of how to select the limiting solution of equation (61)
among all solutions of this equation.

As a first step, we neglect terms €O, (t), €O, (t) and 6.(t) in the reduced system
(82)-(83) and study the system

oVelt) = [ (6521, )dy - F ()
Eatfs = af,fs + ‘/;(t)ayfs - fs - 596
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FIGURE 3. Left: Plot of function ®g(V) for 8 = 150 > f,; Right:

Plot ¢V — ®5(V) for B = 150 vs F. For —F = 1.5 there is

one intersection ((61) has one root). For each —F = 1.762 and

—F = 2.264 there are two intersections ((61) has two roots). For

—F = 2 there are three intersections ((61) has three roots).

(in (106)-(107), fe replaces A, from (82)-(83)). Substitute (106) into (107) to rewrite
the (106)-(107) as a single equation

1
. =i+ ([P fay-F0) ot~ 165 (08
In the limit € — 0 this equation (formally) leads to the PDE
1
0= s+ 2[00 - F0) 0,1, - 1. - 605 (109)
0

Taking the formal limit is justified below for passing from (108) to (109).

Remark 6. Equation (108) is a singular perturbation of (109) and both equations
are non-autonomous. It is well-known that singular limit problems, including non-
autonomous equations, can be reduced to the analysis of large time behavior of
autonomous equations. To illustrate this, recall a standard example of an ODE
with a small parameter e from [20],

EdzE

dt

Assume that there exists the unique root ¢(t) of F, i.e., 0 = F(é(t),t), t € [0,T].

Then the singular limit ¢(t) = lin%) ze(t) holds provided that ¢(t) is a stable root,
e—

= F(z.,1), t € [0, 7). (110)

i.e., all solutions u(7) of an autonomous problem dZ—(TT) = F(u(r),t) (t is fixed)
converge to the large time limit ¢(¢): lim u(7) = ¢(¢t). Note that the problem
T—00

(110) has two time scales: a slow time ¢ and a fast time 7. Also the large-time limit
corresponds to 7 — oo for a fixed parameter ¢.

Note that the equivalence of singular and large-time limits is straightforward for
the singularly perturbed autonomous problems (F does not depend on ¢ in (110)).
In this case, the simple rescaling

Ti=1/¢ u(T) := ze(eT)

reduces the singular limit problem to a problem of stability of steady state.
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To justify the transition from (108) to (109) we introduce three time scales:
slow, fast, and intermediate. More precisely, we employ the following three step
procedure: (I) partition the interval [0,7T] by segments of length /¢ on which the
equation (108) is “almost” autonomous (F(t) is “almost” constant on each of these
intervals); (II) on the first interval (0,+/¢), by appropriate scaling 7 = t/e and
stability analysis find large-time asymptotics 7 — oo (here we used equivalence of
singular and large-time limits for autonomous equations); (III) use the asymptotics
found in (II) as initial conditions for the next interval (1/e,24/€), repeat step (II)
on this interval, and continue to obtain global asymptotics on [0,7]. A crucial
ingredient here is an exponential stability of the linearized problem which prevents
accumulating of errors (see bound (124) in Lemma 2).

4.4.2. Spectral analysis of the linearized operator. Rescale the “fast” time 7 = t/e
in the unknown f. in (108) and “freeze” time ¢ in F(t) (as described in step (IT)
above)

onf = 2f +— ( [0ty - F(t)) o, — f— 8o, (111)
co

here t € [0,T] is considered to be a fixed parameter. Steady states of (111) are
solutions of (109). Let fy be such a solution, we define its velocity by

voim = ([0 han - F0)). (112)
then fo(y) = ¥(y, Vo), where 9(y; V) is defined in (30). Linearizing equation (111)
around fp we obtain

O f +T(WVo)f =0, (113)
where T(V) : L?(R) — L?(R) is a linear operator parameterized by V € R and
given by

T = =07 = Vo0 4 £ - = [ ra) ounv). ()

Operator T (V) is a perturbation of a local operator A(V)f := —02f =V, f + f
by a non-local rank one operator P(V) f = —0,¥(y, V)%(f, (05)?) L2, where (-, - )p2
stands for the standard inner product in L?(R). The spectrum o(A(V)) of operator
A(V) is described by the following straightforward proposition.

Proposition 3. The spectrum o(A(V)) consists only of its essential part:
o(A(V)) = 0ess(A(V)) = {k* —iVk + 1; k € R}.
The spectrum o (7 (V) of T(V) is described in

Theorem 5. (On spectrum of the linearized operator) Consider the part o,(T(V))
of the spectrum o(T (V) laying in C\oess(A). Then o,(T(V)) is given by

op(T(V)) = {A € C\oess(A); ((AV) = XN) 7109, (6)) 1. = co} -

Moreover, all X from o,(T(V)) are eigenvalues with finite algebraic multiplicities,
and geometric multiplicity one.

Proof. We suppress dependence of A, T, and n on V for brevity. Consider \ ¢
Oess(A) Uo,(T) and g € L*(R). There exists the solution f of

(A=N)f- %auw(ﬁ (00)*)22 = g, or f = —(A=N)T'9y0(f, (00)*) 2 +(A=N)"g

1
€o
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which can be represented as
f=—(A=NT0,0(f,()")r2 + (A= X)""g. (115)
Eliminate (f, (65)?)z2 from the latter equation to find that
(A=X2""g.(6)) .-
0o = (A=X)710y, (66)*)

Thus, if A ¢ {X € C; ((A— X)), (04)*) 12 = co } Ubess(A), then A belongs to the
resolvent set of 7.

Now suppose that A € 0,(T(V)). Then ((A — X)~19y1, (0))?)r2 = co and by
Fredholm’s theorem applied to (115), A is an eigenvalue of finite multiplicity. Let
f be a corresponding eigenfunction, then by (115) we have

f = %(A — N0, (0)2) 1o

Take the scalar product of this equality with (6)? to conclude that A € o,(T) if
and only if

1
co

+(A=N"1g.

f=(A- )‘)_laywc

((A=X7"9y1, (0)) 2 = cos (116)
and (A— \)719,1 is the unique (up to multiplication by a constant) eigenfunction.
O

Thus, Theorem 5 reduces the study of the part of the spectrum o,(7) = o(T) \
Oess(A) of operator T (V) to the equation (116). Next, using the obtained charac-
terization of the o,(7) we study the stability of 7.

Proposition 4. If <I>/B(V) > ¢, then there exists a real non positive eigenvalue

A€ o, (T(V)).

Proof. Consider the function ¢(X) := ((A(V)—X)"'8,¢,(6)?),, for real X €
(—00,0]. We claim that ¢(0) = (V). Indeed, differentiate (30) to find that

—0ybv — Vayv + by = 9y,
where ¢y denotes the partial derivative of ¢ in V. Thus

¢(0) = (AWM 0y. (65)%) 2 = (v, (65)%) o = P(V).

On the other hand it is easy to see that ((A\) — 0 as A — —oo, consequently
C(A) = ¢ for some A € (—00,0]. By Theorem 5 this A is a non positive eigenvalue

of T(V). O
Def 1. Define the set of stable velocities S by

S:={V eR:¥X € o(T(V)) has positive real part }, (117)
where T (V) is the linearized operator given by (114).

Remark 7. In the case of 2D sytem (1)-(3) one can expect (yet to be proved)
that there exist standing wave solutions with circular symmetry when € is a disk.
However our preliminary reasonings show that these solutions are not stable if
®5(0) > co (this latter inequality holds for asymmetric potentials W (p) and suf-
ficiently large ). This conjecture originates from the fact that zero velocity and
its small perturbations does not belong to the set of stable velocities as shown in
Proposition 4.
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Proposition 4 implies that the inequality
@’B(V) < cp (118)

is a necessary condition for stability of V. We hypothesize that (118) is also a
sufficient condition, and therefore (118) describes the set S, that is,

S={VeR: ®4(V)<c}. (119)
To support our hypothesis we consider W (p) = i p%(p—1)2. In this case, the set
{V eR: @’ﬂ(V) < co} is the complement to the open interval (Vinin, Vinax ), where

Vinin and Vipax are the local maximum and minimum, respectively (see Fig. 3 and
the sketch of cgV —®3(V) in Fig. 4). Numerical simulations clearly show that (119)
holds. We can also rigorously prove that there exist such V; and Vs that the set
of stable velocities S is non-empty and, moreover, contains the compliment to the
open interval (V7,V3). This is done by means of Fourier analysis which allows us to
rewrite (116) as an integral equation for a complex number A. Details are relegated
to Appendix B.

4.4.3. Main result for 1D interface limit. In this subsection we formulate the main
result on the 1D sharp interface limit in the system (57)-(58) for arbitrary 5 > 0.
Introduce the following conditions:
(C1) Let V € S solve ¢gVo — ®3(Vy) = F(0) and let [0, 5] be a time interval
such that there exists V(t) € S a continuous solution of

oV (t) — BV () = —F(t), tel0,T.], V(0)=Vp. (120)

(C2) Assume that P.(z,0) = p.(x/e) and ||p:(-) — (-, Vp)|lr2 < § with a
small constant § > 0 independent of £ (the function ¥ = ¥(y; Vp) is defined
by (30)).

Theorem 6. (Sharp Interface Limit for all ) Let x. be as in Theorem 3 and
assume that conditions (C1) and (C2) hold along with the conditions of Theorem
3. Then z.(t) converges to xo(t) in C1[0,Ty], where V (t) := do(t) is the solution of
(120) as defined in (C1).

Theorem 6 justifies the sharp interface equation (120) for any 3. Its proof consists
of two steps: (i) reduction to a single equation (nonlinear, singularly perturbed)
which is done in Section 4.2 and (ii) passage to the limit in this equation based on
stability analysis presented below, which is the main ingredient of the proof.

Remark 8. Condition (C2) is crucial to determine the solution branch in the case
if Vp is not a unique solution of (120).

Proof of Theorem 6. Rewrite (82)-(83) in the form of the single PDE

94, — 2 ; 7\2 _ -
5 = 0yA: + oo 1 20.() (/(90) Acdy — F(t) +0.(t) + og(t)) Oy A,
—Ac = BOy(y), (121)

ot
Recall that O.(t) and O.(t) are uniformly bounded functions, é.(t) tends to 0
uniformly on [0,7%] as € — 0. We next pass to the limit in equation (121) using
exponential stability (established in (127)) of the semigroup corresponding to the
linearized operator. The following local stability result plays the crucial role in the
proof.
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Lemma 2. There exist w > 0 and § > 0 such that if
[Ae(,t) = (-, V()2 <9, (122)

then for any 0 < r < 1 and sufficiently small e, € < e0(T%), the function n:(y,t, 7) =
Ay, t+e1) —(y, V(t)) satisfies

Ine(-t, 77> < C <€_ngns(-t70)l2L2 + max (|F(t) - F(s)]” + 02(s)) +€2>

s€[t,t+eT]
(123)
for0 <7< Ei The constants w,d and C in are independent of t, T and €.

This Lemma shows that if the initial data are at distance at most ¢ from 1 (in
the L2-norm), then the solution A.(y,t + £7) approaches ¢ exponentially fast in
7 (first term in the RHS of (123)) with a deviation that is bounded from above
independently of ¢ (described by the second and the third terms in the RHS of
(123)). The conclusion of Theorem 6 immediately follows from this Lemma. Indeed,
consider the time interval (0,¢1), t; := v/. Then by Lemma 2 we obtain

|Ac(-,t1) — 1/1(~7V(t1))||%2 <C (e_?f@(i +m?(Ve) + max 06%(s) + £2> + Cie,

s€[0,T%]

(124)
where m denotes the modulus of continuity of F' on [0,7]. Choose € small enough
so that log% < ¢+/c and the right hand side of (124) is bounded by §. Similarly,
for intervals (¢1,t2), where to := 24/, (t2,t3, where t3 := 34/¢, etc., we obtain

NAc(- t) — (-, V(t)|3: < C (E +m?2(Ve) + Ir[lomT( | 02(s) + 52> + Cre < 6.
s€(0,7%
To complete the proof of Theorem 6 we again use Lemma 2 to bound ||A.(-,t) —

Y(-, V()3 for t € (t,ti41), 1 =1,2.. .. O

Proof of Lemma 2. As in the first step of the proof of Theorem 4, consider the
function n.(y,7) := A.(y,t + 1) — ¥(y, V(t)), hereafter ¢ is considered as a fixed
parameter. It follows from (121) and (30) that 7. satisfies the following PDE

6776 0 e / 2 A
+Tn. = v 00)* n.dy + —————0,n,
or n -t O ( 0) Neay ot 0. y7]

o (125)
30 A
- 9 / 0 nody + ——=— ,
Co(Co +Og) W ( 0) Neay co +Oe yw

where

A(t,7):=F(@)— F(t+eT)

- O.(t+¢
+e0(t+er)+0(t+e7)+ 6% (/(96)2¢(y, V(t))dy) .
0
Introduce the semigroup operator e=7 7,7 > 0 in L?(R), then by Duhamel’s princi-
ple
n(or) =T 0+ [ e TR ar (126)
0

where R.(y,7) denotes the right hand side of (125).

In order to proceed with the proof of Lemma 2 we first prove exponential stability
of the semigroup e~7* and establish its consequences in the following
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Lemma 3. There exists w > 0 such that
(i) the following inequality holds

||87TT|| < Me™™®7, >0, (127)

where ||e~ 77| stands for the operator norm of e~ 77 in L?(R);
(if) for every g(y. 1),

T

H/ eT(TT/)g;g( Ndr'

0

<C/ - T)Hg )||2L2d7/a ]{J:O,l (128)

with a constant C independent of g.

Moreover, constants w, M and C can be chosen independently of t (recall that

T =T(V(t)) depends on t).

Proof of Lemma 3. Step 1. (proof of (i)). For every fixed V € S, it follows from
Gerhardt-Priiss theorem (see, e.g., [16, 31]) that (127) holds with some constants
M and w > 0. However, for later use we need a stronger result, we prove that these
constants can be chosen independently of V = V(¢) for ¢ € [0, T,]. To this end we
establish the following bound

C ,
||(7'(V(t))—)\—w)_1|| < W for X € I, := {—re"?; |p| < 7/2+¢@o,r > 0}, (129)

with constants w > 0, ¢ > 0 and C all independent of ¢ € [0,7T%]. Then Theorem
1.7.7 from [30] yields the inequality ||e=(7(V#)=«)7|| < M for 7 > 0 with constants
w > 0 and M independent of ¢, and this latter inequality is equivalent to (127).
Set T'(t,w) :=T(V(t)) —w and A'(t,w) := A(V(t)) —w. To prove (129) we first
derive by Fourier analysis,
1 < C
k2 —iV(t)k+1—-X—w| ~ |A|+1

I(A'(t,w) =) < max for A € II, (130)

where p = %arctan m, constant C' is independent of both ¢ € [0,T,] and

0 < w < 1/2. Next we make use of the representation (cf. Theorem 5)

/ o1, ((Aw) = N1, (06))) e 4
(T (t,W) - )\) v = HJ(}\’ t,w) 0 -t (A (tﬂ,«.)) - )‘) ay’(/}

(131)
+ (A (t,w) = N) " to,

where p(\;t,w) = co — ((A'(t,w) — )" toy, (96)2)L2.

It follows from (130) that the family of holomorphic functions pu(-;t,w) : Iz — C
satisfies || > 1/2 everywhere but on a fixed bounded subset K of Il which is inde-
pendent of 0 < w < 1/2 and ¢ € [0,T.]. On the other hand the functions p(\;t, w)
are uniformly bounded in {\ € C; ReX < 1/4} and they depend continuously on ¢
and w. Now taking into account the fact that V(¢) € S for all ¢ € [0,T.] we show
that |u(A;¢,0)] > po when A € K and |Re)| < 2w for some 1/2 > po > 0 and
1/2 > w > 0. Indeed, otherwise there is a sequence tx — tg, A — Ao such that
ReXg = 0 and p(Ag;tg,0) — 0. Then, by Montel’s theorem, up to extracting a
subsequence p(Ax;tx, 0) = p(Xo;to,0), but u(Ao;to,0) # 0 as V(tg) € S (cf. proof
of Theorem 5). Thus there are ¢g > 0 (po < ) such that |[u(X;t,w)| > po for
A € II,,. Using this fact and inequality (130) to bound terms in in (131) we get
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(129), and therefore (127) holds for some w > 0 and M, both being independent of
t. This result immediately yields (128) for k = 0.

Step 2. (proof of (ii)). To prove (128) for k = 1 consider first 7 > 1 and show that
le=778ygllz2 < Ce™T||g]Z-- (132)

The idea here is to establish a short time parabolic regularization property. Con-
sider f :=e~7%0,g, it can be represented as f = d,v with v solving

831/:8;@4—‘/8 v—v——/ﬂ

v(y,0) = g(y).
In a standard way, multiplying (133) by v and integrating in y we get
1 d
Zvlzz +119yvllZ2 < Cllo]Za. (135)

Then an application of Gronwall’s inequality yields the uniform bound
lvllze < Cllgllze for 0<s < 1.
Using this bound in (135) we derive

[ 10 s <l

It follows that ||Oyv(-,s0)|lrz < Cillgllr2 for some 0 < so < 1. Then by the
semigroup property we have

le= T 8ygllz= = lle” T V0u( - s0)llz2 < Me T Chllg]] e
< Coe“7|gllpz for T >1,
where we have used (127). The bound (132) being established, we conclude with

the estimate
T—1 , 2 T—1 , 2
H/o e TT=9,9( -, 7")dr’ S (C’/O W )||g(-T')||deT’)
T—1
= Cl/ e T g (- 7)|[Fdr.
0

To complete the proof of (128) consider

T 1
f(o) = / e T=0,9(-,7)dr = / e TA=99,g(-, 7 — 1+ s)ds
T—1 0

(136)

(if 7 < 1, we set g(y,7') = 0 for 7/ < 0). It follows from the definition of f that
f(y) = o(1,y), where v solves
00+ TV =0yg(y, 7 — 1+ 3),
2(0,y) = 0.

Multiply equation (137) by v and integrate in y to obtain

ld - -
ol 10,02 <~ [ atur 1+ 50,050, 5)dy + Cll:

IN

IN

- 1 -
19y311Z2 + Fllg (-, 7 = 1+ 817 + Cllo]1 7z
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FIGURE 4. Sketch of the function F(V) = —coV + @3(V); F(V)
has one local minimum, Fi,in = F(Viin), and one local maximum,
Frax = F(Vinax). Left: Until F < Fyax we stay on the left branch.
When F' exceeds Fiyax we jump on the right branch; Right: Until
F > Fin we stay on the right branch; When F' becomes less than
Fin we jump on the left branch. Red arrows on both figures
illustrate jumps in velocities.

Now apply Gonwall’s inequality. As a result we get

1
150 |22 < o/o lg(- .7 — 1+ 8)|2ads.

Thus
T , 2 1
|[ a9 <c [ ot - 1+ 9)liads
T—1 0 . (139)
<G [ e g e
T—1
Combining (139) with (136) completes the proof of Lemma 3. O
Now we apply Lemma 3 to (126) to obtain the bound
(-, )2 <2M2|lne(-,0)[[ 72677
(140)

+ / e_w(T_T/) (C*||77€( : aO)HLILﬂ + 5€H77€( i) O)H%? + 55) dr’
0

for 0 <7 <1/e" (0 < r < 1), where C, depends only on F(¢) and T, and
= C(m axse[t i+er] (|[F(t) — F(s)]> +62(s)) + ) . Let a(r) be the right hand
of (140). Cousider s € [0, 7], by (140) we have
é(s) = —wals) + Cullne(+,0) 122 + 0=(s) (-, 0) 122 + o
< —wa(s) + Coa®(s) + 0.(T)a(s) + 0.(7)
and «(0) = 2M?||n.(-,0)[|2. Choosing an arbitrary ¢ from the interval
q € (0,w/(2C4)),

we see that the function @(s) := ge™“*/2 4 20.(7) /w satisfies for sufficiently small
the differential inequality

a(s) 4+ wa(s) — C.a?(s) — 6.(1)a(s) — 6.(1) > 0.

51d
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Sharp Interface Limit, 3 = 150 PDE with £ = 0.01, 3 = 150

104
10
= 5]

0 k
26 -24 22 -2 -18 -6 -14 12 -1 24 22 -2 1.8 -16 14 12 -1
F F

-

FIGURE 5. Hysteresis loop in the problem of cell motility. Simu-
lations of V' = V(F) Left: (61) Jumping from the left to the right
branches and back; Right: PDE system (57)-(58). On both figures
arrows show in what direction the system (V' (¢), F'(t)) evolves as
time ¢ grows; red curve is for Fy(t), blue curve is for F|(t).

Therefore, if a(0) < @(0) = ¢ + 20.(7)/w, then a(s) < @(s) V0 < s < 7. Thus we
have proved that

In=(-,7)lI72 < qe™7/? + 26.(7) Jw,
provided that |[n.(-,0)|z2 <6 with 0 < § < \/g/(vV2M). This concludes the proof
of Lemma 2 and Theorem 6. O

4.5. Numerical observations. Hysteresis loop. In view of the above analysis
the equation (61) for large 8 may have many solutions of quite complicated structure
(e.g., discontinuous). Therefore, we need to introduce a criterion for selection of
the “correct” solutions that are limiting solutions to the problem with € > 0. This
is analogous, e.g. to viscosity solutions of Allen-Cahn when physical solutions are
obtained (by regularization) in the sharp interface limit & — 0, [14].

‘We now introduce such a criterion based on numerical observations and suggested
by the stability analysis depicted in Fig. 4. Define the left velocity interval By, :=
(—00, Vinin] and the right velocity interval Bgr := [Vihax, 00) for stable velocities V.

Assume for simplicity of presentation that function F(t) € C[0,T] is strictly
increasing. Then the solution of (61) is chosen based on the following two criteria

(Crl) if V(0) € By, there is a unique V(¢) € By, satisfying (61) for all ¢ €
[0,T]. Note that this V(¢) is the only solution which is continuous and never
enters the “forbidden” interval [Vinin, Vinax]

(Cr2) if V(0) € Bg, then for any ¢ € [0, T the solution V(t) of (61) is chosen
in the right velocity interval Bg, unless it is impossible (F(t) > Fiin, where
Finin is defined in Fig. 4). In the latter case V(t) is chosen from the left
velocity interval By,.

Intuitively, evolution of the sharp interface velocity can be described as follows.
Consider for example the left part of Figure 4 left. As time evolves, the velocity
increases along the right green branch until it reaches Vi,ax, then it jumps (along
the horizontal red dashed line) to the solution of (61) on the left green branch, and
continues increasing along this branch.

Finally, numerical simulations show that the criterion (Cr2) predicts hysteresis
in the system (61). Consider two forcing terms corresponding to the right and the
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left parts of Fig. 4:
F(t) = =10+ (—-2.25 + 1.0)t, Fy(t) = —2.25+4 (—1.0 + 2.25)¢

and 8 = 150. For ¢t € [0,1] both F|(t) and F}(t) have the same values but in
the opposite order in time t. Fig. 5 (left) depicts the solution of equation (61)
according to to the criteria (Crl) and (Cr2). The red and blue branches coincide
when F' ¢ [Fuin, Finax]. Moreover, a surprising hysteresis loop is observed when
e [FminyFmax}-

We also performed numerical simulations for the original PDE system (57)-(58)
for p.(x,0) = bp(z/e), P.(x,0) = 0y(x/e), e = 0.01, and defining e-interface z.(t)
as a number such that p.(z:(t),t) = 0.5(pe(+00,t) + pe(—00,t)). The branches
corresponding to F| and F} are depicted in Fig. 5 (right). The same hysteresis is
observed which justifies numerically the above criteria.

Appendix A. Auxiliary inequalities. It is well known (see, e.g., [28]) that under
conditions (5) on the potential W (p) the corresponding standing wave 6 satisfies,
for some ag > 1,

ag eV < (0h(y)? < ape Y, Y <0

ag le Y < (Bh(y))2 < ape Y, y > 0, (141)

where ky = 2./W"”((1£1)/2). In the case of the symmetric potential W(p) =

10%(p — 1)?, ko = k4 and the standing wave 6 is explicitly given by fo(y) =
1(1+ tanh 2\y/§)
Theorem 7. (Poincaré inequality) The following inequality holds
[0 - wra<cr [6rPw . veec®, (a2
where )
0) = T [y, (143)

Proof. Step 1. (Friedrich’s inequality). Let u € C1(R) satisfy u(0) = 0. Then we
show that the inequality

/ (6)*udy < Cr / (602 () 2y, (144)

holds with Cr independent of u. Indeed,

/ e " Yuldy = 2/ (/ e_'“ftdt) u' udy < 2/ (/ €_K+tdt> |/ [[uldy
0 o Y 0 y

) - 9 0 1/2 S 1/2
=2 [Tty < 2 ([T emwray) ([T o)
K+ Jo K+ 0 0

Thus,
o] 2042 [eS) 1/2 ) 1/2
e <20 ([Toprara) ([ erea)
0 R4 0 0

Dividing this inequality by ( fooo (06)2u2dy)1/2, and than taking square of both sides

we get
4 o0

o0 4
/ (B)2utdy < 220 [ (6y)2(w')2dy (145)
0 KL Jo
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Similarly we obtain

0 C% 0
| @y < S [ @2 (146)

Then adding (145) to (145) yields (144).

Step 2. We prove the Poincaré inequality (142) by contradiction. Namely, assume
that there exists a sequence v,, € C1(R) N L°(R) such that

/(96)211,2Ldy =1, /(496)2vndy =0 and /(96)2(Ug)zdy — 0.

Apply Friedrich’s inequality (144) to functions vy, (y) — v,(0):

[ 0at) = a0y < Cr [0 w17y 0.
On the other hand,

67 0atw) — a0y = [ @12+ 20) [0y [ @2
Hence,
[y 0
which contradicts the normalization [(6))?v2dy = 1. The Theorem is proved. [

Corollary 1. Let u € HY(R), then
= Cudeg 81 < C [ @)

1
where (u)g, = f((%)Qdy/u%dy and v = u/0), (147)
with a constant C independent of u.

Proof. Recall that standing waves 6y of the Allen-Cahn equation along with (141)
satisfy

ayte ™ Y < (00(y)? < e Y,y <0
ayte ™ Y < (00(y)? < ape Y, y >0

for some a1 > 0. Then applying Theorem 7 to v = u/6), and using density of C*(RR)
in H!(R) one derives (147). O

Appendix B. On spectral properties of operator 7 in the case W(p) =
1p%(p—1)2. In this appendix we study the set of stable of velocities S, i.e., the set
of such V' € R that the point spectrum of the linearized operator 7 (V') defined by
(114) lies in the right half of the complex plane. We restrict ourselves here to the
case W(p) = 3p*(p — 1)°.

Theorem 5 implies that if ReA < 0, then A solves the equation (116). Though
(116) is a scalar equation with respect to A € C, the evaluation of its left hand
side requires solution of the PDE (30). By means of Fourier analysis, we can avoid
solving the PDE and rewrite (116) in the form

—ipk6}(0})? -
/R(k2 SWET DR —iVEF A=y (148)
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where 9~(’) and (9’/;_)/2 are Fourier transforms of 0}, and (6})?, respectively. In the case
W(p) = 10°(1 - p)*:

01, (k) := /mesch(v2rk), W/;)E(k):%k(QkQ 1)esch(v2rk). (149)

Introduce x(k) := —Bq—ka(QkQ + 1)csch?(v/27k), then equation (148) becomes

/ ix(k) ik
r (K2 —iVE+1)(k%2 —iVE+ (1 - X))

Next, consider A = A, +iA;. Denote by Hy (k) the integrand in (150) and rewrite
it in the form

=1. (150)

[VER? + p) + (k2 + 1)(VE+\)]

(k2 +1)2 + V2E2) (B2 + p)* + (VE + Xi)?))
(K2 +1)(k* +p) = VEVE+N)]

(k2 +1)2+ V2E2) (k2 4+ p)? + (VE+ X)?))’

Ha,+in (k) = —x(k)

+ix (k)
where =1 — \,.

Proposition 5. (i) Assume V < /2. If ®5(V) < co, then all eigenvalues \ €
op(T(V)) have positive real part, ReX > 0.

(i1) There exists V' > 0 such that for allV >V all eigenvalues of T (V') have positive
real part.

Remark 9. Condition V' < v/2 is a technical assumption in the proof which guar-
antees that integral (153) is negative. However, numerical simulations show that
integral (153) is negative for all V.

Proof. Part (i). First, assume 0 < |V| < v/2. We prove that if A = A\, + i\; with
Ar < 1 (g > 0) is a root of equation ((A\) = 1, then A\; = 0. In particular, the
condition A, < 1 guarantees that A ¢ gess(A(V)).

Rewrite the imaginary part of (A, +i);):

ey = [

/ AV x(k)(—2(k* + 1) (k* + p) + V2R — (k2 + p)? — A3) ik
0

(B2 +1)2 + V2E2) (k2 + )2 + (VE+ X)) (B2 + )2 + (VE = X;)?)

Since the numerator is the difference between (V? —2)k? and a positive expression,
we obtain Im¢(\) # 0 for A; # 0.
Take A; = 0 and rewrite the real part of (1 — p):

262+ 1+p
k2+1)2+V2k2)((k2+‘u)2+v2k2)

Rec(l—,u):—V/kx(k) k. (151)

The function Re¢(1 — p) is obviously monotone for u > 0. Indeed, denote by Wy ()
the term of integrand in (151) which depends on p:

262+ 1+ p
(0 + T V)

Uy (p) =
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Compute ¥, (p):

\I//([L) — (V27274:u‘)k27k4721‘b7,u2
’f O+ W + VIR

If [V| < v/2, then W) (1) < 0, which proves the monotonicity of Re¢(1 — ).
Finally, assume by contradiction that B¢, 1<I>(V) < 1, but there exists an eigenva-
lue Ao with zero or negative real part, ReAg < 0. Then ((ReAg) = ((Ag) < ¢(0) < 1
that contradicts (A) = 1.
Consider V' < 0. Then Re((Ag) < 0. Indeed, observe that Re((A\g) equals to

o

/ —4Vkx(k) [(2k* + 14 ) ((k* + p)? + V2k?)] dk
(k2 +1)2 +V2E2) (k2 +1)2 + (VE — X)?) (k2 + p)? + (VE+ X:)?))

(152)

(153)
0

The integral in (153) is negative or zero and, thus, cannot be equal to 1, so equality
(116) does not hold and, in particular, there does not exist eigenvalues with negative
real part. Thus, part (i) is proved.

Part (i1) follows immediately from (153). O

Appendix C. The original model from [40]. In this appendix we present the
original phase-field model for the motion of a keratocyte cell on a substrait intro-
duced in [40]. Tt consists of equations for the phase-field p and the orientation vector
P:

dp = D,Ap—W'(p)—aVp-P, (154)
1 1

P = DpAP——P——(1- p*)P — BVp—~(Vp- P)P. (155)
1 2

Coefficients D, and Dp describe diffusion of p and P; o and 3 are the actin pro-
trusion and polymerization strengths; 7 and 7, are decay rates for P (depolymer-
ization) inside and outside the cell; « is the strength of myosin motors. The second
term in the right hand side of (154) is defined as follows W'(p) = p(6 — p)(1 — p)
where

1
52+u</pszO) — a|P|?. (156)

Here p is stiffness of the volume constraint, V[ is the initial area of cell, and o
describes contraction due to actin bundles. In this model, the area penalization
is introduced via parameter § in the double well potential W (p) as in the well-
known Belousov-Zhabotinskii model [10, 24]. A dimensionless parameter o describes
contractility due to bundles; in [40] this parameter ranges from 0 to 0.7 (see Table 1
in [40]). For the sake of simplicity in this work we considered the case o = 0 only.
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