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Abstract. We consider a phase field model of cell motility introduced in [40]

which consists of two coupled parabolic PDEs. We study the asymptotic be-

havior of solutions in the limit of a small parameter related to the width of
the interface (sharp interface limit). We formally derive an equation of motion

of the interface, which is mean curvature motion with an additional nonlin-

ear term. In a 1D model parabolic problem we rigorously justify the sharp
interface limit. To this end, a special representation of solutions is introduced,

which reduces analysis of the system to a single nonlinear PDE that describes

the interface velocity. Further stability analysis reveals a qualitative change in
the behavior of the system for small and large values of the coupling parame-

ter. Using numerical simulations we also show discontinuities of the interface
velocity and hysteresis. Also, in the 1D case we establish nontrivial traveling

waves when the coupling parameter is large enough.

1. Introduction. The problem of cell motility has been a classical subject in biol-
ogy for several centuries. It dates back to the celebrated discovery by van Leeuwen-
hoek in the 17th century who drastically improved the microscope to the extent
that he was able to observe motion of single celled organisms that moved due to
contraction and extension. Three centuries later this problem continues to attract
the attention of biologists, biophysicists and, more recently, applied mathemati-
cians. A comprehensive review of the mathematical modeling of cell motility can
be found in [27].

This work is motivated by the problem of motility (crawling motion) of eukaryotic
cells on substrates. The network of actin (protein) filaments (which is a part of
the cytoskeleton in such cells) plays an important role in cell motility. We are
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concerned with cell shape dynamics, caused by extension of the front of the cell
due to polymerization of the actin filaments and contraction of the back of the cell
due to detachment of these filaments. Modeling of this process in full generality is
at present a formidable challenge because several important biological ingredients
(e.g., regulatory pathways [27]) are not yet well understood.

In recent biophysical studies several simplified phase field models of cell motility
have been proposed. Simulations performed for these models demonstrated good
agreement with experiments (e.g., [40, 38] and references therein). Recall that phase
field models are typically used to describe the evolution of an interface between
two phases (e.g., solidification or viscous fingering). The key ingredient of such
models is an auxiliary scalar field, which takes two different values in domains
describing the two phases (e.g., 1 and 0) with a diffuse interface of a small width. An
alternative approach to cell motility involving free boundary problems is developed
in [22, 34, 5, 33, 32].

We consider the coupled system of parabolic PDEs, which is a modified version
of the model from [40] in the diffusive scaling (t 7→ ε2t, x 7→ εx):

∂ρε
∂t

= ∆ρε −
1

ε2
W ′(ρε)− Pε · ∇ρε + λε(t) in Ω, (1)

∂Pε
∂t

= ε∆Pε −
1

ε
Pε − β∇ρε in Ω, (2)

where

λε(t) =
1

|Ω|

∫
Ω

(
1

ε2
W ′(ρε) + Pε · ∇ρε

)
dx. (3)

The unknowns here are the scalar phase field function ρε and the orientation vector
Pε; Ω is a bounded domain in R2, λε is the Lagrange multiplier responsible for
preservation of volume. We study solutions of system (1)-(3) in the sharp interface
limit, when the parameter ε > 0 (which is, loosely speaking, the width of the
interface) tends to zero.

While system (1)-(3) represents a modified version of the model from [40], the
main features of the original model are preserved. First, the volume preservation
constraint in [40] is imposed by introducing a penalization parameter into the dou-
ble well potential. In (1)-(2) the volume preservation is enforced by the (dynamic)
Lagrange multiplier λε given by (3). Both ways of introducing volume preserva-
tion are equivalent in the sharp interface limit, see [1, 2, 8]. Second, for technical
simplicity we dropped two terms in the original equation for the orientation field
P . One of them, responsible for a stronger damping in the phase ρε ∼ 0, can be
added to (2) without any qualitative changes, while the second one, the so-called
γ-term, leads to an enormous technical complication, even existence is very hard to
prove. Ref. [40] qualifies this term as a symmetry breaking mechanism, which is
important for initiation of motion, however it is observed in [40] that self-sustained
motion occurs even without γ-term (page 3 in [40]). Third, our study reveals an-
other symmetry breaking mechanism in (1)-(2), emanated from asymmetry of the
potential W (ρ) (see Subsection 1.2). That is, the effect of γ-term is replaced, to
some extent, by asymmetry of the potential W . Note that symmetry of potential
W (ρ) = W (1 − ρ) reflects an idealized view that the two phases ρ ∼ 0 and ρ ∼ 1
are equivalent resulting in the symmetric profile of the interface with respect to
interchanging of the phases. In the model under consideration the phase ρ ∼ 1
corresponds to the cell interior and ρ ∼ 0 outside the cell, therefore the phases are
not equivalent and it is natural to assume that the potential W is asymmetric.
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Heuristically, system (1)-(3) describes the motion of a interface caused by the
competition between mean curvature motion (due to stiffness of interface) and the
push of the orientation field on the interface curve. The main issue is to determine
the influence of this competition on the qualitative behavior of the sharp interface
solution. The parameter β > 0 models this competition which is why it plays a key
role in the analysis of system (1)-(3).

1.1. Techniques. Recall the Allen-Cahn equation which is at the core of system
(1)-(3),

∂ρε
∂t

= ∆ρε −
1

ε2
W ′(ρε), (4)

where W ′(ρ) is the derivative of a double equal well potential W (ρ). We suppose
that  W ( · ) ∈ C3(R), W (ρ) > 0 when ρ 6∈ {0, 1},

W (ρ) = W ′(ρ) = 0 at {0, 1}, W ′′(0) > 0, W ′′(1) > 0,
(5)

e.g. W (ρ) = 1
4ρ

2(ρ− 1)2. Equation (4) was introduced in [3] to model the motion
of the phase-antiphase boundary (interface) between two grains in a solid material.
Analysis of (4) as ε → 0 leads to the asymptotic solution that takes values ρε ∼ 0
and ρε ∼ 1 in the domains corresponding to two phases separated by an interface
of width of order ε, the so-called sharp interface. Furthermore, it was shown that
this sharp interface obeys mean curvature motion. Recall that in this motion the
normal component of the velocity of each point of the surface is equal to the mean
curvature of the surface at this point. This motion has been extensively studied
in the geometrical community (e.g., [19, 21, 18, 7] and references therein). It also
received significant attention in PDE literature. Specifically [12] and [13] established
existence of global viscosity solutions (weak solutions) for the mean curvature flow.
Mean curvature motion of the interface in the limit ε → 0 was formally derived in
[15],[36] and then justified in [14] by using the viscosity solutions techniques. The
limit ε→ 0 was also studied for a stochastically perturbed Allen-Cahn equation (4)
in [23, 29].

Solutions of the stationary Allen-Cahn equation with the volume constraint were
studied in [26] by Γ-convergence techniques applied to the stationary variational
problem corresponding to (4). It was established that the Γ-limiting functional
is the interface perimeter (curve length in 2D or surface area in higher dimen-
sions). Subsequently in the work [35] an evolutionary reaction-diffusion equation
with double-well potential and nonlocal term that describes the volume constraint
was studied. The following asymptotic formula for evolution of the interface Γ in
the form of volume preserving mean curvature flow was formally derived in [35]:

V = κ− 1

|Γ(t)|

∫
Γ(t)

κ ds, (6)

where V stands for the normal velocity of Γ(t) with respect to the inward normal, κ
denotes the curvature of Γ(t), |Γ(t)| is the curve length. Formula (6) was rigorously
justified in the radially symmetric case in [9] and in the general case in [11].

Three main approaches to the study of asymptotic behavior (sharp interface
limit) of solutions of phase field equations and systems have been developed.

When a comparison principle for solutions applies, a PDE approach based on
viscosity solutions techniques was successfully used in [14, 4, 17, 24] and other
works. This approach can not be applied to the system (1)-(3), because
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• equations (1)-(2) are coupled through spatial gradients,
• equation (1) contains the nonlocal (volume preservation) term λε given by

(3).

Another technique used in such problems is Γ-convergence (see [37, 23] and ref-
erences therein). This technique also does not work for the system (1)-(3). The
standard Allen-Cahn equation (4) is a gradient flow (in L2 metric) with Ginzburg-
Landau energy functional, which is why one can use the Γ-convergence approach.
However, there is no energy functional such that problem (1)-(3) can be written as
a gradient flow.

When none of the above elegant tools apply, one can use direct construction of
an asymptotic expansion followed by its justification via energy bounds [28]. In
Allen-Cahn type problems it typically requires a number of terms (e.g., at least five
in [11]) in the expansion. In this work we use some ingredients of this technique. We
construct an asymptotic formula (see e.g., (65)) with just two terms: the leading
one with the only unknown location of the interface and the corrector vanishing in
the limit ε→ 0. This representation is supplemented with an additional condition
that the unknown term in the corrector is orthogonal to the eigenfunction of the
Allen-Cahn operator linearized around its standing wave (see (66)). This condition
defines the interface location implicitly (in a “weak form”, via an integral identity)
but it allows us to apply a Poincaré type inequality (142) in derivation of necessary
bounds for the corrector. This representation leads to a reduction of the coupled
system to a single singularly perturbed non-linear PDE which for ε→ 0 provides the
sharp interface limit. This approach is rigorously justified in the 1D model problem,
however we believe that this justification can be carried out in the 2D problem (1)-
(3). For small β it is implemented via the contraction mapping principle; for large
β it requires more subtle stability analysis of a semigroup generated by a nonlinear
nonlocal operator.

1.2. Main results. The main objectives of this work are: prove well-posedness of
(1)-(3), reveal the effect of the coupling in (1)-(2) on the sharp interface limit, study
qualitative behavior of system (1)-(2) versus values of the parameter β.

The first main result, Theorem 1, demonstrates that there is no finite time blow
up and that the sharp interface property of the initial data propagates in time.
Theorem 1 establishes existence of solutions to problem (1)-(3) on the time-interval
[0, T ] for any T > 0 and sufficiently small ε, ε < ε0(T ). It also shows that a
sharp (width ε) interface at t = 0 remains sharp for t ∈ (0, T ). This is proved by
combining a maximum principle with energy type bounds.

To study how coupling of equations (1)-(2) along with the nonlocal volume con-
straint (3) affect the sharp interface limit we use formal asymptotic expansions
following the method of [15]. In this way we derive the equation of motion for the
sharp interface,

V = κ+
1

c0
Φβ(V )− 1

|Γ(t)|

∫
Γ(t)

(
κ+

1

c0
Φβ(V )

)
ds, (7)

where c0 is a constant determined by the potential W (ρ) and the function Φ(V ) is
a given function (obtained by solving (31)).

The parameter β in (2) can be thought of as the strength of coupling in system
(1)-(3). If β is small, then (1) and (7) can be viewed as a perturbation of Allen-Cahn
equation with volume preserving term and curvature driven motion (6), respectively.
Results of the work [25], which addresses (7) for small (subcritical) values of β, show
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that curves evolving according to (7) behave similarly to those satisfying (6): they
become close to circles quite fast exhibiting a little shift compared with curvature
driven motion. On the other hand, if β is not small evolution of sharp interface
changes dramatically. In this case the function c0V −Φβ(V ) is no longer invertible
and one can expect quite complicated behavior of the interface curve. As the first
step to study this case, it is natural to look for solutions for (1)-(3) with steady
motion. We can predict existence of such solutions based on our results for a 1D
analogue of (1)-(3). We prove that in the 1D case there exist traveling wave solutions
with nonzero velocities, provided that β is large enough and the potential W (ρ) has
certain asymmetry, e.g. W (ρ) = 1

4ρ
2(ρ − 1)2(ρ2 + 1). Existence of such traveling

waves is consistent with experimental observations of motility on keratocyte cells
which exhibit self-propagation along the straight line maintaining the same shape
over many times of its length [22].

Heuristically, for traveling waves with nonzero velocity, say Vε > 0, the push
of Pε on the front edge of the interface must be stronger than its pullback on the
rear edge. This asymmetry in Pε comes forth with an asymmetry of W (ρ). We
show that the velocity V = Vε solves simultaneously equations c0V = Φβ(V ) − λ
and −c0V = Φβ(−V ) − λ, up to a small error. These equations are obtained in
the sharp interface limit on the front and rear edges of the interface, respectively;
−Φβ(−V ) and −Φβ(V ) represent in these equations, loosely speaking, the push
(and pullback) of Pε on the front and rear edges. Then eliminating λ one derives
2c0V = Φβ(V ) − Φβ(−V ), this yields the only solution V = 0 unless the potential
has certain asymmetry (for symmetric potentials, e.g., W (ρ) = 1

4ρ
2(ρ−1)2, one has

Φβ(V ) = Φβ(−V )). Theorem 2 justifies the equation 2c0V = Φβ(V )−Φβ(−V ) for
velocities of traveling waves in the sharp interface limit ε → 0. Its proof is based
on Schauder’s fixed point theorem.

Finally, we study the 1D model parabolic problem without any restrictions on
β, where the effects of curvature and volume preservation are mimicked by a given
forcing term F (t). As already mentioned the main technical trick here is to intro-
duce a special (two term) representation of solutions which allows us to reduce the
study of the interface velocity to a single singularly perturbed nonlinear equation.
Linearization of this equation and spectral analysis of the corresponding generator
lead to a notion of stable and unstable velocities. The main result here, Theo-
rem 6, can be informally stated as follows. If the interface velocity Vε belongs
to the domain of stable velocities it keeps varying continuously obeying the law
c0Vε(t) = Φβ(Vε(t))−F (t) + o(1) until it becomes unstable (if so). This theoretical
result is supplemented by numerical simulations which show that interface velocities
exhibit jumps and reveal existence of a hysteresis loop. Note that velocity jumps
were also observed in [40]. More precisely, the onset of cell motion was attributed
to the subcritical instability (see Fig. 3 and discussion below this figure on page
5 in [40]) which is a typical example of hysteresis [39]. Our stability analysis also
predicts that stationary solutions of (1)-(3) with circular shape of the phase field
functions are unstable in the case of asymmetric potentials and large enough β.
This conjecture is based on the fact that zero velocity is unstable in this case (see
Remark 7).

The paper is organized as follows. Section 2.1 is devoted to the well-posedness
of the problem (1)-(3). In Section 2.2 the equation for the interface motion (7) is
formally derived. Section 3 deals with traveling wave solutions. Section 4 contains
the rigorous justification of the sharp interface limit in the context of the model 1D
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problem. Some results obtained in this manuscript were announced in [6] without
proofs.

2. Well-posedness of the problem and formal derivation of the sharp
interface limit.

2.1. Bounds for the solution of (1)-(2) with ε-transition layer on finite time
intervals. In this section we consider the system (1)-(3) supplemented with the
Neumann and the Dirichlet boundary conditions on ∂Ω for ρε and Pε, respectively,

∂νρε = 0 and Pε = 0 on ∂Ω. (8)

Introduce the following energy-type functionals

Eε(t) := ε
2

∫
Ω
|∇ρε(x, t)|2dx+ 1

ε

∫
Ω
W (ρε(x, t))dx,

Fε(t) :=
∫

Ω

(
|Pε(x, t)|2 + |Pε(x, t)|4

)
dx.

(9)

Assyme that system (1)-(2) is supplied with initial data that satisfy:

− ε1/4 < ρε(x, 0) < 1 + ε1/4, (10)

and

Eε(0) + Fε(0) ≤ C. (11)

The first condition (10) is a weakened form of a standard condition 0 ≤ ρε(x, 0) ≤
1 for the phase field variable. If λε ≡ 0, then the maximum principle implies
0 ≤ ρε(x, t) ≤ 1 for t > 0. The presence of nontrivial λε leads to an “extended
interval” for ρε.

1 The second condition (11) means that at t = 0 the function ρε
has the structure of an “ε-transition layer”, that is, the domain Ω consists of three
subdomains: one where ρε ∼ 1 (inside the cell), another where ρε ∼ 0 (outside the
cell), and they are separated by a transition layer of width ε (a diffusive interface).
Furthermore, it can be shown that the magnitude of the orientation field Pε is small
everywhere except the ε-transition layer (see (19)).

Theorem 1. (Bounds on finite time intervals) If the initial data ρε(x, 0), Pε(x, 0)
satisfy (10) and (11), then for any T > 0 the solution of (1)-(2) ρε, Pε with
boundary conditions (8) exists on the time interval (0, T ) for sufficiently small ε > 0,
ε < ε0(T ). Moreover, −ε1/4 ≤ ρε(x, t) ≤ 1 + ε1/4 and

ε

∫ T

0

∫
Ω

(∂ρε
∂t

)2

dxdt ≤ C, Eε(t) + Fε(t) ≤ C ∀t ∈ (0, T ), (12)

where C is independent of t and ε.

Remark 1. This theorem implies that if the initial data are well-prepared in the
sense of (10)-(11), then for 0 < t < T the solution exists and has the structure
of an ε-transition layer. Moreover, the bound on initial data (10) remains true for
t > 0. While it relies on a maximum principle argument, it also requires additional
estimates on λε as seen from (14) below. Note also that in the proof below the
interval of existence of the solution extends to [0, Tε], where Tε can be estimated from
below by C0| log ε|. However, energy bounds (12) are proved only for Tε = O(1).

1The exponent 1/4 in (10) can be replaced by any positive number less than 1/2 as will be
seen in the proof the next theorem.
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Remark 2. A solution of (1)-(2) is understood as follows

ρε ∈ C([0, T ];H1(Ω)), ∂tρε ∈ L2((0, T )× Ω),

Pε ∈ L2(0, T ;H1(Ω)), ∂tPε ∈ L2((0, T )× Ω)

and equations (1) and (2) hold in H−1(Ω) for almost all t ∈ [0, T ].

Proof. First multiply (1) by ∂tρε and integrate over Ω:∫
Ω

|∂tρε|2dx+
d

dt

∫
Ω

(1

2
|∇ρε|2 +

1

ε2
W (ρε)

)
dx = −

∫
Ω

Pε · ∇ρε ∂tρεdx

≤ 1

2

∫
Ω

|∂tρε|2dx+
1

2

∫
Ω

|Pε|2 |∇ρε|2dx.

(13)
Here we used the fact that, due to (3), the integral of ∂tρε over Ω is zero and thus∫

Ω

λε(t)∂tρεdx = 0.

Next, using the maximum principle in (1) we get:

− 2ε2 sup
τ∈(0,t]

|λε(τ)| ≤ ρε ≤ 1 + 2ε2 sup
τ∈(0,t]

|λε(τ)|. (14)

Let Tε > 0 be the maximal time such that

− ε1/4 ≤ ρε ≤ 1 + ε1/4, when t ≤ Tε, (15)

and from now on assume that t ≤ Tε.
Using (13), (15) and integrating by parts we obtain

d

dt
Eε +

ε

4

∫
Ω

|∂tρε|2dx ≤ ε
∫ (
|Pε|2|∆ρε|+ |∇|Pε|2||∇ρε|

)
dx (16)

We proceed by deriving an upper bound for the integral in the right hand side
of (16). By (1) we have∫

Ω

(|∆ρε| |Pε|2+| ∇|Pε|2 | |∇ρε|)dx ≤
∫

Ω

|∂tρε||Pε|2dx+

∫
Ω

|Pε · ∇ρε||Pε|2dx

+

∫
Ω

|∇ρε|| ∇|Pε|2|dx+
1

ε2

∫
Ω

|W ′(ρε)||Pε|2dx+ |λε|
∫

Ω

|Pε|2dx

=:

5∑
i=1

Ii.

The following bounds are obtained by routine application of the Cauchy-Schwarz
and Young’s inequalities. For the sum of the first three terms in (17) we get,

3∑
1

Ii ≤ ε
∫

Ω

(∂tρε)
2dx+ε

∫
Ω

|Pε|2 |∇ρε|2dx+
1

2ε

∫
Ω

|Pε|4dx+

∫
Ω

| ∇
∣∣Pε|2∣∣2dx+

1

ε
Eε.

Since (W ′(ρε))
2 ≤ CW (ρε) we also have

1

ε2

∫
Ω

|W ′(ρ)| |Pε|2dx ≤
C

ε2

∫
Ω

W (ρ)dx+
1

2ε2

∫
Ω

|Pε|4dx ≤
C

ε
Eε +

1

2ε2

∫
Ω

|Pε|4dx.
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Finally, in order to bound I5 we first derive,

|λε(t)| ≤
C

ε2

(∫
Ω

W (ρε)dx
)1/2

+
(∫

Ω

|∇ρε|2dx
)1/2(∫

Ω

|Pε|2dx
)1/2

≤ C

ε

(Eε
ε

)1/2

+
(2Eε

ε

∫
Ω

|Pε|2dx
)1/2

,

(17)

then

I5 ≤ C

ε

(
Eε
ε

)1/2 ∫
Ω

|Pε|2dx+

(
2Eε
ε

)1/2(∫
Ω

|Pε|2dx
)3/2

≤ C

ε
Eε +

1

2ε2

∫
Ω

|Pε|4dx+ E2
ε +

C

ε2/3

∫
Ω

|Pε|4dx.

Thus,

5∑
1

Ii ≤
C

ε
Eε + E2

ε +
1 +O(ε)

ε2

∫
Ω

|Pε|4dx+ ε

∫
Ω

(∂tρε)
2dx

+ε

∫
Ω

|Pε|2 |∇ρε|2dx+

∫
Ω

| ∇
∣∣Pε|2∣∣2dx,

and using this inequality, (17) and (15) in (16), then substituting the resulting
bound in (13) we obtain, for sufficiently small ε,

1

4

∫
Ω

|∂tρε|2dx+
d

dt

Eε
ε
≤ C

ε
Eε + E2

ε +
1

ε2

∫
Ω

|Pε|4dx+

∫
Ω

| ∇
∣∣Pε|2∣∣2dx. (18)

Now we obtain a bound for the last two terms in (18). Taking the scalar product
of (2) with 2kPε + 4|Pε|2Pε, k > 0, integrating over Ω and using (15) we get

d

dt

∫
Ω

(k|Pε|2 + |Pε|4)dx+ ε

∫
Ω

(2k|∇Pε|2 + 4|∇Pε|2 |Pε|2 + 2
∣∣∇|Pε|2∣∣2)dx

+
2

ε

∫
Ω

(k|Pε|2 + 2|Pε|4)dx

= −2βk

∫
Ω

Pε · ∇ρεdx+ 4β

∫
Ω

ρε div(Pε|Pε|2)dx

≤ kCε
∫

Ω

|∇ρε|2dx+
k

ε

∫
Ω

|Pε|2dx+ ε

∫
Ω

|∇Pε|2 |Pε|2dx+
C1

ε

∫
Ω

|Pε|2dx.

We chose k := C1 + 1 to obtain

ε

∫
Ω

∣∣∇|Pε|2∣∣2dx+
1

ε

∫
Ω

|Pε|4dx ≤ CEε −
d

dt

∫
Ω

(k|Pε|2 + |Pε|4)dx. (19)

Finally, introducing Gε = Eε +
∫

Ω
(4k|Pε|2 + |Pε|4) dx, by (18) and (19) we have

the differential inequality,

dGε
dt
≤ CGε + εG2

ε, (20)

with a constant C > 0 independent of ε. Considering the bounds on the initial
data and assuming that ε is sufficiently small, one can easily construct a bounded
supersolution G̃ of (20) on [0, T ] such that G̃(0) ≥ Gε. We now have, Gε ≤ C on
[0, Tε] for sufficiently small ε. By (14) and (17) we then conclude that Tε in (15)
actually coincides with T when ε is small. The theorem is proved.
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2.2. Formal derivation of the sharp interface equation (7). In this section
we formally derive equation (7) for the 2D system (1)-(2). While the derivation is
analogous to the single Allen-Cahn equation (e.g., [36], [11]), the gradient coupling
in (1)-(2) results in a nonlinear term that modifies the mean curvature motion.

Assume that that initial data ρε(x, 0) converge to the characteristic function of
a smooth subdomain ω0 ⊂ Ω as ε → 0. Next we want to describe the evolution
of the interface Γ(t) = ∂ωt with t, where ωt is the support of lim

ε→0
ρε(x, t). We will

assume that the initial data coincide with initial values of asymptotic expansions
for ρε and Pε to be constructed below.

Let X0(s, t) be a parametrization of Γ(t). In a vicinity of Γ(t) the parameters s
and the signed distance r to Γ(t) will be used as local coordinates, so that

x = X0(s, t) + rν(s, t) = X(r, s, t), where ν is an inward normal to Γ(t).

The inverse mapping to x = X(r, s, t) is given by

r = ±dist(x,Γ(t)), s = S(x, t),

where in the formula for r we choose + if x ∈ ωt and −, if x /∈ ωt. Recall that
Γ(t) is the limiting location of interface as ε → 0. Next we seek ρε and Pε in the
following forms in local coordinates (r, s):

ρε(x, t) = ρ̃ε

(
r(x, t)

ε
, S(x, t), t

)
and Pε(x, t) = P̃ε

(
r(x, t)

ε
, S(x, t), t

)
. (21)

Introduce asymptotic expansions in local coordinates:

ρ̃ε(z, s, t) = θ0(z, s, t) + εθ1(z, s, t) + ... (22)

P̃ε(z, s, t) = Ψ0(z, s, t) + . . . (23)

λε(t) =
λ0(t)

ε
+ λ1(t) + ελ2(t) + ... (24)

Now, substitute (22)-(24) into (1) and (2). Collecting terms with likewise powers
of ε (ε−2 and ε−1) and equating them to zero we successively get,

∂2θ0

∂z2
= W ′(θ0), (25)

and

−∂
2θ1

∂z2
+W ′′(θ0)θ1 = V0

∂θ0

∂z
− ∂θ0

∂z
κ(s, t)− (Ψ0 · ν)

∂θ0

∂z
+ λ0(t), (26)

−V0
∂Ψ0

∂z
=

∂2Ψ0

∂z2
−Ψ0 − β

∂θ0

∂z
ν, (27)

where κ(s, t) is the curvature of Γ0(t) and V0(t) := −∂tr is the limiting velocity.
The curvature κ appears in the equation when one rewrites the Laplace operator in
(1) in local coordinates (r, s).

It is well-known that there exists a standing wave solution θ0(z) of (25) which
tends to 1 as z →∞ and to 0 as z → −∞, respectively. Moreover, all derivatives of
the function θ0(z) exponentially decay to 0 as |z| → ∞ and θ′0(z) is an eigenfunction
of the linearized Allen-Cahn operator Lu := −u′′ + W ′′(θ0)u corresponding to the
eigenvalue 0. Then multiplying (26) by θ′0(z) and integrating over z we are lead to
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the solvability condition for (26):

c0V0(s, t) = c0κ(s, t) +

∫
(Ψ0 · ν)

(
∂θ0

∂z

)2

dz − λ0(t), where c0 =

∫
R

(
∂θ0

∂z

)2

dz.

(28)
Next we obtain the formula for λ0(t). It follows from (3) that

∫
Ω
∂tρε = 0. Substi-

tute expansion (22) for ρε into
∫

Ω
∂tρε = 0 and take into account the fact that

∂tρε = −θ′0
(r
ε

) V0(s, t)

ε
+O(1).

Thus, in order to satisfy the condition
∫

Ω
∂tρε = 0 to the leading order, V0(s, t)

must have ∫
V (s, t)| ∂

∂s
X0(s, t)|ds = 0.

Using this fact and integrating (28) with respect to s with the weight | ∂∂sX0(s, t)|,
we get

λ0(t) =

∫ {
c0κ(s, t) +

∫
(Ψ0 · ν)

(
∂θ0

∂z

)2

dz

}
| ∂
∂s
X0(s, t)|ds. (29)

Finally, the unique solution of (27) is given by Ψ0(z, s, t) = ψ(z, V0(s, t))ν(s, t)
where ψ = ψ(z, V ) is the unique (bounded) solution of

∂2
zψ + V ∂zψ − ψ − βθ′0 = 0. (30)

The representation Ψ0(z, s, t) = ψ(z;V0(s, t))ν(s, t) yields∫
Ψ0 · ν(θ′0)2dz = Φβ(V ) :=

∫
ψ(z, V )(θ′0)2dz, (31)

where we have also taken into account the linearity of (30) in β. Now substitute (31)
and (29) into equation (28) to conclude the derivation of sharp interface equation
(7).

3. Traveling waves in 1D. In this section we study special solutions of system
(1)-(2) in the 1D case. Specifically, we look for traveling waves (traveling pulses).
Therefore it is natural to switch to the entire space R1 setting. We show that, not
surprisingly, there are nonconstant stationary solutions, standing waves. However,
we prove that apart from standing waves there are true traveling waves when the
parameter β is large enough and the potential W (ρ) has certain asymmetry, e.g.
W (ρ) = 1

4 (ρ2 + ρ4)(ρ− 1)2, see also the discussion in Remark 4.
We are interested in (localized in some sense) solutions of (1)-(2) with ρε =

ρε(x− V t), Pε = Pε(x− V t). They satisfy the following stationary equations with
unknown constant velocity V and constant λ:

0 = ∂2
xρε + V ∂xρε −

W ′(ρε)

ε2
− Pε∂xρε +

λ

ε
, (32)

0 = ε∂2
xPε + V ∂xPε −

1

ε
Pε − β∂xρε. (33)

Let us postulate an ansatz for the phase field function ρε. Given a > 0, we look
for solutions of (32)-(33) for sufficiently small ε > 0 with ρε having the form

ρε = φε + εχε + εu, (34)

where
φε := θ0((x+ a)/ε)θ0((a− x)/ε), χε := χ−ε + (χ+

ε − χ−ε )φε,
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x

Figure 1. Illustration of the ansatz (34). Function ρε decays to
a non-zero constant of the order ε for x → ±∞ and to a constant
slightly different from 1 for −a ≤ x ≤ a (solid). Dashed line
represents the limiting profile, which is the characteristic function
of (−a, a).

constants χ−ε and χ+
ε are the smallest (in absolute value) solutions of W ′(εχ−ε ) = ελ

and W ′(1 + εχ+
ε ) = ελ, respectively, and u is the new unknown function vanishing

at ±∞. The role of the constant χ−ε in (34) is to amend the first term of the
representation so that u decays at ±∞. Similarly, χ+

ε is introduced to end up
with u which is exponentially close to one in (−a, a) away from points ±a (see also
Fig. 1).

Substitute representation (34) in (32)-(33) to find after rescaling the variable
y := x/ε and rearranging terms,

∂2
yu−W ′′(φε)u =− V ∂yφε + Pε(∂yφε + ε∂yu)− λ

+
1

ε

(
W ′(φε + εχε)− ∂2

y(φε + εχε)
)

+
1

ε

(
W ′(φε + εχε + εu)−W ′(φε + εχε)− εW ′′(φε)u

)
− εV ∂y(u+ χε),

(35)

and
∂2
yPε + V ∂yPε − Pε = β∂yφε + εβ∂y(χε + u). (36)

Note that the ansatz (34) yields the characteristic function of the interval (−a, a)
in the limit ε → 0, provided that u = uε remains bounded. In this sense we seek
solutions with localized profiles of the phase field function ρε. The idea of the
construction of traveling wave solutions is based on the observation that solvability
of the above equations (35) and (36) can be handled by local analysis near the
points ±a. Indeed, setting z = y+a (35)-(36) and keeping only leading order terms
we (formally) obtain

∂2
zu−W ′′(θ0(z))u = −V θ′0(z) + Pεθ

′
0 − λ and ∂2

zPε + V ∂zPε − Pε = βθ′0(z).

Resolve the second equation to obtain Pε(z) = ψ(z, V ), then solvability of the first
equation (recall that ∂2

zθ
′
0(z)−W ′′(θ0(z))θ′0(z) = 0) requires that c0V = Φβ(V )−λ,

where we have used (31). Similarly, local analysis near the point a leads to the
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equation −c0V = Φβ(−V ) − λ. Thus, we have reduced the infinite dimensional
system (35)-(36) to a two dimensional one.

In order to transform the above heuristics into a rigorous analysis we reset (35)-
(36) as a fixed point problem. To this end rewrite (35) in the following form,

introducing auxiliary functions θ
(1)
ε (y) = θ′0(y + a/ε) + θ′0(a/ε − y) and θ

(2)
ε (y) =

θ′0(y + a/ε)− θ′0(a/ε− y),

∂2
yu−W ′′(φε)u−

∂2
yθ

(1)
ε −W ′′(φε)θ(1)

ε

θ
(1)
ε

u+Hε

∫
uθ(2)
ε dy = G(λ, V, Pε, u), (37)

where

Hε =
1∫ (

θ(2)
ε

)2

dy

(
W ′′(φε)θ

(2)
ε − ∂2

yθ
(2)
ε +

∂2
yθ

(1)
ε −W ′′(φε)θ(1)

ε

θ
(1)
ε

θ(2)
ε

)

and

G(λ, V, Pε, u) = Hε

∫
uθ(2)
ε dy −

∂2
yθ

(1)
ε −W ′′(φε)θ(1)

ε

θ
(1)
ε

u

− V ∂yφε + Pε(∂yφε + ε∂yu)− εV ∂y(u+ χε)

− λ+
1

ε

(
W ′(φε + εχε)− ∂2

y(φε + εχε)
)

+
1

ε

(
W ′(φε + εχε + εu)−W ′(φε + εχε)− εW ′′(φε)u

)
.

(38)

Note that the operator Qε in the left hand side of (37),

Qεu := ∂2
yu−W ′′(φε)u−

∂2
yθ

(1)
ε −W ′′(φε)θ(1)

ε

θ
(1)
ε

u+Hε

∫
uθ(2)
ε dy

has two eigenfunctions θ
(1)
ε and θ

(2)
ε corresponding to the zero eigenvalue.

Lemma 1. Let vε be any function from H1(R) orthogonal to both θ
(1)
ε and θ

(2)
ε in

L2(R). Assume also that fε := Qεvε belongs to L2(R). Then for sufficiently small
ε

‖vε‖H1 ≤ C‖fε‖L2 (39)

with C independent of ε and vε.

Proof. Multiplying Qεvε by vε in L2(R) and representing vε as vε = θ
(1)
ε wε (note

that θ
(1)
ε > 0) we derive

(Qεvε, vε)L2 =

∫ (
2∂yθ

(1)
ε ∂ywε + θ(1)

ε ∂2
ywε

)
θ(1)
ε wεdy = −

∫ (
θ(1)
ε

)2

(∂ywε)
2dy,

(40)
where the latter equality is obtained via integrating by parts, and the term with

Hε vanishes thanks to orthogonality of vε to θ
(2)
ε . Thus∫ (

θ(1)
ε

)2

(∂ywε)
2dy ≤ ‖fε‖L2‖vε‖L2 . (41)

The statement of Lemma 1 immediately follows if we prove the following inequality∫
v2
εdy ≤ C

∫
(θ(1)
ε )2(∂ywε)

2dy (42)
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with C independent of ε and vε. Indeed, using (42) in (41) we get∫ (
θ(1)
ε

)2

(∂ywε)
2dy ≤ C‖fε‖2 + Ce−r/ε, (43)

and combining (43) with

‖vε‖2H1 ≤
∫ (

θ(1)
ε

)2

(∂ywε)
2dy + C

∫
v2
εdy

yields (39).
To prove (42) we use the Poincaré inequality (see Appendix A)∫

(θ′0(a/ε± y))
2 |wε − 〈wε〉±|2 dy ≤ C

∫ (
θ(1)
ε

)2

(∂ywε)
2dy (44)

with a constant C independent of ε and

〈wε〉± :=

∫
(θ′0(a/ε± y))

2
wεdy∫

(θ′0)
2
dy

.

Due to orthogonality of θ
(1)
ε wε to θ

(1)
ε and θ

(1)
ε , we have∫

(θ′0(a/ε± y))
2
wεdy = −

∫
θ′0(y + a/ε)θ′0(a/ε− y)wεdy.

Thanks to the exponential decay of θ′0, θ′0(y) ≤ α0e
−κ|y| (see, e.g., [28]), it follows

that ∣∣∣∫ (θ′0(a/ε± y))
2
wεdy

∣∣∣ ≤ e−r/ε(∫ (θ(1)
ε

)2

w2
εdy
)1/2

(45)

for sufficiently small ε and r > 0 independent of ε. Combining (45) and (44) we
obtain (42), the Lemma is proved.

Proposition 1. For sufficiently small ε the operator Q∗ε adjoint to Qε (with respect

to the scalar product in L2(R)) has two eigenfunctions θ
(1)
ε and θ

(3)
ε = θ

(2)
ε + qε

corresponding to the zero eigenvalue, with ‖qε‖H1 = o(ε). Moreover the equation
Qεu = f has a solution if and only if f ∈ L2(R) is orthogonal to the eigenfunctions

θ
(1)
ε and θ

(3)
ε of Q∗ε.

Proof. Given f ∈ L2(R), consider the equation Qεu = f rewriting it in the form

∂2
yu−W ′′(0)u+ (W ′′(0)−W ′′(φε))u−

∂2
yθ

(1)
ε −W ′′(φε)θ(1)

ε

θ
(1)
ε

u+Hε

∫
uθ(2)
ε dy = f.

(46)

SinceW ′′(0) > 0, the equation ∂2
yu−W ′′(0)u = f̃ has the unique solution u = Gf̃ for

every f̃ ∈ L2(R) with a bounded resolving operator G : L2(R)→ L2(R). Moreover,
by applying the operator G to (46) we reduce this equation to u + Ku = Gf ,
where K is a compact operator (this can be easily shown using the properties of
the function θ0). Thus we can apply the Fredholm theorem to study the solvability
of (46). Note that Qε does not have other eigenfunctions corresponding to the

zero eigenvalue besides θ
(1)
ε and θ

(2)
ε . Indeed, existence of such an eigenfunction vε

orthogonal to θ
(1)
ε , θ

(2)
ε in L2(R) and normalized by

∫
v2
εdy = 1 would contradict

(41) derived in the proof of Lemma 1.
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Consider now the eigenfunction θ
(3)
ε of Q∗ε orthogonal to θ

(1)
ε , and represent it

as θ
(3)
ε = θ

(2)
ε + qε with qε orthogonal to both θ

(1)
ε and θ

(2)
ε . Then combining the

equality

Qεqε = Hε

∫
(θ(2))2dy − θ(2)

∫
Hε(θ

(2)
ε − qε)dy

with Lemma 1 we obtain that ‖qε‖H1 = o(ε) as ε→ 0.

Let us consider now for a given u ∈ H1(R), V and λ a solution Pε of (35),
assuming that ε is sufficiently small and ‖u‖H1 ≤ M , |λ| ≤ M , |V | ≤ M for some
finite M . We represent Pε in the form

Pε(y) = ψ0(y + a/ε, V )− ψ0(a/ε− y,−V ) +Bε (47)

and observe that Bε can be estimated as follows,∫
(∂yBε)

2dy +

∫
(Bε)

2dy ≤ εCM‖Bε‖L2 hence ‖Bε‖H1 ≤ εC1M.

Now consider u in the left hand side of (37) as an unknown function to write down
the solvability condition∫

G(λ, V, Pε, u)θ(k)
ε dy = 0, k = 1, 3. (48)

Calculate leading terms of (48) for small ε taking into account the fact that

W ′(φε + εχε + εu)−W ′(φε + εχε)− εW ′′(φε)u = O(ε2) (49)

and

W ′(φε + εχε)− ∂2
y(φε + εχε) = ε(W ′′(φε)χε − ∂2

yχε) +O(ε2), (50)

where O(ε2) in (49) and (50) stand for functions whose L∞-norm is bounded by
Cε2. Note also that integrals∫

(W ′′(φε)χε − ∂2
yχε)θ

(k)
ε dy =

∫
(W ′′(φε)θ

(k)
ε − ∂2

yθ
(k)
ε )χεdy, k = 1, 3

tend to zero, when ε→ 0. Thus (48) can be rewritten as

0 = Φβ(V )+Φβ(−V )−2λ+εΦ̃1(V, λ, u) and 2c0V = Φβ(V )−Φβ(−V )+εΦ̃2(V, λ, u),
(51)

where functions Φ̃1, Φ̃2 and their first partial derivatives in V and λ are uniformly
bounded by some constant depending on M only. Note that if V0 is a nondegenerate
root of the equation 2c0V = Φβ(V ) − Φβ(−V ) then for sufficiently small ε, in a
neighborhood of V0 and λ0 = 1

2 (Φβ(V0)+Φβ(−V0)) there exists a unique pair Vε(u)
and λε(u) solving (51) and depending continuously on u.

Theorem 2. (Existence of traveling waves) Assume that the equation 2c0V =
Φβ(V )− Φβ(−V ) has a nondegenerate root V0. Then for sufficiently small ε there
exists a function uε, with ‖uε‖H1 ≤ C and C being independent of ε, a function
Pε and constants V = Vε, λ = λε such that ρε given by (34) and Pε are solutions
of (32)-(33). Moreover, the velocity Vε and the constant λε converge to V0 and
λ0 := 1

2 (Φβ(V0) + Φβ(−V0)) as ε→ 0.

Proof. Consider the mapping u 7→ Q−1
ε G(λε, Vε, Pε, u), where λε = λε(u) and

Vε = Vε(u) solve (51), and Pε is the solution of (36) with V = Vε and λ = λε. The

operator Qε has two eigenfunctions θ
(1)
ε and θ

(2)
ε corresponding to the zero eigenva-

lue, we choose v := Q−1
ε G(λε, Vε, Pε, u) to be orthogonal to θ

(1)
ε and θ

(2)
ε in L2(R).
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Then the following holds. If ‖u‖H1 ≤ M , then ‖Q−1
ε G(λε, Vε, Pε, u)‖H1 ≤ M for

large M and sufficiently small ε. Indeed, by virtue of Lemma 1 it suffices to find an
appropriate bound for the norm ‖G(λε, Vε, Pε, u)‖L2 . Considering formula (38) for
G(λε, Vε, Pε, u) observe that the only third line and terms Vε∂yφε and Pε∂yφε in
the second line have non vanishing norm in L2(R) as ε→ 0. Moreover, these norms
can be bounded by C+ εC1(M) with C independent of M , while the norm of other
therms can be estimated by εC2(M). Thus ‖G(λε, Vε, Pε, u)‖L2 ≤ C+ εC3(M) and
using Lemma 1 we obtain

‖Q−1
ε G(λε, Vε, Pε, u)‖H1 ≤ C4 + εC5(M),

with C4 independent of M . It remains to choose M > C4 to conclude that

‖Q−1
ε G(λε, Vε, Pε, u)‖H1 ≤M

for sufficiently small ε.
Also, the mapping u 7→ Q−1

ε G(λε, Vε, Pε, u) is continuous in H1. Thus, we can
apply the Schauder fixed point theorem provided we establish the compactness of
the mapping under consideration. To this end we consider a subset of functions u
which decay exponentially with their first derivatives:

KM,r :=

{
u :

‖u‖H1 ≤M,

|u|, |∂yu| ≤Me−r(|y|−
2a
ε ) when |y| ≥ 2a

ε

}
. (52)

We claim that for some M > 0 and r > 0 the solution v of the equation Qεv =

G(λε, Vε, Pε, u) (orthogonal to θ
(1)
ε and θ

(2)
ε ) belongs to KM,r for every u ∈ KM,r,

when ε is sufficiently small. Indeed, the required bound for the norm of v in H1(R)
is already established. It remains to prove that v and ∂yv decay exponentially when
|y| ≥ 2a/ε. To this end we observe first that

|Pε| ≤ C(1 + εM)e−r1(|y|−2a/ε) for |y| ≥ 2a/ε, (53)

with C > 0 independent of M and ε, and r1 > 0 depending on M only. The proof
of (53) is carried out in two steps. First, we multiply (36) by Pε, integrate on R and
apply the Cauchy-Schwarz inequality. As a result we get ‖Pε‖L∞ ≤ C‖Pε‖H1 ≤
C1(1 + εM). Second, observe that the function θ′0(y) decays exponentially when
y → ±∞. Therefore there exists C2 ≥ C1(1 + εM) and r1 > 0 such that the
functions P±(y) := ±C2e

−r1(|y|−2a/ε) satisfy

∓∂2
yPε ∓ V ∂yPε ± Pε ≥ β∂yφε + εβ∂y(χε + u) for |y| ≥ 2a/ε.

This yields pointswise bounds −C2e
−r1(|y|−2a/ε) ≤ Pε(y) ≤ C2e

−r1(|y|−2a/ε) for all
y ≤ −2a/ε and y ≥ 2a/ε. Next using (53) in the equation Qεv = G(λ, V, Pε, u)
and arguing similarly one can establish that |v| ≤ C(1 + εC1(M))e−r2(|y|−2a/ε) for
|y| ≥ 2a/ε. Finally, taking an integral from −∞ to y (or from y to +∞) of the
equation Qεv = G(λ, V, Pε, u) we get the required bound for ∂yv on (−∞,−2a/ε]
(or [2a/ε,+∞)).

Thus the image of the convex closed set KM,r under the mapping

u 7→ Q−1
ε G(λε, Vε, Pε, u)

is contained in KM,r. Also, the equation Qεv = G(λε, Vε, Pε, u) provides the fol-
lowing bound |∂2

yv| ≤ C(|u|, |∂yu|, |v|, |∂yv|) while |u|, |v|, |∂yu| and |∂yv| have
pointwise bounds with decay estimates for large y, both u and v being elements of
KM,r. This implies that the mapping u 7→ Q−1

ε G(λε, Vε, Pε, u) is compact on KM,r

(in the topology of H1(R)). Thus there exists a fixed point of this mapping in KM,r.
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Figure 2. Left: Φβ(V ) for β = 150 and Was(ρ) = 1
4ρ

2(1 +ρ2)(ρ−
1)2, positive slope illustrates Φ′β(0) > 0 ; Right: θ0, standing wave

for the Allen-Cahn equation for Wsym(ρ) = 1
4ρ

2(ρ − 1)2 (dashed)

and Was(ρ) = 1
4ρ

2(1 + ρ2)(ρ− 1)2 (solid).

Since the principal part 0 = Φβ(V ) + Φβ(−V )− 2λ and 2c0V = Φβ(V )− Φβ(−V )
of the system (51) is nondegenerate in the neighborhood of V0 and λ0, we have
Vε → V0 and λε → λ0 as ε→ 0.

Remark 3. Note that V0 = 0 and λ0 = Φβ(0) are always solutions of the principal
part of the system (51). Moreover one can establish a traveling wave (in fact
standing wave) solution with Vε equal to zero exactly, by following the line of
Theorem 2 but considering subspace of even functions u ∈ H1(R). The existence of
nontrivial traveling waves (with nonzero velocities) is granted by Theorem 2 in the
case when the equation 2c0V = Φβ(V ) − Φβ(−V ) has a nonzero (nondegenerate)
root. Such a solution does not exist for the standard potential W (ρ) = 1

4ρ
2(ρ −

1)2, in this case Φβ(V ) = Φβ(−V ) for all V due to the fact that θ′0 is an odd
function. However, if the potential has two equally deep wells but possesses certain
asymmetry, e.g. W (ρ) = 1

4 (ρ2+ρ4)(ρ−1)2, we have Φβ(V ) > Φβ(−V ) for V > 0, so
that nontrivial solutions of 2c0V = Φβ(V )−Φβ(−V ) do exist for sufficiently large β,
β > βcritical. The plot of the function Φβ(V ) for β = 1 and W (ρ) = 1

4 (ρ2+ρ4)(ρ−1)2

is depicted in Fig. 2, as well as the corresponding standing wave.

Remark 4. As already mentioned, nontrivial traveling waves appear in the case
when W (ρ) has certain asymmetry, that, in particular, makes the derivative Φ′β(V )

of Φβ(V ) positive at V = 0. The function Φβ(V ) depends on the potential W (ρ)
in a complex way. Its derivative at V = 0 is given by Φ′β(0) = β

∫
(θ′0)2ψV (y)dy

with ψV (y) solving (−∂2
y + I)2ψV = θ′′0 . The following representation ψV (y) =∫

e−|y−z|(1+|y−z|)θ′′0 (z)dz can be obtained in a standard way by using fundamental
solution, so that

Φ′β(0) = β

∫ 1

0

∫ 1

0

e−|y(θ0)−y(θ̃0)|(1 + |y(θ0)− y(θ̃0)|)W ′(θ̃0)

√
W (θ0)

W (θ̃0)
dθ0dθ̃0, (54)

where y(θ0) =
θ0∫

1/2

dθ0√
2W (θ0)

(this relation between y and θ0 follows from the equa-

tion θ′0 =
√

2W (θ0) obtained by multiplication of θ′′0 = W ′(θ0) by θ′0 and integration
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with respect to y). On the other hand, Φβ is a bounded function, therefore if the
right hand side of (54) is positive, then for sufficiently large β there are non-zero
solutions of equation 2c0V = Φβ(V )− Φβ(−V ).

In order to have more insight about this dependence assume that the diffusion
coefficient in equation (2) for Pε is given by δε, where δ is a positive parameter
independent of ε. This leads to redefining Φβ(V ) as follows,

Φβ(V ) =

∫
χ(θ′0)2dy, −δ∂2

yψ − V ∂yψ + ψ = −βθ′0.

One can write down an asymptotic expansion of ψ and its derivative ψV with respect
to V at V = 0 for sufficiently small δ > 0

ψ = −βθ′0 − δβθ′′′0 + . . . , ψV = −βθ′′0 − 2δβθ
(iv)
0 + . . . .

Then we have

Φ′β(0) = −2δβ

∫
θ

(iv)
0 (θ′0)2dy +O(βδ2),

which yields, after integrating by parts and using the relations (θ′)2 = 2W (θ),
θ′′ = W ′(θ),

Φ′β(0) =
8
√

2

3
δβ

∫ 1

0

W ′′(ρ) dW 3/2(ρ) +O(βδ2). (55)

The integral in (55) can be interpreted as a measure of asymmetry of the potential
W (ρ), and nontrivial traveling waves emerge if this integral is positive and

β > βcritical =
3c0

8
√

2δ
∫ 1

0
W ′′(ρ) dW 3/2(ρ) +O(δ2)

.

4. Sharp interface limit in 1D model problem. The equation of motion (7)
formally derived in Subsection 2.2 exhibits qualitative changes for large values of
the parameter β. This is indicated, in particular, by the fact that the equation

c0V − Φβ(V ) = −F, (56)

may have multiple roots V . Note that combining the curvature and integral (con-
stant) terms in (7) yields the equation of the form (56) with

F :=
1

|Γ|

∫
Γ

(κ+ Φβ(V )) ds− κ.

In this Section we analyze a 1D analogue of the original model and rigorously
derive a law of motion in the sharp interface limit. For given F (t) ∈ C[0, T ] we
consider bounded solutions of the system

∂ρε
∂t

= ∂2
xρε −

W ′(ρε)

ε2
− Pε∂xρε +

F (t)

ε
, x ∈ R1, t > 0,

∂Pε
∂t

= ε∂2
xPε −

1

ε
Pε − β∂xρε.

(57)

(58)

Analysis of the 1D problem (57)-(58) is a necessary step for understanding the
original problem (1)-(2). Observe that motion of the interface in the 2D system (1)-
(2) occurs in the normal direction, and therefore it is essentially one-dimensional.
Thus, the 1D model (57)-(58) is anticipated to capture the main features of (1)-
(2). The effects of curvature and mass conservation in (7) are modeled by a given
function F (t). We believe that qualitative conclusions obtained for the 1D problem
(57)-(58) apply for the 2D model (1)-(2).
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We study the asymptotic behavior of solutions to the system (57)-(58) as ε→ 0
with “well-prepared” initial data for ρε,

ρε(x, 0) = θ0(x/ε) + εvε(x/ε), (59)

where θ0 is a standing wave solution of the Allen-Cahn equation (25) such that
θ0(z)→ 0 as z → −∞ and θ0(z)→ 1 as z → +∞. We seek ρε in the form

ρε(x, t) = θ0

(
x− xε(t)

ε

)
+ εvε

(
x− xε(t)

ε
, t

)
. (60)

The xε(t) in (60) can be viewed as a location of the interface. Remark 5 explains
that a choice of xε is not unique, however it is well defined in the limit ε→ 0.

The main goal of this Section is to prove that xε(t) converges as ε→ 0 to x0(t),
whose velocity V0(t) = ẋ0(t) solves the sharp interface equation

c0V0(t) = Φβ(V0(t))− F (t), (61)

where Φ(V ) is the known nonlinear function given by (31). This equation can be
formally obtained in the limit ε→ 0 as in the Section 2.2.

Next for reader’s convenience we summarize key steps of the asymptotic analysis
of (57)-(58):

(i) Choice of a special representation. The function ρε is represented in the form

ρε(x, t) = θ0(y) + εχε(y, t) + εuε(y, t), Pε(x, t) = Qε(y, t), y =
x− xε(t)

ε
, (62)

where θ0 and χε are known, and uε, Qε are the new unknown functions.
Existence of xε(t) with estimates on uε uniform in ε and t are established in
Section 4.2.

(ii) Reduction of the system to a single equation. The unknown function uε is
eliminated by showing that the third term in representation (62) is small.
Next, we split Qε into two parts, Qε = Aε +Bε, where Bε depends on uε but
is small, and Aε does not depend on uε. Thus, the original system (57)-(58)
is reduced to

(c0 + o(1))Vε(t) =

∫
(θ′0)2Aεdy − F (t) + o(1),

ε
∂Aε
∂t

= ∂2
yAε + Vε(t)∂yAε −Aε − βθ′0.

(63)

(64)

Taking the limit ε → 0 in the system (63)-(64) is non-trivial because of the
product term Vε(t)∂yAε.

(iii) Analysis of reduced problem. For sufficiently small β we prove that xε(t) →
x0(t) as ε→ 0 by the contraction mapping principle. For larger β, system (63)-
(64) further reduces to a singularly perturbed non-linear non-local equation.
The limiting transition in this equation is based on the stability analysis of
the semigroup generated by the linearized operator.

4.1. Asymptotic representation for ρε. In order to pass to the limit ε → 0 in
(57)-(58) we further specify vε in (60). Namely, we introduce the representation

ρε(x, t) = θ0

(
x− xε(t)

ε

)
+ εχε

(
x− xε(t)

ε
, t

)
+ εuε

(
x− xε(t)

ε
, t

)
, (65)

with the new unknown function uε satisfying∫
θ′0(y)uε(y, t)dy = 0, (66)
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and χε(y, t) defined by

χε(y, t) = χ−ε (t) + θ0(y)(χ+
ε (t)− χ−ε (t)),

where χ+ and χ− are solutions of the following ODEs

ε2∂tχ
+
ε = −W

′(1 + εχ+
ε )

ε
+ F (t), ε2∂tχ

−
ε = −W

′(εχ−ε )

ε
+ F (t) (67)

with the initial data χ+
ε (0) = F (0)/W ′′(1) and χ−ε (0) = F (0)/W ′′(0).

The idea of the decomposition of the lower order term in (60) into two parts is
suggested by the observation that it is the most important to control behavior of ρε
in the vicinity of the interface. So, ideally we would like to localize the analysis by
considering functions that are negligibly small outside the interface. However, the
right hand side F (t) prevents ρε from being localized. The function χε absorbs this
nonlocal part of ρε: the new unknown function uε decays at infinity and, therefore,
it allows one to work in Sobolev spaces on R. Note that the standard ODE methods
yield the following bounds

|χε(y, t)|+ |∂yχε(y, t)|+ |∂2
yχ
′′
ε (y, t)| ≤ C ∀t ∈ [0, T ], y ∈ R, (68)

moreover, thanks to the continuity of F (t) and a particular choice of the initial
values χ±ε (0) we have

ε2‖∂tχε‖L∞ → 0 uniformly on [0, T ] as ε→ 0. (69)

Finally, we set Qε(y, t) := Pε(xε + εy, t).

Remark 5. The choice of xε in the representation (60) is not unique, e.g. its
perturbation with a term of order ε2 still leads to an expansion of the form (60).
We introduced the additional orthogonality condition (66) which implicitly specifies
xε(t). This condition allows us to use Poincaré type inequalities (see Appendix A)
when deriving various bounds for uε. If the initial value of uε in the expansion (65)
does not satisfy (66), it can be fixed by perturbing the initial value xε(0) = 0 with
a higher order term. Indeed, this amounts to solving the equation∫

(θ0(y + xε(0)/ε)− θ0(y)) θ′0(y)dy = ε

∫
(χε(y, 0)− vε(y + xε(0)/ε)) θ′0(y)dy.

If ‖vε‖L2 ≤ C then the latter equation has a solution xε(0) and |xε(0)| = o(ε).

4.2. Reduction of the system to a single equation. The following theorem
justifies the expansions (65) and will be used to obtain a reduced system for un-
knowns xε(t) and Qε(y, t) by eliminating uε.

Theorem 3. (Validation of representation (65)-(66)) Let ρε and Pε be solutions
of problem (57)-(58) with initial data ρε(x, 0) = θ0(x/ε) + εvε(x/ε) and Pε(x, 0) =
pε(

x
ε ), where

‖vε‖L2 < C, ‖vε‖L∞ ≤ C/ε, (70)

and

‖pε‖L2(R) + ‖∂ypε‖L2 ≤ C. (71)

Then there exists xε(t) such that the expansion (65)-(66) holds with ‖uε(·, t)‖L2 ≤
C for t ∈ [0, T ].
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Proof. Step 1. (coupled system for uε, Qε and Vε := ẋε) Note that the maximum
principle applied to (57) yields ‖ρε‖L∞ ≤ C. This bound in conjunction with (68)
allow one to write down the expansion

W ′ (θ0 + ε(χε + uε)) = W ′(θ0 +εχε)+εW ′′(θ0)uε+ε2W ′′′(ξε)χεuε+
ε2

2
W ′′′(ξε)u

2
ε,

where ξε and ξε are some bounded functions (while ξε and ξε depend on θ0, χε and
uε, this dependence is omitted for brevity). Then substituting the expansion (65)
into equation (57) leads to

ε2 ∂uε
∂t

=∂2
yuε −W ′′(θ0)uε + Vεθ

′
0 −Qεθ′0 + ∂2

yχε

+
W ′(θ0)−W ′(θ0 + εχε)

ε
+ F (t)− ε2 ∂χε

∂t

− εW ′′′(ξε)χεuε −
ε

2
W ′′′(ξε)u

2
ε

− εQε(∂yχε + ∂yuε) + εVε(∂yχε + ∂yuε).

(72)

This equation is coupled with that for Qε

ε
∂Qε
∂t

= ∂2
yQε + Vε∂yQε −Qε − βθ′0 − εβ(∂yχε + ∂yuε). (73)

Finally, considering the solution ρε as a given function we differentiate (65) in time,
multiply by θ′0(y) and integrate in y over R to obtain the equation for Vε. Thanks
to (66) we get

Vε

(
c0 − ε

∫
(uε + χε)θ

′′
0dy

)
= ε2

∫
∂tχεθ

′
0dy − ε

∫
∂tρε(xε(t) + εy, t)θ′0dy. (74)

Note that if we obtain a uniform in t a priori bound of the form ‖uε‖L2 ≤ C with
C independent of ε, (74) can be resolved with respect to ẋε = Vε to come up with
a well posed system (72)-(74).

Step 2. (energy estimates for uε and Qε) Represent uε as uε = θ′0wε, then multiply
the equation (72) by uε and integrate in y over R. Since∫ (

−∂2
yuε +W ′′(θ0)uε

)
uεdy =

∫
(θ′0)2(∂ywε)

2dy,

and ∫
θ′0uεdy = 0,

∫
∂yχεuεdy = 0,

∫
∂yuεuεdy = 0,

we get

ε2

2

d

dt

∫
u2
εdy +

∫
(θ′0)2(∂ywε)

2dy ≤
∫

(R1 −Qεθ′0 − εQε∂yχε)uεdy

− ε
∫
Qε∂yuεuεdy + Cε

∫
(u2
ε + |uε|3)dy,

(75)

where R1 = ∂2
yχε +

W ′(θ0)−W ′(θ0 + εχε)

ε
− ε2 ∂χε

∂t
. Due to the construction of

χε we have, ‖R1‖L2 ≤ C with C independent of ε and t. Also, by a Poincaré type
inequality (see Appendix A)∫

(θ′0)2(∂ywε)
2dy ≥ Cθ0‖uε‖2H1
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with Cθ0 > 0 independent of uε. Thus (75) implies that

ε2

2

d

dt
‖uε‖2L2 +

Cθ0
2
‖uε‖2H1 ≤ C + C1‖Qε‖2L2 +

ε

2

∫
∂yQεu

2
εdy

+ Cε

∫
|uε|3dy +

Cθ0
2

(
‖uε‖2L2

2
− ‖uε‖2H1

)
≤ C + C1‖Qε‖2L2 + ε‖∂yQε‖2L2 + C2ε‖uε‖6L2

(76)
where we have also used the interpolation inequality

∫
|u|4dy ≤ C‖u‖H1‖u‖3L2 which

yields
∫
|u|4dy ≤ C(‖u‖2H1 + ‖u‖6L2). Next we derive differential inequalities

ε
d

dt
‖Qε‖2L2 + ‖∂yQε‖2L2 + ‖Qε‖2L2 ≤ C + Cε2‖uε‖2L2 , (77)

ε
d

dt
‖∂yQε‖2L2 + ‖∂2

yQε‖2L2 + ‖∂yQε‖2L2 ≤ C + Cε2‖uε‖2H1 , (78)

by multiplying (73) by Qε and ∂2
yQε, and integrating on R.

Step 3. (uniform bound for ‖uε‖L2) We show that differential inequalities (76)-(78)
imply that ‖uε‖2L2 remains uniformly bounded on [0, T ] when ε > 0 is small. To this
end fix M > max{1, ‖uε( · , 0)‖2L2}, to be specified later, and consider the first time
t = t ∈ (0, T ) when ‖uε( · , t)‖2L2 reaches M (if any). We have, ‖uε( · , t)‖2L2 < M on
(0, t) and

d

dt
‖uε‖2L2 ≥ 0 at t = t. (79)

It follows from (77) that ‖Qε‖2L2 ≤ C + Cε2M − ε ddt‖Qε‖
2
L2 ; the same bound also

holds for ‖∂yQε‖2L2 . Substitute these bounds in (76) and integrate from 0 to t to
conclude that∫ t

0

‖uε‖2H1dt ≤ C
(
t+ ε2‖uε( · , 0)‖2L2 + ε‖Qε( · , 0)‖2L2 + εtM3)

)
(80)

with a constant C independent of t, M and ε. Now integrate (78) from 0 to t, in
view of (80) this results in the following pointwise inequality

‖∂yQε‖2L2 ≤ C
(

1

ε
+ ε3‖uε( · , 0)‖2L2 + ε2‖Qε( · , 0)‖2L2 + ε2M3

)
+ ‖∂yQε( ·, , 0)‖2L2

for all t ∈ (0, t). Also, Gronwall’s inequality applied to (77) yields

‖Qε‖2L2 ≤ C(1 + ε2M) + ‖Qε( · , 0)‖2L2 ∀t ∈ (0, t).

We substitute the latter two bounds into (76) and consider the resulting inequality
at t = t. In view of (79) we have that ‖u( · , t)‖L2 ≤ ‖u( · , t)‖H1 and

‖u( · , t)‖2H1 ≤ C(1 + ‖Qε( · , 0)‖2L2 + ε‖∂yQε( ·, , 0)‖2L2 + ε4‖uε( · , 0)‖2L2 + εM3),

where C is independent of t, M and ε. Thus, taking M bigger than

M = max{‖uε( · , 0)‖2L2 , C(1 + ‖Qε( · , 0)‖2L2 + ε‖∂yQε( ·, , 0)‖2L2 + ε4‖uε( · , 0)‖2L2)},

e.g. M := 2M , and considering sufficiently small ε > 0 we see that ‖u( · , t)‖2L2 < M .
This shows that ‖u( · , t)‖2L2 < M on [0, T ], and the Theorem is proved.
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Note that as a bi-product of the above proof we obtained the integral bound∫ T

0

‖uε‖2H1dt ≤ C, (81)

which plays an important role in the following derivation of a reduced system for
Vε and Qε.

The special form of the representation (65) (cf. (66)) together with estimates of
Theorem 3 and (81) allow us to derive a system of the form (63)-(64) for Vε and
Qε. To this end multiply (72) by θ′0(y) and integrate in y over R, this results in(

c0 + εÕε(t)
)
Vε(t)−

∫
(θ′0)2Aεdy + F (t) = εOε(t) + õε(t), (82)

where Aε is the solution of

ε
∂Aε
∂t

= ∂2
yAε + Vε(t)∂yAε −Aε − βθ′0 (83)

with the initial condition Aε(y, 0) = pε(y)(= Qε(y, 0)) and

Õε(t) := −
∫

(χε + uε)θ
′′
0dy,

Oε(t) :=

∫ (
1

2
W ′′′(ξ̃ε)χ

2
ε +W ′′′(ξε)χεuε +

1

2
W ′′′(ξε)u

2
ε

)
θ′0dy

+
1

ε

∫
(Qε −Aε)(θ′0)2dy +

∫
Qε∂y(χε + uε)θ

′
0dy, (84)

õε(t) := ε2

∫
∂χε
∂t

θ′0dy

with ξ̃ε being a bounded function (as well as ξε and ξε). It follows from (69) that õε
uniformly converges to 0 as ε→ 0 (|õε| ≤ Cε if F is Lipschitz or W ′′(0) = W ′′(1)).
Next we show that Oε(t) is bounded in L∞(0, T ) uniformly in ε .

Proposition 2. Let conditions of Theorem 3 be satisfied, then Oε(t) introduced in
(84) is bounded uniformly in t ∈ [0, T ] and ε.

Proof. By Theorem 3 the first term in (84) is bounded. To estimate the remaining
terms represent Qε as Qε = Aε +Bε, where Bε solves

ε
∂Bε
∂t

= ∂2
yBε + Vε∂yBε −Bε − εβ(∂yχε + ∂yuε) (85)

with zero initial condition. Multiply this equation by Bε and integrate on R, then
multiply (85) by ∂2

yBε and integrate on R to obtain

ε
d

dt
‖Bε‖2L2 + ‖Bε‖2L2 ≤ Cε2(1 + ‖uε‖2L2), (86)

d

dt
‖∂yBε‖2L2 ≤ Cε(1 + ‖uε‖2H1).

After integrating these inequalities from 0 to t we make use of (81) to derive
‖Bε‖2H1 ≤ Cε. Also, Gronwall’s inequality applied to (86) yields ‖Bε‖2L2 ≤ Cε2.
Similarly, in order to bound ‖Aε‖L2 and ‖∂yAε‖L2 we first get

ε
d

dt
(‖Aε‖2L2 + ‖∂yAε‖2L2) + (‖Aε‖2L2 + ‖∂yAε‖2L2) ≤ C,
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then apply Gronwall’s inequality to conclude that ‖Aε‖2H1 ≤ C. Thus,

1

ε

∫
|Qε −Aε|(θ′0)2dy+

∣∣∣∣∫ Qε∂y(χε + uε)θ
′
0dy

∣∣∣∣
=

1

ε

∫
|Bε|(θ′0)2dy +

∣∣∣∣∫ (χε + uε)∂y(Qεθ
′
0)dy

∣∣∣∣
≤ C

ε
‖Bε‖L2 + C(1 + ‖u‖L2)(‖Aε‖H1 + ‖Bε‖H1) ≤ C1.

From now on Õε, õε and Oε are regarded as given functions in the reduced system
(82)-(83), and their influence on the behavior of the system is small. Observe that
taking the formal limit as ε→ 0 in the system (82)-(83) leads to (61). Indeed, the
formal limit as ε→ 0 in (83) is nothing but (30) whose unique solution is ψ(y;V (t)).
Then substituting this function into the limit of (82) yields (61).

4.3. Sharp interface limit for small β by contraction mapping principle.
The following Theorem establishes the sharp interface limit for sufficiently small
β. We assume that initial data Pε(εy, 0) = Aε(y, 0) are bounded in L2(R) by a
constant C independent of ε:

‖Aε( · , 0)‖L2 < C. (87)

Theorem 4. (Sharp Interface Limit for subcritical β) Let Aε, Vε be solution of

the reduced system (82)-(83) with Õε,Oε ∈ L∞(0, T ) and õε converging to 0 in
L∞(0, T ) as ε→ 0. Assume also that (87) holds. Then there exists β0 > 0 (e.g., ∀
0 < β0 < 2/max{‖(θ′0)2‖L2 ,

√
c0}) such that for 0 ≤ β < β0

Vε(t)→ V0(t) in L∞(δ, T ) as ε→ 0, ∀δ > 0, (88)

where V0 is the unique solution of (61).

Proof. Step 1. (Study of the boundary layer at t = 0). We show that the function
ηε(y, t) = Aε(y, t) − ψ(y, V0(0)) behaves as a boundary layer at t = 0. Since ψ
satisfies ∂2

yψ + V0(0)∂yψ − ψ = βθ′0, c0V0(0) =
∫

(θ′0)2ψdy − F (0) and Aε, Vε solve
(82)-(83), we have

ε∂tηε =∂2
yηε + Vε∂yηε − ηε +

1

c0
∂yψ

∫
(θ′0)2ηεdy

+
∂yψ

c0 + εÕε

(
F (0)(1 + εÕε/c0)− F (t)− ε Õε

c0

∫
(θ′0)2Aε + εOε + õε

)
.

(89)
Multiply (89) by ηε and integrate on R,

ε

2

d

dt
‖η‖2L2 + ‖∂yη‖2L2 + ‖η‖2L2 ≤

1

c0
‖(θ′)2‖L2‖∂yψ‖L2‖η‖2L2

+ C (|F (0)− F (t)|+ |õε|+ ε) (1 + ‖η‖2L2).

Note that ‖∂yψ‖2L2 + ‖ψ‖2L2 = −β
∫
θ′0ψdy, therefore ‖∂yψ‖2L2 ≤ β2‖θ′0‖2L2/4 =

β2c0/4. Thus, if β‖(θ′)2‖L2 < 2, then for sufficiently small ε and 0 < t <
√
ε we

have
ε

2

d

dt
‖η‖2L2 + ω‖η‖2L2 ≤ C (|F (0)− F (t)|+ |õε|+ ε) (90)
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with some ω > 0 independent of ε. Now apply Gronwall’s inequality to (90) to
obtain that

‖ηε‖2L2 ≤ Ce−2ωt/ε + C max
τ∈(0,t)

(|F (0)− F (t)|+ |õε|) + Cε ∀t ∈ [0,
√
ε],

in particular,
‖Aε( · ,

√
ε)− ψ( · , V0(0))‖L2 → 0 as ε→ 0. (91)

Step 2. (Resetting of (82)-(83) as a fixed point problem). Consider an arbitrary
V ∈ L∞(

√
ε, T ) and define Fε : L∞(

√
ε, T ) 7→ L∞(

√
ε, T ) by

Fε(V ) :=
1

c0 + εÕε

[∫
(θ′0)2(A+ η̃ε)dy − F (t) + εOε + õε

]
, (92)

where A is the unique solution of{
ε∂tA = ∂2

yA+ V ∂yA−A− βθ′0,
A(y,

√
ε) = ψ(y, V0(0))

(93)

(94)

on R× (
√
ε, T ] and η̃ε solves{

ε∂tη̃ε = ∂2
y η̃ε + V ∂y η̃ε − η̃ε,

η̃ε(y,
√
ε) = Aε(y,

√
ε)− ψ(y, V0(0)).

Note that thanks to (91),

max
t∈[
√
ε,T ]
‖η̃ε‖L2 → 0, as ε→ 0. (95)

It follows from the construction of Fε that Vε is a fixed point of this mapping.
Next we prove that, for sufficiently small β, Fε is a contraction mapping. Consider
V1, V2 ∈ L∞(

√
ε, T ) and let A1, A2 be solutions of (93)-(94) with V = V1 and

V = V2, respectively. The function Ā := A1 −A2 solves the following problem{
ε∂tĀ = ∂2

yĀ+ V1∂yĀ− Ā+ (V1 − V2)∂yA2,

Ā(y,
√
ε) = 0.

(96)

(97)

Multiplying equation (96) by Ā and integrating in y we get

ε

2

d

dt
‖Ā‖2L2 + ‖Ā‖2L2 + ‖∂yĀ‖2L2 = (V1 − V2)

∫
Ā∂yA2dy = (V2 − V1)

∫
A2∂yĀdy

≤ |V1 − V2|2
‖A2‖2L2

4
+ ‖∂yĀ‖2L2 .

(98)
On the other hand every solution A of (93)-(94), in particular A2, satisfies

‖A‖2L2 < c0β
2, t ∈ [

√
ε, T ]. (99)

Indeed, multiplying (93) by A and integrating in y we get

ε
d

dt
‖A‖2L2 + 2‖A‖2L2 + 2‖∂yA‖2L2 = −2β

∫
θ′0Ady ≤ c0β2 + ‖A‖2L2 ,

which yields ε ddt‖A‖
2
L2 + ‖A‖2L2 ≤ c0β

2, the latter inequality in turn implies that

‖A‖2L2 ≤ ‖ψ‖2L2e−t/ε+β2c0(1−e−t/ε) for t ∈ [
√
ε, T ]. Observing that ‖ψ‖2L2 ≤ β2c0,

we are led to (99).
Substitute now (99) in (98) to conclude that

‖Fε(V1)−Fε(V2)‖2L∞(
√
ε,T ) ≤

c0
4
β2‖V1 − V2‖2L∞(

√
ε,T ). (100)
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Thus, for β < 2/
√
c0, Fε is a contraction mapping.

Step 3. Since Vε is a fixed point of the mapping Fε, we have

‖Vε − V0‖L∞(
√
ε,T ) = ‖Fε(Vε)−Fε(V0)‖L∞(

√
ε,T ) + ‖Fε(V0)− V0‖L∞(

√
ε,T )

≤
√
c0
2
β‖Vε − V0‖L∞(

√
ε,T ) + ‖Fε(V0)− V0‖L∞(

√
ε,T ).

Thus,

‖Vε − V0‖L∞(
√
ε,T ) ≤

1

1−√c0β/2
‖Fε(V0)− V0‖L∞(

√
ε,T ). (101)

It remains to prove that

‖Fε(V0)− V0‖L∞(
√
ε,T ) → 0 as ε→ 0. (102)

Step 4. (Proof of (102)). First, we approximate V0(t), which can be a non-diffe-
rentiable function, by a smooth function. Namely, construct V0ε(t) ∈ C1[0, T ], e.g.,
as a mollification of V0(t), such that

lim
ε→0

V0ε = V0 in C[0, T ] and

∣∣∣∣ ddtV0ε

∣∣∣∣ < C√
ε
, ∀t ∈ [0, T ]. (103)

Let A be the solution of (93)-(94) with V = V0(t). Consider Dε(y, t) := A(y, t)−
ψ(y, V0ε(t)), it satisfies the following equality

ε∂tDε − ∂2
yDε − V0∂yDε +Dε = −ε ∂ψ

∂V
(y;V0ε(t))

d

dt
V0ε + (V0 − V0ε)∂yψ(y, V0ε(t))

(104)
on R×(

√
ε,∞). Since the right hand side of (104) converges to 0 in L∞([0, T ], L2(R))

and the norm of initial values ‖Dε(y,
√
ε)‖L2 = ‖ψ(y, V0(0))−ψ(y, V0ε(

√
ε))‖L2 → 0

as ε→ 0, we have
max

t∈[
√
ε,T ]
‖Dε‖L2 = 0 when ε→ 0. (105)

Finally, since
∫

(θ′0)2ψ(y, V0ε)dy = c0V0 + F (t) +O(|V0ε − V0|) we see that

|Fε(V0)− V0| ≤ C(|V0ε − V0|+ ‖Dε‖L2 + ‖η̃ε‖L2 + |õε|+ ε)

Then combining (95),(103) and (105) we establish (102), and the Theorem is proved.

4.4. Sharp interface limit for arbitrary β via stability analysis.

4.4.1. Reduction to a stability problem. For larger β the contraction principle no
longer applies and both analysis and the results become more complex. Here the
stability analysis of the semigroup generated by a non-local non self-adjoint operator
is used in place of the contraction mapping principle.

In the case where β is not small, solutions of (61) are no longer unique, see Fig.
3. However, the original PDE problem (57)-(58) (as well as the reduced system
(82)-(83) has the unique solution. This indicates that analysis for large β must be
complemented by a criterion of how to select the limiting solution of equation (61)
among all solutions of this equation.

As a first step, we neglect terms εÕε(t), εOε(t) and õε(t) in the reduced system
(82)-(83) and study the systemc0Vε(t) =

∫
(θ′0(y))2fε(y, t)dy − F (t),

ε∂tfε = ∂2
yfε + Vε(t)∂yfε − fε − βθ′0

(106)

(107)
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Figure 3. Left: Plot of function Φβ(V ) for β = 150 > βcr; Right:
Plot c0V − Φβ(V ) for β = 150 vs F . For −F = 1.5 there is
one intersection ((61) has one root). For each −F = 1.762 and
−F = 2.264 there are two intersections ((61) has two roots). For
−F = 2 there are three intersections ((61) has three roots).

(in (106)-(107), fε replaces Aε from (82)-(83)). Substitute (106) into (107) to rewrite
the (106)-(107) as a single equation

ε∂tfε = ∂2
yfε +

1

c0

(∫
(θ′0)2fεdy − F (t)

)
∂yfε − fε − βθ′0. (108)

In the limit ε→ 0 this equation (formally) leads to the PDE

0 = ∂2
yfε +

1

c0

(∫
(θ′0)2fεdy − F (t)

)
∂yfε − fε − βθ′0. (109)

Taking the formal limit is justified below for passing from (108) to (109).

Remark 6. Equation (108) is a singular perturbation of (109) and both equations
are non-autonomous. It is well-known that singular limit problems, including non-
autonomous equations, can be reduced to the analysis of large time behavior of
autonomous equations. To illustrate this, recall a standard example of an ODE
with a small parameter ε from [20],

ε
dzε
dt

= F(zε, t), t ∈ [0, T ]. (110)

Assume that there exists the unique root φ(t) of F , i.e., 0 = F(φ(t), t), t ∈ [0, T ].
Then the singular limit φ(t) = lim

ε→0
zε(t) holds provided that φ(t) is a stable root,

i.e., all solutions u(τ) of an autonomous problem du(τ)
dτ = F(u(τ), t) (t is fixed)

converge to the large time limit φ(t): lim
τ→∞

u(τ) = φ(t). Note that the problem

(110) has two time scales: a slow time t and a fast time τ . Also the large-time limit
corresponds to τ →∞ for a fixed parameter t.

Note that the equivalence of singular and large-time limits is straightforward for
the singularly perturbed autonomous problems (F does not depend on t in (110)).
In this case, the simple rescaling

τ := t/ε u(τ) := zε(ετ)

reduces the singular limit problem to a problem of stability of steady state.
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To justify the transition from (108) to (109) we introduce three time scales:
slow, fast, and intermediate. More precisely, we employ the following three step
procedure: (I) partition the interval [0, T ] by segments of length

√
ε on which the

equation (108) is “almost” autonomous (F (t) is “almost” constant on each of these
intervals); (II) on the first interval (0,

√
ε), by appropriate scaling τ = t/ε and

stability analysis find large-time asymptotics τ → ∞ (here we used equivalence of
singular and large-time limits for autonomous equations); (III) use the asymptotics
found in (II) as initial conditions for the next interval (

√
ε, 2
√
ε), repeat step (II)

on this interval, and continue to obtain global asymptotics on [0, T ]. A crucial
ingredient here is an exponential stability of the linearized problem which prevents
accumulating of errors (see bound (124) in Lemma 2).

4.4.2. Spectral analysis of the linearized operator. Rescale the “fast” time τ = t/ε
in the unknown fε in (108) and “freeze” time t in F (t) (as described in step (II)
above)

∂τf = ∂2
yf +

1

c0

(∫
(θ′0(y))2f(y, τ)dy − F (t)

)
∂yf − f − βθ′0, (111)

here t ∈ [0, T ] is considered to be a fixed parameter. Steady states of (111) are
solutions of (109). Let f0 be such a solution, we define its velocity by

V0 :=
1

c0

(∫
(θ′0(y))2f0dy − F (t)

)
, (112)

then f0(y) = ψ(y, V0), where ψ(y;V ) is defined in (30). Linearizing equation (111)
around f0 we obtain

∂τf + T (V0)f = 0, (113)

where T (V ) : L2(R) 7→ L2(R) is a linear operator parameterized by V ∈ R and
given by

T (V )f := −∂2
yf − V ∂yf + f − 1

c0

(∫
(θ′0)2fdy

)
∂yψ(y, V ). (114)

Operator T (V ) is a perturbation of a local operator A(V )f := −∂2
yf −V ∂yf + f

by a non-local rank one operator P(V )f = −∂yψ(y, V ) 1
c0

(f, (θ′0)2)L2 , where ( · , · )L2

stands for the standard inner product in L2(R). The spectrum σ(A(V )) of operator
A(V ) is described by the following straightforward proposition.

Proposition 3. The spectrum σ(A(V )) consists only of its essential part:

σ(A(V )) = σess(A(V )) =
{
k2 − iV k + 1; k ∈ R

}
.

The spectrum σ(T (V )) of T (V ) is described in

Theorem 5. (On spectrum of the linearized operator) Consider the part σp(T (V ))
of the spectrum σ(T (V )) laying in C\σess(A). Then σp(T (V )) is given by

σp(T (V )) =
{
λ ∈ C\σess(A);

(
(A(V )− λ)−1∂yψ, (θ

′
0)2
)
L2 = c0

}
.

Moreover, all λ from σp(T (V )) are eigenvalues with finite algebraic multiplicities,
and geometric multiplicity one.

Proof. We suppress dependence of A, T , and η on V for brevity. Consider λ /∈
σess(A) ∪ σp(T ) and g ∈ L2(R). There exists the solution f of

(A−λ)f− 1

c0
∂yψ(f, (θ′0)2)L2 = g, or f =

1

c0
(A−λ)−1∂yψ(f, (θ′0)2)L2 +(A−λ)−1g
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which can be represented as

f =
1

c0
(A− λ)−1∂yψ(f, (θ′0)2)L2 + (A− λ)−1g. (115)

Eliminate (f, (θ′0)2)L2 from the latter equation to find that

f = (A− λ)−1∂yψ

(
(A− λ)−1g, (θ′0)2

)
L2

c0 − ((A− λ)−1∂yψ, (θ′0)2)L2

+ (A− λ)−1g.

Thus, if λ /∈
{
λ ∈ C; ((A− λ)−1∂yψ, (θ

′
0)2)L2 = c0

}
∪σess(A), then λ belongs to the

resolvent set of T .
Now suppose that λ ∈ σp(T (V )). Then ((A − λ)−1∂yψ, (θ

′
0)2)L2 = c0 and by

Fredholm’s theorem applied to (115), λ is an eigenvalue of finite multiplicity. Let
f be a corresponding eigenfunction, then by (115) we have

f =
1

c0
(A− λ)−1∂yψ(f, (θ′0)2)L2 .

Take the scalar product of this equality with (θ′0)2 to conclude that λ ∈ σp(T ) if
and only if (

(A− λ)−1∂yψ, (θ
′
0)2
)
L2 = c0, (116)

and (A−λ)−1∂yψ is the unique (up to multiplication by a constant) eigenfunction.

Thus, Theorem 5 reduces the study of the part of the spectrum σp(T ) = σ(T ) \
σess(A) of operator T (V ) to the equation (116). Next, using the obtained charac-
terization of the σp(T ) we study the stability of T .

Proposition 4. If Φ′β(V ) ≥ c0, then there exists a real non positive eigenvalue

λ ∈ σp(T (V )).

Proof. Consider the function ζ(λ) :=
(
(A(V )− λ)−1∂yψ, (θ

′
0)2
)
L2 for real λ ∈

(−∞, 0]. We claim that ζ(0) = Φ′(V ). Indeed, differentiate (30) to find that

−∂2
yψV − V ∂yψV + ψV = ∂yψ,

where ψV denotes the partial derivative of ψ in V . Thus

ζ(0) =
(
[A(V )]−1∂yψ, (θ

′
0)2
)
L2 =

(
ψV , (θ

′
0)2
)
L2 = Φ′β(V ).

On the other hand it is easy to see that ζ(λ) → 0 as λ → −∞, consequently
ζ(λ) = c0 for some λ ∈ (−∞, 0]. By Theorem 5 this λ is a non positive eigenvalue
of T (V ).

Def 1. Define the set of stable velocities S by

S := {V ∈ R : ∀λ ∈ σ(T (V )) has positive real part } , (117)

where T (V ) is the linearized operator given by (114).

Remark 7. In the case of 2D sytem (1)-(3) one can expect (yet to be proved)
that there exist standing wave solutions with circular symmetry when Ω is a disk.
However our preliminary reasonings show that these solutions are not stable if
Φ′β(0) > c0 (this latter inequality holds for asymmetric potentials W (ρ) and suf-

ficiently large β). This conjecture originates from the fact that zero velocity and
its small perturbations does not belong to the set of stable velocities as shown in
Proposition 4.
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Proposition 4 implies that the inequality

Φ′β(V ) < c0 (118)

is a necessary condition for stability of V . We hypothesize that (118) is also a
sufficient condition, and therefore (118) describes the set S, that is,

S =
{
V ∈ R : Φ′β(V ) < c0

}
. (119)

To support our hypothesis we consider W (ρ) = 1
4ρ

2(ρ− 1)2. In this case, the set{
V ∈ R : Φ′β(V ) < c0

}
is the complement to the open interval (Vmin, Vmax), where

Vmin and Vmax are the local maximum and minimum, respectively (see Fig. 3 and
the sketch of c0V −Φβ(V ) in Fig. 4). Numerical simulations clearly show that (119)
holds. We can also rigorously prove that there exist such V1 and V2 that the set
of stable velocities S is non-empty and, moreover, contains the compliment to the
open interval (V1, V2). This is done by means of Fourier analysis which allows us to
rewrite (116) as an integral equation for a complex number λ. Details are relegated
to Appendix B.

4.4.3. Main result for 1D interface limit. In this subsection we formulate the main
result on the 1D sharp interface limit in the system (57)-(58) for arbitrary β > 0.
Introduce the following conditions:

(C1) Let V0 ∈ S solve c0V0−Φβ(V0) = F (0) and let [0, T?] be a time interval
such that there exists V (t) ∈ S a continuous solution of

c0V (t)− Φβ(V (t)) = −F (t), t ∈ [0, T?], V (0) = V0. (120)

(C2) Assume that Pε(x, 0) = pε(x/ε) and ‖pε( · ) − ψ( · , V0)‖L2 < δ with a
small constant δ > 0 independent of ε (the function ψ = ψ(y;V0) is defined
by (30)).

Theorem 6. (Sharp Interface Limit for all β) Let xε be as in Theorem 3 and
assume that conditions (C1) and (C2) hold along with the conditions of Theorem
3. Then xε(t) converges to x0(t) in C1[0, T?], where V (t) := ẋ0(t) is the solution of
(120) as defined in (C1).

Theorem 6 justifies the sharp interface equation (120) for any β. Its proof consists
of two steps: (i) reduction to a single equation (nonlinear, singularly perturbed)
which is done in Section 4.2 and (ii) passage to the limit in this equation based on
stability analysis presented below, which is the main ingredient of the proof.

Remark 8. Condition (C2) is crucial to determine the solution branch in the case
if V0 is not a unique solution of (120).

Proof of Theorem 6. Rewrite (82)-(83) in the form of the single PDE

ε
∂Aε
∂t

= ∂2
yAε +

1

c0 + εÕε(t)

(∫
(θ′0)2Aεdy − F (t) + εOε(t) + õε(t)

)
∂yAε

−Aε − βθ′0(y), (121)

Recall that Õε(t) and Oε(t) are uniformly bounded functions, õε(t) tends to 0
uniformly on [0, T∗] as ε → 0. We next pass to the limit in equation (121) using
exponential stability (established in (127)) of the semigroup corresponding to the
linearized operator. The following local stability result plays the crucial role in the
proof.
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Lemma 2. There exist ω > 0 and δ > 0 such that if

‖Aε( · , t)− ψ( · , V (t))‖L2 ≤ δ, (122)

then for any 0 < r < 1 and sufficiently small ε, ε < ε0(T∗), the function ηε(y, t, τ) =
Aε(y, t+ ετ)− ψ(y, V (t)) satisfies

‖ηε( · t, τ)‖2L2 ≤ C
(
e−

ω
2 τ‖ηε( · t, 0)‖2L2 + max

s∈[t,t+ετ ]

(
|F (t)− F (s)|2 + õ2

ε(s)
)

+ ε2

)
(123)

for 0 ≤ τ ≤ 1
εr . The constants ω, δ and C in are independent of t, τ and ε.

This Lemma shows that if the initial data are at distance at most δ from ψ (in
the L2-norm), then the solution Aε(y, t + ετ) approaches ψ exponentially fast in
τ (first term in the RHS of (123)) with a deviation that is bounded from above
independently of t (described by the second and the third terms in the RHS of
(123)). The conclusion of Theorem 6 immediately follows from this Lemma. Indeed,
consider the time interval (0, t1), t1 :=

√
ε. Then by Lemma 2 we obtain

‖Aε( · , t1)− ψ( · , V (t1))‖2L2 ≤ C
(
e
− ω

2
√

ε δ +m2(
√
ε) + max

s∈[0,T∗]
õ2
ε(s) + ε2

)
+ C1ε,

(124)
where m denotes the modulus of continuity of F on [0, T?]. Choose ε small enough
so that log 1

ε ≤
ω
2

√
ε and the right hand side of (124) is bounded by δ. Similarly,

for intervals (t1, t2), where t2 := 2
√
ε, (t2, t3, where t3 := 3

√
ε, etc., we obtain

‖Aε( · , ti)− ψ( · , V (ti))‖2L2 ≤ C
(
ε+m2(

√
ε) + max

s∈[0,T∗]
õ2
ε(s) + ε2

)
+ C1ε < δ.

To complete the proof of Theorem 6 we again use Lemma 2 to bound ‖Aε( · , t) −
ψ( · , V (t))‖2L2 for t ∈ (ti, ti+1), i = 1, 2 . . . .

Proof of Lemma 2. As in the first step of the proof of Theorem 4, consider the
function ηε(y, τ) := Aε(y, t + ετ) − ψ(y, V (t)), hereafter t is considered as a fixed
parameter. It follows from (121) and (30) that ηε satisfies the following PDE

∂ηε
∂τ

+ T ηε =
∂yηε

c0 + Õε

∫
(θ′0)2ηεdy +

Λε

c0 + Õε
∂yηε

− εÕε

c0(c0 + Õε)
∂yψ

∫
(θ′0)2ηεdy +

Λε

c0 + Õε
∂yψ,

(125)

where

Λε(t, τ) :=F (t)− F (t+ ετ)

+ εOε(t+ ετ) + õε(t+ ετ) + ε
Õε(t+ ετ)

c0

(∫
(θ′0)2ψ(y, V (t))dy

)
.

Introduce the semigroup operator e−T τ , τ > 0 in L2(R), then by Duhamel’s princi-
ple

ηε( · , τ) = e−T τηε( · , 0) +

∫ τ

0

e−T (τ−τ ′)Rε( · , τ ′)dτ ′, (126)

where Rε(y, τ) denotes the right hand side of (125).
In order to proceed with the proof of Lemma 2 we first prove exponential stability

of the semigroup e−T t and establish its consequences in the following
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Lemma 3. There exists ω > 0 such that

(i) the following inequality holds

‖e−T τ‖ ≤Me−ωτ , τ ≥ 0, (127)

where ‖e−T τ‖ stands for the operator norm of e−T τ in L2(R);
(ii) for every g(y, t),

∥∥∥ τ∫
0

e−T (τ−τ ′) ∂
kg

∂yk
( · , τ ′)dτ ′

∥∥∥2

L2
≤ C

∫ τ

0

e−ω(τ−τ ′)‖g( · , τ ′)‖2L2dτ ′, k = 0, 1 (128)

with a constant C independent of g.

Moreover, constants ω, M and C can be chosen independently of t (recall that
T = T (V (t)) depends on t).

Proof of Lemma 3. Step 1. (proof of (i)). For every fixed V ∈ S, it follows from
Gerhardt-Prúss theorem (see, e.g., [16, 31]) that (127) holds with some constants
M and ω > 0. However, for later use we need a stronger result, we prove that these
constants can be chosen independently of V = V (t) for t ∈ [0, T∗]. To this end we
establish the following bound

‖(T (V (t))−λ−ω)−1‖ ≤ C

|λ|
for λ ∈ Πϕ0

:= {−reiϕ ; |ϕ| ≤ π/2+ϕ0, r > 0}, (129)

with constants ω > 0, ϕ0 > 0 and C all independent of t ∈ [0, T∗]. Then Theorem
I.7.7 from [30] yields the inequality ‖e−(T (V (t))−ω)τ‖ ≤M for τ > 0 with constants
ω > 0 and M independent of t, and this latter inequality is equivalent to (127).

Set T ′(t, ω) := T (V (t))−ω and A′(t, ω) := A(V (t))−ω. To prove (129) we first
derive by Fourier analysis,

‖(A′(t, ω)− λ)−1‖ ≤ max
k∈R

1

|k2 − iV (t)k + 1− λ− ω|
≤ C

|λ|+ 1
for λ ∈ Πϕ, (130)

where ϕ = 1
2 arctan 1

maxt |V (t)| , constant C is independent of both t ∈ [0, T∗] and

0 ≤ ω < 1/2. Next we make use of the representation (cf. Theorem 5)

(T ′(t, ω)− λ)−1v =
((A′(t, ω)− λ)−1v, (θ′0)2)L2

µ(λ; t, ω)
(A′(t, ω)− λ)−1∂yψ

+ (A′(t, ω)− λ)−1v,

(131)

where µ(λ; t, ω) = c0 −
(
(A′(t, ω)− λ)−1∂yψ, (θ

′
0)2
)
L2 .

It follows from (130) that the family of holomorphic functions µ(·; t, ω) : Πϕ → C
satisfies |µ| > 1/2 everywhere but on a fixed bounded subset K of Πϕ which is inde-
pendent of 0 ≤ ω ≤ 1/2 and t ∈ [0, T∗]. On the other hand the functions µ(λ; t, ω)
are uniformly bounded in {λ ∈ C; Reλ < 1/4} and they depend continuously on t
and ω. Now taking into account the fact that V (t) ∈ S for all t ∈ [0, T∗] we show
that |µ(λ; t, 0)| ≥ µ0 when λ ∈ K and |Reλ| ≤ 2ω for some 1/2 ≥ µ0 > 0 and
1/2 ≥ ω > 0. Indeed, otherwise there is a sequence tk → t0, λk → λ0 such that
Reλ0 = 0 and µ(λk; tk, 0) → 0. Then, by Montel’s theorem, up to extracting a
subsequence µ(λk; tk, 0) → µ(λ0; t0, 0), but µ(λ0; t0, 0) 6= 0 as V (t0) ∈ S (cf. proof
of Theorem 5). Thus there are ϕ0 > 0 (ϕ0 ≤ ϕ) such that |µ(λ; t, ω)| ≥ µ0 for
λ ∈ Πϕ0 . Using this fact and inequality (130) to bound terms in in (131) we get
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(129), and therefore (127) holds for some ω > 0 and M , both being independent of
t. This result immediately yields (128) for k = 0.

Step 2. (proof of (ii)). To prove (128) for k = 1 consider first τ ≥ 1 and show that

‖e−T τ∂yg‖L2 ≤ Ce−ωτ‖g‖2L2 . (132)

The idea here is to establish a short time parabolic regularization property. Con-
sider f := e−T s∂yg, it can be represented as f = ∂yv with v solving ∂sv = ∂2

yv + V ∂yv − v −
2ψ

c0

∫
θ′′0θ
′
0vdy,

v(y, 0) = g(y).

(133)

(134)

In a standard way, multiplying (133) by v and integrating in y we get

1

2

d

ds
‖v‖2L2 + ‖∂yv‖2L2 ≤ C‖v‖2L2 . (135)

Then an application of Gronwall’s inequality yields the uniform bound

‖v‖L2 ≤ C‖g‖L2 for 0 ≤ s ≤ 1.

Using this bound in (135) we derive∫ 1

0

‖∂yv( · , s)‖2L2ds ≤ C‖g‖2L2 .

It follows that ‖∂yv( · , s0)‖L2 ≤ C1‖g‖L2 for some 0 < s0 ≤ 1. Then by the
semigroup property we have

‖e−T τ∂yg‖L2 = ‖e−T (τ−s0)∂yv( · , s0)‖L2 ≤ Me−ω(τ−s0)C1‖g‖L2

≤ C2e
−ωτ‖g‖L2 for τ ≥ 1,

where we have used (127). The bound (132) being established, we conclude with
the estimate∥∥∥∫ τ−1

0

e−T (τ−τ ′)∂yg( · , τ ′)dτ ′
∥∥∥2

L2
≤
(
C

∫ τ−1

0

e−ω(τ−τ ′)‖g( · τ ′)‖L2dτ ′
)2

≤ C1

∫ τ−1

0

e−ω(τ−τ ′)‖g( · τ ′)‖2L2dτ ′.

(136)

To complete the proof of (128) consider

f̃( · ) :=

∫ τ

τ−1

e−T (τ−τ ′)∂yg( · , τ ′)dτ ′ =

∫ 1

0

e−T (1−s)∂yg( · , τ − 1 + s)ds

(if τ < 1, we set g(y, τ ′) ≡ 0 for τ ′ < 0). It follows from the definition of f̃ that

f̃(y) = ṽ(1, y), where v solves{
∂sṽ + T ṽ = ∂yg(y, τ − 1 + s),

ṽ(0, y) = 0.

(137)

(138)

Multiply equation (137) by v and integrate in y to obtain

1

2

d

ds
‖ṽ‖2L2 + ‖∂y ṽ‖2L2 ≤ −

∫
g(y, τ − 1 + s)∂y ṽ(y, s)dy + C‖ṽ‖2L2

≤ ‖∂y ṽ‖2L2 +
1

4
‖g( · , τ − 1 + s)‖2L2 + C‖ṽ‖2L2 .
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Vmin Vmax 
V  

-c0V+Φβ(V) 

Fmin 

Fmax 

F  

Vmin Vmax 
V  

-c0V+Φβ(V) 

Fmin 

Fmax 

F  

Figure 4. Sketch of the function F (V ) = −c0V + Φβ(V ); F (V )
has one local minimum, Fmin = F (Vmin), and one local maximum,
Fmax = F (Vmax). Left: Until F < Fmax we stay on the left branch.
When F exceeds Fmax we jump on the right branch; Right: Until
F > Fmin we stay on the right branch; When F becomes less than
Fmin we jump on the left branch. Red arrows on both figures
illustrate jumps in velocities.

Now apply Gonwall’s inequality. As a result we get

‖ṽ( · , 1)‖2L2 ≤ C
∫ 1

0

‖g( · , τ − 1 + s)‖2L2ds.

Thus ∥∥∥∫ τ

τ−1

e−T (τ−τ ′)∂yg( · , τ ′)dτ ′
∥∥∥2

L2
≤ C

∫ 1

0

‖g( · , τ − 1 + s)‖2L2ds

≤ C1

∫ τ

τ−1

e−ω(τ−τ ′)‖g(τ ′)‖2L2dτ ′.

(139)

Combining (139) with (136) completes the proof of Lemma 3.

Now we apply Lemma 3 to (126) to obtain the bound

‖ηε( · , τ)‖2L2 ≤2M2‖ηε( · , 0)‖2L2e−ωτ

+

∫ τ

0

e−ω(τ−τ ′) (C∗‖ηε( · , 0)‖4L2 + δε‖ηε( · , 0)‖2L2 + δε
)
dτ ′,

(140)

for 0 ≤ τ ≤ 1/εr (0 < r < 1), where C∗ depends only on F (t) and T∗ and
δε = C(maxs∈[t,t+ετ ]

(
|F (t)− F (s)|2 + õ2

ε(s)
)

+ ε2) . Let α(τ) be the right hand
side of (140). Consider s ∈ [0, τ ], by (140) we have

α̇(s) =− ωα(s) + C∗‖ηε( · , 0)‖4L2 + δε(s)‖ηε( · , 0)‖2L2 + δε

≤ −ωα(s) + C∗α
2(s) + δε(τ)α(s) + δε(τ)

and α(0) = 2M2‖ηε( · , 0)‖2L. Choosing an arbitrary q from the interval

q ∈ (0, ω/(2C∗)),

we see that the function α(s) := qe−ωs/2 + 2δε(τ)/ω satisfies for sufficiently small ε
the differential inequality

α̇(s) + ωα(s)− C∗α2(s)− δε(τ)α(s)− δε(τ) > 0.
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Figure 5. Hysteresis loop in the problem of cell motility. Simu-
lations of V = V (F ) Left: (61) Jumping from the left to the right
branches and back; Right: PDE system (57)-(58). On both figures
arrows show in what direction the system (V (t), F (t)) evolves as
time t grows; red curve is for F↑(t), blue curve is for F↓(t).

Therefore, if α(0) ≤ α(0) = q + 2δε(τ)/ω, then α(s) ≤ α(s) ∀ 0 ≤ s ≤ τ . Thus we
have proved that

‖ηε( · , τ)‖2L2 ≤ qe−ωτ/2 + 2δε(τ)/ω,

provided that ‖ηε( · , 0)‖L2 ≤ δ with 0 < δ <
√
q/(
√

2M). This concludes the proof
of Lemma 2 and Theorem 6.

4.5. Numerical observations. Hysteresis loop. In view of the above analysis
the equation (61) for large β may have many solutions of quite complicated structure
(e.g., discontinuous). Therefore, we need to introduce a criterion for selection of
the “correct” solutions that are limiting solutions to the problem with ε > 0. This
is analogous, e.g. to viscosity solutions of Allen-Cahn when physical solutions are
obtained (by regularization) in the sharp interface limit ε→ 0, [14].

We now introduce such a criterion based on numerical observations and suggested
by the stability analysis depicted in Fig. 4. Define the left velocity interval BL :=
(−∞, Vmin] and the right velocity interval BR := [Vmax,∞) for stable velocities V .

Assume for simplicity of presentation that function F (t) ∈ C[0, T ] is strictly
increasing. Then the solution of (61) is chosen based on the following two criteria

(Cr1) if V (0) ∈ BL, there is a unique V (t) ∈ BL satisfying (61) for all t ∈
[0, T ]. Note that this V (t) is the only solution which is continuous and never
enters the “forbidden” interval [Vmin, Vmax]
(Cr2) if V (0) ∈ BR, then for any t ∈ [0, T ] the solution V (t) of (61) is chosen
in the right velocity interval BR, unless it is impossible (F (t) > Fmin, where
Fmin is defined in Fig. 4). In the latter case V (t) is chosen from the left
velocity interval BL.

Intuitively, evolution of the sharp interface velocity can be described as follows.
Consider for example the left part of Figure 4 left. As time evolves, the velocity
increases along the right green branch until it reaches Vmax, then it jumps (along
the horizontal red dashed line) to the solution of (61) on the left green branch, and
continues increasing along this branch.

Finally, numerical simulations show that the criterion (Cr2) predicts hysteresis
in the system (61). Consider two forcing terms corresponding to the right and the
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left parts of Fig. 4:

F↓(t) = −1.0 + (−2.25 + 1.0)t, F↑(t) = −2.25 + (−1.0 + 2.25)t

and β = 150. For t ∈ [0, 1] both F↓(t) and F↑(t) have the same values but in
the opposite order in time t. Fig. 5 (left) depicts the solution of equation (61)
according to to the criteria (Cr1) and (Cr2). The red and blue branches coincide
when F /∈ [Fmin, Fmax]. Moreover, a surprising hysteresis loop is observed when
F ∈ [Fmin, Fmax].

We also performed numerical simulations for the original PDE system (57)-(58)
for ρε(x, 0) = θ0(x/ε), Pε(x, 0) = θ′0(x/ε), ε = 0.01, and defining ε-interface xε(t)
as a number such that ρε(xε(t), t) ≈ 0.5(ρε(+∞, t) + ρε(−∞, t)). The branches
corresponding to F↓ and F↑ are depicted in Fig. 5 (right). The same hysteresis is
observed which justifies numerically the above criteria.

Appendix A. Auxiliary inequalities. It is well known (see, e.g., [28]) that under
conditions (5) on the potential W (ρ) the corresponding standing wave θ0 satisfies,
for some α0 > 1,

α−1
0 e−κ−y < (θ′0(y))2 ≤ α0e

−κ−y, y ≤ 0
α−1

0 e−κ+y < (θ′0(y))2 ≤ α0e
−κ+y, y ≥ 0,

(141)

where κ± = 2
√
W ′′((1± 1)/2). In the case of the symmetric potential W (ρ) =

1
4ρ

2(ρ − 1)2, κ− = κ+ and the standing wave θ0 is explicitly given by θ0(y) =
1
2 (1 + tanh y

2
√

2
).

Theorem 7. (Poincaré inequality) The following inequality holds∫
(θ′0)2(v − 〈v〉)2dy ≤ CP

∫
(θ′0)2(v′)2dy, ∀ v ∈ C1(R), (142)

where

〈v〉 =
1∫

(θ′0)2dy

∫
(θ′0)2vdy. (143)

Proof. Step 1. (Friedrich’s inequality). Let u ∈ C1(R) satisfy u(0) = 0. Then we
show that the inequality∫

(θ′0)2u2dy ≤ CF
∫

(θ′0)2(u′)2dy, (144)

holds with CF independent of u. Indeed,∫ ∞
0

e−κ+yu2dy = 2

∫ ∞
0

(∫ ∞
y

e−κ+tdt

)
u′ udy ≤ 2

∫ ∞
0

(∫ ∞
y

e−κ+tdt

)
|u′||u|dy

=
2

κ+

∫ ∞
0

e−κ+y|u′||u|dy ≤ 2

κ+

(∫ ∞
0

e−κ+y(u′)2dy

)1/2(∫ ∞
0

e−κ+yu2dy

)1/2

.

Thus, ∫ ∞
0

(θ′0)2u2dy ≤ 2α2
0

κ+

(∫ ∞
0

(θ′0)2(u′)2dy

)1/2(∫ ∞
0

(θ′0)2u2dy

)1/2

.

Dividing this inequality by
(∫∞

0
(θ′0)2u2dy

)1/2
, and than taking square of both sides

we get ∫ ∞
0

(θ′0)2u2dy ≤ 4α4
0

κ2
+

∫ ∞
0

(θ′0)2(u′)2dy (145)
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Similarly we obtain ∫ 0

−∞
(θ′0)2u2dy ≤ c40

κ2
−

∫ 0

−∞
(θ′0)2(u′)2dy, (146)

Then adding (145) to (145) yields (144).

Step 2. We prove the Poincaré inequality (142) by contradiction. Namely, assume
that there exists a sequence vn ∈ C1(R) ∩ L∞(R) such that∫

(θ′0)2v2
ndy = 1,

∫
(θ′0)2vndy = 0 and

∫
(θ′0)2(v′n)2dy → 0.

Apply Friedrich’s inequality (144) to functions vn(y)− vn(0):∫
(θ′0)2(vn(y)− vn(0))2dy ≤ CF

∫
(θ′0)2(v′n)2dy → 0.

On the other hand,∫
(θ′0)2(vn(y)− vn(0))2dy =

∫
(θ′0)2v2

ndy + v2
n(0)

∫
(θ′0)2dy ≥

∫
(θ′0)2v2

ndy.

Hence, ∫
(θ′0)2v2

ndy → 0

which contradicts the normalization
∫

(θ′0)2v2
ndy = 1. The Theorem is proved.

Corollary 1. Let u ∈ H1(R), then

‖u− 〈u〉θ′0 θ
′
0‖2H1 ≤ C

∫
(θ′0)2(v′)2dy,

where 〈u〉θ′0 =
1∫

(θ′0)2dy

∫
uθ′0dy and v = u/θ′0, (147)

with a constant C independent of u.

Proof. Recall that standing waves θ0 of the Allen-Cahn equation along with (141)
satisfy

α−1
1 e−κ−y < (θ′′0 (y))2 ≤ α1e

−κ−y, y ≤ 0

α−1
1 e−κ+y < (θ′′0 (y))2 ≤ α1e

−κ+y, y ≥ 0

for some α1 > 0. Then applying Theorem 7 to v = u/θ′0 and using density of C1(R)
in H1(R) one derives (147).

Appendix B. On spectral properties of operator T in the case W (ρ) =
1
4ρ

2(ρ− 1)2. In this appendix we study the set of stable of velocities S, i.e., the set
of such V ∈ R that the point spectrum of the linearized operator T (V ) defined by
(114) lies in the right half of the complex plane. We restrict ourselves here to the
case W (ρ) = 1

4ρ
2(ρ− 1)2.

Theorem 5 implies that if Reλ ≤ 0, then λ solves the equation (116). Though
(116) is a scalar equation with respect to λ ∈ C, the evaluation of its left hand
side requires solution of the PDE (30). By means of Fourier analysis, we can avoid
solving the PDE and rewrite (116) in the form∫

R

−iβkθ̃′0(̃θ′0)2

(k2 − iV k + 1)(k2 − iV k + (1− λ))
dk = 1, (148)
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where θ̃′0 and (̃θ′0)2 are Fourier transforms of θ′0 and (θ′0)2, respectively. In the case
W (ρ) = 1

4ρ
2(1− ρ)2:

θ̃′0(k) :=
√
πcsch(

√
2πk), (̃θ′0)2(k) =

√
2π

12
k(2k2 + 1)csch(

√
2πk). (149)

Introduce χ(k) := −βπ
√

2
12 k2(2k2 + 1)csch2(

√
2πk), then equation (148) becomes∫

R

iχ(k)

(k2 − iV k + 1)(k2 − iV k + (1− λ))
dk = 1. (150)

Next, consider λ = λr+ iλi. Denote by Hλ(k) the integrand in (150) and rewrite
it in the form

Hλr+iλi
(k) = −χ(k)

[
V k(k2 + µ) + (k2 + 1)(V k + λi)

]
((k2 + 1)2 + V 2k2) ((k2 + µ)2 + (V k + λi)2))

+iχ(k)

[
(k2 + 1)(k2 + µ)− V k(V k + λi)

]
((k2 + 1)2 + V 2k2) ((k2 + µ)2 + (V k + λi)2))

,

where µ = 1− λr.

Proposition 5. (i) Assume V <
√

2. If Φ′β(V ) < c0, then all eigenvalues λ ∈
σp(T (V )) have positive real part, Reλ > 0.
(ii) There exists V̄ > 0 such that for all V > V̄ all eigenvalues of T (V ) have positive
real part.

Remark 9. Condition V <
√

2 is a technical assumption in the proof which guar-
antees that integral (153) is negative. However, numerical simulations show that
integral (153) is negative for all V .

Proof. Part (i). First, assume 0 < |V | <
√

2. We prove that if λ = λr + iλi with
λr < 1 (µ > 0) is a root of equation ζ(λ) = 1, then λi = 0. In particular, the
condition λr < 1 guarantees that λ /∈ σess(A(V )).

Rewrite the imaginary part of ζ(λr + iλi):

Imζ(λ) =

∞∫
−∞

Hλ(k)dk

=

∞∫
0

λiV χ(k)(−2(k2 + 1)(k2 + µ) + V 2k2 − (k2 + µ)2 − λ2
i )

((k2 + 1)2 + V 2k2)((k2 + µ)2 + (V k + λi)2)((k2 + µ)2 + (V k − λi)2)
dk.

Since the numerator is the difference between (V 2− 2)k2 and a positive expression,
we obtain Imζ(λ) 6= 0 for λi 6= 0.

Take λi = 0 and rewrite the real part of ζ(1− µ):

Reζ(1− µ) = −V
∞∫
−∞

kχ(k)
2k2 + 1 + µ

((k2 + 1)2 + V 2k2)((k2 + µ)2 + V 2k2)
dk. (151)

The function Reζ(1−µ) is obviously monotone for µ > 0. Indeed, denote by Ψk(µ)
the term of integrand in (151) which depends on µ:

Ψk(µ) =
2k2 + 1 + µ

((k2 + µ)2 + V 2k2)
.
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Compute Ψ′k(µ):

Ψ′k(µ) =
(V 2 − 2− 4µ)k2 − k4 − 2µ− µ2

((k2 + µ)2 + V 2k2)2
. (152)

If |V | <
√

2, then Ψ′k(µ) < 0, which proves the monotonicity of Reζ(1− µ).

Finally, assume by contradiction that βc−1
0 Φ(V ) < 1, but there exists an eigenva-

lue λ0 with zero or negative real part, Reλ0 ≤ 0. Then ζ(Reλ0) = ζ(λ0) ≤ ζ(0) < 1
that contradicts ζ(λ) = 1.

Consider V ≤ 0. Then Reζ(λ0) ≤ 0. Indeed, observe that Reζ(λ0) equals to

∞∫
0

−4V kχ(k)
[
(2k2 + 1 + µ)((k2 + µ)2 + V 2k2)

]
dk

((k2 + 1)2 + V 2k2) ((k2 + 1)2 + (V k − λi)2) ((k2 + µ)2 + (V k + λi)2))
. (153)

The integral in (153) is negative or zero and, thus, cannot be equal to 1, so equality
(116) does not hold and, in particular, there does not exist eigenvalues with negative
real part. Thus, part (i) is proved.

Part (ii) follows immediately from (153).

Appendix C. The original model from [40]. In this appendix we present the
original phase-field model for the motion of a keratocyte cell on a substrait intro-
duced in [40]. It consists of equations for the phase-field ρ and the orientation vector
P :

∂tρ = Dρ∆ρ−W ′(ρ)− α∇ρ · P, (154)

∂tP = DP∆P − 1

τ1
P − 1

τ2
(1− ρ2)P − β∇ρ− γ(∇ρ · P )P. (155)

Coefficients Dρ and DP describe diffusion of ρ and P ; α and β are the actin pro-
trusion and polymerization strengths; τ1 and τ2 are decay rates for P (depolymer-
ization) inside and outside the cell; γ is the strength of myosin motors. The second
term in the right hand side of (154) is defined as follows W ′(ρ) = ρ(δ − ρ)(1 − ρ)
where

δ =
1

2
+ µ

(∫
ρdx− V0

)
− σ|P |2. (156)

Here µ is stiffness of the volume constraint, V0 is the initial area of cell, and σ
describes contraction due to actin bundles. In this model, the area penalization
is introduced via parameter δ in the double well potential W (ρ) as in the well-
known Belousov-Zhabotinskii model [10, 24]. A dimensionless parameter σ describes
contractility due to bundles; in [40] this parameter ranges from 0 to 0.7 (see Table 1
in [40]). For the sake of simplicity in this work we considered the case σ = 0 only.
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[24] F. D. Lio, C. I. Kim and D. Slepčev, Nonlocal front propagation problems in bounded domains

with Neumann-type boundary conditions and applications, Asymptot. Anal., 37 (2004), 257–

292.
[25] M. Mizuhara, L. Berlyand, V. Rybalko and L. Zhang, On an evolution equation in a cell

motility model, Phys. D , 318/319 (2016), 12–25.
[26] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch.

Rational Mech. Anal., 98 (1987), 123–142.

[27] A. Mogilner, Mathematics of cell motility: Have we got its number?, J. Math. Biol., 58
(2009), 105–134.

[28] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer.

Math. Soc., 347 (1995), 1533–1589.

http://dx.doi.org/10.1016/0001-6160(79)90196-2
http://dx.doi.org/10.1016/0001-6160(79)90196-2
http://www.ams.org/mathscinet-getitem?mr=MR1998615&return=pdf
http://dx.doi.org/10.4171/IFB/79
http://dx.doi.org/10.4171/IFB/79
http://dx.doi.org/10.1073/pnas.1417257112
http://dx.doi.org/10.1073/pnas.1417257112
http://dx.doi.org/10.1073/pnas.1417257112
http://www.ams.org/mathscinet-getitem?mr=MR3553901&return=pdf
http://dx.doi.org/10.1016/j.crma.2016.09.001
http://dx.doi.org/10.1016/j.crma.2016.09.001
http://www.ams.org/mathscinet-getitem?mr=MR0485012&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2838769&return=pdf
http://dx.doi.org/10.1002/mma.1426
http://dx.doi.org/10.1002/mma.1426
http://www.ams.org/mathscinet-getitem?mr=MR1453306&return=pdf
http://dx.doi.org/10.1137/S0036141094279279
http://dx.doi.org/10.1137/S0036141094279279
http://www.ams.org/mathscinet-getitem?mr=MR1422816&return=pdf
http://dx.doi.org/10.1016/S0362-546X(97)82875-1
http://dx.doi.org/10.1016/S0362-546X(97)82875-1
http://www.ams.org/mathscinet-getitem?mr=MR2754215&return=pdf
http://dx.doi.org/10.4171/IFB/244
http://dx.doi.org/10.4171/IFB/244
http://www.ams.org/mathscinet-getitem?mr=MR1100211&return=pdf
http://dx.doi.org/10.4310/jdg/1214446564
http://dx.doi.org/10.4310/jdg/1214446564
http://www.ams.org/mathscinet-getitem?mr=MR1100206&return=pdf
http://dx.doi.org/10.4310/jdg/1214446559
http://www.ams.org/mathscinet-getitem?mr=MR1177477&return=pdf
http://dx.doi.org/10.1002/cpa.3160450903
http://dx.doi.org/10.1002/cpa.3160450903
http://www.ams.org/mathscinet-getitem?mr=MR0981594&return=pdf
http://dx.doi.org/10.1137/1.9781611970180
http://www.ams.org/mathscinet-getitem?mr=MR0461206&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1978-0461206-1
http://www.ams.org/mathscinet-getitem?mr=MR1447577&return=pdf
http://dx.doi.org/10.1090/qam/1447577
http://dx.doi.org/10.1090/qam/1447577
http://www.ams.org/mathscinet-getitem?mr=MR0906392&return=pdf
http://dx.doi.org/10.4310/jdg/1214441371
http://www.ams.org/mathscinet-getitem?mr=MR0664497&return=pdf
http://dx.doi.org/10.4310/jdg/1214436922
http://www.ams.org/mathscinet-getitem?mr=MR2987304&return=pdf
http://dx.doi.org/10.1007/978-1-4614-5477-9
http://www.ams.org/mathscinet-getitem?mr=MR0772132&return=pdf
http://dx.doi.org/10.4310/jdg/1214438998
http://dx.doi.org/10.1038/nature06952
http://www.ams.org/mathscinet-getitem?mr=MR2284215&return=pdf
http://dx.doi.org/10.1002/cpa.20144
http://dx.doi.org/10.1002/cpa.20144
http://www.ams.org/mathscinet-getitem?mr=MR2047742&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3461805&return=pdf
http://dx.doi.org/10.1016/j.physd.2015.10.008
http://dx.doi.org/10.1016/j.physd.2015.10.008
http://www.ams.org/mathscinet-getitem?mr=MR0866718&return=pdf
http://dx.doi.org/10.1007/BF00251230
http://www.ams.org/mathscinet-getitem?mr=MR2448425&return=pdf
http://dx.doi.org/10.1007/s00285-008-0182-2
http://www.ams.org/mathscinet-getitem?mr=MR1672406&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1995-1672406-7


590 LEONID BERLYAND, MYKHAILO POTOMKIN AND VOLODYMYR RYBALKO

[29] F. Otto, H. Weber and G. Westdickenberg, Invariant measure of the stochastic Allen-Cahn
equation: the regime of small noise and large system size, Electron. J. Probab., 19 (2014),

1–76.

[30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp.
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