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Abstract. We consider the Kawahara-Korteweg-de Vries equation, which con-

tains nonlinear dispersive effects. We prove that as the dispersion parameter
tends to zero, the solutions of the dispersive equation converge to discontinuous

weak solutions of the Burgers equation. The proof relies on deriving suitable a

priori estimates together with an application of the compensated compactness
method in the Lp setting.

1. Introduction. Nonlinear evolution equations have been used to model many
physical phenomena in various fields such as fluid mechanics, solid state physics,
plasma physics, chemical physics, optical fiber and geochemistry. An example is
given by the Kawahara-Korteweg-de Vries equation:

∂tu+ au∂xu+ b∂3xxxu+ c∂5xxxxxu = 0, (1)

where u = u(t, x) is a real function, and a, b, c ∈ R are constants.
It is a model for water waves in the long wave regime for moderate values of

surface tension (see [16]), or for the propagation of the magnet-acoustic waves in a
cold collision free plasma (see [17]).

To obtain the exact solutions for (1), a number of methods has been proposed in
the literature, some of them include solitary wave ansatz method, inverse scattering,
Hirotas bilinear method, homogeneous balance method, Lie group analysis, etc.
Among the above mentioned, the Lie group analysis method, which is also called the
symmetry method, is one of the most effective to determine solutions of nonlinear
partial differential equations [18].

In [1], the authors use Lie group analysis to obtain some exact solutions for (1),
the Kawahara equation

∂tu+ au∂xu+ c∂5xxxxxu = 0, (2)
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the modified Kawahara equation

∂tu+ au2∂xu+ c∂5xxxxxu = 0,

the modified Kawahara-Korteweg-de Vries equation

∂tu+ au2∂xu+ b∂3xxxu+ c∂5xxxxxu = 0,

and, the Rosenau-Kawahara equation

∂tu+ au∂xu+ b∂3xxxu+ c∂5xxxxxu+ d∂5txxxxu = 0. (3)

The Kawahara equation (2) describes small–amplitude gravity capillary waves in
water of finite depth when the Weber number is close to 1

3 (see [23]). In [16],
the author deduced (2) and (1) describing one–dimensional propagation of small–
amplitude long waves in various problems of fluid dynamics and plasma physics. (1)
is also known as the fifth-order Korteweg-de Vries equation, or a special version of
the Benney-Lin equation (see [2]). In [20], the author used the exp-function method
to find some exact solution for (3). In [21], the authors proved that the solution of
(2) converges to the solution of the Korteweg-de Vries equation

∂tu+ ∂xu
2 + β∂3xxxu = 0. (4)

We consider (4), and observe that, if we send β → 0 in (4), we pass from (4) to the
Burgers equation

∂tu+ ∂xu
2 = 0. (5)

In [19, 25], the convergence of the solution of

∂tu+ ∂xu
2 + β∂3xxxu = ε∂2xxu

to the unique entropy solution of (5) is proven, under the assumption

u0 ∈ L2(R) ∩ L4(R), β = o
(
ε2
)
. (6)

[7, Appendices A and B] show that it is possible to obtain the same result of
convergence, under the following assumptions

u0 ∈ L2(R), −∞ <

∫
R
u0(x)dx <∞, β = o

(
ε3
)
,

u0 ∈ L2(R), β = o
(
ε4
)
.

Several of the ideas used in this paper were inspired by the analysis of the fol-
lowing generalization of (4)

∂x(∂tu+ ∂xu
2 − β∂3xxxu) = γu, β, γ ∈ R, (7)

that is the Ostrovsky equation (see [24]). Equation (7) describes small-amplitude
long waves in a rotating fluid of a finite depth by the additional term induced by the
Coriolis force. If we send β → 0 in (7), we pass from (7) to the Ostrovsky-Hunter
equation (see [3])

∂x(∂tu+ ∂xu
2) = γu, t > 0, x ∈ R. (8)

In [9, 12, 15], the wellposedness of the entropy solutions of (8) is proven, in the
sense of the following definition:

Definition 1.1. We say that u ∈ L∞((0, T )× R), T > 0, is an entropy solution of
(8) if

i) u is a distributional solution of (8);
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ii) for every convex function η ∈ C2(R) the entropy inequality

∂tη(u) + ∂xq(u)− γη′(u)P ≤ 0, q(u) = 2

∫ u

ξη′(ξ) dξ,

holds in the sense of distributions in (0,∞)× R, where ∂xP = u.

Under the assumption (6), in [10], the convergence of the solutions of (7) to the
unique entropy solution of (8) is proven.

Consider (3). Choosing a = 2, b = d = 1, c = 0, we have the Rosenau-Korteweg-
de Vries equation

∂tu+ ∂xu
2 + ∂3xxxu+ ∂5txxxxu = 0. (9)

Arguing as in [11], we re–scale the equation as follows

∂tu+ ∂xu
2 + β∂3xxxu+ β2∂5txxxxu = 0, (10)

where β is the dispersion parameter. In [5], the authors proved that the solution of

∂tu+ ∂xu
2 + β∂3xxxu+ β2∂5txxxxu = ε∂2xxu, (11)

converge to the unique entropy solution of (5), choosing the initial datum in two
different ways. The first one is:

u0 ∈ L2(R), β = o
(
ε4
)
. (12)

The second choice is:

u0 ∈ L2(R) ∩ L4(R), β ≤ const
(
‖u0‖L2(R) , ‖u0‖L4(R)

) (
ε4
)
. (13)

Consider (2) with a = 2, c = 1. Arguing as in [11], we re–scale the equation as
follows

∂tu+ ∂xu
2 + β2∂5xxxxxu = 0, (14)

where β is the dispersion parameter. Assuming (12), or (13), in [4], the authors
proved that the solution of

∂tu+ ∂xu
2 + β2∂5xxxxxu = ε∂2xxu, (15)

converge to the unique entropy solution of (5).
[4, Appendices A and B] show that, using the approximation introduced in [6],

we have the same result of convergence, under the following assumptions

u0 ∈ L2(R), β = o
(
ε8
)
, (16)

u0 ∈ L2(R) ∩ L4(R), β ≤ const
(
‖u0‖L2(R) , ‖u0‖L4(R)

) (
ε8
)
. (17)

In this paper, we consider (1) with a = 2, b = c = 1. Arguing as in [11], we re–scale
the equations as follows

∂tu+ ∂xu
2 + β∂3xxxu+ β2∂5xxxxxu = 0, (18)

where β is the dispersion parameter.
We are interested in the dispersion-diffusion limit, we send β → 0 in (18). In

this way, we pass from (18) to (5). We prove that, as β, ε → 0, the solution of
(18) converge to the unique entropy solution of (5). In other to do this, using the
following approximation (see (21) below)

∂tu+ ∂xu
2 + β∂3xxxu+ β2∂5xxxxxu = ε∂2xxu− βε∂4xxxxu, (19)

where ε, β are two small numbers. The form of the right hand side of (19) has been
chosen for mathematical reason and there is no deep physical meaning behind it.
The two terms are designed to preserve the ‖·‖L4 .
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We can choose the initial datum and β in two different ways Following [14,
Theorem 7.1], the first choice is given by (12) (see Theorem 2.2). Since ‖·‖L4 is a
conserved quantity for (19), the second choice is given by (13) (see Theorem 3.1).

It is interesting to observe that, while the summability on the initial datum in
(13) is greater than the one of (12), the assumption on β in (13) is weaker than
the one in (12). From the mathematical point of view, the two assumptions require
two different arguments for the L∞−estimate (see Lemmas 2.3 and 3.2). Indeed,
the proof of Lemma 2.3, under the assumption (12), is more technical than the one
of Lemma 3.2. Moreover, due to the presence of the third order term, Lemma 3.3
is finer than [4, Lemmas 3.2]. Indeed, in Lemma 3.3 we need to prove the existence
of two positive constants, that is not the case in [4, Lemma 3.2].

Alternatively we can consider the approximation introduced in [6]

∂tu+ ∂xu
2 + β∂3xxxu+ β2∂5xxxxxu = ε∂2xxu− β

3
2 ε∂4xxxxu. (20)

We consider (19), in lieu of (20), because it gives us shaper estimates. Indeed if we
work with (20), we have to replace (12) and (13) with (16) and (17), respectively. To
better show that (19) works better than (20) we give the details on (19) in the main
part of the paper and the ones on (20) are briefly discussed in the final appendices.

The paper is organized in five sections. In Section 2, we prove the convergence
of (18) to (5) in the Lp setting, with 1 ≤ p < 2. In Section 3, we prove the
convergence of the solutions of (18) to the ones of (5) in the Lp setting, with
1 ≤ p < 4. Sections A and B are the appendices where, using the approximation
(20), we prove the convergence of the solutions of (18) to the ones of (5) in the Lp

setting, with 1 ≤ p < 2, and in the Lp setting with 1 ≤ p < 4, respectively.

2. The Kawahara-KDV-equation: u0 ∈ L2(R), β = o
(
ε4
)
. In this section, we

consider (18), and assume (12) on the initial datum.
We study the dispersion-diffusion limit for (18). Therefore, we fix two small

numbers ε, β and consider the following fifth order approximation
∂tuε,β + ∂xu

2
ε,β + β∂3xxxuε,β + β2∂5xxxxxuε,β

= ε∂2xxuε,β − βε∂4xxxxuε,β , t > 0, x ∈ R,
uε,β(0, x) = uε,β,0(x), x ∈ R,

(21)

where uε,β,0 is a C∞ approximation of u0 such that

uε, β, 0 → u0 in Lploc(R), 1 ≤ p < 2, as ε, β → 0,

‖uε,β,0‖2L2(R) + β
1
2 ‖∂xuε,β,0‖2L2(R) + βε2

∥∥∂2xxuε,β,0∥∥2L2(R) ≤ C0, ε, β > 0,
(22)

and C0 is a constant independent on ε and β. Such sequence {uε,β,0} can be
constructed using standard mollifiers and (12). The well-posedness of the smooth
solutions uε,β ∈ C∞ can be proven following the same argument of [25].

We consider the following definition.

Definition 2.1. A pair of functions (η, q) is called an entropy–entropy flux pair if
η : R→ R is a C2 function and q : R→ R is defined by

q(u) = 2

∫ u

0

ξη′(ξ)dξ.

An entropy–entropy flux pair (η, q) is called convex/compactly supported if, in
addition, η is convex/compactly supported.
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The main result of this section is the following theorem.

Theorem 2.2. Assume that (12) and (22) hold. Fix T > 0, if

β = o
(
ε4
)
, (23)

then, there exist two sequences {εn}n∈N, {βn}n∈N, with εn, βn → 0, and a limit
function

u ∈ L∞((0, T );L2(R)), (24)

such that

uεn,βn → u strongly in Lploc(R
+ × R), for each 1 ≤ p < 2, (25)

u is the unique entropy solution of (5), (26)

where uε,β solves (21).

Let us prove some a priori estimates on uε,β , denoting with C0 the constants
which depend only on the initial data.

Lemma 2.3. For each t > 0,

‖uε,β(t, ·)‖2L2(R) + 2ε

∫ t

0

‖∂xuε,β(s, ·)‖2L2(R) ds

+ 2βε

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0.

(27)

For every T > 0, we have

‖uε,β‖L2((0,T )×R) ≤ C0

√
T , (28)

‖uε,β‖L∞((0,T )×R) ≤ C0β
− 1

4 . (29)

Moreover

β ‖∂xuε,β(t, ·)‖2L2(R) + β
3
2 ε2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

+
3βε

2

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β
3
2 ε3

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β2ε

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+
3β

5
2 ε3

2

∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0.

(30)

Proof. Let 0 < t < T . We begin by proving that (27), and (28) hold. Multiplying
(21) by 2uε,β , since

2β

∫
R
uε,β∂

3
xxxuε,βdx = 0,

arguing as in [4, Lemmas 2.1], we have (27), and (28).
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Finally, we prove (29), and (30). Multiplying (21) by −2β
1
2 ∂2xxuε,β + 2βε2

∂4xxxxuε,β , we have(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
∂tuε,β

+ 2
(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
uε,β∂xuε,β

+ β
(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
∂3xxxuε,β ,

+ β2
(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
∂5xxxxxuε,β

= ε
(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
∂2xxuε,β

− βε
(
−2β

1
2 ∂2xxuε,β + 2βε2∂4xxxxuε,β

)
∂4xxxxuε,β .

Since

−2β
3
2

∫
R
∂2xxuε,β∂

3
xxxuε,βdx = 0,

2β2ε2
∫
R
∂4xxxxuε,β∂

3
xxxuε,βdx = 0,

arguing as in [4, Lemmas 2.2], we have (27), (28), (29) and (30).

To prove Theorem 2.2, the Murat Lemma is needed [22].
Following [19], we prove Theorem 2.2.

Proof Theorem 2.2. Let us consider a compactly supported entropy-entropy flux
pair (η, q). Multiplying (21) by η′(uε,β), we have

∂tη(uε,β) + ∂xq(uε,β) =εη′(uε,β)∂2xxuε,β − βεη′(uε,β)∂4xxxxuε,β

− β2η′(uε,β)∂5xxxxxuε,β − βη′(uε,β)∂3xxxuε,β

=I1, ε, β + I2, ε, β + I3, ε, β + I4, ε, β + I5, ε, β + I6, ε, β

+ I7, ε, β + I8, ε, β ,

where

I1, ε, β = ∂x(εη′(uε,β)∂xuε,β),

I2, ε, β = −εη′′(uε,β)(∂xuε,β)2,

I3, ε, β = −∂x
(
βεη′(uε,β)∂3xxxuε,β

)
,

I4, ε, β = βεη′′(uε,β)∂xuε,β∂
3
xxxuε,β ,

I5, ε, β = −∂x(β2η′(uε,β)∂4xxxxuε,β),

I6, ε, β = β2η′′(uε,β)∂xuε,β∂
4
xxxxuε,β ,

I7, ε, β = −∂x
(
βη′(uε,β)∂2xxuε,β

)
,

I8, ε, β = βη′′(uε,β)∂xuε,β∂
2
xxuε,β .

(31)

Fix T > 0. Arguing as in [4, Theorem 2.1], we have that I1, ε, β → 0 in
H−1((0, T )×R), {I2, ε, β}ε,β>0 is bounded in L1((0, T )×R), I3, ε, β → 0 inH−1((0, T )
× R), I4, ε, β → 0 in L1((0, T )× R), I5, ε, β → 0 in H−1((0, T )× R), and I6, ε, β → 0
in L1((0, T )×R). Due to (23), Lemma 2.3, and the Hölder inequality, we have that
I7, ε, β → 0 in H−1((0, T )× R), and I8, ε, β → 0 in L1((0, T )× R).
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Therefore, (25) follows from the Murat Lemma and the Lp compensated com-
pactness of [25].

Arguing as in [4, Theorem 2.1] and using (22), we can prove that for every convex
entropy-entropy flux (η, q) we have

∂tη(u) + ∂xq(u) ≤ 0

in the sense of distributions. Therefore (26) is proved.
Finally, arguing as in [14, Theorem 7.1], we get (24).

3. The Kawahara -KDV equation: u0 ∈ L2(R) ∩ L4(R), β = O
(
ε4
)
. In this

section, we consider (18), and assume (13) on the initial datum.
We study the dispersion-diffusion limit for (18). Therefore, we fix two small num-

bers ε, β, and consider the approximation (21), where uε,β,0 is a C∞ approximation
of u0 such that

uε, β, 0 → u0 in Lploc(R), 1 ≤ p < 4, as ε, β → 0,

‖uε,β,0‖4L4(R) + ‖uε,β,0‖2L2(R) ≤ C0, ε, β > 0,(
β

1
2 + ε2

)
‖∂xuε,β,0‖2L2(R) + βε2

∥∥∂2xxuε,β,0∥∥2L2(R) ≤ C0, ε, β > 0,

(32)

and C0 is a constant independent on ε and β.
The main result of this section is the following theorem.

Theorem 3.1. Assume that (13) and (32) hold. Fix T > 0, if

β ≤ 25

32C0
ε4, (33)

then, there exist two sequences {εn}n∈N, {βn}n∈N, with εn, βn → 0, and a limit
function

u ∈ L∞((0, T );L2(R) ∩ L4(R)),

such that

uεn,βn → u, strongly in Lploc(R
+ × R), for each 1 ≤ p < 4, (34)

u the unique entropy solution of (5), (35)

where uε,β solves (21).

Let us prove some a priori estimates on uε,β , denoting with C0 the constants
which depend only on the initial data.

Lemma 3.2. Fix T > 0. Assume (33) holds. There exists C0 > 0 such that (29)
holds. Moreover,

β
1
2 ‖∂xuε,β(t, ·)‖2L2(R) +

3β
1
2 ε

2

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β
3
2 ε

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥
L2(R) ds ≤ C0β

− 1
2 .

(36)

Proof of Lemma 3.2. Let 0 < t < T . Multiplying (18) by −2β
1
2 ∂2xxuε,β , we have

− 2β
1
2 ∂2xxuε,β∂tuε,β − 4β

1
2uε,β∂xuε,β∂

2
xxuε,β − 2β

3
2 ∂2xxuε,β∂

3
xxxuε,β

− 2β
5
2 ∂2xxuε,β∂

5
xxxxxuε,β = −2β

1
2 ε(∂2xxuε,β)2 + 2β

3
2 ε∂2xxuε,β∂

4
xxxxuε,β .
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Since,

−2β
3
2

∫
R
∂2xxuε,β∂

3
xxxuε,βdx = 0,

arguing as in [4, Lemma 3.1], we have (29) and (36).

Following [13, Lemma 4.2], or [8, Lemma 2.2], we prove the following result.

Lemma 3.3. Fix T > 0. Assume (32) and (33) hold. Then:

i) the family {uε,β}ε, β is bounded in L∞((0, T );L4(R));

ii) the families {ε∂xuε,β}ε, β , {β
1
2 ε∂2xxuε,β}ε, β are bounded in L∞((0, T );L2(R));

iii) the families {β 1
2 ε∂3xxxuε,β}ε, β , {β

1
2 ε

3
2 ∂3xxxuε,β}ε, β , {βε

3
2 ∂4xxxxuε,β}ε, β ,

{ε 1
2uε,β∂xuε,β}ε, β , {ε

3
2 ∂2xxuε,β}ε, β are bounded in L2((0, T )× R)).

Proof. Let 0 < t < T . Let A, B be some positive constants which be specified later.
Multiplying (18) by

u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β ,

we have (
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂tuε,β

+ 2
(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
uε,β∂xuε,β

+ β
(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂3xxxuε,β

+ β2
(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂5xxxxxuε,β

= ε
(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂2xxuε,β

− βε
(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂4xxxxuε,β .

(37)

Since

β

∫
R

(
u3ε,β −Aε2∂2xxuε,β +Bβε2∂4xxxxuε,β

)
∂3xxxuε,βdx

= −3β

∫
R
u2ε,β∂xuε,β∂

2
xxuε,βdx,

argument as in [4, Lemma 3.2], an integration on R of (37) gives

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R) +

Bβε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

)
+ 3ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +Aε3

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

+Bβε3
∥∥∂3xxxuε,β(t, ·)

∥∥2
L2(R) +Aβε2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+Bβ2ε3
∥∥∂4xxxxuε,β(t, ·)

∥∥2
L2(R)

= 2Aε2
∫
R
uε,β∂xuε,β∂

2
xxuε,βdx− 2Bβε2

∫
R
uε,β∂xuε,β∂

4
xxxxuε,βdx

+ 3β

∫
R
u2ε,β∂xuε,β∂

2
xxuε,βdx+ 3β2

∫
R
u2ε,β∂xuε,β∂

4
xxxxuε,βdx

+ 3βε

∫
R
u2ε,β∂xuε,β∂

3
xxxuε,βdx.

Due the Young inequality,

2Aε2
∫
R
|uε,β∂xuε,β |∂2xxuε,β |dx = 2

∫
R

∣∣∣ε 1
2uε,β∂xuε,β

∣∣∣ ∣∣∣Aε 3
2 ∂2xxuε,β

∣∣∣ dx
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≤ ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +A2ε3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) ,

2Bβε2
∫
R
|uε,β∂xuε,β ||∂4xxxxuε,β |dx = B

∫
R

∣∣∣2ε 1
2uε,β∂xuε,β

∣∣∣ ∣∣∣βε 3
2 ∂4xxxxuε,β

∣∣∣ dx
≤ 2Bε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβ2ε3

2

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R) .

Therefore, we have

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R)

+
Bβε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

)
+ (2− 2B) ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+
(
A−A2

)
ε3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) +Bβε3

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+Aβε2
∥∥∂3xxxuε,β(t, ·)

∥∥2
L2(R) +

Bβ2ε3

2

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤3β

∫
R
u2ε,β |∂xuε,β ||∂2xxuε,β |dx+ 3β2

∫
R
u2ε,β |∂xuε,β ||∂4xxxxuε,β |dx

+ 3βε

∫
R
u2ε,β |∂xuε,β ||∂3xxxuε,β |dx.

(38)

By (33),

β ≤ D2ε4, (39)

where D is a positive constant which will be specified later. Thanks to (29), (39),
and the Young inequality,

3β

∫
R
u2ε,β |∂xuε,β ||∂2xxuε,β |dx ≤ 3β ‖uε,β‖2L∞((0,T )×R)

∫
R
|∂xuε,β ||∂2xxuε,β |dx

≤ C0β
1
2

∫
R
|∂xuε,β ||∂2xxuε,β |dx ≤ C0Dε

2

∫
R
|∂xuε,β ||∂2xxuε,β |dx

=

∫
R

∣∣∣∣∣C0Dε
1
2 ∂xuε,β√
A

∣∣∣∣∣ ∣∣∣√Aε 3
2 ∂2xxuε,β

∣∣∣ dx
≤ C0D

2ε

A
‖∂xuε,β(t, ·)‖2L2(R) +

A2ε3

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R) ,

3β2

∫
R
u2ε,β |∂xuε,β ||∂4xxxxuε,β |dx = β2

∫
R

∣∣∣∣∣3
√

3u2ε,β∂xuε,β√
2Bε

3
2

∣∣∣∣∣
∣∣∣∣∣
√

2Bε
3
2 ∂4xxxxuε,β√

3

∣∣∣∣∣ dx
≤ 27β2

4Bε3

∫
R
u4ε,β(∂xuε,β)2dx+

Bβ2ε3

3

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ 27β2

4Bε3
‖uε,β‖4L∞((0,T )×R) ‖∂xuε,β(t, ·)‖2L2(R)

+
Bβ2ε3

3

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0β

ε3
‖∂xuε,β(t, ·)‖2L2(R) +

Bβ2ε3

3

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0ε ‖∂xuε,β(t, ·)‖2L2(R) +
Bβ2ε3

3

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R) ,
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3βε

∫
R
u2ε,β |∂xuε,β ||∂3xxxuε,β |dx

= βε

∫
R

∣∣∣∣∣3u2ε,β∂xuε,β√
Bε

∣∣∣∣∣ ∣∣∣√Bε∂3xxxuε,β∣∣∣ dx
≤ 9β

2Bε

∫
R
u4ε,β(∂xuε,β)2dx+

Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

≤ 9β

2Bε
‖uε,β‖2L∞((0,T )×R) ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+
Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0β
1
2

Bε
‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0D
2ε

B
‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R) .

As a consequence (38) gives

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R)

+
Bβε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

)
+

(
3− 2B − C0D

2

B

)
ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+

(
A− 3A2

2

)
ε3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) +

Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+Aβε2
∥∥∂3xxxuε,β(t, ·)

∥∥2
L2(R) +

Bβ2ε3

6

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0ε ‖∂xuε,β(t, ·)‖2L2(R) .

(40)

We search A, B such that 
A− 3A2

2
> 0,

3− 2B − C0D
2

B
> 0,

that is A <
2

3
,

2B2 − 3B + C0D
2 < 0.

(41)

We choose

A =
1

3
. (42)

The second equation of (41) admits solution if

D <
6
√

2

8
√
C0

.

Choosing

D =
5
√

2

8
√
C0

, (43)
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it follows from (41) and (43) that there exist 0 < B1 < B2, such that for every

B1 < B < B2, (44)

(41) holds. Hence, from (40), (42) and (44), we get

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

ε2

6
‖∂xuε,β(t, ·)‖2L2(R) +

Bβε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

)
+Kε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

ε3

6

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

+
Bβε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R) +

βε2

3

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+
βε3

6

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R) +

Bβ2ε3

6

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0ε ‖∂xuε,β(t, ·)‖2L2(R) ,

where K is a positive constant.
(32), (27), an integration on (0, t) give

1

4
‖uε,β(t, ·)‖4L4(R) +

ε2

6
‖∂xuε,β(t, ·)‖2L2(R) +

Bβε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

+ +Kε

∫ t

0

‖uε,β(s, ·)∂xuε,β(s, ·)‖2L2(R) ds+
ε3

6

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds

+
Bβε3

2

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds+

βε2

3

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+
βε3

6

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds+

Bβ2ε3

6

∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds

≤ C0 + C0ε

∫ t

0

‖∂xuε,β(s, ·)‖2L2(R) ds ≤ C0.

Therefore,

‖uε,β(t, ·)‖L4(R) ≤C0,

ε ‖∂xuε,β(t, ·)‖L2(R) ≤C0,

β
1
2 ε
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) ≤C0,

ε

∫ t

0

‖uε,β(s, ·)∂xuε,β(s, ·)‖2L2(R) ds ≤C0,

ε3
∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

βε2
∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

βε3
∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

β2ε3
∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

for every 0 < t < T .

We are ready for the proof of Theorem 3.1.
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Proof of Theorem 3.1. Let us consider a compactly supported entropy-entropy flux
pair (η, q). Multiplying (21) by η′(uε,β), we have

∂tη(uε,β) + ∂xq(uε,β) =εη′(uε,β)∂2xxuε,β − βεη′(uε,β)∂4xxxxuε,β

− βη′(uε,β)∂3xxxuε,β − β2η′(uε,β)∂5xxxxxuε,β

=I1, ε, β + I2, ε, β + I3, ε, β + I4, ε, β + I5, ε, β + I6, ε, β

+ I7, ε, β + I8, ε, β ,

where I1, ε, β , I2, ε, β , I3, ε, β , I4, ε, β , I5, ε, β , I6, ε, β , I7, ε, β , I8, ε, β are defined in (31).
Fix T > 0. Arguing as in [4, Theorem 3.1], we have that I1, ε, β → 0 in

H−1((0, T )×R), {I2, ε, β}ε,β>0 is bounded in L1((0, T )×R), I3, ε, β → 0 inH−1((0, T )
× R), I4, ε, β → 0 in L1((0, T ) × R), I7, ε, β → 0 in H−1((0, T ) × R) and I8, ε, β → 0
in L1((0, T )× R).

We claim that

I5, ε, β → 0 in H−1((0, T )× R), T > 0, as ε→ 0.

Due to (33) and Lemma 3.3,∥∥βη′(uε,β)∂2xxuε,β
∥∥2
L2((0,T )×R)

≤ β2 ‖η′‖L∞(R)
∥∥∂2xxuε,β∥∥2L2((0,T )×R)

=
β2ε3

ε3
‖η′‖L∞(R)

∥∥∂2xxuε,β∥∥2L2((0,T )×R)

≤ C0 ‖η′‖L∞(R) ε
5 → 0.

We have that

I6, ε, β → 0 in L1((0, T )× R), T > 0, as ε→ 0.

Thanks to (33), Lemmas 2.3 and 3.3, and the Hölder inequality,∥∥βη′′(uε,β)∂xuε,β∂
3
xxxuε,β

∥∥
L1((0,T )×R)

≤ β ‖η′′‖L∞(R)

∫ T

0

∫
R
|∂xuε,β ||∂2xxuε,β |dtdx

=
ε2β

ε4
‖η′′‖L∞(R) ε

1
2 ‖∂xuε,β‖L2((0,T )×R) ε

3
2

∥∥∂2xxuε,β∥∥L2((0,T )×R)

≤ C0 ‖η′′‖L∞(R) ε
2 → 0.

Therefore, (34) follows from Lemmas 2.3, 3.3, and the Lp compensated compactness
of [25]. Arguing as in [4, Theorem 3.1], we have (35).

Appendix A. The Kawahara-KdV equation: u0 ∈ L2(R), β = o
(
ε8
)
. In this

appendix, we consider (10), and assume

u0 ∈ L2(R), (45)

on the initial datum. We study the dispersion-diffusion limit for (10). Therefore,
we fix two small numbers 0 < ε, β < 1, and, following [6], consider the following
fifth order problem

∂tuε,β + ∂xu
2
ε,β + β∂3xxxuε,β

+β2∂5xxxxxuε,β = ε∂2xxuε,β − β
3
2 ε∂4xxxxuε,β , t > 0, x ∈ R,

uε,β(0, x) = uε,β,0(x), x ∈ R,
(46)
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where uε,β,0 is a C∞ approximation of u0 such that

uε, β, 0 → u0 in Lploc(R), 1 ≤ p < 4, as ε, β → 0,

‖uε,β,0‖2L2(R) + β
1
2 ‖∂xuε,β,0‖2L2(R) + β

3
2 ε2

∥∥∂2xxuε,β,0∥∥2L2(R) ≤ C0, ε, β > 0,
(47)

and C0 is a constant independent on ε and β.
The main result of this section is the following theorem.

Theorem A.1. Assume that (45), and (47) hold. Fix T > 0, if

β = o
(
ε8
)
, (48)

then, there exist two sequences {εn}n∈N, {βn}n∈N, with εn, βn → 0, and a limit
function

u ∈ L∞((0, T );L2(R)),

such that

i) uεn,βn → u strongly in Lploc(R+ × R), for each 1 ≤ p < 2,
ii) u is the unique entropy solution of (5),

where uε,β solves (46).

Let us prove some a priori estimates on uε,β , denoting with C0 the constants
which depend only on the initial data.

Lemma A.2. For each t > 0,

‖uε,β(t, ·)‖2L2(R) + 2ε

∫ t

0

‖∂xuε,β(s, ·)‖2L2(R) ds

+ 2β
3
2 ε

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0.

(49)

Proof. We begin by observing that

β

∫
R
uε,β∂

3
xxxuε,βdx = −β

∫
R
∂xuε,β∂

2
xxuε,βdx = 0.

Therefore, arguing as in [4, Lemma A.1], we have (49).

Lemma A.3. Fix T > 0. Assume (48) holds. There exists C0 > 0, independent
on ε, β such that (29) holds. Moreover

β ‖∂xuε,β(t, ·)‖2L2(R) + β2ε2
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R)

+
3βε

2

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β2ε3
∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β
5
2 ε

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+
3β

7
2 ε3

2

∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0.

(50)

Proof. Let 0 < t < T . Multiplying (46) by −2β
1
2 ∂2xxuε,β +2β

3
2 ε2∂4xxxxuε,β , we have(

−2β
1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂tuε,β
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+ 2
(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
uε,β∂xuε,β

+ β
(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂3xxxuε,β

+ β2
(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂5xxxxxuε,β

= ε
(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂2xxuε,β

− β 3
2 ε
(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂4xxxxuε,β .

We observe that

β

∫
R

(
−2β

1
2 ∂2xxuε,β + 2β

3
2 ε2∂4xxxxuε,β

)
∂3xxxuε,βdx = 0.

Arguing as in [4, Lemma A.1], we get (50).

We are ready for the proof of Theorem A.1.

Proof of Theorem A.1. Let us consider a compactly supported entropy–entropy flux
pair (η, q). Multiplying (21) by η′(uε,β), we have

∂tη(uε,β) + ∂xq(uε,β) =εη′(uε,β)∂2xxuε,β − β
3
2 εη′(uε,β)∂4xxxxuε,β

− β2η′(uε,β)∂5xxxxxuε,β − βη′(uε,β)∂3xxxuε,β

=I1, ε, β + I2, ε, β + I3, ε, β + I4, ε, β + I5, ε, β + I6, ε, β

+ I7, ε, β + I8, ε, β ,

where

I1, ε, β = ∂x (εη′(uε,β)∂xuε,β) ,

I2, ε, β = −εη′′(uε,β)(∂xuε,β)2,

I3, ε, β = −∂x
(
β

3
2 εη′(uε,β)∂3xxxuε,β

)
,

I4, ε, β = β
3
2 εη′′(uε,β)∂xuε,β∂

3
xxxuε,β ,

I5, ε, β = −∂x
(
β2η′(uε,β)∂4xxxxuε,β

)
,

I6, ε, β = β2η′′(uε,β)∂xuε,β∂
4
xxxxuε,β ,

I7, ε, β = −∂x
(
βη′(uε,β)∂2xxuε,β

)
,

I8, ε, β = βη′′(uε,β)∂xuε,β∂
2
xxuε,β .

Fix T > 0. Arguing as in [4, Theorem A.1], we have I1, ε, β → 0 in H−1((0, T )×R),
{I2, ε, β}ε,β>0 is bounded in L1((0, T )×R), I3, ε, β → 0 in H−1((0, T )×R), I4, ε, β → 0
in L1((0, T )×R), I5, ε, β → 0 in H−1((0, T )×R), and I6, ε, β → 0 in L1((0, T )×R).
Using (48), Lemmas A.2, A.3, and the Hölder inequality, we have I7, ε, β → 0 in
H−1((0, T )×R), and I8, ε, β → 0 in L1((0, T )×R). Arguing as in [4, Theorem A.1],
the proof is concluded.

Appendix B. The Kawahara-KdV equation: u0 ∈ L2(R)∩L4(R), β = O
(
ε8
)
.

In this appendix, we consider (18), and assume

u0 ∈ L2(R) ∩ L4(R) (51)
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on the initial datum. We study the dispersion-diffusion limit for (18). Therefore,
we fix two small numbers 0 < ε, β < 1 and, consider the approximation (46), where
uε,β,0 is a C∞ approximation of u0 such that

uε, β, 0 → u0 in Lploc(R), 1 ≤ p < 4, as ε, β → 0,

‖uε,β,0‖4L4(R) + ‖uε,β,0‖2L2(R) ≤ C0, ε, β > 0,

(β
1
2 + ε2) ‖∂xuε,β,0‖2L2(R) + β

3
2 ε2

∥∥∂2xxuε,β,0∥∥2L2(R) ≤ C0, ε, β > 0,

(52)

and C0 is a constant independent on ε and β.
The main result of this section is the following theorem.

Theorem B.1. Assume that (51), and (52) hold. Fix T > 0, if

β ≤ ε8

64C2
0

, (53)

then, there exist two sequences {εn}n∈N, {βn}n∈N, with εn, βn → 0, and a limit
function

u ∈ L∞((0, T );L2(R) ∩ L4(R)),

such that

i) uεn,βn
→ u strongly in Lploc(R+ × R), for each 1 ≤ p < 4,

ii) u is the unique entropy solution of (5),

where uε,β solves (46).

Let us prove some a priori estimates on uε,β , denoting with C0 the constants
which depend only on the initial data.

Lemma B.2. Fix T > 0. Assume (53) holds. There exists C0 > 0, independent
on ε, β such that (29) holds.

Moreover

β
1
2 ‖∂xuε,β(t, ·)‖2L2(R) +

3β
1
2 ε

2

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds

+ 2β2ε3
∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0β

− 1
2 .

(54)

Remark 1. Observe that the proof of Lemma B.2 is simpler than the one of Lemma
A.3. Indeed, here we only need to prove (29).

Proof of Lemma B.2. Let 0 < t < T . Multiplying (46) by −2β
1
2uε,β , we have

− 2β
1
2 ∂2xxuε,β∂tuε,β + 4β

1
2uε,β∂xuε,β∂

2
xxuε,β − β

3
2 ∂2xxuε,β∂

3
xxxuε,β

+ 2β
5
2 ∂2xxuε,β∂

5
xxxxxuε,β = 2β

1
2 ε(∂2xxuε,β)2 + 2β2ε∂2xxuε,β∂

4
xxxxuε,β .

Since

−β 3
2

∫
R
∂2xxuε,β∂

3
xxxuε,βdx = 0,

arguing as in [4, Lemma B.1], we have (29) and (54).

Lemma B.3. Fix T > 0. Assume (52) and (53) hold. Then:

i) the family {uε,β}ε, β is bounded in L∞((0, T );L4(R));

ii) the families {ε∂xuε,β}ε, β , {β
3
4 ε∂2xxuε,β}ε, β are bounded in L∞((0, T );L2(R));

iii) the families {β 3
4 ε

3
2 ∂3xxxuε,β}ε, β , {β

3
2 ε

3
2 ∂4xxxxuε,β}ε, β , {ε

1
2uε,β∂xuε,β}ε, β,

{ε 3
2 ∂2xxuε,β}ε, β are bounded in L2((0, T )× R)).
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Proof. Let 0 < t < T . Let A, B be two positive constant which be specified later.
Multiplying (46) by

u3ε,β −Aε2∂2xxuε,β −Bβ
3
2 ε2∂4xxxxuε,β ,

we have (
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂tuε,β

+ 2
(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
uε,β∂xuε,β

+ β
(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂3xxxuε,β

+ β2
(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂5xxxxxuε,β

= ε
(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂2xxuε,β

− β 3
2 ε
(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂4xxxxuε,β .

Since

β

∫
R

(
u3ε,β −Aε2∂2xxuε,β −Bβ

3
2 ε2∂4xxxxuε,β

)
∂3xxxuε,βdx

=− 3β

∫
R
u2ε,β∂xuε,β∂

2
xxuε,βdx,

arguing as in [4, Lemma B.2], we get

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R)

)
+
Bβ

3
2 ε2

2

d

dt

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R) + 3ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+Aε3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) + (A+B)β

3
2 ε3

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+Bβ3ε3
∥∥∂4xxxxuε,β(t, ·)

∥∥2
L2(R)

= −2Aε2
∫
R
uε,β∂xuε,β∂

2
xxuε,βdx− 2Bβ

3
2 ε2

∫
R
uε,β∂xuε,β∂

4
xxxxuε,βdx

+ 3β

∫
R
u2ε,β∂xuε,β∂

2
xxuε,βdx+ 3β2

∫
R
u2ε,β∂xuε,β∂

4
xxxxuε,βdx

+ 3β
3
2 ε

∫
R
u2ε,β∂xuε,β∂

3
xxxuε,βdx.

(55)

Due to the Young inequality,

2Aε2
∫
R
|uε,β∂xuε,β ||∂2xxuε,β |dx =

∫
R

∣∣∣2ε 1
2uε,β∂xuε,β

∣∣∣ ∣∣∣Aε 3
2 ∂2xxuε,β

∣∣∣ dx
≤ 2ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

A2ε3

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R) ,

2Bβ
3
2 ε2

∫
R
|uε,β∂xuε,β |∂4xxxxuε,βdx = B

∫
R

∣∣∣2ε 1
2uε,β∂xuε,β

∣∣∣ ∣∣∣β 3
2 ε

3
2 ∂4xxxxuε,β

∣∣∣ dx
≤ 2Bε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβ3ε3

2

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R) .
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From (53),

β ≤ D2ε8, (56)

where D is a positive constant which will be speficied later. Since 0 < ε < 1, (29),
(56), and the Young inequality,

3β

∫
R
u2ε,β |∂xuε,β ||∂2xxuε,β |dx ≤ 3β ‖uε,β‖2L∞((0,T )×R)

∫
R
|∂xuε,β ||∂2xxuε,β |dx

≤ C0β
1
2

∫
R
|∂xuε,β ||∂2xxuε,β |dx ≤ C0Dε

4

∫
R
|∂xuε,β ||∂2xxuε,β |dx

≤ C0Dε ‖∂xuε,β(t, ·)‖2L2(R) + C0Dε
3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R) ,

3β2

∫
R
u2ε,β |∂xuε,β ||∂4xxxxuε,β |dx =

∫
R

∣∣∣∣∣3
√

2β
1
2u2ε,β∂xuε,β

ε
3
2

√
B

∣∣∣∣∣
∣∣∣∣∣
√
Bβ

3
2 ε

3
2 ∂4xxxxuε,β√

2

∣∣∣∣∣ dx
≤ 9β

Bε3
‖uε,β‖2L∞((0,T )×R) ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+
Bβ3ε3

4

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0Dε

B
‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβ3ε3

4

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R) ,

3β
3
2 ε

∫
R
u2ε,β |∂xuε,β ||∂3xxxuε,β |dx = β

3
2 ε

∫
R

∣∣∣∣∣3u2ε,β∂xuε,β√
Bε

∣∣∣∣∣ ∣∣∣√Bε2∂3xxxuε,β∣∣∣ dx
≤ 9β

3
2

2Bε
‖uε,β‖2L∞((0,T )×R) ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+
Bβ

3
2 ε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0β

Bε
‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβ
3
2 ε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

≤ C0Dε

B
‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R) +

Bβ
3
2 ε3

2

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R) .

Therefore, from (55), we gain

d

dt

(
1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R)

)
+
Bβ

3
2 ε2

2

d

dt

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R) +

Bβ3ε3

4

∥∥∂4xxxxuε,β(t, ·)
∥∥2
L2(R)

+

(
A+

B

2

)
β

3
2 ε3

∥∥∂3xxxuε,β(t, ·)
∥∥2
L2(R)

+

(
1− 2B − C0D

B

)
ε ‖uε,β(t, ·)∂xuε,β(t, ·)‖2L2(R)

+

(
A− A2

2
− C0D

)
ε3
∥∥∂2xxuε,β(t, ·)

∥∥2
L2(R)

≤ C0ε ‖∂xuε,β(t, ·)‖2L2(R) .

(57)
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We search A, B such that {
A2 − 2A+ 2C0D < 0,

2B2 −B + C0D < 0.
(58)

The first inequality of (58) admits solution if

D <
1

2C0
. (59)

The second inequality of (58) admits solution if

D <
1

8C0
. (60)

It follows from (59) and (60) that

D < min{ 1

2C0
,

1

8C0
} =

1

8C0
. (61)

Then, from (58) and (61), there exist 0 < A1 < A2, 0 < B1 < B2 such that for
every

A1 < A < A2, B1 < B < B2, (62)

(58) holds. By (49), (52), (62), and an integration on (0, t) of (57), we get

1

4
‖uε,β(t, ·)‖4L4(R) +

Aε2

2
‖∂xuε,β(t, ·)‖2L2(R) +

Bβ
3
2 ε2

2

∥∥∂2xxuε,β(t, ·)
∥∥2
L2(R)

+
Bβ3ε3

4

∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds+K1β

3
2 ε3

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds

+K2ε

∫ t

0

‖uε,β(s, ·)∂xuε,β(s, ·)‖2L2(R) ds+K3ε
3

∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds ≤ C0,

for some K1, K2, K3 > 0. Hence,

‖uε,β(t, ·)‖L4(R) ≤C0,

ε ‖∂xuε,β(t, ·)‖L2(R) ≤C0,

β
3
4 ε
∥∥∂2xxuε,β(t, ·)

∥∥
L2(R) ≤C0,

β3ε3
∫ t

0

∥∥∂4xxxxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

β
3
2 ε3

∫ t

0

∥∥∂3xxxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

ε

∫ t

0

‖uε,β(s, ·)∂xuε,β(s, ·)‖2L2(R) ds ≤C0,

ε3
∫ t

0

∥∥∂2xxuε,β(s, ·)
∥∥2
L2(R) ds ≤C0,

for every 0 < t < T .

We are ready for the proof of Theorem B.1

Proof of Theorem B.1. Let us consider a compactly supported entropy–entropy flux
pair (η, q). Multiplying (21) by η′(uε,β), we have

∂tη(uε,β) + ∂xq(uε,β) =εη′(uε,β)∂2xxuε,β − β
3
2 εη′(uε,β)∂4xxxxuε,β

− β2η′(uε,β)∂5xxxxxuε,β − βη′(uε,β)∂3xxxuε,β
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=I1, ε, β + I2, ε, β + I3, ε, β + I4, ε, β + I5, ε, β + I6, ε, β

+ I7, ε, β + I8, ε, β ,

where I1, ε, β , I2, ε, β , I3, ε, β , I4, ε, β , I5, ε, β , I6, ε, β , I7, ε, β , I8, ε, β are defined in The-
orem A.1.

Fix T > 0. Arguing as in [4, Theorem B.1], we have I1, ε, β → 0 in H−1((0, T )×
R), {I1, ε, β}ε,β>0 is bounded in L1((0, T ) × R), I3, ε, β → 0 in H−1((0, T ) × R),
I4, ε, β → 0 in L1((0, T ) × R), I5, ε, β → 0 in H−1((0, T ) × R), I6, ε, β → 0 in
L1((0, T )×R). Due to (53), Lemmas 49, B.3, and the Hölder inequality, I7, ε, β → 0
in H−1((0, T ) × R), and I8, ε, β → 0 in L1((0, T ) × R). Arguing as in [4, Theorem
B.1], the proof is concluded.
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