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ABSTRACT. We consider the Kawahara-Korteweg-de Vries equation, which con-
tains nonlinear dispersive effects. We prove that as the dispersion parameter
tends to zero, the solutions of the dispersive equation converge to discontinuous
weak solutions of the Burgers equation. The proof relies on deriving suitable a
priori estimates together with an application of the compensated compactness
method in the LP setting.

1. Introduction. Nonlinear evolution equations have been used to model many
physical phenomena in various fields such as fluid mechanics, solid state physics,
plasma physics, chemical physics, optical fiber and geochemistry. An example is
given by the Kawahara-Korteweg-de Vries equation:

Oru + audpu + b2 u+ 02t =0, (1)

where u = u(t, x) is a real function, and a, b, ¢ € R are constants.

It is a model for water waves in the long wave regime for moderate values of
surface tension (see [16]), or for the propagation of the magnet-acoustic waves in a
cold collision free plasma (see [17]).

To obtain the exact solutions for (1), a number of methods has been proposed in
the literature, some of them include solitary wave ansatz method, inverse scattering,
Hirotas bilinear method, homogeneous balance method, Lie group analysis, etc.
Among the above mentioned, the Lie group analysis method, which is also called the
symmetry method, is one of the most effective to determine solutions of nonlinear
partial differential equations [18].

In [1], the authors use Lie group analysis to obtain some exact solutions for (1),
the Kawahara equation

Osu + audpu + cd . u =0, (2)
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the modified Kawahara equation

Au + au’du + o> u =0,

TTXXTIT

the modified Kawahara-Korteweg-de Vries equation

Ou + au?dyu + bd>_u+ cd? u =0,

and, the Rosenau-Kawahara equation

u~+ dop

trxxx

Opu + audyu + b2 u + co?

TTXIxIT

u=0. (3)

The Kawahara equation (2) describes small-amplitude gravity capillary waves in
water of finite depth when the Weber number is close to & (see [23]). In [16],
the author deduced (2) and (1) describing one-dimensional propagation of small-
amplitude long waves in various problems of fluid dynamics and plasma physics. (1)
is also known as the fifth-order Korteweg-de Vries equation, or a special version of
the Benney-Lin equation (see [2]). In [20], the author used the exp-function method
to find some exact solution for (3). In [21], the authors proved that the solution of
(2) converges to the solution of the Korteweg-de Vries equation

Opu + Opu® + B2 u = 0. (4)

We consider (4), and observe that, if we send 8 — 0 in (4), we pass from (4) to the
Burgers equation

Opu + Oyu® = 0. (5)
In [19, 25], the convergence of the solution of
dyu + Opu” + BOSu = £02,u
to the unique entropy solution of (5) is proven, under the assumption
up € L>(R)NL*(R), B=o0(?). (6)
[7, Appendices A and B] show that it is possible to obtain the same result of
convergence, under the following assumptions

uOELQ(R)7 —oo</u0(x)d;v<oo, ﬁ:0(53),
R

up € L*(R), B=o(e").
Several of the ideas used in this paper were inspired by the analysis of the fol-
lowing generalization of (4)

that is the Ostrovsky equation (see [24]). Equation (7) describes small-amplitude
long waves in a rotating fluid of a finite depth by the additional term induced by the
Coriolis force. If we send 8 — 0 in (7), we pass from (7) to the Ostrovsky-Hunter
equation (see [3])

0z (Oru + 8zu2) = yu, t>0, zeR. (8)

In [9, 12, 15], the wellposedness of the entropy solutions of (8) is proven, in the
sense of the following definition:

Definition 1.1. We say that u € L>°((0,T) x R), T > 0, is an entropy solution of
(8) if

i) w is a distributional solution of (8);
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i) for every convex function n € C?(R) the entropy inequality

Om(u) + Oq(u) — ' (WP <0, q(u) = 2/ &' (€) dg,
holds in the sense of distributions in (0, 00) x R, where 9, P = u.

Under the assumption (6), in [10], the convergence of the solutions of (7) to the
unique entropy solution of (8) is proven.

Consider (3). Choosing a =2, b=d =1, ¢ = 0, we have the Rosenau-Korteweg-
de Vries equation

Opu+ Opu® + 03 u+ 07, u=0. (9)

Arguing as in [11], we re—scale the equation as follows
O+ Opu® + O3, u+ B0t = 0, (10)
where 3 is the dispersion parameter. In [5], the authors proved that the solution of
Opu + Opu® + B0 u+ B200 . u=ed? u, (11)

converge to the unique entropy solution of (5), choosing the initial datum in two
different ways. The first one is:

up € L*(R), B=o(c"). (12)
The second choice is:
up € L*(R)NL*(R), B < const <||U0HL2(]R) ) Hu0||L4(R)> (54) : (13)

Consider (2) with @ = 2, ¢ = 1. Arguing as in [11], we re-scale the equation as
follows
Oyu + Oyu? + 5292

where § is the dispersion parameter. Assuming (12), or (13), in [4], the authors

proved that the solution of
Oyu + Oyu? + 5202

2
converge to the unique entropy solution of (5).
[4, Appendices A and B] show that, using the approximation introduced in [6],

we have the same result of convergence, under the following assumptions
up € L*(R), B=o(c%), (16)

ug € L*(R) N LY(R), B < const (||u0HL2(R) , Huo||L4(R)> (e%). (17)

In this paper, we consider (1) with a =2, b = ¢ = 1. Arguing as in [11], we re—scale
the equations as follows

Opu + Opu® + BO3 u+ B205, . .u=0, (18)

where [ is the dispersion parameter.

We are interested in the dispersion-diffusion limit, we send § — 0 in (18). In
this way, we pass from (18) to (5). We prove that, as 3, e — 0, the solution of
(18) converge to the unique entropy solution of (5). In other to do this, using the
following approximation (see (21) below)

where €, § are two small numbers. The form of the right hand side of (19) has been

chosen for mathematical reason and there is no deep physical meaning behind it.
The two terms are designed to preserve the ||-|| 4.
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We can choose the initial datum and £ in two different ways Following [14,
Theorem 7.1}, the first choice is given by (12) (see Theorem 2.2). Since ||-|| ;4 is a
conserved quantity for (19), the second choice is given by (13) (see Theorem 3.1).

It is interesting to observe that, while the summability on the initial datum in
(13) is greater than the one of (12), the assumption on § in (13) is weaker than
the one in (12). From the mathematical point of view, the two assumptions require
two different arguments for the L>°—estimate (see Lemmas 2.3 and 3.2). Indeed,
the proof of Lemma 2.3, under the assumption (12), is more technical than the one
of Lemma 3.2. Moreover, due to the presence of the third order term, Lemma 3.3
is finer than [4, Lemmas 3.2]. Indeed, in Lemma 3.3 we need to prove the existence
of two positive constants, that is not the case in [4, Lemma 3.2].

Alternatively we can consider the approximation introduced in [6]

We consider (19), in lieu of (20), because it gives us shaper estimates. Indeed if we
work with (20), we have to replace (12) and (13) with (16) and (17), respectively. To
better show that (19) works better than (20) we give the details on (19) in the main
part of the paper and the ones on (20) are briefly discussed in the final appendices.

The paper is organized in five sections. In Section 2, we prove the convergence
of (18) to (5) in the LP setting, with 1 < p < 2. In Section 3, we prove the
convergence of the solutions of (18) to the ones of (5) in the LP setting, with
1 < p < 4. Sections A and B are the appendices where, using the approximation
(20), we prove the convergence of the solutions of (18) to the ones of (5) in the LP
setting, with 1 < p < 2, and in the L? setting with 1 < p < 4, respectively.

2. The Kawahara-KDV-equation: uy € L*(R), 8 = o (¢*). In this section, we
consider (18), and assume (12) on the initial datum.

We study the dispersion-diffusion limit for (18). Therefore, we fix two small
numbers ¢, 5 and consider the following fifth order approximation

atus,ﬁ + 59:“3/3 + Bagzmu&ﬁ + ﬂQagxzzmu&ﬁ
=02, u.p — Bedt e 5, t>0, xR, (21)
uE,ﬁ(O’x) = uE;/J’,O(x)a z €R,

where u. g o is a C°° approximation of uy such that

Ue g0 > up in LY (R),1<p<2ase, —0,

1 2 (22)
||u€,ﬁ,0||i2(R) + ﬂ2 ||azus,6,0||iz(R) + 552 Hagzus,B,OHLz(R) S 007 57B > 07

and Cp is a constant independent on ¢ and 5. Such sequence {u. o} can be
constructed using standard mollifiers and (12). The well-posedness of the smooth
solutions u. g € C* can be proven following the same argument of [25].

We consider the following definition.

Definition 2.1. A pair of functions (7, ¢) is called an entropy—entropy flux pair if
n:R — Ris a C? function and ¢ : R — R is defined by

q(u) = 2/0u &n' (€)de.

An entropy—entropy flux pair (7, ¢) is called convex/compactly supported if, in
addition, 7 is convex/compactly supported.
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The main result of this section is the following theorem.
Theorem 2.2. Assume that (12) and (22) hold. Fiz T >0, if
B=o(h, (23)

then, there exist two sequences {en}nen, {Bntnen, With &4, 8, — 0, and a limit
function

ue L=((0,T); L*(R)), (24)

such that
Ue, 3, —u strongly in L (RT x R), for each 1 < p <2, (25)
u 1is the unique entropy solution of (5), (26)

where u g solves (21).

Let us prove some a priori estimates on u. g, denoting with Cy the constants
which depend only on the initial data.

Lemma 2.3. For eacht > 0,

t
2 2
e 6 Moy + 2 [ 100500 e

t 2 (21)
+ 282 [ ]02 e (5, ey ds < Co
0
For every T > 0, we have
l|ue |L2((0,T)><R) < Coﬁ’ (28)
||u€,[3||L°°((O,T)><]R) S Coﬂiz. (29)
Moreover
2
Bl10atic (t: M paqmy + B2 070te (8 ) 2y
366 2
/ 102 uep(5, )12 g 4
5 2
+2ﬂ353/0 ||8§’mus,ﬁ(sw)HL2(R> ds (30)

t
+w%/W&wm@N@®“
3525

[ 1ottty 5 < o

Proof. Let 0 < t < T. We begin by proving that (27), and (28) hold. Multiplying
(21) by 2u, g, since

25/ u87562mu875dx =0,
R

arguing as in [4, Lemmas 2.1], we have (27), and (28).
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Finally, we prove (29), and (30). Multiplying (21) by 726%8%%75 + 28¢e2
Ue, g, We have

(72ﬂ%aizu575 + 26520;1mmu8,5) Orte g
2 (—2,8%6§qu”3 + 266283%35951.11575) uf,ﬁaﬂcu&ﬂ
+p (_2ﬁ% 2Ue,8 T 28e 8za::1::cu57ﬁ) ama:wu57ﬁ7

+ 52 ( 62 aszE B8 + 256281zzzu5 ﬁ) azzzmmue B

54

rrrx

=€ (—2ﬁ%5gzus,ﬁ + 26528;1rm1:u8’,5) 8§IU5,B
l
— Be (—QﬂZ ole 8 T 20e 6gcamxu€,5) chxa:u B

Since

_Qﬂ% / ({ﬁxuaﬁﬁixxu&ﬁdx =0,

2/82 2/ a:xxxuaﬁazacxu&ﬂdx =0,
arguing as in [4, Lemmas 2.2], we have (27), (28), (29) and (30). O

To prove Theorem 2.2, the Murat Lemma is needed [22].
Following [19], we prove Theorem 2.2.

Proof Theorem 2.2. Let us consider a compactly supported entropy-entropy flux
pair (1, ¢). Multiplying (21) by n'(u. g), we have
I (ue,p) + 92q(ue,p5) 2677/(715,5)3%1“5,6 — Ben (u876)61wwxu57ﬂ
- 5277/(u6,5)8mmmu6ﬁ B’ (ue,ﬂ)axmzus B
=h,cptloeptIseptlseptIsecptlecp
+ 17,68+ Is, ¢, 8

where
I o p = Ou(en (ue ) Opuc ),
Iy 5 = —en" (e ) (Opuc 5)%,
I o3 = =0y (Ben (ue,p)0i pue 5)
Ly c,p = Ben" (ue,p)Optic 05 uc 5,

)
I5 e, B = =0y ( l( ) ;cxwa:u6 /3) (31)
)

IG e, B = ﬁ 77 ( €,5 azuE,Bazxxmut?a,BV
Irc.p = —0u (87 (e 8)02,ue ) ,
Isc.5 = B (uc p)Oruc g2, uc
Fix T > 0. Arguing as in [4, Theorem 2.1], we have that I; . 3 — 0 in
“L((0,T)xR), {I, <. 3 }e.5>0 is bounded in L} ((0, T)xR), Is.c. 5 — 0in H=1((0,T)
xR), Iy.c.p— 0in LY((0,T) x R), I5, e s — 0 in H~1((0,7) x R), and Is ., 5 — 0

in L1((0,T) x R). Due to (23), Lemma 2.3, and the Hélder inequality, we have that
I . 5= 0in H1((0,T) x R), and Is . g — 0 in L'((0,T) x R).
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Therefore, (25) follows from the Murat Lemma and the LP compensated com-
pactness of [25].

Arguing as in [4, Theorem 2.1] and using (22), we can prove that for every convex
entropy-entropy flux (1, q) we have

aﬂ?(“) + aﬂcq(u) <0

in the sense of distributions. Therefore (26) is proved.
Finally, arguing as in [14, Theorem 7.1], we get (24). O

3. The Kawahara -KDV equation: ug € L*(R) N L*[R), 8 = O (¢*). In this
section, we consider (18), and assume (13) on the initial datum.

We study the dispersion-diffusion limit for (18). Therefore, we fix two small num-
bers €, §, and consider the approximation (21), where u. g is a C* approximation
of ug such that

ue, g0 —up inLj (R),1<p<4, ase, -0,

loc

4 2

||u€,370||L4(]R) + ||“e7ﬂ,0||L2(1R) <Co, >0, (32)
L 2

(52 + 52) ||3mus,5,0||i2(m) +pe? HagfﬂuEﬂvOHL?(R) <Co, &f>0,

and Cj is a constant independent on ¢ and .
The main result of this section is the following theorem.

Theorem 3.1. Assume that (13) and (32) hold. Fiz T > 0, if
3200

then, there exist two sequences {e,}nen, {Bntnen, with £,,0, — 0, and a limit
function

B < (33)

u e L>((0,7); L*(R) N LY(R)),
such that
(R* x R), for each 1 < p < 4, (34)
u  the unique entropy solution of (5), (35)

Ue, B, — U, strongly in LT

where ue g solves (21).

Let us prove some a priori estimates on u. g, denoting with Cy the constants
which depend only on the initial data.

Lemma 3.2. Fiz T > 0. Assume (33) holds. There exists Cy > 0 such that (29)
holds. Moreover,

36 € 2
5% 0utte 50, ) 2y + 5 / 102 e (5. ) s
(36)
25t / 02 st0c (5. )| g ds < CoB~ 2
0
Proof of Lemma 3.2. Let 0 < t < T. Multiplying (18) by —26%8;6%,5, we have
— 26702 u. Ouc g — 4B uc pOyus 502 ue g — 28702 ue 302, ue
- 252 8xxu57ﬂaxacacxxu57ﬁ - —2ﬂ25( z e ﬂ) + 2B%€8§xu5ﬁa§xacxu5ﬂ'
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Since,
—253 / 8§$u5753§’mu575d:p =0,
arguing as in [4, Lemma 3.1], weRhave (29) and (36). O
Following [13, Lemma 4.2], or [8, Lemma 2.2], we prove the following result.

Lemma 3.3. Fiz T > 0. Assume (32) and (33) hold. Then:
i) the family {u. g} p is bounded in L°>°((0,T); L*(R));
i) the families {58 e ple. g, {B70> usﬁ}\E s are bounded in L>=((0,T); L*(R));
”7’) the famzlzes {Bzgaﬁ'rruf 5}5 B {ﬂzszarrruiyﬁ}‘f B {5528r'r7"ru5 5}5 B>
{e2uc gOpuic pte. 5, {202, uc g}e. g are bounded in L2((0,T) x R)).
Proof. Let 0 <t <T. Let A, B be some positive constants which be specified later.
Multiplying (18) by

— A5262 2Ue,g T BﬁE meusﬁ,

we have
( AEQ@muE g+ Bpe?0 mmua g) Orte g
+2 (ul 5 — Ae?02 uc p + BfBe Drpazlle,s) Us 302Uz
+4 ( — Ae20? u. g + BBe 8mmu5’5) 02 e 37)
+ ﬂQ ( A€ aa:xut‘ g+ BB& 8xacacﬂcu€ /3) axzcaca:xu .8
=c ( Aa 8 sUeg + BﬂEQarmzuE,B) 8 2Ue B
- 55 ( A‘C:anxus g+ Bﬂe axa:xacuaﬂ) aaca:xacu B+
Since

64 (ug,ﬂ - AE262 U’E B + BBE azxa::rutf ﬁ) 8zzmu€,5dx

= —3ﬁ/u§,ﬁazu€ﬁ8§x“€,5dxﬂ
R

argument as in [4, Lemma 3.2], an integration on R of (37) gives

d (1 A B
(5 Wy + 2 100 ey + 25 e
][

+ 3¢ [|uc,p(t, ) Os Usﬁ( Mgy + A (|07 aue (¢
+ 3553 || oz Ue, ,B HL2(R) + AB€2 || wxale, 5
+ BBQ 3 H :cwza:uﬁyﬁ HLZ(R)

= 2A¢? / Ue g Opte gO2, Ue pdr — 2BBe? / Ue 5OpUe 3O ppy e, pdT
R R

HL2(R)

+36/ugﬁa’ﬂufﬁagzufﬁdx—’—?’BQ/u?,ﬁawufvﬁa;la:a:wué‘ﬁdx
R R

+ 366/ 2 50xuz p03 U pda.
R

Due the Young inequality,

2A52/ |te 5O te, 103 e 5 |d = 2/
R

52u558 UEBHA€ 02 U57ﬁ‘d$



A SINGULAR LIMIT PROBLEM OF KAWAHARA TYPE 289

< e flue s (b )0ue 5t 3oy + A% 02,0 56 ) |2y -

23552/ |u€’58:,3u5”3||8ﬁmzu575|dx = B/ ‘26511,5,581;118’5‘ ‘Bsiaixmus,ﬁ‘ dx
R

BB g3
< 2B€Hu5 [3( )8 Ue /3( )”LZ || a:xxquwB HL"’
Therefore, we have
d A
& (G et ey + T Wortes (4l e
Bﬂs
02,8, )| R)) (2= 2B) & e (8, )t 8,22
2\ _3 || 92 3
+ (A — A )E H@MUE HL2(]R) + BBE H a:a:wua;:@ HL2(R (38)
A8 Bﬁ o
+ 55 H mzzufﬂ ||L2(R) H mmxzuEﬂ ||L2(]R)
<35 [ 42 5 0sc 02,1 gl + 357 / 2 4l0te 51102yt 5l
R
+30e [ 02 0,1 pl10%s 5l da
By (33),
B < D%, (39)

where D is a positive constant which will be specified later. Thanks to (29), (39),
and the Young inequality,

2
35AU§,ﬂI3zus,ﬁ||3§xus,ﬁldIS 35““675||Loo((07T)xR)/R‘aﬂ:“s,BHaﬁxusﬂdI
< Copt / Oate 51102, e pldzr < CoDe? / Ostte 51|02, 5| e
R R

B / CoDe?d,ue g
R

VA3 52 Ue 5‘ dx

\/Z ’ xrx E
C()D26

<

- A

10utte (8, >||L2(R)+ = |02 (4 ) 3o gy

w [ sl m 7 / BB Orves | VOB,
acx;cac €,8 R 2B<€2 \/g
2752 6 3
S 4B€3 / Eﬂ(a Ue B) dl‘-ﬁ- H mza:a:uﬁﬁ HL2(R)
2762
< 4Be 1.3 ” Eﬂ”Loo( (0,T) xR) ||8 Ue B( )||L2 (R)
Bﬁ o
|| e Ue,5(t HL2(R)
005 Bﬁ &3
= Ha Ue ﬁ( )”L? (R) +— || a::r:v:buEﬁ HL2
BB g3
< COE ||a u&ﬁ( )”L?(]R) +— ” mzzzuE»B ||L2(]R) ’
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36 / 02 glOste 51102 e ld
R

zgg/R

<98
— 2Be

98
2Be ” EﬁHLoo((()T XR) ”usﬁ( )8 usﬁ( )”L2(R

+ 20

3u? 58 Ue,8

’\/76 arxacu&ﬁ‘ dx

eﬁ(a Ue,p) dw""iH o te 3 (t HL2(]R

\ /\

e Ue,8 (1 HL2(]R)

Bﬁs

<0057
~ Be
CoD?c
S5 l[ue,5(t, ) Ouue 52, )||L2(R)+

As a consequence (38) gives

d Ag?
& (G heste >||L4<R>+ 192t (8, ) o

2
B o2,

CoD?

H“66< ) Ou UE,B( )||L2(R)+ H TTw 66

Bﬁe

H x:pwuaﬁ

+ (3 ~2B - ) e llue p(t: )0utie p(t, )| 2 ey

2

M

Mza

(40)

3A2 Bﬁe
(A — ) €3 Hazmue HLz (R) +— H zxa e, 5 HL2(R

B,Be

+ AP (|02, e 5 (1) | [
< Coe ||0pue st )Hm(R

We search A, B such that

that is

— 3B+ CyD?* < 0.

‘We choose .
A=—.
3

The second equation of (41) admits solution if

6v/2
8v/Co’

5v/2
8v/Co’

D <

Choosing

Mz
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it follows from (41) and (43) that there exist 0 < By < Ba, such that for every

B; < B < By, (44)
(41) holds. Hence, from (40), (42) and (44), we get
d Bﬁg
@ ( s 6 Iy + 5 10t My + 20 32,00 ||L2<R))
+ K [lue p(t,)Outie (1) R) += ||amueﬁ Wiz
Bﬁs
|02 aue,5(t HL2(R) + Hamzuf»ﬁ ||L2(]R)
Bﬁ g3
+7|| Raatte (8 )| oy + [CHRICD]
< Coe [|0pue p(t, )HLZ(JR) )
where K is a positive constant.
(32), (27), an integration on (0,t) give
1 Bﬂs
||u5,5( )HL4(R ||a ue g(t, )||L2(R H 2Ue (1 HLz

++K£/ ||u8,ﬁ(s,.)azua,ﬁ(s,.)uiz(m ds+—/ 102, 11055 )|y
355 pe?
[ 1026, ey s+ 5 [ 05, ey

B
2 e ey st 2 [0kt e

<Cy+ C()E/ ||azu575(5, )”iz(]R) ds < Cy.
0

Therefore,
||UE,,3(t7')||L4(R) <Cy,
€ Hafuaﬁ(ta .)”L?(R) <Cy,
3 2
/626 Haiﬂﬂuevﬁ(t? ')HLQ(R) SCO7
t
2
E~/O Huﬁ,ﬁ(sv')azuaﬁﬁ(s,')”LQ(R) ds SCO7
t
53/ 102z s HL2 ds <Co,
pe? / 102 00te.5(s HLQ(R) ds <Co,
2
683/ Hagiwua,,8(5,~)HLz(R) ds SCO,
0
t
2.3 4 2
e /0 Ham”usvﬁ(s")HLQ(R) ds <Cp,
forevery 0 <t < T. .

We are ready for the proof of Theorem 3.1.
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Proof of Theorem 3.1. Let us consider a compactly supported entropy-entropy flux
pair (1, ¢). Multiplying (21) by 1’ (ue g), we have

Om(uc,p) + 0oq(uc,p) =en'(ue )02, ue g — Ben' (ue ) Opppnticp

- ﬁn/(uﬁ,ﬁ)agzzuiﬁ - 62n/(u67ﬁ)8211xmu6,ﬁ
=hcp+tlecp+Izcp+lscpgtIsecptlsesp
+I7e,8 + 13, ¢, 8,

where Il,s,ﬁa .[2757g, _[37575, 147575, I575>B’ IG’&[;, 1775,5, IS,s,ﬁ are defined in (31)
Fix T > 0. Arguing as in [4, Theorem 3.1], we have that I; . 3 — 0 in
H7Y((0,T)xR), {I> < g}cp>0 is bounded in L*((0,T)xR), I3, .. s — 0in H=((0,T)
X R), Ij...p — 0in LY((0,T) x R), Ir... 5 — 0 in H-1((0,T) x R) and I5 .. s — 0
in L((0,T) x R).
We claim that
Ise.p—0 in H'((0,T) xR), T>0,as e — 0.

Due to (33) and Lemma 3.3,
2
||Bn/(u575)8gru5ﬁHLQ((O,T)XR)

2
< B2 | oo ey 1022112, 2 0,7 )
5253
=
< Col1n' | oo () e” = 0.

2
||77/||L°°(R) ||a§zu5>ﬁ”L2((0,T)><R)

We have that
Is.e.5 — 0 in L'((0,7) xR), T >0, as ¢ = 0.
Thanks to (33), Lemmas 2.3 and 3.3, and the Holder inequality,

Hﬂn/l(us,ﬁ)awues,ﬁagmu&ﬁ HLl((O,T) xR)

T
< B e / / Outte 51|02 ol did
_e8

gl
S C() ||T]//||L°°(R) 52 — 0.

1 3 2
1" ||L<>C(R) €2 ||Opue,p ||L2((O,T)><JR) €2 Ha:cxufﬁ ||L2((O,T)><R)

Therefore, (34) follows from Lemmas 2.3, 3.3, and the L? compensated compactness
of [25]. Arguing as in [4, Theorem 3.1], we have (35). O

Appendix A. The Kawahara-KdV equation: vy € L?(R), 3 = 0(£*). In this
appendix, we consider (10), and assume

ug € L*(R), (45)

on the initial datum. We study the dispersion-diffusion limit for (10). Therefore,
we fix two small numbers 0 < ¢, 8 < 1, and, following [6], consider the following
fifth order problem

Oue,p + 0?5 + PO e 8
+6282193a:wu5,5 = Eaga:u&‘,ﬁ - B%Eajvlwa:xué‘ﬁ’ t> 0’ T e R’ (46)
UEWB(O?Q:) = u&ﬁao(x)’ z € R,
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where u. g, is a C° approximation of ug such that

ue g0~ up in L (R),1<p<4,ase, —0,
1 3 2 (47)
”“676,0”22(]1@) + B2 ||ax“67670||22(R) + B2e? Hﬁixuafionp(m <Co, ¢,8>0,

and Cj is a constant independent on € and /3.
The main result of this section is the following theorem.

Theorem A.1l. Assume that (45), and (47) hold. Fiz T > 0, if

B=o(e), (48)
then, there exist two sequences {€n}nen, {Bn}tnen, with €, 0, — 0, and a limit
function

ue L=((0,T); L*(R)),

such that

i) Ue, p, — u strongly in LY (R x R), for each 1 <p < 2,

1) u is the unique entropy solution of (5),

where u. g solves (46).

Let us prove some a priori estimates on u. g, denoting with C the constants
which depend only on the initial data.

Lemma A.2. For eacht > 0,

t
e 8 ey + 22 | 10t 3oy

. (49)
3 2 2
+ 2ﬁ25/ Hamug,g(& ~)HL2(R) ds < Cy.
0
Proof. We begin by observing that
ﬁ/ Ue g0, e pdT = —B/ Optie 02 U gdz = 0.
R R

Therefore, arguing as in [4, Lemma A.1], we have (49). O

Lemma A.3. Fiz T > 0. Assume (48) holds. There exists Cy > 0, independent
on g, B such that (29) holds. Moreover

B Ozue (2, )”Lz(R) + B || ot ||L2(]R

36
#2000 [ e 5. g

+262 3/ || a:oc;zu&/@ ||L2(R)d (50)
288 / 02t 5.y
3525

[ 10t ey 5 < €
Proof. Let 0 < t < T. Multiplying (46) by —28202 u. s+ 282202, u. g, we have

( 2/32890qu g+ 2526 mca:ﬂcut‘ ﬁ) Oue B
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+2 (—2,8%8;611875 + 25%628;19095301,65,5) Ue, 302U 8

+ 8 (—25%a§xu6ﬁ + 25%525;1”95%,5) Orarle,s

+ 52 (<282 02, 5 + 288620 e ) Batic

= e (2840200 5 + 262 %0) e ) O

- Bie (—23%3595“5,& + 2ﬂ%525§mmue,ﬁ) Dz, 6-

We observe that
B/R (—Qﬂéaixugﬁ + 253628@“%75) 03 ue pdx = 0.
Arguing as in [4, Lemma A.1], we get (50). O
We are ready for the proof of Theorem A.1.

Proof of Theorem A.1. Let us consider a compactly supported entropy—entropy flux
pair (1, ¢). Multiplying (21) by n’(ue g), we have
Orn(ue ) + 02 (ue 5) =1 (u= )0y e 5 — Bren) (e, 5)0i e 5
= B2 (e, )i, — BN (Ue,5) Dy ap e,
=h,eptI2eptI3ep+1a,ep+ 1568+ 1I6cp
+ 17,68+ Is, ¢, 8
where
I c,p = O (7 (te,8)Oic ) ,
Iy c.p = —en (ue,p) (Ouic p)?,
Ie.5=—0s (5%577/<ua,,8)8§m“6,6) )
Iy = Bren (e p)dutic 503, e 5,
Is c.p=—0s (/BZUI(UE,B)a;lme&B) )
Is.e,p = B0 (te,5)Otie, 50, pngUe 5
I ep = =00 (81 (ue,) 02 te )
Is,e,5 = P11 (ue,5)Ortie, O05q e 5.

Fix T > 0. Arguing as in [4, Theorem A.1], we have I; . 5 — 0in H~1((0,T) x R),
{I < g}ep>0 is bounded in L'((0, T)xR), I3 - s — 0in H=1((0, T)xR), I .. 5 — 0
in LL((0,T) x R), I5.-. s — 0in H-((0,T) x R), and Is, .. 5 — 0 in L'((0,T) x R).
Using (48), Lemmas A.2, A.3, and the Hélder inequality, we have I7 . g — 0 in
H=Y((0,T)xR), and I ., g — 0 in L' ((0,7) x R). Arguing as in [4, Theorem A.1],
the proof is concluded. O

Appendix B. The Kawahara-KdV equation: uy € L?(R)NL*(R), 8 = O (£%).
In this appendix, we consider (18), and assume

ug € L*(R) N L*(R) (51)
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on the initial datum. We study the dispersion-diffusion limit for (18). Therefore,
we fix two small numbers 0 < ¢, 8 < 1 and, consider the approximation (46), where
Ue,8,0 is & C° approximation of up such that

ug’ﬁ’()—>U() in LZOC(R)’ 1§p<4) as €7ﬁ_>07
4 2
||Ue,ﬂ,0||L4(R) + ”us,ﬁ,O”p(R) <Cy, &B8>0, (52)
1 3 2
(82 +€%) 10zt .ol 72wy + B2 [|02atie,5.0]| oy < Cor €8>0,

and Cj is a constant independent on € and .
The main result of this section is the following theorem.

Theorem B.1. Assume that (51), and (52) hold. Fiz T > 0, if

88

< =
b= Sace

then, there exist two sequences {€,}nen, {Bn}tnen, with €, 0, — 0, and a limit
function

(53)

w e L=((0,T); L*(R) N L(R),
such that

i) Ue, ., — u strongly in L} (R x R), for each 1 <p < 4,
1) w is the unique entropy solution of (5),

where u g solves (46).

Let us prove some a priori estimates on u. g, denoting with C the constants
which depend only on the initial data.

Lemma B.2. Fiz T > 0. Assume (53) holds. There ezists Cy > 0, independent
on g, B such that (29) holds.
Moreover

3 1 t
B 00t 5(t, )22 g ﬁ”/ 102,12 (5, ) |} 2z, s

(54)
+2p% 3/ (103 puie,5(s HLQ ds < Cof™%

Remark 1. Observe that the proof of Lemma B.2 is simpler than the one of Lemma
A.3. Indeed, here we only need to prove (29).

Proof of Lemma B.2. Let 0 < t < T. Multiplying (46) by —Qﬂ%ueﬁ, we have
- 25%8%90“8”@&“8,5 + 4ﬁ%ua,ﬁawua,@8§x“6,5 - 6%8595“6,562901“676
+ 2ﬂ%a§xu€7ﬁagzxmzu€7ﬁ = 25%5(85:6”5’5)2 + 25258595“‘6 5a;lzza:
Since
—ﬂ% / 02, ue p02 e gdr =0,
R

arguing as in [4, Lemma B.1], we have (29) and (54). O
Lemma B.3. Fiz T > 0. Assume (52) and (53) hold. Then:

i) the family {uc g}e g is bounded in L>°((0,T); L*(R));

i) the families {edyuc gte. 3, {8102, ue gte. 3 are bounded in L°((0,T); L2(R));

iii) the families {85303, uc g}e 5, {87302 utic ple. gy {€2Uc pOsuc g} g,
{202 uc 5}e. p are bounded in L*((0,T) x R)).
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Proof. Let 0 <t <T. Let A, B be two positive constant which be specified later.
Multiplying (46) by

— A€282 2Ue,B — Bﬂ% mwwmuﬁﬁ)

we have
3
(ug,ﬁ - AEQ(Q)‘%IUE’B — Bp> €2a§zxmu5,ﬁ) 615“’6,5

3
+2 (ug - Aszﬁzacusﬁ — Bﬂ%zaimmusﬁ) Ue, 302 Ue 8

+ ( — A0} uep — Bpe 6a:$zwu57/3) Dyslc,p

+8° ( — A20%,ue g — BBe 5mmue,ﬂ) TR
=¢£ ( — A0% uep — Bp2e? mxzzu57ﬁ> 02 ue

— Bie ( — A0 ucp — Bpe amm“f,ﬁ) Do Uie -

Since
ﬂ/ (ugﬁ - Aszaz zUe B BﬁQE a:zt:vzruﬁ 5) azzrugyﬁdx
R

= — 35/ ug,gazus,ﬁaizus,ﬂdx,
R

arguing as in [4, Lemma B.2], we get

i(nsd>w)+Aa%m>m2)

B d
ff 102t (8, ) [y + 3 e (8 )Oute (1) ey

+ A |0 e, 56y + (A + B) B2 [0 (0 )12

+ BB (|07 00 ue (¢ ||L2(R (55)
= 72A62/usﬂazusﬁazmus’gdxfQBB%sz/usﬂaxuewgaﬁxmusﬁd:c

R R

2 2 2 2 4
—|—35/ue’ﬁamus,gamusﬁdx—ﬁ—?)ﬁ /us758zu5753mmu575dm

R R
3 2 3

+3525/usyﬁazusﬂammu&gdx.

R

Due to the Young inequality,

2A52/R|u€,g8mu€,5||33zu€,g|dx:/R‘Qséus,gamusﬂ‘ ‘Aegaéusﬁ‘dm

< 2¢ ||ue,p(t, ) O uie p(t, )IILzR)+ || 2Ue,6(t ||L2 ;

3 1 3 3
2Bﬁ252/ ‘ui’ﬂamu&B'a;‘lxmzuEdem = B/ ‘262’“576017“65»5‘ ‘62528§xzzu5’5‘ dx
R

Bﬁs

< 2Be ||ue g(t, ) Opue p(t, )HL2(JR)Jr v

H rraatle, s (t ||L2(]R
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From (53),
B < D%, (56)

where D is a positive constant which will be speficied later. Since 0 < e < 1, (29),
(56), and the Young inequality,

3B/RUE,BWJCUEﬁHaiquﬁ‘dI < 3ﬂ||ue7ﬁ||ioo((o,T)xﬂq<)/R|aﬂcus,l3”a§xue,ﬁ|dw

Scoﬁ%/|8Iu575||851u575|dxSCOD54/ |8£u575|\3§mu575 dx
R
2
< CoDe ||0zuc p(t, )HLz(R +CoDe? |03 ue st - ||L2(]R)’
3[52%& augg fﬁzg'za u
32/ 8 a d:/ €,8 wawwé‘ﬁd
B 55‘ UEB” wxwzu€7ﬁ| € " 52\/* \/§
98 2
< ﬁ ”us 5HL°°((0,T)><]R) ”us,ﬂ( )3 Ue B( )||L2(R
Bﬂ o
|| xazxzuEB HLQ(R)
C()DE Bﬁ el
< e, (¢, )Dtte, (¢, ) 72y + 102 a0t (8 ) | oy
: 3u Opth
3ﬁ%€/ 55|8 Ue, 3 |awwwu57ﬁ|dx:B%€/R 65 =P ‘\/>5 a:wwué‘u@‘dx
96’
> 2B ||us,ﬁ||Loo((0T xR) [ue,p(t, -)Oxie 5 (t, )Hm(R
626 2
H zxaUe,B t’.)HLQ(R)
C’OB 3525
< O et Ot 0, ) 2 1%, st 6
CoDE 2 B525
< e (t, )Outte (8, )| za gy + [CATRPICD]
Therefore, from (55), we gain
d Ae?
4 (3 e Mgy + 5 1000t e )
Bﬁze d Bﬁ g3
3 H Usﬁ HLQ(R) || mxrmuEﬂ HLQ(R)
+ ( )/8253 ” oz Ue, 8 (% HL2 (57)
CoD
+|1-2B - B € [lue,8(t, ) Opue g2, )HL?(R)

AQ
# (4 - 0D ) ek

< Coe ||0pue st )Hm(R
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We search A, B such that

A% —2A+2CyD < 0, (58)
2B* — B+ CyD < 0.
The first inequality of (58) admits solution if
1
D< — 59
ST (59)
The second inequality of (58) admits solution if
1
D < —- 60
0o (60)
It follows from (59) and (60) that
1 1
D < = —. 61
min{g= 20 0o’ ~ 56 (61)

Then, from (58) and (61), there exist 0 < A; < Az, 0 < By < Bj such that for
every

A1 <A< Ay, By <B< By, (62)
(58) holds. By (49), (52) (62), and an integration on (0,t) of (57), we get
B625
1 ||“6,ﬁ( )||L4(]R) + ||a UE,B( >||L2(R) H ale 5 HLQ(]R)

Bﬁ?’

/ || xmmzua’ﬁ(sv')HLz(R)dS"_KlB%&:g/O |‘3§’IIU€,5(8,~)HQLQ(R)d8

+ Kgs/o lue,g(s, -)Optie a(s, ')||2L2(R) ds + K3e® /Ot H@iwugwg(s, ~)Hiz<R> ds < Cy,
for some K7, Ky, K3 > 0. Hence,
e st )l ey <Cor
e 10zue,p(t, )| 2y <Co,
Bie Hagzusﬂ(t,')nm(n@) <Co,

t
2
g / 10z ztie, 55| 2y 5 <Co,
0
t
3 2
5253/ ||82$$u575(57 ')HLQ(R) dS SCO7
0
t
2
5/0 l[ue,5(s,)Outic g (5, )| 2(r) ds <Co,

t
2
63/0 ||a§xu575(57')||L2(R) ds SCO7
for every 0 <t < T. .
We are ready for the proof of Theorem B.1

Proof of Theorem B.1. Let us consider a compactly supported entropy—entropy flux
pair (1, ¢). Multiplying (21) by n'(u. g), we have

In(ue,p) + 0:q(uc p) :577/(1‘6,6)831“5,6 - 52577 (e, ﬁ)azzmu B8
- ﬁQU/(ufyﬁ)axxwmcufﬁ 577 (uf ﬁ)aa:xac B
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=h,e,p+12,c,8+I3,c,8+ 1a,c,8+15,c,8+ 16,,8
+ 17,6, + Is,¢, 8,

where 11 ¢ 8, I2,¢,8, 13,8, 1a,¢c,8, I5,¢, 8, L6,¢, 8, I7,¢, 8, I3,¢, 3 are defined in The-
orem A.l.

Fix T > 0. Arguing as in [4, Theorem B.1], we have I . 3 — 0 in H((0,7T) x
R), {I1,c g}e,p>0 is bounded in L'((0,T) x R), I3 . 5 — 0 in H71((0,T) x R),
e — 0in LY((0,T) x R), Is .3 — 0 in H'((0,T) x R), Is - 3 — 0 in
L'((0,T) x R). Due to (53), Lemmas 49, B.3, and the Hélder inequality, I7 . 5 — 0

1

i

—

in H=1((0,T) x R), and Is . g — 0 in L'((0,T) x R). Arguing as in [4, Theorem
B.1], the proof is concluded. O
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