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ABSTRACT. In this paper we consider a three-component reaction-diffusion sys-
tem with a fast precipitation and dissolution reaction term. We investigate its
singular limit as the reaction rate tends to infinity. The limit problem is de-
scribed by a combination of a Stefan problem and a linear heat equation. The
rate of convergence with respect to the reaction rate is established in a specific
case.

1. Introduction. Deep geological repositories are one of the possibilities for the
storage of radioactive waste. The cement-based materials of a repository are subject
to chemical degradation caused for instance by sulfate attacks or leaching. These
chemical attacks are mainly linked with dissolution-precipitation processes of the
solid constituents of the cement matrix. The model which we study deals with
the diffusion of chemical species transported by water, with possible dissolution or
precipitation and for a rather general kinetics law.

In this paper, we consider a reaction-diffusion system composed of two parabolic
equations and an ordinary differential equation which are coupled by a reaction
term. This reaction term, which is nonlinear and discontinuous, may change sign.
More precisely, we study the problem

% = Au — aAG(u, v, w) in Qr:=Qx(0,T),
% = Av — SAG(u, v, w) in Qr,
A
(P) 88—1; = A\G(u,v,w) in Qr,
ou v
%—%—O on 8Q><(O,T),
U(,O) = Uo, ’U(',O) = Yo, ’LU(,O) =wp in Qa
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where € is a bounded domain in RY (N € N) with smooth boundary 99, T, \, «
are positive constants and 8 € R is a constant, and n is the outward normal unit
vector to the boundary 0€2. The function G is given by

G(u,v,w) = F(u,v)" —signt (w)F(u,v)”. (1)
Here,
1 if s>0,
sT =max(0,s), s~ =max(0,—s), sign(s)=¢ 0 if s=0,
-1 if s<0

for arbitrary s € R, and F' is a given function. We remark that the function G can
also be written as

_Jo if w <0, F(u,v) <0,
Glu, v, w) = { F(u,v) else.

Problem (P*) models reactive transport in a cement based material where one
mineral species (W) and two aqueous species (U and V') react according to a kinetic
law. The functions u, v and w stand for concentrations of U, V and W, respectively.
The function F' denotes the thermodynamical equilibrium gap, that is,

F >0 involves regions where the mineral precipitates,
F =0 involves regions with chemical equilibrium,

F <0 involves regions where the mineral dissolves.

The term sign™ (w) expresses the fact that mineral dissolution stops once the mineral
has disappeared. Let us consider chemical reactions of the form

W < aU + BV,

where o > 0 and [ are algebraic stoichiometric coefficients. More precisely, if a > 0
and 8 > 0, this models the chemical reaction

aU + pV <= W,
whereas if « > 0 and g < 0, we have the chemical reaction
alU <= W + {-B}V.
For such reactions, we suppose as in [2] that the function F is given by
F(u,v)zuo‘vﬁ+ — Kv? for (u,v) € RT x RT, (2)

where K is a positive constant. For the derivation of Problem (P*) with (2), see [2]
and references therein. The function F' is extended according to

o F(u,v) = F(u,0) for all u > 0 and v < 0,

e F(u,v) = F(0,v) for all v > 0 and u < 0,

e F(u,v) = F(0,0) for all u,v < 0.

Geologists observe in experiments or numerical simulations patterns which seem
to correspond to solutions of moving boundary problems (see [2]). Our purpose
here is to give a theoretical justification of these facts. We focus on reactions which
are very fast compared with the diffusion process so that A is a large parameter.
In the special case where o = 1 and 8 = 0, Problem (P*) reduces to a system of
two equations for u and w. For such a reaction, the singular limit of the solution
(u*,v*) as A tends to infinity has been studied by Pousin [5] and by Bouillard et
al. [1]. They have shown that the limit equation takes the form of a Stefan problem.
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In this paper, we search for the fast reaction limit of the general problem (P?); it
turns out that the limit problem is given by the combination of a heat equation and
a Stefan problem.

This paper is organized as follows. In the next section, we precisely state the
assumptions and the problems. Then, we present our main result, namely the
convergence of the solution of (P*) to its limit as A tends to infinity. Section 3 is
devoted to establishing a priori estimates. The main theorem is proved in Section 4.
In Section 5, we discuss the convergence rate with respect to .

2. Notations and main results. In this section we present the assumptions,
precisely state the problem and give our main results.

2.1. Notations and assumptions. From the equations for v and v in (P?), we
obtain the following relation between v and v:

v:h—|—§u. (3)

Here, h = ¢t& (vo — guo) denotes the solution of the linear heat equation with the

homogeneous Neumann boundary condition and with the initial function vy — éuo.
@
In this paper, we suppose that the following hypotheses are satisfied.
(H1) The initial functions ug, vy and wg are smooth and satisfy

0 < g, vo, wg < M

for some positive constant M.
(H2) There exist a nonnegative function f only depending on h, a, 5 and K and a
positive function g only depending on w, h, o, 8, K such that f € L>®(Qr)N

w3 (@Qr), gT‘i =0on 992 x (0,T) and

F <u,h+ §u> = (u—f)g (4)

for all w > 0 and a.e. in Q7. If 8 < 0, we suppose in addition to the above

0
that a—{ —Af e L™(Qr).
Many functions F of the form (2) (see examples below) can be factorized in the
form (4) but it is not the case if the coefficient of the highest order of the left hand

side of (4) is negative. However, we can also deal with the following case.

(H2)* B # 0 and there exists a nonnegative function f* only depending on h, a, 8
and K and a negative function ¢* only depending on v, h, «, 3, K such that
*

f* e L®(Qr) N Wi (Qr), % —AfT € L¥(Qr), 5—=00n02x(0,T)
and
F(§o-1.0) == ) 5)

for all v > 0 and a.e. (z,t) € Qr.

Remark 1. If the function F' can be factorized as in (4), the function f is uniquely
determined. Indeed, if there are two couples of functions (f1,¢1) and (f2,g2), the
following relation holds

(u - fl (xvt))gl (umc,t) = (u - f2(x’t))92(ua x>t)
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for all w > 0 and for a.e. (z,t) € Qr. Since f; is non-negative, we can take
u = f1(x,t). Then we have

(f1<x7t) - fQ(x,t))QQ(f1($,t),x7t) =0.

In view of the positivity of the function go, we obtain the f; = fo a.e. Similarly,
the function f* is uniquely defined by the relation (5).

In this paper, we show that as A\ tends to infinity,

B, B

1
= f—Z, Vs h+Sf-=2 wt = =77
a a a

in a certain sense, where Z is the unique weak solution of the following one-phase
Stefan problem:

0z .. Of .
E—AZ +a*Af m QT,
+
(SP) aain =0 on 90 x (0,T),

Z(+,0) = f(0) —ugp —awy in €.
Examples of [ and g satisfying the assumption (H2).
1. Case . € N, 8 =0. F(u,v) =u* — K.

F=EYe >0, g=Y wFKS > K% >0, fi-Af=0.

k=1
2. Casea=1, 8 =-1. F(u,v) =u— Kv.
K
=——h>0 =1+K>0 —Af=0.
f 1+ K& = ) g + > 7ft f

3. Casea=1,8=1. F(u,v) =uv— K.

1 1
f= 5(—h+\/h2+4K) > 0, g:u—§(—h—\/h2+4f() > VM2 +K—M >0,
and f is such that
fe = Af € L¥(Qr).
4. Case a =2, 3= —1. F(u,v) =u® — Kv.

K? K K? K K
= _— - — > = _ — >
f=1/ 16 + Kh 1 >0, g=u+\/ 16 + Kh+ 127 > 0,

and f is such that
fe —Af € L=(Qr).

Example of functions f* and g* satisfying the assumption (H2)*.

5. Case a = 1, B = —2 with (2), that is, F'(u,v) = u— Kv?. We can not factorize
F(u,v) in the form (4), but it can be factorized as in (5):

1 1 1 1 1 1
=t —h——— >0, ¢'=-K 4 bt — <o
! 6K2 oKk ik =" Y <”+ 16K2 T 9K +4K>< :

and f* is such that
fi = AfT € L=(Qr).
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2.2. Definitions. Let (-,-) denote both the inner product in L?(Q2) and the duality
pairing between H'(Q)* and H'(Q). Solutions of Problem (P*) are defined in the
following weak sense.

Definition 2.1. A triple (u,v,w) is a weak solution of Problem (P*) if it satisfies
u,v € L®(Qr)NL*(0,T; HY(Q)NHY(0,T; H (Q2)*), w € L*>®(Qr)NH (0,T; L*(Q))

and
/OT<(2)::790>+/OT<VU,V<,0>+oz>\/OT(G(u,v,w),@_07 (6)

/OT<Z§7%0>+/OT<VU,V90>+5A/OT<G(u,v,w),¢):0 (7)

for all functions ¢ € L(0,T; H(Q2)),
88—1: = A\G(u,v,w) a.e. in Qr (8)
and
u(+,0) =wug, v(0)=wvy, w(-,0)=wp, a.e. inQ.

Under the assumption (H1), we can prove the existence of a unique weak solution
of (P*) following the proof of Bouillard et al. [2]. Moreover, we can obtain the
following property.

Lemma 2.2. Assume (H1) is satisfied. Then, there exists a positive constant C(\)
only depending on T, a, B, A\, F, ug, vy, wo such that
0<ut o wt < C(A)  for a.e. in Q.

Bouillard et al. [2] used a fully discrete finite volume approximation to prove
these properties, so that the dimension and the shape of domain were restricted.
We can remove those restrictions by using a time-discrete scheme.

Next we define a weak solution of Problem (SP).

Definition 2.3. A function Z is a weak solution of Problem (SP) if it satisfies
Z € HY(0,T; H'(Q)*), Z+ € L*(0,T; H'()) and

[ [rmm-[ (o) o

for all functions ¢ € L2(0,T; H*(Q)), and
Z(x,0) = f(2,0) — ug(z) — awp(x), for a.e. z € Q.

The existence of a unique weak solution of Problem (SP) follows from [4]; whereas
the existence is the consequence of the convergence of a finite volume scheme, its
uniqueness follows from Theorem 4.4 in Section 4.3.6.

2.3. Main results. We are now in a position to state our results.

Theorem 2.4. Assume that (H1)-(H2) hold. Let (u*,v*,w™) be the weak solution
of (P*). Then, as X tends to infinity,

uw = f -2t strongly in LP(Qr) (Vp > 1), a.e. in Qr
and weakly in L?(0,T; H(Q)),
B B

v — h+ Ef —=Z% strongly in LP(Qr) (Vp > 1), a.e. in Qr
a
and weakly in L?(0,T; H(Q)),
1 ~ ~
wr = =7~ strongly in L*(0,T; LY(Q)) (VQ € Q) and a.e. in Qr,
et
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where h and f are the functions defined in (3) and (H2) respectively, and Z is the
weak solution of (SP).
Theorem 2.5. Assume that (H1) and (H2)* hold. Let (u*,v*,w?) be the weak
solution of (P)*. Then,
u — %(f* —h+2Z7%) strongly in LP(Qr) (Vp > 1), a.e. in Qr
and weakly in L?(0,T; HY(Q)),

A N A/ strongly in LP(Qr) (Vp > 1), a.e. in Qr
and weakly in L*(0,T; H'(Q)),
wr — —%Z‘ strongly in L'(0,T; LY(Q)) (VQ € Q) and a.e. in Qr

as \ tends to infinity. Here, h and f* are the functions defined in (3) and (H2)*,
respectively, and Z is the weak solution of the Stefan problem (SP) in which the
function f is replaced by — f* with the initial datum Z(-,0) = vo — f*(-,0) + Swo.

In this paper, we give all the proof of Theorem 2.4. Theorem 2.5 is obtained in
the same fashion.

3. A priori estimates. In this section, we establish a priori estimates. We deduce
from (6) that

[ (aw-noys [ nve e [ @

:—/OT<‘3J;—Af,so> (10)

for all functions ¢ € L2(0,T; H'(2)). We define 2* := f — u* — aw*. Then,

/OT<%Z:7<,0>+/OT<V(JCuA),VS0>_/OT<?){Af,gp> (11)

for all functions ¢ € L2(0,T; H*(Q)).
Lemma 3.1. Suppose that (H1) and (H2) hold. Then, u* and v* are uniformly
bounded in L*°(Qr) with respect to .

Proof. If 3 < 0, we can easily obtain the result. In fact, v* — gu/\ satisfies the linear

heat equation with initial function vy — éuo. The maximum principle implies that
!

0<ov— éu)‘ < <1 — 6) M. We deduce from Lemma 2.2 that
« «@

OguA§<1—g>Aﬂ OSUAS(L—ﬁ)M.

«

Next we prove the result in case where 5 > 0. First we show that u* and v* are
uniformly bounded in L*°(0,T; L?(2)) with respect to A for all p > 2. Then, we
pass to the limit in p. We set 1,(s) = |s[P~?s for s € R. For an arbitrary point
to € (0,T), we define

pla,t) = otherwise

) {q%wxmﬂ—fQJ» if 0 <t<ty,
0
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n (10) to obtain

> [t o) = rtea)l + //Q 1), V(> — £)

+ aA <G w0 w ),¢p(u)‘—f)>

/ = f0F = [ (5 - st - ). (12)

Because of the monotonicity of v, the second term of the left hand side is nonneg-
ative. Note that

G (ua h(l’,t) + Buaw) = (U - f(l’, t))+g<.’177t) - SignJr(w)(u - f(.%‘,t))_g(ﬂf7t)
o
for all u,w > 0 and a.e. (x,t) € Qr while (H2) holds. Therefore,

Gl 0wy (e = f) = [ = 1772 (= £)) 4 sign* () (= 1))?) 2 0

a.e. in Qr. Hence, the last term of the left hand side of (12) is nonnegative. The
last term of the right hand side of (12) is estimated as follows:

[RER R -

<MfmeabQT‘1’<// Jut —f|p> "
<MfmeasQTrl’<1+//Q |uA—f|p>,

- A f) Collecting the previous bounds yields

A
LP(Qt ) ||‘/’p(u - f)HLp/(p—l)(QtO)

of
ot

% /Q A (to) — (o) < - / o — £( |p+MfmeasQT%<1+ // Iu—f”>

It follows from the Gronwall inequality that

where My = esssupg,,. (

[ = Fllz 0,750 ()
1
< (”uo = FO)l (o) + (Mf meas(QT)%p) p) exp (Mf meas(QT)%T)
for all p > 2. Letting p tend to infinity, we obtain
0 = Fll gy < (10 = FO)ll ) + 1) exp (M T),
which together with (3) completes the proof. O

In special cases, we obtain a uniform bound for w.

Lemma 3.2. Suppose that (H1) holds. The function F is defined as in (2) with
a €N, 3=0 orwitha=1, 3 =—1. Then, w* is uniformly bounded in L>(Qr)
with respect to .
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Proof. In the case where o € N and 8 = 0, the proof is straightforward because the
system (P*) reduces to the following two-component system

%Z = Au — aAG(u, w) in Qr,

ow .

o= AG(u, w) in Qr, (13)
g—z =0 on 00 x (0,7),

u(+,0) = ug, w(-,0) =wp in Q,

where G(u,w) = (u® — K)T — sign™(w)(u® — K)~. The solution (&, w) of the
following system of ordinary differential equations

o0u o _
i —aAG(u, ) in (0,7),
0w o _
T AG(u, ) in (0,7),

satisfies v
1
0<a(t) <M(1+a), 0 <w(t) < M-
«
The pair of functions (@, w) is the constant in space solution of (13) with ug = M
and wyp = M. In view of the comparison principle (see Theorem 2 in [1]), the

solution (u*,w™) of (13) satisfies
0 <uMa,t) <alt) < M(1+a),

ogwwaogwwgﬂﬂkﬂﬂ

@
This concludes the proof for the case that g = 0.
Next we prove the result in the case that & = 1, § = —1. Consider the auxiliary
problem
ot ~
Eg::Aa—AGuLw) n Qr,
O ~
E%::AG&Lw) n Qr,
o0
o =0 on 99 x (0,7), (14)
1 K
SOy — _ . 0
a(-,0) TR Tyl ,
w(-,0) = wo in  Q,

where G(u,w) = (1+ K)(ut — sign™ (w)u~). By the above argument, the solution
(@*,@*) of (14) is bounded from above, namely,
2+ K

“A A
u”,w < T —|—KM'
We define u* := @* + f and w* := @*. Here f = HLKh7 h = €'®(ug+vp). Then the
functions u*,v* = h — u*, w? satisfy (P*) with a = 1, 3 = —1. Hence the solution
(ut, v}, w?) of (P*) satisfies
Ao 24K

M
_1+K7
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which completes the proof. O

Lemma 3.3. Assume that (H1) and (H2) are satisfied. Then, there exists a positive
constant C' independent of A such that

||G(u’\,v)‘, w)

lram < C/N (15)

||w)\||W111(0,T;L1(Q)) =G, (16)
<C. (17)

e

>\HL2(O,T;H1(Q)) + Hv/\HLQ(O,T;Hl(Q)) Q")

Proof. We denote by sign® a smooth nondecreasing approximation of the sign func-
tion with |sign’| < 1 which converges pointwise to its limit and define H%(s) :=
[, sign’ (7)dr. Take ¢ = sign®(u* — f) € L2(0, T; H*()) in (10) to obtain

/ Ho(u // IV = )P )

/ (i )

:/QH‘S(UOff(O))*/O <g{ A, signd (u f)>-

Since the first and the second terms are positive, we deduce from the property of
sign® that

g 0 S af
a)\/o <G(u>‘,v/\,w/\),51gn (u? —f)> < /Q’H (ug — £(0)) Jr’ o — Af

LY (Qr)
Letting § tend zero and using the boundedness of ug and f, we obtain

T
a)\/ <G(u”\,v’\,w’\)7sign(u’\ - f)) <cC.
0
Since
G (u,h(x,t) + gu,w> sign(u — f(z,t)) = ‘G (u h(z,t) + g w)

for all u,w > 0 and a.e. (z,t) € Qr, we deduce the estimate (15). Moreover, we
deduce (16) from the equation (8). Note that

G (u h(z,t) + guw) (u— f(z,t)) >0

for all u,w > 0 and a.e. (x,t) € Q. Choose p = u* — f € L?(0,T; H'(Q)) in (10)
to get

1
S @) = FD) 72 + [V = Al

0
< 3= FOeo -~ [ (% - ara 1)

1 2 of A
< 5”“0 = fO)[|720) + Hat —-Af am [ — fHL2(QT) :
The boundedness of v* and f implies that
A
H“ ||L2(O,T;H1(Q)) <C.
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Using the relation (3), we obtain

A
v ||L2(O,T;H1(Q)) <C.
It follows from (11) that
T A
0z of
- < 1
/0 < ot 7%0> = (HV(f HLz(Q )+ H ot Lz(QT)> H‘PHLQ(O,T;H ()
<C ||80||L2(0,T;H1(Q)) )

which implies the estimate (17). O

Lemma 3.4. Assume that (H1) and (H2) hold. Then, there exists a positive con-
stant C' and a positive function o independent of A such that o(§) — 0 as &€ — 0
and

T
/ / M @+ €,1) —u (@, )] dudt
0 Q.

T
+/O /Q | @+ €,t) — oM, ) [" dedt < Cl¢f?, (18)
T
/ / |w/\(x+§,t) —w’\(mt)’dxdtga(f), (19)
Q
OTf T—1
/ |u z,t+7) —ut(z,t) | da:dt+/ ’v’\(a:,t—i-T) —v)‘(m,t)}pda:dt
0 Q
T T
/ / |w T, t+7T) (x,t)| dxdt < Ct (20)

forallp>2, ¢ eRY, €| <r and T € (0,T). Here, r > 0 and Q, = {z € Q
B(z,r) C Q}.

Proof. As in the proof by Bouillard et al [1], the following estimate holds.
T 2
/ / |u)‘(x+§,t)—u)‘(x,t)| ddt < C|¢)?
o Ja.

for all £ € RY, €| < r. Since u* is uniformly bounded in L>(Qr) with respect to
A, we have

T
//|uA(x+g,t)—uA(x,t)|”dxdtg0|g\2
0 Q.

for all p > 2. Thus, the proofs of (18) and (20) are analogous to those by Bouillard
et al [1]. We can also prove (19) in a similar way as Bouillard et al since the function

G (u, h + gu, w ) is nondecreasing in w and nonincreasing in w. O
4. Proof of Theorem 2.4. This section is devoted to the proof of Theorem 2.4.
Proof of Theorem 2.4. Step 1. Convergence of the sequences.

By the lemmas 3.1-3.4 and the Riesz-Fréchet-Kolmogorov Theorem [3], there
exist subsequences, which are denoted by {ut}, {v*}, {w*} and {z*} again, and
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functions u*,v* = h + 2u* € L®(Qr) N L*(0,T; HY(Q)), w* € L'(0,T;L' (%))
(VQ € Q) and 2* = f —u* — aw* € H'(0,T; H'(Q)*) such that u*,v*,w* > 0 and
u — u* and v* — v*  strongly in LP(Qr) (Vp > 1), a.e. in Qr
and weakly in L%(0, T’ Hl(Q)),
wr — w* strongly in L*(0, T Ll( ) (VQ € Q) and a.e. in Qr,
22— 2 strongly in L(0,T; L' () (VQ € Q) and a.e. in Q7,
weakly in H*(0,T; Hl(Q)*)
(21)
as A tends to infinity.
Step 2. The relation G(u*,v*,w*) =0 holds.
Indeed set

Ge(u,v,w) = F(u,v)" —signt (w)F(u,v) ",
and define sign! as a nonincreasing approximation of the sign™ such that
1 if x>e¢,
signf(z) =¢ z/e if 0<x<e¢,
0 if x<0.
Recall that
Ge(u, h(w,t) + Su,w) = (u— f(z,t) g(x,t) - signt (w)(u - f(z,t))"g(x,t)
for all w,w > 0 and a.e. (z,t) € Qr. We can easily check that
0 < G.(u,h(x,t)+ gu,w)(u — f(z,t)) < G(u, h(z,t) + gu, w)(u— f(z,t)) (22)
for all u,w > 0 and a.e. (x,t) € Q7. We deduce that

T T
0< / <u)‘ — f Gg(u/\,v)‘,w)‘» < / <u>‘ — £, G, v wh)).
0 0

It follows from (15) and (21) that

T
/ (u* — f,Ge(u*,v*,w*)) = 0.
0

Therefore, G (u*,v*,w*) = 0 or u* = f a.e. Passing to the limit in &, we obtain
G(u*,v*,w*) = 0.
Step 3. Relationships between u*, v*, w* and z*.

If u* > f, then G(u*,v*, w*) = (u*— f)g = 0. Since g is positive, we have u* = f,
that is, z* = —aw* < 0. If u* < f, then G(u*,v*,w*) = sign™ (w*)(u* — f)g = 0.
Because u* # f and g # 0, we obtain sign™ (w*) = 0, which implies w* = 0. Thus,
z* = f —w* > 0. This yields the relations

*+7 U*:h+§f—éz*+
[ «

1 .-
ut=f—z and w* = —2"

o

Step 4. Characterization of z*.
If=t follows from the form of the initial condition for z* that

/OT<88'Z:7@>+/OT<Z>\_(f(O)—uo—ozwo),%f>:0 (23)

for all functions p € H(Q) with ¢(-,T) = 0. Passing to the limit along subse-
quences in (23) and integrating by parts yields z*(0) = f(0) —ug — qwg a.e. Letting
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A tend to infinity in (11), we observe that z* is the weak solution of the Stefan prob-
lem (SP). Since the weak solution of Problem (SP) is unique, the whole sequence
converges, which completes the proof. O

Since w? is uniformly bounded in L>(Q7), w* converges strongly in LP(Qr) for

all p > 1). Therefore, we deduce the following result from Lemma 3.2.

Corollary 1. Suppose that (H1) holds. Let (u,v*,w?) be the weak solution of
(P*) in which the function F is defined as in (2) with o € N, 3 =0 or with a = 1,
B8 =—1. Then,
uw— f—27F strongly in LP(Qr) (Vp > 1), a.e. in Qr
and weakly in L*(0,T; H*(Q)),
v = h+ gf - §Z+ strongly in LP(Qr) (Vp > 1), a.e. in Qr
' ' and weakly in L?(0,T; H*(Q)),
wh — éZ* strongly in LP(Qr) (Yp > 1) and a.e. in Qr
as X tends to infinity. Here, h and f are the functions defined in (3) and (H2),
respectively, and Z is the weak solution of Problem (SP).

5. Rate of convergence. We obtain convergence rates with respect to A under
some additional conditions.

Lemma 5.1. In addition to the hypothesis (H2), we suppose that

(H3) There exists a positive constant g such that g < g(x,t) for a.e. (z,t) € Qr.
Then the following estimate holds for all u € R and w > 0 and a.e. (z,t) € Qr.

() — u— aw)t — (f(a.t) —w)| < ; G (u Wz 1) + guw> ’ ,

All the examples stated in Section 1 satisfy the condition (H3).

Proof. We denote the left-hand-side by A and the right-hand-side by G. If f —u >
aw > 0, then it follows from the assumption that

1 1
A=|—-aw[<[f-u|l<-|(u—flg]=-G.
g 9
If f—u>aw=0, then
A=0=1g
g
If f —u < aw =0, then we have
1 1
«4=\u—f|=l(u—f)+|S§|(u—f)+g|=§g-

If f—u<awand w >0, then

A=lu— 1< - pg="La
g g

This completes the proof of Lemma 5.1. O

Theorem 5.2. Suppose that (H1)—(H3) are satisfied. Let (u*,v*,w) be the weak
solution of (P))‘ and let Z be the weak solution of (SP). Set 2* = f —u* —aw?. If
there is a positive constant M,, independent of A such that

||w’\||Loo(QT) < My, (24)
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then there exists a positive constant C independent of A such that

e = (F = 2 | agmy + [ — (h e 5z+>

«

L2(Qr)
I
L*>=(0,T;H'(Q))
aNG <h+5f-52*)>
0 o @ L= (0,T;H(Q))
A —1/2
]2 = 2l ey < CXT2 (25)

Proof. We define
e, =2"—Zand e, :=u — f+ 2+,
We deduce from (11) and (9) that

T T
[ (%) + [ vewvar—o (26)
0 ot 0
for all ¢ € HY(Qr) with (-, T) = 0. Take

to
/ eyu(s)ds for 0 <t < tg,
t
0 fortg <t < T,

(p(ﬂ?,t) =

where t( is an arbitrary point in (0,7"). Then we get

to 1 tO
f/ (ez,eu>+HV/ €u
0 2 0

‘We obtain the relation

/Ot()(emeu):/ot()( —Zut — f+ (2 / (A = F+21) (27)

By the assumption (24) and the lemmas 3.1, 3.3 and 5.1, we obtain the estimate

/00<z)\_Z7u)\_f+(z)\)+>

Since the function ()T is a Lipschitz continuous and nondecreasing function with
Lipschitz constant 1, the second term on the right-hand-side of (27) can be estimated
from below as

2

= 0.
L2(Q)

to
<C [t =+ ) ey <O

2
<Z ~7Z%) > H _Z+HL2(QtO)

v

1
S leulFain) = 1GN* = (F = M) aggn)

1 2
Z 35 leullz2q,,) — C/A-

Collecting these inequalities yields

|€u||L2(QT) + H/

From the relation (3), we obtain the desired estimate for v.

< C/A. (28)
(0,1 HL(Q))
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Let ¢ be a function belonging to H'(Q) and ¢y be an arbitrary point in (0, 7).
The function xs = xs(t) is defined as

1 tE[O,to—(S],
X(;(t): (t0+6—t)/26 tE(t0—57t0+(5>7
0 tE[to+5,T].

The function xs converges in L?(0,T)) to the characteristic function of (0, ). Taking
o(x,t) = ((x)xs(t) in (26), we obtain

1 to+9 T
s +/ Y6 (Vew, V) = 0.
to—9 0

Using the Lebesgue differentiation theorem and the Cauchy-Schwarz inequality, for
a.e. tg € (0,T) and for all ¢ € H(Q), we have

to to
/ <Veu,vc>‘ < Hv/ o
0 0

llezllzoe0,1:m1 (0)7) < CA”
which completes the proof. 0

[{e=(to), O)f <

¢l @) < CATY2(I¢ 11 () -
L2(Q)
Thus we get
1/2
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