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Abstract. In this paper we deal with a one-dimensional free boundary prob-
lem, which is a mathematical model for an adsorption phenomena appearing

in concrete carbonation process. This model was proposed in line of previous

studies of three dimensional concrete carbonation process. The main result in
this paper is concerned with the existence and uniqueness of a time-local solu-

tion to the free boundary problem. This result will be obtained by means of the

abstract theory of nonlinear evolution equations and Banach’s fixed point the-
orem, and especially, the maximum principle applied to our problem will play

a very important role to obtain the uniform estimate to approximate solutions.

1. Introduction. In this paper, we study a free boundary problem proposed in our
previous paper [8], as a mathematical model of an adsorption phenomena. In a study
of a concrete carbonation process it is a crucial step how to describe the relationship
between the humidity and the degree of saturation in an adsorption phenomena,
since the graph of these two parameters draws a hysteresis loop, for instance in
Maekawa-Ishida-Kishi [13] and Maekawa-Chaube-Kishi [12], Aiki-Kumazaki [1, 2,
3]. Now, a mathematical treatment of this kind of relationship is one of great
interests in a filed of modeling. In view of this, we here propose a free boundary
problem as a possible mathematical model to respond to the scientific interest.

First, we mention about the physical meaning of our free boundary problem.
We consider a drying and wetting process in a porous medium. In this research we
focus on one hole of the media and simplify the hole as a one-dimensional interval
[0, L]. Here, the boundary point 0 and L denote the bottom and top of the hole,
respectively. So, physically, it is supposed that the wall exists at x = 0, and the
air comes from the region {x > L} (see Figure 1). Also, the intervals [0, s(t)] and
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[s(t), L] indicate the water-drop (liquid) region and the air region in the hole (see
Figure 2), respectively, and u is the relative humidity in the pore which is distributed
in a space-time region, denoted by Qs(T ):

Qs(T ) := {(t, x) : 0 < t < T, s(t) < x < L)}.

Figure 1.

Figure 2.

On that basis, the curve s on [0, T ](0 < T < ∞) and function u on Qs(T )
are supposed to fulfill the following system (1.1) ∼ (1.6), which is denoted by
P:=P(s0, u0, g):

0 < s(t) < L for 0 ≤ t ≤ T, (1.1)

ρgut − κuxx = 0 in Qs(T ), (1.2)

u(t, L) = k(t) for 0 < t < T, (1.3)

s′(t) = α(s(t), u(t, s(t))) for 0 < t < T, (1.4)

κux(t, s(t)) = (ρa − ρgu(t, s(t)))s′(t) for 0 < t < T, (1.5)

s(0) = s0, u(x, 0) = u0(x) for s0 < x < L, (1.6)

where ρa is a constant of the density of the aqueous-H2O, ρg is a constant of the
amount of saturated water vapor, κ is a diffusion constant of water in air, α is a
Lipschitz continuous function on R2, k is a given boundary function on [0, T ], and
s0 and u0 are the initial data.

Here, we note that (1.2) and (1.5) are derived from the mass conservation law
for aqueous-H2O and near the free boundary, respectively. Also, in this study, the
relative humidity u is supposed to be measured in the outside region of the hole. This
supposition is expressed by the Dirichlet boundary condition (1.3) of our problem P.
Moreover, the free boundary condition (1.4) is based on the hypothesis mentioned
in [8]. More precisely, we suppose that the growth rate s′(t) of water-drop region is
determined by means of:

• u(t, s(t)), i.e. the relative humidity of gaseous-H2O at the free boundary,
• s(t), i.e. the distance involved in the attracting force between the wall and

the front of water-drop region.

Accordingly, the binary function α in (1.4) is to provide an input-output relation
between (s(t), u(t, s(t))) and s′(t).

Our problem is somehow similar to one-phase Stefan problems in a one-dimensi-
onal domain. With regard to one-phase Stefan problem, there are a lot of math-
ematical results. However, we will find certain differences between our problem P
and the Stefan type problems, in the conditions (1.4)-(1.5) on the free boundary.
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In fact, our conditions (1.4)-(1.5) do not impose any value constraint for u, for
instance u(t, s(t)) = 0 for t ∈ [0, T ], as in the classical Stefan problem. In addi-
tion, although Fasano and Primicerio dealt with a Stefan type problem under the
following generalized condition:{

u(t, s(t)) = F (t, s(t)),

ux(t, s(t)) = λ(t, s(t))s′(t) + µ(t, s(t)),
for t ∈ [0, T ],

with given continuous functions F , λ and µ,

(1.7)

the above (1.7) will not be to cover our conditions (1.4)-(1.5). In fact, the condition
(1.7) implies some kind of input-output relation between s and u, but meanwhile, the
relation as in (1.4)-(1.5) must be more interactive. From this aspect, our problem
P should be regarded as a separate type from the Stefan type.

On the other hand, the free boundary problems, including similar types of con-
ditions to (1.4), were already proposed and studied by Muntean and Böhm [14].
Furthermore, this previous work has been extended by Aiki and Muntean [4, 5, 6, 7]
to the mathematical studies of the existence and uniqueness (cf. [4]) and the large-
time behavior (cf. [5, 6, 7]). However, the problems treated in [4, 5, 6, 7] are also
different from ours in the point that the free boundary s = s(t) must be monotone
increasing in [4, 5, 6, 7], while it may not be so in our model. Hence, it should be
noted that the problem P is complicated comparing to the those as in the previous
works.

Now, the aim in this paper is to verify the solvability of the free boundary
problem P. Based on this, we assume the smallness of the density of gaseous-H2O,
and prove the main theorem concerned with the existence and uniqueness of a time-
local solution to P. The main theorem will be proved by means of the abstract theory
for evolution equations governed by time-dependent subdifferentials and Banach’s
fixed-point theorem, and especially, the maximal principle for the humidity u will
be a main tool to obtain the uniform estimates for approximate solutions.

2. Main result. We begin with assumption for given data α, ρa, ρg and k.

(A1) α ∈ C1(R2) and ∂α
∂s are Lipschitz continuous with the (common) Lipschitz

constant Cα and it holds that∣∣∣ ∂α
∂s

(s, u)
∣∣∣ ≤ Cα and

∂α

∂u
(s, u) ≥ δ0 for (s, u) ∈ R2,

where δ0 is a positive constant, and for any s ∈ R
α(s, u) ≥ 0 if u ≥ 1 and α(s, u) ≤ 0 if u ≤ 0.

For simplicity, we put

C0
α = sup{|α(s, u)| : 0 ≤ s ≤ L, 0 ≤ u ≤ 1}.

(A2) ρa and ρg are positive constants such that:

ρa > ρg and ρaδ0 − ρg(Cα + C0
α) ≥ 0.

Accordingly, it holds that

−ρgα(s, u) + ρaδ0 − ρg
∂α

∂u
(s, u) ≥ 0 for 0 ≤ s ≤ L, 0 ≤ u ≤ 1.

(A3) k ∈W 1,2(0, T ) and 0 ≤ k ≤ k∗ ≤ 1 on [0, T ], where k∗ is a positive constant.
(A4) s0 ∈ (0, L) and u0 ∈ H1(s0, L) with u0(L) = k(0), 0 ≤ u0 ≤ u∗ on [s0, L],

were u∗ is a positive constant.
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Definition 2.1. Let s and u be functions on [0, T ′] and Qs(T
′), respectively, for

0 < T ′ ≤ T . We call that a pair {s, u} is a solution of P on [0, T ′] if the conditions
(S) and (1.2) ∼ (1.6) hold:

(S) s ∈W 1,∞(0, T ′), 0 < s < L on [0, T ′], u ∈ L∞(Qs(T
′)), ut, uxx ∈ L2(Qs(T

′)),
the function t ∈ (0, T ′) 7→ |ux(·, t)|L2(s(t),L) ∈ [0,∞) is bounded.

In order to handle solutions of P easily, we consider the problem in a cylindrical
domain obtained by change of variables. Let ũ(t, y) := u(t, (1 − y)s(t) + Ly) for
(t, y) ∈ Q(T ) := (0, T )× (0, 1). Then it hold that

0 < s(t) < L for 0 ≤ t ≤ T,

ρgũt −
κ

(L− s)2
ũyy =

ρg(1− y)s′

L− s
ũy in Q(T ), (2.1)

ũ(t, 1) = k(t) for 0 < t < T, (2.2)

s′(t) = α(s(t), ũ(t, 0)) for 0 < t < T, (2.3)
κ

L− s(t)
ũy(t, 0) = (ρa − ρgũ(t, 0))s′(t) for 0 < t < T, (2.4)

s(0) = s0, (2.5)

ũ(0, y) = ũ0(y) for 0 ≤ y ≤ 1, (2.6)

where ũ0(y) = u0((1− y)s0 + Ly) for 0 ≤ y ≤ 1.
Then, obviously, we obtain the following set of conditions (S’1) and (S’2) which

is equivalent to Definition 2.1:

(S’1) s ∈W 1,∞(0, T ′), 0 < s < L on [0, T ′], ũ ∈W 1,2(0, T ′;L2(0, 1))∩
L∞(0, T ′;H1(0, 1)) ∩ L∞(Q(T ′)) ∩ L2(0, T ′;H2(0, 1)).

(S’2) (2.1) ∼ (2.6) hold.

Here, we introduce the following notations related to some function spaces:
We put H := L2(0, 1), V (T ) = L∞(0, T ;H) ∩ L2(0, T ;H1(0, 1)), and |z|V (T ) =
|z|L∞(0,T ;H) + |zy|L2(0,T ;H) for z ∈ V (T ). As easily checked, V (T ) is a Banach space
with the norm | · |V (T ).

Our main result of this paper is concerned with the existence and uniqueness of
a time-local solution to P.

Theorem 2.2. Let T > 0. If (A1) ∼ (A4) hold, k∗ ≤ 1 and u∗ ≤ 1 then there exists
T ′ ∈ (0, T ] such that P has a unique solution {s, u} on [0, T ′] and 0 ≤ u(t) ≤ 1 on
[s(t), L] for t ∈ (0, T ′].

Remark 1. Due to (A2), the value of the density ρg of aqueous-H2O must be
much smaller than that of the amount ρa of saturated water vapor. Meanwhile, at
the temperature 30◦C, the values of these constants are experimentally known that
ρa = 1.0 × 106 (g/m3) and ρg = 30.3 (g/m3), respectively. Moreover, we suppose
that both Cα and C0

α are not too large, for instance, Cα + C0
α ≤ 100. Thus the

condition (A2) can be said as a reasonable assumption from physical point of view.
Also, u indicates the humidity so that the assumption k∗ ≤ 1 and u∗ ≤ 1 and the
assertion u ≤ 1 should be quit natural.

3. Auxiliary lemmas. In this section for given s ∈ C([0, T ]) with 0 < s < L
on [0, T ] we consider the following initial boundary value problem, denoted by



A ONE DIMENSIONAL FREE BOUNDARY PROBLEM 659

AP1=AP1(ũ0, s, f, k):

ρgũt −
κ

(L− s)2
ũyy = f in Q(T ), (3.1)

ũ(t, 1) = k(t) for 0 < t < T, (3.2)
κ

L− s(t)
ũy(t, 0) = (ρa − ρgσ(ũ(t, 0)))α(s(t), σ(ũ(t, 0))) for 0 < t < T, (3.3)

ũ(0, y) = ũ0(y) for 0 ≤ y ≤ 1, (3.4)

where f and ũ0 are given functions on Q(T ) and [0, 1], respectively, and

σ(u) :=

{
1 if u ≥ 1,
u if u < 1.

In order to solve this problem we introduce a family {ϕt}t∈[0,T ] of time-dependent
functionals ϕt : H → R ∪ {∞} for t ∈ [0, T ], defined as follows: For t ∈ [0, T ],

ϕt(u) :=


κ

2(L− s(t))2

∫ 1

0

|uy|2dy + bt(u(1)) +
1

L− s(t)
b̂σ(s(t), u(0))

if u ∈ H1(0, 1) and u(1) = k(t),
+∞ otherwise,

where

bt(r) =

{
0 if r = k(t),
+∞ otherwise,

for r ∈ R,

b̂σ(s, r) =

∫ r

0

bσ(s, ξ)dξ and bσ(s, r) = (ρa − ρgσ(r))α(s, σ(r)) for (s, r) ∈ R2.

Clearly, for each t ∈ [0, T ] the effective domain D(ϕt) of ϕt is given by D(ϕt) =
{u ∈ H1(0, 1) : u(1) = k(t)}. Also, the function ϕt(·) is often denoted by ϕt(s, ·) as
appropriate.

The first lemma gives some useful inequalities concerned with b̂σ and ϕt.

Lemma 3.1. (1) If (A1) and (A2) hold, then

| ∂∂sbσ(s, u)| ≤ C ′α(1 + |u|) for (s, u) ∈ R2, (3.5)

| ∂∂s b̂σ(s, u)| ≤ C ′α(1 + u2) for (s, u) ∈ R2, (3.6)

b̂σ(s, u) ≥ −C ′α|u| for 0 ≤ s ≤ L, u ∈ R, (3.7)

where C ′α = max{(ρa + ρg)Cα, ρaC
0
α}.

(2) If (A1) ∼ (A3) hold and s ∈W 1,2(0, T ) with 0 < s < L on [0, T ], then there
exist positive constants C0 and C1 depending only on s, ρa, ρg, Cα, L, κ and k∗

such that

|u(0)|2 ≤ C0ϕ
t(u) + C1

1

L− s(t)
|b̂σ(s(t), u(0))| ≤ C0ϕ

t(u) + C1

κ

(L− s(t))2
|uy|2H ≤ C0ϕ

t(u) + C1

 for u ∈ D(ϕt) and t ∈ [0, T ].

Proof. (1) Let s ∈ R. Since |σ(u)| ≤ |u| for u ∈ R, (3.5) immediately follows from
(A1). By using (3.5) and (A1), it is easy to obtain (3.6).

If u ≤ 0, then (A1) implies that b̂σ(s, u) ≥ 0. Otherwise,

b̂σ(s, u) ≥ −C0
α

∫ u

0

|ρa − ρgσ(ξ)|dξ.
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Since ρa − ρgσ(ξ) ≥ ρa − ρg > 0 for ξ ∈ [0, u], we have b̂σ(s, u) ≥ −C0
αρau. Thus

(3.7) is true.
(2) Let s ∈ W 1,2(0, T ) with 0 < s < L on [0, T ], t ∈ [0, T ], δs > 0 satisfying

s ≤ L− δs on [0, T ], and u ∈ D(ϕt). Then by (3.7) it is easy to see that

|u(0)|2 =

∣∣∣∣∫ 1

0

uydy + u(1)

∣∣∣∣2
≤ 2(|uy|2H + |k(t)|2)

≤ 4L2

κ

(
ϕt(u)− 1

L− s(t)
b̂σ(s(t), u(0))

)
+ 2k2∗

≤ 4L2

κ

(
ϕt(u) +

C ′α
δs
|u(0)|

)
+ 2k2∗.

Here, by applying the Young inequality we obtain

1

2
|u(0)|2 ≤ 4L2

κ
ϕt(u) + 8

(
L2C ′α
κδs

)2

+ 2k2∗. (3.8)

Thus we proved the first inequality of (2).
Next, we note the following facts: If a ≥ −b for a, b ∈ R with b ≥ 0, then

|a| ≤ a+ 2b. This together with (3.7) shows that

1

L− s(t)
|b̂σ(s(t), u(0))| ≤ 1

L− s(t)

(
b̂σ(s(t), u(0)) + 2C ′α|u(0)|

)
≤ ϕt(u) +

2C ′α
δ
|u(0)|. (3.9)

(3.9) and (3.8) imply the second inequality of (2). Also, we can prove the third
inequality of (2) in a similar way to the above inequalities.

The following lemma guarantees the well-posedness of AP1.

Lemma 3.2. If (A1) ∼ (A3) hold, s ∈ W 1,2(0, T ) with 0 < s < L on [0, T ],
f ∈ L2(0, T ;H) and ũ0 ∈ H1(0, 1) with ũ0(1) = k(0), then AP1(ũ0, s, f, k) has a
unique solution ũ ∈W 1,2(0, T ;H)∩L∞(0, T ;H1(0, 1)) in the usual sense. Moreover,
the function t→ ϕt(û(t)) is absolutely continuous on [0, T ].

Proof. First, for each r ∈ [0, L], (A1) implies that bσ(r, ·) is monotone increasing
on R. Clearly, for each t ∈ [0, T ] ϕt is a proper l.s.c convex function, ∂ϕt is single
valued, w∗ = ∂ϕt(u) if and only if w∗ ∈ H and

w∗ = − κ

(L− s(t))2
uyy on (0, 1),

u(1) = k(t),
κ

(L− s(t))
uy(0) = bσ(s(t), u(0)),

and there exists a positive constant C, depending on min{L− s(t) | t ∈ [0, T ]} > 0,
such that for each t1, t2 ∈ [0, T ] with t1 ≤ t2 and for any u ∈ D(ϕt1) there exists
û ∈ D(ϕt2) such that

|u− û|H ≤ |k(t1)− k(t2)|(1 + |ϕt1(u)| 12 )

and

|ϕt2(û)− ϕt1(u)| ≤ C(|s(t1)− s(t2)|+ |k(t1)− k(t2)|)(1 + |ϕt1(u)|).
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In fact, by putting û = u + k(t2) − k(t1) and applying Lemma 3.1 we can show
these two inequalities. Then, the theory of evolution equation governed by time-
dependent subdifferentials, for instance [11, Theorems 1.1.2 and 1.5.1], implies the
existence of ũ ∈ W 1,2(0, T ;H) such that ϕ(·)(ũ(·)) ∈ L∞(0, T ), t → ϕt(ũ(t)) is
absolutely continuous on [0, T ] and

ρgũt(t) + ∂ϕt(ũ(t)) = f(t) in H for a.e. t ∈ (0, T ). (3.10)

This ũ is a unique solution of AP1(ũ0, s, f, k) on [0, T ].

The next lemma is a direct result of Lemma 3.2.

Lemma 3.3. If (A1) ∼ (A3) hold, s ∈ W 1,∞(0, T ) with 0 < s < L on [0, T ], f ∈
L2(0, T ;H1(0, 1)) and ũ0 ∈ H1(0, 1) with ũ0(1) = k(0), then AP1(ũ0, s,

ρg(1−y)s′
L−s fy,

k) has a unique solution ũ ∈W 1,2(0, T ;H) ∩ L∞(0, T ;H1(0, 1)) on [0, T ].

Next, we shall solve the initial boundary value problem AP2(ũ0, s, k) :=
{(2.1), (2.2), (3.11), (2.6)},

κ

L− s(t)
ũy(t, 0) = bσ(s(t), ũ(t, 0)) for 0 < t < T. (3.11)

Lemma 3.4. If (A1) ∼ (A3) hold, s ∈ W 1,∞(0, T ) with 0 < s < L on [0, T ]
and ũ0 ∈ H1(0, 1) with ũ0(1) = k(0), then AP2(ũ0, s, k) has a unique solution
ũ ∈W 1,2(0, T ;H) ∩ L∞(0, T ;H1(0, 1)) on [0, T ].

Proof. By Lemma 3.3 for any f ∈ V (T ) there exists a solution ũ ∈ V (T ) of

AP1(ũ0, s,
ρg(1−y)s′
L−s fy, k) on [0, T ]. Then we can define a solution operator ΓT :

V (T ) → V (T ), by putting ΓT (f) = ũ. Besides, let us set fi ∈ V (T ), ũi = ΓT (fi)
for i = 1, 2, and ũ = ũ1 − ũ2.

By multiplying the difference of the first equations of AP1(ũ0, s,
ρg(1−y)s′
L−s (fi)y, k)

for i = 1, 2 by ũ and integrating it we observe that

ρg
2

d

dt
|ũ(t)|2H +

κ

(L− s(t))2

∫ 1

0

|ũy(t, y)|2dy

= − 1

L− s(t)
(bσ(s(t), ũ1(t, 0))− bσ(s(t), ũ2(t, 0)))ũ(t, 0)

+
ρgs
′(t)

L− s(t)

∫ 1

0

(1− y)(f1(t, y)− f2(t, y))yũ(t, y)dy for a.e. t ∈ (0, T ).

From the monotonicity of bσ(s, σ(·)) it follows that

ρg
2

d

dt
|ũ(t)|2H +

κ

(L− s(t))2
|ũy(t)|2H

≤
ρg|s′|L∞(0,T )

δs
|(f1 − f2)y(t)|H |ũ(t)|H for a.e. t ∈ (0, T ), (3.12)

where δs is a positive constant such that L− s ≥ δs on [0, T ].
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Hence, by integrating both sides of the inequality on [0, t1], 0 < t1 < T , we have

ρg
2
|ũ(t1)|2H +

κ

L2

∫ t1

0

|ũy(t)|2Hdt

≤
ρg|s′|L∞(0,T )

δ
|ũ|L∞(0,t1;H)

∫ t1

0

|(f1 − f2)y(t)|Hdt

≤
ρgt

1
2
1 |s′|L∞(0,T )

δ
|ũ(t)|V (t1)|f1 − f2|V (t1) for t ∈ [0, t1].

Then by putting ν := min{ρg2 ,
κ
L2 } we have

ν|ũ|V (T0) ≤
ρgT

1
2
0 |s′|L∞(0,T )

δ
|f1 − f2|V (T0) for 0 < T0 ≤ T.

Hence, since we find a small constant 0 < T0 ≤ T such that ΓT0
is the contraction

mapping, Banach’s fixed point theorem implies that AP2(ũ0, s, k) has a unique
solution ũ on [0, T0]. Clearly, the choice of T0 is independent of initial values so
that we have proved this lemma.

In Lemma 3.5 we can relax the condition for s to have a solution of AP2(ũ0, s, k).

Lemma 3.5. If (A1) ∼ (A3), s ∈ W 1,2(0, T ) with 0 < s < L on [0, T ], ũ0 ∈
H1(0, 1) with ũ0 ≥ 0 on [0, 1] and ũ0(1) = k(0), then AP2(ũ0, s, k) has a unique
solution on [0, T ].

Proof. Choose a sequence {sn} ⊂W 1,∞(0, T ) and 0 < δ < L satisfying L− sn ≥ δ
on [0, T ] for each n and sn → s in W 1,2(0, T ) as n→∞, and put ϕtn(·) = ϕt(sn, ·).
By Lemma 3.4 we can take a sequence {ũn} of the solutions ũn to AP2(ũ0, sn, k)
on [0, T ], for n ∈ N. Then on account of Lemma 3.2 the function t → ϕtn(ũn(t))
is absolutely continuous on [0, T ] so that the function t → κ

(L−sn(t))2 |ũny(t)|2H is

continuous on [0, T ]. For a.e. t ∈ (0, T ), let h > 0 with t−h > 0. We multiply (2.1)

by ũn(t)−ũn(t−h)
h =: Unh(t). Then by integration by parts we have

ρg

∫ 1

0

(ũn)t(t)Unh(t)dy +
κ

(L− sn(t))2

∫ 1

0

(ũn)y(t)(Unh)y(t)dy

− κ

(L− sn(t))2
(ũn)y(t, 1)Unh(t, 1) +

κ

(L− sn(t))2
(ũn)y(t, 0)Unh(t, 0)

(
=:

4∑
i=1

Iih(t)
)

=

∫ 1

0

(1− y)s′n(t)

L− sn(t)
(ũn)y(t)Unh(t)dy (=: I5h(t)) for a.e. t ∈ (0, T ).

It is easy to see that

lim
h↓0

I1h(t) = ρg|(ũn)t(t)|2H , lim
h↓0

I3h(t) = − κ

(L− sn(t))2
(ũn)y(t, 1)k′(t),

and

lim
h↓0

I5h(t) =

∫ 1

0

(1− y)s′n(t)

L− sn(t)
(ũn)y(t)(ũn)t(t)dy
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for a.e. t ∈ (0, T ). Also, we have

I2h(t) ≥ κ

2h(L− sn(t))2
(|(ũn)y(t)|2H − |(ũn)y(t− h)|2H

=
1

2h

(
κ

(L− sn(t))2
|(ũn)y(t)|2H −

κ

(L− sn(t− h))2
|(ũn)y(t− h)|2H

)
− κ

2h

(
1

(L− sn(t))2
− 1

(L− sn(t− h))2

)
|(ũn)y(t− h)|2H ,

and

I4h(t)

≥ 1

h

(
1

L− sn(t)
b̂σ(sn(t), ũn(t, 0))− 1

L− sn(t− h)
b̂σ(sn(t− h), ũn(t− h, 0))

)
− 1

h

1

L− sn(t)

(
b̂σ(sn(t), ũn(t− h, 0))− b̂σ(sn(t− h), ũn(t− h, 0))

)
for a.e. t ∈ (0, T ). Then we observe that

I2h(t) + I4h(t)

≥ 1

h
(ϕtn(ũn(t))− ϕt−hn (ũn(t− h)))

− κ

2h

(
1

(L− sn(t))2
− 1

(L− sn(t− h))2

)
|(ũn)y(t− h)|2H

− 1

h

1

L− sn(t)

(
b̂σ(sn(t), ũn(t− h, 0))− b̂σ(sn(t− h), ũn(t− h, 0))

)
for a.e. t ∈ (0, T ). Here, Lemma 3.2 implies that

lim inf
h↓0

(I2h(t) + I4h(t))

≥ d

dt
ϕtn(ũn(t)) +

κs′n(t)

(L− sn(t))3
|ũny(t)|2H −

s′n(t)

L− sn(t)

∂b̂σ
∂s

(sn(t), ũn(t, 0))

for a.e. t ∈ (0, T ). From the above calculations it follows that

ρg|(ũn)t(t)|2H +
d

dt
ϕtn(ũn(t))

≤ κ|s′n(t)|
(L− sn(t))3

|(ũn)y(t)|2H +
|s′n(t)|

L− sn(t)

∣∣∣∣∣∂b̂σ∂s (sn(t), ũn(t, 0))

∣∣∣∣∣
+

κ

(L− sn(t))2
(ũn)y(t, 1)k′(t) +

|s′n(t)|
L− sn(t)

|(ũn)y(t)|H |(ũn)t(t)|H

=:

4∑
i=1

Ji(t) for a.e. t ∈ (0, T ).

By Lemma 3.2 we have

J1(t) ≤ |s
′
n(t)|
δ

(C0ϕ
t
n(ũn(t)) + C1),

J2(t) ≤ C ′α|s′n(t)|
L− sn(t)

(1 + |ũn(t, 0)|2)

≤ C ′α|s′n(t)|
δ

(C0ϕ
t
n(ũn(t)) + C1 + 1),
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and

J4(t) ≤ |s′n(t)|
L− sn(t)

|(ũn)y(t)|H |(ũn)t(t)|H

≤ ρg
4
|(ũn)t(t)|2H +

|s′n(t)|2

ρg(L− sn(t))2
|(ũn)y(t)|2H

≤ ρg
4
|(ũn)t(t)|2H +

|s′n(t)|2

ρgκ
(C0ϕ

t
n(ũn(t)) + C1) for a.e. t ∈ (0, T ).

Since |(ũn)y(t, 1)| ≤ |(ũn)yy(t)|H + |(ũn)y(t)|H , it holds that

|(ũn)y(t, 1)| ≤ ρg
κ
|(ũn)t(t)|H +

1

κ

∣∣∣ s′n(t)

L− sn(t)
(ũn)y(t)

∣∣∣
H

so that

J3(t) ≤ ρg
4
|(ũn)t(t)|2H +

|s′n(t)|2

κ

κ

(L− sn(t))2
|(ũn)y(t)|2H

+
κ

2(L− sn(t))2
|(ũn)y(t)|2H +

( ρg
δ4

+
1

2δ4
+

κ

2δ4

)
|k′(t)|2

≤ ρg
4
|(ũn)t(t)|2H +

( |s′n(t)|2

κ
+ 1

)
(C0ϕ

t
n(ũn(t)) + C1)

+
( ρg
δ4

+
1

2δ4
+

κ

2δ4

)
|k′(t)|2 for a.e. t ∈ (0, T ).

Here, we applied Lemma 3.2, again.
Accordingly, there exists a positive constant C5 independent of n such that

ρg
2
|(ũn)t(t)|2H +

d

dt

(
ϕtn(ũn(t)) +

C1

C0

)
≤ C5{(1 + |s′n(t)|2)(C0ϕ

t
n(ũn(t)) + C1) + |k′(t)|2} for a.e. t ∈ (0, T ). (3.13)

Hence, Gronwall’s inequality guarantees that the sequence {un} is bounded in
W 1,2(0, T ;H) and L∞(0, T ;H1(0, 1)). Then we can take a subsequence {nj} of
{n} and ũ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;H1(0, 1)) such that ũnj

→ ũ weakly in

W 1,2(0, T ;H), weakly* in L∞(0, T ;H1(0, 1)), and in C(Q(T )) as j → ∞. It is
obvious that ũ is a solution of AP2(ũ0, s, k) on [0, T ].

The uniqueness is easily obtained from (3.12), Schwartz’s inequality and Gron-
wall’s inequality.

4. The local existence in time. The aim of this section is to prove Theorem 2.2
and we always assume (A1) ∼ (A4) throughout this section.

First, for T > 0 and 0 < s0 < L′ < L we put S(T, s0, L
′) := {s ∈ W 1,2(0, T ) :

0 ≤ s ≤ L′ on [0, T ], s(0) = s0}. Let s ∈ S(T, s0, L
′) and ũ be a solution of

AP2(ũ0, s, k) on [0, T ]. Here, we define the operators Φ : S(T, s0, L
′) → V (T ) and

ΛT : S(T, s0, L
′)→W 1,2(0, T ) by Φs = ũ and [ΛT s](t) :=

∫ t
0
α(s(τ), ũ(τ, 0))dτ + s0

for t ∈ [0, T ] and s ∈ S(T, s0, L
′), respectively. Moreover, for any M > 0 we put

SM (T ) := SM (T, s0, L
′) := {s ∈ S(T, s0, L

′) : |s|W 1,2(0,T ) ≤M}.

Lemma 4.1. For M > 0 and T > 0 there exists a positive constant K0(T,M)
such that

|Φs|W 1,2(0,T ;H) + |Φs|L∞(0,T ;H1(0,1)) ≤ K0(T,M) for any s ∈ SM (T ).

This lemma is a direct consequence of (3.13).
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Lemma 4.2. For 0 < s0 < L′ < L and M > 0 there exists a positive constant
T1 ≤ T such that ΛT1 : SM (T1)→ SM (T1) and it becomes a contraction mapping
on the closed subset SM (T1) in W 1,2(0, T1).

Proof. For T > 0 let s ∈ SM (T, s0, L
′) and ũ = Φs. Lemma 4.1 guarantees the

existence of a positive constant C∗ such that

|α(s(t), ũ(t, 0))| ≤ C∗ for 0 ≤ t ≤ T.

Accordingly, |[ΛT s](t) − s0| ≤ C∗t for 0 ≤ t ≤ T . Then because of 0 < s0 < L′ we
can take T0 ∈ (0, T ] such that ΛT0 : SM (T0)→ SM (T0).

Next, for si ∈ SM (T ) let ũi = Φsi, i = 1, 2, ũ := ũ1 − ũ2, s = s1 − s2 and
δ = L − L′. Multiplying the both sides of the difference between the governing
equations (2.1) for ũi, i = 1, 2, and integrating the result over (0, 1), we have

ρg
2

d

dt
|ũ(t)|2H −

∫ 1

0

(
κ

(L− s1(t))2
(ũ1)yy(t)− κ

(L− s2(t))2
(ũ2)yy(t)

)
ũ(t)dy

= ρg

∫ 1

0

(
(1− y)s′1(t)

L− s1(t)
(ũ1)y(t)− (1− y)s′2(t)

L− s2(t)
(ũ2)y(t)

)
ũ(t)dy (4.1)

for a.e. t ∈ (0, T ). On the second term of the left hand side of (4.1), applying the
integration by part yields that

( the second term of the left hand side)

=

∫ 1

0

(
κ

(L− s1(t))2
(ũ1)y(t)− κ

(L− s2(t))2
(ũ2)y(t)

)
ũy(t)dy

+

(
κ

(L− s1(t))2
(ũ1)y(t, 0)− κ

(L− s2(t))2
(ũ2)y(t, 0)

)
ũ(t, 0)

=: I1(t) + I2(t) for a.e. t ∈ (0, T ).

On account of Lemma 4.1 it clearly holds that

I1(t) =
κ

(L− s1(t))2
|ũy(t)|2H

+

∫ 1

0

( κ

(L− s1(t))2
− κ

(L− s2(t))2

)
(ũ2)y(t)ũy(t)dy(=: I1,2(t)),

|I1,2(t)| ≤ 2κL|s(t)|
δ2(L− s1(t))2

|(ũ2)y(t)|H |ũy(t)|H

≤
∫ 1

0

κ

8(L− s1(t))2
|ũy(t)|2dy +

8κL2|s(t)|2

δ4
K0(T,M)2,

I2(t) =
( 1

L− s1(t)
− 1

L− s2(t)

)
bσ(s2(t), ũ2(t, 0))ũ(t, 0)

+
1

L− s1(t)
(bσ(s1(t), ũ1(t, 0))− bσ(s2(t), ũ1(t, 0))ũ(t, 0)

+
1

L− s1(t)
(bσ(s2(t), ũ1(t, 0))− bσ(s2(t), ũ2(t, 0)))ũ(t, 0)

=: I2,1(t) + I2,2(t) + I2,3(t) for a.e. t ∈ (0, T ).
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Because of the monotonicity of bσ(s2(t), ·), we have I2,3(t) ≥ 0 for a.e. t ∈ (0, T ).
Also, from (A1) and Lemma 3.1 it follows that

|I2,1(t)|+ |I2,2(t)|

≤ C ′α(1 + |ũ2(t, 0)|)
(L− s1(t))(L− s2(t))

|s(t)||ũ(t, 0)|+ C ′α(1 + |ũ1(t, 0)|)
L− s1(t)

|s(t)||ũ(t, 0)|

≤ C ′α(1 +K0(T,M))

L− s1(t)

( 1

δ
+ 1

)
|s(t)||ũy(t)|H

≤ κ

4(L− s1(t))2
|ũy(t)|2H +

1

κ

( 1

δ
+ 1

)2 (
C ′α(1 +K0(T,M))

)2 |s(t)|2
for a.e. t ∈ (0, T ).

Next, we consider the right hand side of (4.1) as follows:

( the right hand side)

= ρg

∫ 1

0

(1− y)s′1(t)

L− s1(t)
ũy(t)ũ(t)dy + ρg

∫ 1

0

(1− y)s′(t)

L− s1(t)
(ũ2)y(t)ũ(t)dy

+ρg

∫ 1

0

( (1− y)

L− s1(t)
− (1− y)

L− s2(t)

)
s′2(t)(ũ2)y(t)ũ(t)dy

=: I3(t) + I4(t) + I5(t) for a.e. t ∈ (0, T )

so that

I3(t) ≤ κ

8(L− s2(t))2
|ũy(t)|2H +

2ρ2g
κ
|s′1(t)|2|ũ(t)|2H ,

I4(t) ≤ ρg
2δ

(K0(T,M)2|s′(t)|2 + |ũ(t)|2H)

and

I5(t) ≤ ρg
2δ2

(K0(T,M)2|s(t)|2 + |s′2(t)|2|ũ(t)|2H) for a.e. t ∈ (0, T ).

Then we see that there exists a positive constant B2 such that for a.e. t ∈ (0, T ),

ρg
2

d

dt
|ũ(t)|2H +

κ

2(L− s1(t))2
|ũy(t)|2H ≤ B2(F1(t) + F2(t)|ũ(t)|2H), (4.2)

where F1(t) = |s(t)|2 + |s′(t)|2 and F2(t) = |s′1(t)|2 + |s′2(t)|2 + 1. By applying
Gronwall’s inequality to (4.2) we have

ρg
2
|ũ(t)|2H +

κ

L2

∫ t

0

|ũy(τ)|2Hdτ ≤ B2

∫ t

0

F1(τ)dτ exp(B2

∫ t

0

F2(τ)dτ)

≤ B3

∫ t

0

|s′(t)|2dτ for t ∈ [0, T ], (4.3)

where B3 = B2(1 + T 2) exp(B2(T + 2M2)). Moreover, since

|ũ1(t, 0)− ũ2(t, 0)|2 ≤
∣∣∣∣∫ 1

0

∂

∂y
(|ũ(t, y)|2)dy

∣∣∣∣
≤ 2

∫ 1

0

|ũy(t, y)||ũ(t, y)|dy

≤ 2|ũy(t)|H |ũ(t)|H for a.e. t ∈ (0, T ),
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we infer that for 0 < T1 ≤ T0,

|(ΛT1s1)′ − (ΛT1s2)′|L2(0,T1)

≤ |α(s1, ũ1(·, 0))− α(s2, ũ2(·, 0))|L2(0,T1)

≤ Cα|s|L2(0,T1) + Cα|ũ1(·, 0)− ũ2(·, 0)|L2(0,T1)

≤ CαT1|s′|L2(0,T1) +
√

2Cα

(∫ T1

0

|ũy|H |ũ|Hdt
)1/2

.

For any ε > 0 (4.3) leads to

|(ΛT1s1)′ − (ΛT1s2)′|L2(0,T1)

≤ CαT1|s′|L2(0,T1) + ε|s|W 1,2(0,T1) +
B4

ε

√
T1|s|W 1,2(0,T1),

where B4 is some positive constant. From this estimate it follows that

|(ΛT1
s1)− (ΛT1

s2)|L2(0,T1)

≤ T1((CαT1 + ε)|s|W 1,2(0,T1) +
B4

ε

√
T1|s|W 1,2(0,T1)).

Hence, by taking ε > 0 with ε ≤ 1
2 , it will be observed that for some small T1 ∈

(0, T0], ΛT1 will be a contraction on the closed subset SM (T1) in W 1,2(0, T1).

We note that Banach’s fixed point theorem leads to the well-posedness of the sys-
tem AP3 = AP3(s0, ũ0, k) =: {(2.1) ∼ (2.3), (3.11), (2.5), (2.6)} with (S’1). Namely,
we have:

Proposition 4.3. There exists a positive number 0 < T ′ ≤ T such that AP3(s0, ũ0,
k) has a unique solution {s, u} on [0, T ′].

Next, we shall prove the positivity and the boundedness of a solution to AP3(s0,
ũ0, k).

Lemma 4.4. If {s, u} is a solution of AP3(s0, ũ0, k) on [0, T ], k∗ ≤ 1 and u∗ ≤ 1,
then 0 ≤ u ≤ 1 on Qs(T ).

Proof. First, we easily obtain that (1.2) ∼ (1.5) hold. Then we multiply (1.2) by
[u− 1]+ and observe that

ρg
2

d

dt

∫ L

s(t)

|[u(t)− 1]+|2dx

= κ

∫ L

s(t)

uxx(t)[u(t)− 1]+dx− ρg
2
s′(t)|[u(t, s(t))− 1]+|2

= −κ|[u(t)− 1]+x |2H − (ρa − ρgσ(u(t, s(t))))s′(t)|[u(t, s(t))− 1]+|2 (4.4)

−ρg
2
s′(t)|[u(t, s(t))− 1]+|2 for a.e. t ∈ [0, T ].

Here, it holds that 1
2
d
dt

∫ L
s
|[u − 1]+|2dx ≤ 0 a.e. on [0, T ]. In fact, by (A2)

ρa − ρgσ(u(·, s)) ≥ 0 and by (A1) it holds that s′|[u(·, s)− 1]+|2 ≥ 0 a.e. on [0, T ].
Hence, we conclude that u ≤ 1 on Qs(T ), namely, ũ ≤ 1 on Q(T ).
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Similarly to (4.4), we have

ρg
2

d

dt

∫ L

s

|[−u]+|2dx

= −κ
∫ L

s

|[−u]+x |2dx+ (ρa − ρgσ(u(·, s)))s′|[−u(·, s)]+|2

+
ρg
2
s′|[−u(·, s)]+|2 a.e. on (0, T ).

From the above argument it follows that u(t, x) ≥ 0 for a.e. (t, x) ∈ Qs(T ). Thus
we have proved this lemma.

Proof of Theorem of 2.2. Proposition 4.3 guarantees the existence of a solution
{s, ũ} of AP3(s0, ũ0, k) on [0, T ′] for some 0 < T ′ ≤ T . Here, by Lemma 4.4
we have 0 ≤ ũ(t, 0) ≤ 1 for 0 ≤ t ≤ T ′. Therefore, {s, ũ} must be a solution of P
on [0, T ′]. Thus, we obtain our main result.
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