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ABSTRACT. In this paper we deal with a one-dimensional free boundary prob-
lem, which is a mathematical model for an adsorption phenomena appearing
in concrete carbonation process. This model was proposed in line of previous
studies of three dimensional concrete carbonation process. The main result in
this paper is concerned with the existence and uniqueness of a time-local solu-
tion to the free boundary problem. This result will be obtained by means of the
abstract theory of nonlinear evolution equations and Banach’s fixed point the-
orem, and especially, the maximum principle applied to our problem will play
a very important role to obtain the uniform estimate to approximate solutions.

1. Introduction. In this paper, we study a free boundary problem proposed in our
previous paper [8], as a mathematical model of an adsorption phenomena. In a study
of a concrete carbonation process it is a crucial step how to describe the relationship
between the humidity and the degree of saturation in an adsorption phenomena,
since the graph of these two parameters draws a hysteresis loop, for instance in
Maekawa-Ishida-Kishi [13] and Maekawa-Chaube-Kishi [12], Aiki-Kumazaki [1, 2,
3]. Now, a mathematical treatment of this kind of relationship is one of great
interests in a filed of modeling. In view of this, we here propose a free boundary
problem as a possible mathematical model to respond to the scientific interest.
First, we mention about the physical meaning of our free boundary problem.
We consider a drying and wetting process in a porous medium. In this research we
focus on one hole of the media and simplify the hole as a one-dimensional interval
[0, L]. Here, the boundary point 0 and L denote the bottom and top of the hole,
respectively. So, physically, it is supposed that the wall exists at x = 0, and the
air comes from the region {x > L} (see Figure 1). Also, the intervals [0, s(¢)] and
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[s(t), L] indicate the water-drop (liquid) region and the air region in the hole (see
Figure 2), respectively, and w is the relative humidity in the pore which is distributed
in a space-time region, denoted by Qs (T):

Qs(T) :={(t,x): 0<t<T, s(t)y <z <L)}

Time t

4
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FIGURE 1.

FIGURE 2.

On that basis, the curve s on [0,7](0 < T < o0) and function u on Q(T')
are supposed to fulfill the following system (1.1) ~ (1.6), which is denoted by
P:=P(sg, uo, 9):

0<s(t)<Lfor0<t<T, (1.1)
Pgllt — KUgy = 01n Qs(T), (1.2)
u(t,L) = k(t) for 0 <t < T, (1.3)
s'(t) = a(s(t),u(t,s(t))) for 0 <t < T, (1.4)
Kug (t, (1)) = (pa — pgult, s(t)))s'(t) for 0 <t < T, (1.5)
$(0) = sp,u(x,0) = up(x) for so <z < L, (1.6)

where p, is a constant of the density of the aqueous-H>0O, p, is a constant of the
amount of saturated water vapor, « is a diffusion constant of water in air, « is a
Lipschitz continuous function on R?, k is a given boundary function on [0, T, and
so and ug are the initial data.

Here, we note that (1.2) and (1.5) are derived from the mass conservation law
for aqueous-HoO and near the free boundary, respectively. Also, in this study, the
relative humidity u is supposed to be measured in the outside region of the hole. This
supposition is expressed by the Dirichlet boundary condition (1.3) of our problem P.
Moreover, the free boundary condition (1.4) is based on the hypothesis mentioned
in [8]. More precisely, we suppose that the growth rate s'(t) of water-drop region is
determined by means of:

e u(t,s(t)), i.e. the relative humidity of gaseous-HyO at the free boundary,
e s(t), i.e. the distance involved in the attracting force between the wall and
the front of water-drop region.

Accordingly, the binary function « in (1.4) is to provide an input-output relation
between (s(t),u(t, s(t))) and s'(¢t).

Our problem is somehow similar to one-phase Stefan problems in a one-dimensi-
onal domain. With regard to one-phase Stefan problem, there are a lot of math-
ematical results. However, we will find certain differences between our problem P
and the Stefan type problems, in the conditions (1.4)-(1.5) on the free boundary.
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In fact, our conditions (1.4)-(1.5) do not impose any value constraint for u, for
instance u(t, s(t)) = 0 for ¢t € [0,7T], as in the classical Stefan problem. In addi-
tion, although Fasano and Primicerio dealt with a Stefan type problem under the
following generalized condition:

{ u(t, s(t)) = F(t, s(t)), for t € (0,71,
ug (t,5(t)) = A(t, s(t))s'(t) + pu(t, s(t)), (1.7)

with given continuous functions F, A and p,

the above (1.7) will not be to cover our conditions (1.4)-(1.5). In fact, the condition
(1.7) implies some kind of input-output relation between s and «, but meanwhile, the
relation as in (1.4)-(1.5) must be more interactive. From this aspect, our problem
P should be regarded as a separate type from the Stefan type.

On the other hand, the free boundary problems, including similar types of con-
ditions to (1.4), were already proposed and studied by Muntean and Béhm [14].
Furthermore, this previous work has been extended by Aiki and Muntean [4, 5, 6, 7]
to the mathematical studies of the existence and uniqueness (cf. [4]) and the large-
time behavior (cf. [5, 6, 7]). However, the problems treated in [4, 5, 6, 7] are also
different from ours in the point that the free boundary s = s(¢) must be monotone
increasing in [4, 5, 6, 7], while it may not be so in our model. Hence, it should be
noted that the problem P is complicated comparing to the those as in the previous
works.

Now, the aim in this paper is to verify the solvability of the free boundary
problem P. Based on this, we assume the smallness of the density of gaseous-H,O,
and prove the main theorem concerned with the existence and uniqueness of a time-
local solution to P. The main theorem will be proved by means of the abstract theory
for evolution equations governed by time-dependent subdifferentials and Banach’s
fixed-point theorem, and especially, the maximal principle for the humidity « will
be a main tool to obtain the uniform estimates for approximate solutions.

2. Main result. We begin with assumption for given data «, p,, py and k.

(A1) a € CY(R?) and g—‘; are Lipschitz continuous with the (common) Lipschitz
constant C, and it holds that

Jda
ou

where Jj is a positive constant, and for any s € R

a(s,u) >0if u > 1 and a(s,u) <0if u <0.

8704 s,u)| < Cy and s,u) > 8 for (s,u) € R?,
0
S

For simplicity, we put
0% = sup{la(s,u)| : 0 < s < L,0<u < 1}.
(A2) p, and p, are positive constants such that:
Pa > pg and pado — pg(Ca + C2) > 0.
Accordingly, it holds that

0
—pge(s,u) + pado — pqa—a(s,u) >0for0<s<L,0<u<l.
. 9 Du

(A3) ke WH2(0,T) and 0 < k < k. <1 on [0, 7], where k. is a positive constant.
(A4) so € (0,L) and ug € H'(so, L) with ug(L) = k(0), 0 < ug < u. on [sg, L],

were u, is a positive constant.
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Definition 2.1. Let s and u be functions on [0,7"] and Qs(T"), respectively, for
0 <T' <T. We call that a pair {s,u} is a solution of P on [0,7"] if the conditions
(S) and (1.2) ~ (1.6) hold:
(S) s € WHe(0,T"),0 < s < Lon [0,T"], u € L=®(Qs(T")), ut, uze € L*(Qs(T")),
the function ¢ € (0,7") = |ug (-, t)|L2(s(2),1) € [0,00) is bounded.

In order to handle solutions of P easily, we consider the problem in a cylindrical
domain obtained by change of variables. Let @(t,y) := u(t, (1 — y)s(t) + Ly) for
(t,y) € Q(T) :=(0,T) x (0,1). Then it hold that

0<s(t)<Lfor0<t<T,

Pglit — ﬁavy = %ay in Q(7), (2.1)
a(t,1) = k(t) for 0 < t < T, (2.2)
s'(t) = a(s(t),u(t,0)) for 0 < t < T, (2.3)
L_Ls(t)ay(t,()) = (pa — pyii(t, 0))s'(t) for 0 < t < T, (2.4)
s(0) = so, (2.5)
@(0,y) = o (y) for 0 <y <1, (2.6)

where g (y) = uo((1 — y)so + Ly) for 0 <y < 1.
Then, obviously, we obtain the following set of conditions (S’1) and (S’2) which
is equivalent to Definition 2.1:

(S1) s € Wh>(0,7"),0 < s < L on [0,T'], & € W12(0,T"; L?(0,1))N
L0, T'; HY(0,1)) N L>=(Q(T")) N L2(0,T"; H?(0,1)).
(5'2) (2.1) ~ (2.6) hold.

Here, we introduce the following notations related to some function spaces:
We put H := L?(0,1), V(T) = L*>=(0,T; H) N L*(0,T; H(0,1)), and |z|y (1) =
|2| Loo (0,15m) + |2y L2 (0,151 for 2 € V(T'). As easily checked, V(T') is a Banach space
with the norm |- |y (7.

Our main result of this paper is concerned with the existence and uniqueness of
a time-local solution to P.

Theorem 2.2. LetT > 0. If (A1) ~ (A4) hold, k. <1 and u, <1 then there exists
T € (0,T] such that P has a unique solution {s,u} on [0,T'] and 0 < u(t) <1 on
[s(t), L] fort e (0,T].

Remark 1. Due to (A2), the value of the density p, of aqueous-HoO must be
much smaller than that of the amount p, of saturated water vapor. Meanwhile, at
the temperature 30°C, the values of these constants are experimentally known that
pa = 1.0 x 10° (g/m3) and p, = 30.3 (g/m?), respectively. Moreover, we suppose
that both C, and C? are not too large, for instance, C, + C2 < 100. Thus the
condition (A2) can be said as a reasonable assumption from physical point of view.
Also, u indicates the humidity so that the assumption k, < 1 and u, < 1 and the
assertion u < 1 should be quit natural.

3. Auxiliary lemmas. In this section for given s € C([0,7]) with 0 < s < L
on [0,T] we consider the following initial boundary value problem, denoted by
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AP1:AP1(’L~L0, S, f, ]C)

pgat—~@7§%5§ayy::fin(ch% (3.1)
a(t,1) =k(t) for 0 <t < T, (3.2)
L_Ls(t)ay(t,()) = (pa — pgo(@(t,0)))a(s(t), o (a(t,0))) for 0 <t <T, (3.3)
@0,y) = To(y) for 0 <y <1, (34)

where f and g are given functions on Q(T") and [0, 1], respectively, and

e {1 a1,
=Y w ifu< 1

In order to solve this problem we introduce a family {(pt}te[O,T] of time-dependent
functionals ¢’ : H — R U {oc} for ¢ € [0,T], defined as follows: For t € [0,T],

K ! 2 t 1 ~
o (1) = Q(L_S(t))Q/O |uy|“dy +b (U(l))erba(s(t),u(O))
. if u € H'(0,1) and u(1) = k(t),
+00 otherwise,

+ _ O if T = ]f(t)7
o) = { +oo  otherwise, forr €R,

bos,1) = [ ba(s,€)d6 and by (s,7) = (9 = pyo(r))as,o(r) for (s,7) € B2
0
Clearly, for each ¢ € [0,7] the effective domain D(p") of ¢! is given by D(p!) =
{ue HY(0,1) : u(1) = k(t)}. Also, the function ¢’(-) is often denoted by (s, ) as
appropriate. .
The first lemma gives some useful inequalities concerned with b, and ¢*.
Lemma 3.1. (1) If (A1) and (A2) hold, then
|22ty (s, )] < CL(1 -+ ful) for (s5,u) € B, (35)
| &b, (s,u)] < CL(L+u?) for (s,u) € R?,

by (s,u) > —=Cl|u| for0 < s < L,u € R,

where C!, = max{(pa + pg)Cas paCo}.

(2) If (A1) ~ (A3) hold and s € W12(0,T) with 0 < s < L on [0,T], then there
exist positive constants Cy and Cy depending only on s, pa, pg, Co, L, K and k*
such that

u(0)? < Cop'(u) + C1

L—;S(f)w"(s(t)’“(o)ﬂ < Cop'(u) +C1 } foru € D(¢') and t € [0, .
ﬁh@ﬁi < C’mpt(u) + 0

Proof. (1) Let s € R. Since |o(u)] < |u| for u € R, (3.5) immediately follows from
(A1). By using (3.5) and (Al), it is easy to obtain (3.6).
If u <0, then (Al) implies that b, (s,u) > 0. Otherwise,

bo(s.0) > =C8 [0 = o )l
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Since p, — pgo (&) > po — pg > 0 for € € [0,u], we have by (s,u) > —C%pau. Thus
(3.7) is true.

(2) Let s € WH2(0,T) with 0 < s < L on [0,T], t € [0,T], §s > 0 satisfying
s <L —dso0n [0,T], and u € D(¢"). Then by (3.7) it is easy to see that

bOF = [ [ s 0]
< 2wyl + OP)
< 22 () = bl u(0) ) + 287
<4f@mwgww)m@

Here, by applying the Young inequality we obtain

1 412 e\’

KOs

Thus we proved the first inequality of (2).
Next, we note the following facts: If a > —b for a,b € R with b > 0, then
la] < a+ 2b. This together with (3.7) shows that

b0 < (b (s(0) u(0)) + 20 u(0)])

L — s(t) L —s(t)
2C,
< @)+ = u(0)] (3.9)
(3.9) and (3.8) imply the second inequality of (2). Also, we can prove the third
inequality of (2) in a similar way to the above inequalities. O

The following lemma guarantees the well-posedness of AP;.

Lemma 3.2. If (A1) ~ (A3) hold, s € WY2(0,T) with 0 < s < L on [0,T],
f € L?(0,T;H) and o € H*(0,1) with a(1) = k(0), then AP;(ao,s, f,k) has a
unique solution @ € WH2(0,T; H)NL*>(0,T; H(0,1)) in the usual sense. Moreover,
the function t — @'(a(t)) is absolutely continuous on [0,T).

Proof. First, for each r € [0, L], (Al) implies that b, (r,-) is monotone increasing
on R. Clearly, for each ¢t € [0,T] ¢ is a proper l.s.c convex function, d¢' is single
valued, w* = d¢'(u) if and only if w* € H and
. K
w* = —muyy on (0,1),
u(l) = k(t),
K

0, (0) = by (s(t), u(0)),
and there exists a positive constant C, depending on min{L — s(t) |t € [0,T]} > 0,
such that for each ty,ty € [0,T] with ¢; < t5 and for any u € D(p") there exists
@ € D(¢") such that

lu— il < [k(tr) — k(t2)|(1+ 0% (u)|2)
and

"2 (@) — " (u)| < C(|s(tr) — s(t2)] + |k(t1) — k(t2))(1 + |@" (w)]).
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In fact, by putting @ = u + k(t2) — k(¢t1) and applying Lemma 3.1 we can show
these two inequalities. Then, the theory of evolution equation governed by time-
dependent subdifferentials, for instance [11, Theorems 1.1.2 and 1.5.1], implies the
existence of & € W12(0,T; H) such that o0 (a(-)) € L®(0,T), t — '(a(t)) is
absolutely continuous on [0,7] and

Pl (t) + 00 (u(t)) = f(t) in H for a.e. t € (0,7). (3.10)

This @ is a unique solution of AP (4, s, f, k) on [0, T]. O

The next lemma is a direct result of Lemma 3.2.

Lemma 3.3. If (A1) ~ (A3) hold, s € WH>(0,T) with 0 < s < L on [0,T], f €
L2(0,T; HY(0,1)) and @ € H'(0,1) with iig(1) = k(0), then APy (i, s, 220=2"f
k) has a unique solution @ € W12(0,T; H) N L>=(0,T; H'(0,1)) on [0,T].

Next, we shall solve the initial boundary value problem APs(to, s, k) :=

{(2.1),(2.2),(3.11),(2.6)},

KR

T w0 = bo(s(8),ult,0)) for 0 <t < T (3.11)

Lemma 3.4. If (A1) ~ (A3) hold, s € W1>(0,T) with 0 < s < L on [0,T]
and iy € H(0,1) with (1) = k(0), then APs(uo,s, k) has a unique solution
@€ Wh2(0,7; H)n L>(0,T; H*(0,1)) on [0,T].

Proof. By Lemma 3.3 for any f € V(T) there exists a solution @ € V(T) of
AP (o, s, %:z)slfy,k) on [0,7]. Then we can define a solution operator I'y :
V(T) — V(T), by putting I'r(f) = @. Besides, let us set f; € V(T), @; = Tr(f;)
fori=1,2, and 4 = U — Us.

By multiplying the difference of the first equations of AP (o, s, %::)S/ (fi)y k)
for i = 1,2 by @ and integrating it we observe that

K 1
22'“(”'%*@_8@))2/0 [y (t,y)[*dy

1 ~ - ~
- —m(ba(s(t),ul (t,0)) = bo(s(t), u2(t, 0)))a(t, 0)
+/fogj/s(§2) /0 (L =y)(fi(t:y) = fo(t,y))yult,y)dy  forae. t € (0,T).

From the monotonicity of b, (s,o(-)) it follows that
Pg d o K ~ 2
B9 = (e " a,(t

Pg ‘3/|L°°(0,T)

<
= 5.

((f1 = f2)y(®)|mla(t)| g forae. t e (0,T), (3.12)

where d; is a positive constant such that L — s > d, on [0, T
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Hence, by integrating both sides of the inequality on [0,#1], 0 < t; < T, we have

Py~ 2 AR 2
P ey + / 1y () 3t
2 2 J,

Pgls’ | Loe 0,1y | - h
< f\uhw(o,tl;m |(f1 = f2)y(t)|mrdt
0
1
pgtils'|Lee o1y -
< P EEOD )y f1 — falv)  fort € [0,41).

5

Pg

Then by putting v := min{%}, /3 } we have

1
. Py Ty |8 oo 0,1
V|U|V(TO) < ”f(”fl — f2|v(T0) for 0 < TQ < T.
Hence, since we find a small constant 0 < Ty < T such that 'z, is the contraction
mapping, Banach’s fixed point theorem implies that APa(@g, s, k) has a unique
solution @ on [0,Tp]. Clearly, the choice of Tj is independent of initial values so
that we have proved this lemma. O

In Lemma 3.5 we can relax the condition for s to have a solution of APy (ay, s, k).

Lemma 3.5. If (A1) ~ (A3), s € WY2(0,T) with 0 < s < L on [0,T), 1o €
H1(0,1) with 49 > 0 on [0,1] and @(1) = k(0), then APs(i,s,k) has a unique
solution on [0,T).

Proof. Choose a sequence {s,} C W1*(0,T) and 0 < § < L satisfying L — s,, > §
on [0, T] for each n and s,, — s in W2(0,7T) as n — oo, and put % (-) = ¢'(sp, ).
By Lemma 3.4 we can take a sequence {u,} of the solutions u, to APy(ug, Sn, k)
on [0,7], for n € N. Then on account of Lemma 3.2 the function t — ¢! (u,(t))
is absolutely continuous on [0,T] so that the function ¢ — mmw(ﬂﬁ{ is
continuous on [0,T]. For a.e. t € (0,T), let h > 0 with ¢ —h > 0. We multiply (2.1)
by M =: Upn(t). Then by integration by parts we have

1 K 1 ~
oy / (B OBy + s / () () (U )y (£)ly

_m@n)y(t, DUpnn(t,1) + K

(:; i[ih(t))

_ —y)sn(t) _.
_ /O Tty IOy (= Tn(0)  for ac. t € (0,7).

m(an)y(t, O)Unh(ta O)

It is easy to see that

K

lim L1 (8) = gl (@n)e(D)l77, lim Lan(t) = T s DK (),

and

fim I 1) = / mwn)y(t)(mt(t)dy
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for a.e. t € (0,7T). Also, we have
K

Ly(t) > mq(an)y(mi] — (@) (t — h)|3
K 1 1 ~
T2 (L= sn®)?  (L—sn(t— h))z> (@) (8 = 1),
and
Lin(t)
1 1 N B 1 ~ )
> (b om0 it 0) = b snlt = ) e~ h,O)))

_%L_;Sn(t) (B (0 (1 = 1, 0)) = B (5(t — ), it — 1, 0)))

for a.e. ¢ € (0,T). Then we observe that

Loy (t) + Lin(t)
(@ (1)) — s ant — 1))

\%

K 1 1 i )
2k ((L —sn(0)? (L —sn(t— h))2) |(in)y (8 = B[
_%L%sn(t) (i)a(sn(t),an(t — 1, 0)) = by (s (t — h), din(t — h’O))>

for a.e. t € (0,T). Here, Lemma 3.2 implies that

llI’rLlLlonf(Igh () + Lun(t))

> Lot e + mmny@)@, - i’ng(t) O (s(1), 10(1,0)

for a.e. t € (0,T). From the above calculations it follows that
. d -
Pyl () (8) [T + =07, (T (1))

dt
Klsy (2] |50 (@)l

~ 2 81;0.
S T s Ol + =0

R

_ , s, - N
er(un)y(ta DE'(t) + mKun)y(tﬂHKun)t(t)\H

4
=: Z Ji(t) forae. t € (0,7).
i=1

By Lemma 3.2 we have

Ol gt (1)) + 1),
CLlsh ()
L — s,(t)
CLls, 1)
0

Ji(t) <

Ja(t) <

(1 + [an(t,0)%)

< (Copp (i (t)) + C1 + 1),
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and

D) < F ), (Ol O

s ()
oL~ sul0)
< 2oy + PO (ot (10 0) + 1) or e 1€ 0.
Since |(Gn)y(t, 1) < [(Gn)yy ()| a + [(@n)y (t)|a, it holds that

< Bk + i)y (1) 5

- Py -
mmwm$gu>mm+\f:ﬂﬂwmﬂH

so that
o) < fu>om+*9iL5(»w>om
+m W (5 +@+@) 1K ()]
< Ll + (22O 1) ot i) + 1)

Pg 1 2
+(54+254 264)|k()| for a.e. t € (0, 7).

Here, we applied Lemma 3.2, again.
Accordingly, there exists a positive constant C5 independent of n such that

%0l + 5 (@ 0) + G )

< Cs{(1+ |8, (1)*)(Cogl, (1, () + C1) + |K' (1)]?} for ace. t € (0,T). (3.13)
Hence, Gronwall’s inequality guarantees that the sequence {u,} is bounded in
Wt2(0,T; H) and L>(0,T;H'(0,1)). Then we can take a subsequence {n;} of
{n} and @ € W'2(0,T;H) n L>=(0,T; H*(0,1)) such that @,, — @ weakly in
W12(0,T; H), weakly* in L>(0,T; H*(0,1)), and in C(Q(T)) as j — oo. It is
obvious that @ is a solution of APs(ag, s, k) on [0, T].

The uniqueness is easily obtained from (3.12), Schwartz’s inequality and Gron-
wall’s inequality. O

4. The local existence in time. The aim of this section is to prove Theorem 2.2
and we always assume (A1) ~ (A4) throughout this section.
First, for T > 0 and 0 < so < L' < L we put S(T,so, L") := {s € W12(0,T) :

0 <s< L'onl0,T], s(0) = so}. Let s € S(T,s0,L') and @ be a solution of
APy (g, s, k) on [0,T]. Here, we define the operators o : S(T SO,L’) — V(T) and
A7 : S(T,s0, L") — W12(0,T) by &s = @ and [A7s](t fo (T, 0))dr + s
for t € [0,T] and s € S(T s0, L"), respectlvely Moreover for any M > 0 we put
SM( ) —SM(T so, L ) —{SES(T S0, ) |3|W120T)<M}

Lemma 4.1. For M > 0 and T > 0 there exists a positive constant Ko(T, M)
such that

|®s|wz0,;m) + [PS[ Lo 0,111 0,1)) < Ko(T, M) for any s € Su(T).

This lemma is a direct consequence of (3.13).
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Lemma 4.2. For 0 < sg < L' < L and M > 0 there exists a positive constant
Ty < T such that Ap, : Sy (Th) — Sy (T1) and it becomes a contraction mapping
on the closed subset Syr(Ty) in W12(0,Ty).

Proof. For T > 0 let s € Sy (T, s0,L') and & = ®s. Lemma 4.1 guarantees the
existence of a positive constant C, such that

la(s(t),a(t,0))] < Cy for0<t<T.

Accordingly, |[Ars](t) — so| < Cut for 0 <t < T. Then because of 0 < sp < L' we
can take Ty € (0,7 such that Ar, : Sy (To) = Sa(To)-

Next, for s; € Sy (T) let 4; = Ps;, @ = 1,2, 4 := Gy — Ug, § = s1 — S2 and
0 = L — L'. Multiplying the both sides of the difference between the governing
equations (2.1) for @;, i = 1,2, and integrating the result over (0, 1), we have

po o - [ (—5 @ B - i

(s A-psh®), N
= Pg/o (L_w(u1)y(t)—L_52(2t)(u2)y(t)> a(t)dy (4.1)

for a.e. t € (0,T). On the second term of the left hand side of (4.1), applying the
integration by part yields that

( the second term of the left hand side)

- /0 ((le(t))zwl)y(t) - (1/492(15))2(112)1/(0) Uy (t)dy
+(Tmamp @0~ i Eit0 ) 160
=: I(t)+ I(t) forae. te(0,7T).
On account of Lemma 4.1 it clearly holds that
L) = mwy(ﬂ@[
+/0 ((L —51(t))? N (L — 82@))2) (ﬂ2)y(t)ﬂy(t)dy(:1 I 2(1)),

M2 = e (a), ()l (O

1 2 2
K - 5 8kL?|s(t)] 9
< v v 1PN
< /0 8(L—51(t))2‘uy(t)| dy + 5 Ko(T,M)?,

) = (o~ T b0t 0)i0)
+L_;Sl(t)(ba(sl(t), i (t,0)) = bo (s2(£), i1 (£, 0))(t, 0)
*%5,1@)<b0(52(t)’ i1 (£,0)) — by (s(t), 2 (¢, 0)) )ii(t, 0)

=: 1271(15) + 12)2('6) + 12,3(t> for a.e. t € <O,T)
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Because of the monotonicity of b, (s2(t), ), we have I5 3(t) > 0 for a.e. ¢t € (0,T).
Also, from (Al) and Lemma 3.1 it follows that

[Io1 ()] + [I2,2(1)]
C" (1 + |iia(t, 0)])
T (L= si(t)(L = s2(t))
Cl(1+Ko(T,M)) /1 _
< = (G ) @l ol
K N 1/1 2. 2
< mluy(t)ﬁ{Jrg(ngl) (CL(1 + Ko(T, M))) |s(t)|?

for a.e. t € (0,T).
Next, we consider the right hand side of (4.1) as follows:

( the right hand side)

_ Ayt LA—p)s(),
= Pg/o L_islgt)uy(t)U(t)dy-l-pg/o m(uz)y(t)u(t)dy

Co(1+a1(t,0)])
+ L—sll(t)

[s(®)lla(t, 0)]

[s(®)][a(t, 0)]

1 - —
+pg/0 (L(l— S1y()t) B L(l_ Szy(zf) ) 5/2 (t) (a2)y(t)ﬂ(t)dy
= I3(t)+ I4(t) + Is(t) fora.e. t € (0,T)

so that
< K e 200 e
Ii(t) < m|uy('§)|1{+7|51@)| @)%
L) < GEE(T.MPIS 0P +[a(0)])
and

L) < %(KO(T,M)2|s(t)|2+|s’2(t)|2|11(t)\%1) for a.e. t € (0,T).

Then we see that there exists a positive constant By such that for a.e. ¢t € (0,7T),

ST s Ol < B(RO) + BOEOR), (12

where Fi(t) = [s(t)]* + |s'(t)|* and Fy(t) = [s1(¢)]* + [s5(¢)]* + 1. By applying
Gronwall’s inequality to (4.2) we have

o la®)h +

IN

i ko[t t t
p—;\u(t)|i1+ﬁ/0 |uy(7')|§ld7' BQ/O Fl(T)dTexp(Bg/O Fy(1)dT)

IN

t
33/ ' (OPdr for t € [0,T],  (4.3)
0
where B3 = By(1 + T?) exp(Ba(T + 2M?)). Moreover, since

i1 (t,0) — da(t,0)> <

/ 1 (.fy(m(t,yn?)dy‘

IN

1
2 [yl v)ldy
0
2y (t)|gla(t)|g  for ae. t € (0,T),

IN
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we infer that for 0 < T < T,

|(Ar,81)" — (A1, 52) | L2(0,1)

< (s, (-, 0)) — als2, 42(+, 0))|L200,1)
< Calslrzomy) + Caltin(-,0) — t2(-,0)|L2(0,1)
, T ~ 1/2
< CaTils'20,m) + V2Ca (/ \uylHlulHdt) :
0

For any € > 0 (4.3) leads to
|(Ay51)" = (A, 52) | 22(0,1)
< CoTils 20,1 +elslwrzom) + %\/ﬁ|5|le2(0,T1)v
where B, is some positive constant. From this estimate it follows that
|(A7,51) — (A1, 52)|L200,11)
< Ti((CaTy +¢)lslwrzom) + %\/ﬁ|3|wl>2(0,ﬂ))-

Hence, by taking ¢ > 0 with ¢ < %, it will be observed that for some small 77 €

(0,Ty], Az, will be a contraction on the closed subset Sy (7) in W12(0,7y). O

We note that Banach’s fixed point theorem leads to the well-posedness of the sys-
tem APz = AP3(so, @, k) =: {(2.1) ~ (2.3),(3.11),(2.5), (2.6)} with (S’1). Namely,

we have:

Proposition 4.3. There exists a positive number 0 < T' < T such that APs(so, to,
k) has a unique solution {s,u} on [0,T"].

Next, we shall prove the positivity and the boundedness of a solution to APj3(sq,
Ug, k).

Lemma 4.4. If {s,u} is a solution of APs(so,t0,k) on [0,T], k. <1 and u. <1,
then 0 < u <1 on Q,(T).

Proof. First, we easily obtain that (1.2) ~ (1.5) hold. Then we multiply (1.2) by
[u—1]T and observe that

L

Py d +12
= _ -1
i ] ) = P

’ p
- ﬁ/(t) o (8)[u(t) — 1T da — 22/ (1) ut, 5(1)) — 1]

= —llu(t) = T = (pa = pgo(ult, s(t))))s'()][ult, s(t) = 1F[* (4.4)
J;is'(t)\[u(t, s@®) — 1T for ae. t€[0,T].
Here, it holds that 14 SL |[u — 1]*]2dx < 0 a.e. on [0,T]. In fact, by (A2)
pa — pgo(u(-,s)) > 0 and by (A1) it holds that s'[[u(-,s) — 1]T|?> > 0 a.e. on [0, 7.
Hence, we conclude that u < 1 on Qs(T), namely, & < 1 on Q(T).
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Similarly to (4.4), we have
L

pii —ulT12d

25 [ -atPde

L
N _ﬁ/ [=ulf Pdz + (pa — pgo(ul-,5)))s'|[—ul- )] |

+p3gs'|[fu(',s)]+|2 a.e. on (0,7).

From the above argument it follows that u(t,z) > 0 for a.e. (¢,2) € Qs(T). Thus
we have proved this lemma. O

Proof of Theorem of 2.2. Proposition 4.3 guarantees the existence of a solution

{s

, 4} of AP3(so, %o, k) on [0,77] for some 0 < T' < T. Here, by Lemma 4.4

we have 0 < @(t,0) < 1 for 0 < ¢ < T'. Therefore, {s,4} must be a solution of P

on

1
[2
3
[4
5
6
7
8
9

10

[11

[12

[13

[14

[0,T"]. Thus, we obtain our main result. O
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