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Abstract. We study spring-block systems which are equivalent to the P1-

finite element methods for the linear elliptic partial differential equation of
second order and for the equations of linear elasticity. Each derived spring-

block system is consistent with the original partial differential equation, since

it is discretized by P1-FEM. Symmetry and positive definiteness of the scalar
and tensor-valued spring constants are studied in two dimensions. Under the

acuteness condition of the triangular mesh, positive definiteness of the scalar

spring constant is obtained. In case of homogeneous linear elasticity, we show
the symmetry of the tensor-valued spring constant in the two dimensional case.

For isotropic elastic materials, we give a necessary and sufficient condition for

the positive definiteness of the tensor-valued spring constant. Consequently,
if Poisson’s ratio of the elastic material is small enough, like concrete, we can

construct a consistent spring-block system with positive definite tensor-valued

spring constant.

1. Introduction. In computational analysis of deformation and stress field for
several elastic materials such as metals and concrete, finite element analysis based
on the equations of linear elasticity is widely used. On the other hand, spring-mass
systems or spring-block systems are also used for several purposes, for example, a
fracture model [8] etc.

The modelling of fracture phenomena is still one of the most interesting and
challenging problems. Engineers have proposed many numerical methods in order
to realize the fracture phenomena, e.g., the extended finite element method (X-
FEM) [1], the discrete element method (DEM) [3, 10] and the particle discretization
scheme (PDS-FEM) [4, 7]. Once a sort of spring-block type idea is introduced into
a model of a fracture phenomenon, a spring constant is needed. It is, however,
not easy to set the spring constant suitably. Indeed, in [7] it is pointed out that
the so-called Poisson effect may not be properly expressed if the spring constant
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is not suitably given or the mathematical analysis of the model is not performed
rigorously.

Recently, we have proposed a fracture model [8] and proved that the model is
mathematically solvable if the spring-block system to be employed is positively con-
nected, cf. [8] or Proposition 1 below. We note that the assumption, i.e., posi-
tively connected, includes symmetry and positive (non-negative) definiteness of the
spring constant.

In this paper, symmetry and positive definiteness of scalar and tensor-valued
spring constants of spring-block systems derived from the finite element method are
studied.

There are springs and blocks in a spring-block system. A domain is divided
into non-overlapping subblocks and there is a spring between each two adjacent
subblocks. Each spring has a spring constant, which is assumed to be symmetric
and positive (or non-negative) definite.

On the other hand, it is well known that the finite element method works well for
many partial differential equations, e.g., [5, 2, 11]. We focus on the scalar elliptic
partial differential equations of second order and the equations of linear elasticity
in two dimensions. The finite element method with the piecewise linear element
(P1-FEM) for each equation can be (formally) seen as a spring-block system and
virtual scalar and tensor-valued spring constants are naturally derived from the
discretization. In this paper we study symmetry and positive definiteness of the
spring constants derived from P1-FEM.

In the case of the scalar elliptic equation, the spring constant is scalar, and it
is positive (or non-negative) definite under the acuteness condition [9]. This fact
is well known through the analysis of the discrete maximum principle, cf. [9]. We
note that the obtained spring-block system is consistent with the elliptic equation
since it is equivalent to P1-FEM.

In the case of the equations of linear elasticity with a given fourth-order stiffness
tensor, symmetry and positive (or non-negative) definiteness of the derived spring
constant are not trivial. Let KFE

ij ∈ R2×2 be the tensor-valued spring constant
between two subblocks Di and Dj (i 6= j) derived from P1-FEM. The subblocks
Di and Dj are corresponding to two nodes Pi and Pj of a triangular mesh used in

P1-FEM and the virtual spring is on PiPj . Let the given fourth-order stiffness ten-
sor c = (cpqrs) satisfy the symmetry condition cpqrs = crspq = cqprs (p, q, r, s = 1, 2).
The condition of c does not imply the symmetry KFE

ij = (KFE
ij )T and just leads to

KFE
ij = (KFE

ji )T , where the superscript T means transposition. We have computed

KFE
ij carefully and obtained symmetry of the tensor-valued spring constant KFE

ij

under some conditions including space homogeneity of c, which yields KFE
ij = KFE

ji .
As for the positive definiteness of the spring constant, we present an equivalent
condition under the acuteness condition for the triangular mesh and space homo-
geneity and isotropy of c. For the positive definiteness, Poisson’s ratio should be
sufficiently small depending on the regularity of the triangular mesh. In partic-
ular, if the mesh consists of equilateral triangles, KFE

ij is positive definite if and
only if Poisson’s ratio ν is less than 1/4. Materials with relatively large Poisson’s
ratio such as metals (0.27 ≤ ν ≤ 0.36) and rubber (0.45 ≤ ν ≤ 0.5) do not satisfy
this condition, however, some materials with small Poisson’s ratio such as concrete
(0.1 ≤ ν ≤ 0.2) do, cf. [6] for the values of ν.

The paper is organized as follows. In Section 2, scalar and tensor-valued spring-
block systems are introduced and known results are stated. In Section 3, a scalar
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spring constant is derived from P1-FEM for the scalar elliptic equation and positive
definiteness is studied. In Section 4, a tensor-valued spring constant is derived
from P1-FEM for the equations of linear elasticity. In Section 5, main results are
presented, i.e., the symmetry and positive definiteness of the tensor-valued spring
constant are well studied in two dimensions. In Section 6 conclusions are given.

In the rest of this section we prepare notations to be used in the paper. Let
n ∈ N and let Ω ⊂ Rn be a bounded domain. The n-dimensional volume of Ω
is denoted by |Ω|. We use the Lebesgue and Sobolev spaces L∞(Ω), L2(Ω) and
H1(Ω) and define ‖ · ‖0 ≡ ‖ · ‖L2(Ω). The space of continuous functions on Ω̄ is

denoted by C0(Ω̄). The dual pairing between a normed space X and the dual space
X ′ is denoted by 〈·, ·〉. For i = 1, · · · , n, the partial derivative ∂u/∂xi of a function
u is simply denoted by u,i. Rn×nsym is a space of real symmetric matrices of size n.
δij is Kronecker’s delta for i, j = 1, · · · , n. We employ the same notations u, f , g,
a, 〈·, ·〉 and so on for scalar and tensor-valued spring constant models, since there
is no confusion.

2. Scalar and tensor-valued spring constant models. This section is devoted
to state scalar and tensor-valued spring constant models.

Let n ∈ N be a number and Ω ⊂ Rn be a bounded domain with a Lipschitz
boundary Γ ≡ ∂Ω. We divide Ω into N subblocks D = {Di}Ni=1. We suppose that
each block Di ⊂ Rn is a nonempty connected open set and that the conditions,

Ω̄ =

N⋃
i=1

D̄i, Di ∩Dj = ∅ (i 6= j),

hold. If n ≥ 2, we additionally suppose that Di has a Lipschitz boundary for any
i ∈ {1, · · · , N}. In this paper, for simplicity, we call D = {Di}Ni=1 a block division
of Ω and assume the above conditions.

We introduce the following notation for adjacent blocks in a block division D.

Dij ≡ D̄i ∩ D̄j (i, j = 1, . . . , N, i 6= j),

dij ≡ Hn−1(Dij) (i, j = 1, . . . , N, i 6= j),

Λi ≡ {j ∈ {1, · · · , N} \ {i}; dij > 0} (i = 1, · · · , N),

Λ ≡ {(i, j); 1 ≤ i < j ≤ N, dij > 0},

Σ ≡
⋃

(i,j)∈Λ

Dij ,

where Hn−1 is the (n− 1)-dimensional Hausdorff measure, cf. Figure 1.
We define function spaces of piecewise constant functions on Di and Dij as

follows.

χi(x) ≡
{

1 (x ∈ Di)
0 (x ∈ Ω \Di)

(i = 1, . . . , N),

χij(x) ≡
{

1 (x ∈ Dij)
0 (x ∈ Σ \Dij)

((i, j) ∈ Λ),

V (D) ≡
{
v ∈ L∞(Ω); v =

N∑
i=1

viχi, vi ∈ R, i = 1, · · · , N
}
,

W (D) ≡
{
ζ ∈ L∞(Σ); ζ =

∑
(i,j)∈Λ

ζijχij , ζij ∈ R
}
.
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Di

Dj

Dij

Figure 1. Sample blocks Di and Dj and a common boundary Dij

of the two blocks.

In the following sections, we consider scalar or vector-valued displacement fields
which belong to V (D) and virtual springs between adjacent blocks. In order to set
the Dirichlet boundary condition, we suppose

J = (J0, J1), J0 ∪ J1 = {1, . . . , N}, J0 ∩ J1 = ∅, J0 6= ∅, J1 6= ∅,

and that the balance of forces is considered at Di for i ∈ J0 and the displacement
of Di for i ∈ J1 is a priori given. The displacement space V (D) is a direct sum of
the following subspaces,

Vl(D) ≡
{
v ∈ V (D); v =

∑
i∈Jl

viχi, vi ∈ R
}

(l = 0, 1).

Now a tensor-valued spring constant model is constructed as follows. For a block

division D of Ω ⊂ Rn we consider a vector-valued displacement u =
∑N
i=1 uiχi ∈

V (D)n, where ui ∈ Rn is a vector and

V (D)n ≡
{
v ∈ L∞(Ω;Rn); v =

N∑
i=1

viχi, vi ∈ Rn, i = 1, · · · , N
}
.

For (i, j) ∈ Λ we consider a virtual spring between the adjacent blocks Di and Dj

with tensor-valued spring constant Kij ∈ Rn×nsym . We suppose that the tensor-valued
spring constant satisfies the condition,

Kij = Kji ≥ O, ∀(i, j) ∈ Λ, (1)

where Kij ≥ O means that Kij is non-negative definite. If Kij ∈ Rn×nsym is positive
definite, we denote it by Kij > O. We additionally suppose that the vector-valued
force acting on Di from Dj is given as Kij(uj − ui) ∈ Rn. It is a sort of Hooke’s
law. Let K be a function defined by

K ≡
∑

(i,j)∈Λ

Kijχij ∈W (D)n×n.

Under the above situation, we call (D,K) a tensor-valued spring-block system, and
call (D,K, J) a tensor-valued spring-block system with Dirichlet boundary.

We consider the following problem.
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Problem 1. Let (D,K, J) be a tensor-valued spring-block system with Dirichlet
boundary in Rn. For a given body force f =

∑
i∈J0 fiχi ∈ V0(D)n with Fi ≡

|Di|fi ∈ Rn and a given displacement g =
∑
i∈J1 giχi ∈ V1(D)n, find a displacement

u =
∑N
i=1 uiχi ∈ V (D)n such that∑

j∈Λi

Kij(uj − ui) + Fi = 0, ∀i ∈ J0,

ui = gi, ∀i ∈ J1.

We define a bilinear form (·, ·)K , a seminorm |·|K and a constant c0 = c0(D,K, J)
by

(u, v)K ≡
∑

(i,j)∈Λ

{Kij(uj − ui)} · (vj − vi) (u, v ∈ V (D)n),

|v|K ≡
√

(v, v)K (v ∈ V (D)n),

c0 = c0(D,K, J) ≡ inf
v∈V0(D)n, ‖v‖0 6=0

|v|K
‖v‖0

≥ 0.

Concerning the solvability of Problem 1, we introduce some non-degeneracy condi-
tions of the spring constant K.

Definition 1. Let (D,K, J) be a tensor-valued spring-block system with Dirichlet
boundary.

(i) (D,K, J) is called “positively connected” if the following condition is satisfied;

v ∈ V0(D) and
∑

Kij>O

|vj − vi| = 0, iff v = 0 ∈ V (D). (2)

(ii) (D,K, J) is called “regular” if c0(D,K, J) > 0.

The condition (2) means that for any i ∈ J0 block Di is connected to a Dirichlet
boundary block Dj (j ∈ J1) by a chain of positive definite springs. We also remark
that, if (D,K, J) is regular, then the inequality

‖v‖0 ≤ c−1
0 |v|K (v ∈ V0(D)n)

holds. We give a proposition on the solvability of Problem 1, cf. [8].

Proposition 1 ([8]). Let (D,K, J) be a tensor-valued spring-block system with
Dirichlet boundary.

(i) (D,K, J) is regular if it is positively connected.
(ii) Suppose (D,K, J) is regular. Then, there exists a unique solution u ∈ V (D)n

of Problem 1.

Here we introduce a scalar spring constant model, which is constructed in a
similar way to the tensor-valued spring constant model. We consider a scalar virtual
spring between Di and Dj and suppose that it has a spring constant κij ≥ 0 and
that the force acting on Di from Dj is given as κij(uj − ui) ∈ R. A corresponding
condition to (1) is given as

κij = κji ≥ 0, ∀(i, j) ∈ Λ.

Let κ ≡
∑

(i,j)∈Λ κijχij ∈ W (D). We call (D, κ) a scalar spring-block system, and

call (D, κ, J) a scalar spring-block system with Dirichlet boundary.
The following problem is a scalar version of Problem 1. We note that a corre-

sponding proposition of Proposition 1 holds, cf. [8].
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Problem 2. Let (D, κ, J) be a scalar spring-block system with Dirichlet boundary
in Rn. For a given body force f =

∑
i∈J0 fiχi ∈ V0(D) with Fi ≡ fi|Di| and a given

displacement g =
∑
i∈J1 giχi ∈ V1(D), find a displacement u =

∑N
i=1 uiχi ∈ V (D)

such that ∑
j∈Λi

κij(uj − ui) + Fi = 0, ∀i ∈ J0,

ui = gi, ∀i ∈ J1.

3. A scalar spring constant derived from P1-FEM for the elliptic equa-
tion. In this section we derive a scalar spring constant from P1-FEM for the elliptic
equation. The scalar spring-block system to be derived is an alternative expression
of P1-FEM for the elliptic equation, which is well known to researchers of (theo-
retical) numerical analysis of FEM. This section is, however, set in order to easily
understand a tensor-valued spring constant derived from P1-FEM for the equa-
tions of linear elasticity in Section 4 and main results, i.e., symmetry and positive
definiteness of the tensor-valued spring constant in two dimensions in Section 5.

Let B : Ω → R+(≡ (0,∞)), f : Ω → R and g : Γ → R be given functions. We
assume B ∈ L∞(Ω), f ∈ L2(Ω) and g ∈ C0(Γ ) ∩H1/2(Γ ). The elliptic problem is
to find u : Ω → R such that

−∇ · (B∇u) = f in Ω, (3a)

u = g on Γ. (3b)

Let X ≡ H1(Ω) and

V (g) ≡ {v ∈ X; v = g on Γ}
for a given function g : Γ → R be function spaces and set V ≡ V (0). We define a
bilinear form a = a(·, ·) on X ×X and a linear functional f ∈ X ′ by

a(u, v) ≡
∫
Ω

B(x)∇u(x) · ∇v(x) dx, (4)

〈f, v〉 ≡
∫
Ω

f(x)v(x) dx,

respectively. Then, a weak formulation of problem (3) is to find u ∈ V (g) such that

a(u, v) = 〈f, v〉, ∀v ∈ V. (5)

A discrete problem via P1-FEM for problem (5) is obtained as follows. Let
Th ≡ {T} be a triangulation of Ω̄ and

Ωh ≡ int
⋃
T∈Th

T

be the approximate domain of Ω. For the sake of simplicity we assume Ω = Ωh
in the rest of the paper. Let P1(T ) be a polynomial space of linear functions on
T ∈ Th, and Xh and Vh(g) be finite element spaces defined by

Xh ≡ {vh ∈ C0(Ω̄); vh|T ∈ P1(T ), ∀T ∈ Th},
Vh(g) ≡ {vh ∈ Xh; vh(P ) = g(P ), ∀P : node on Γ},

for a given function g : Γ → R, respectively, and set Vh ≡ Vh(0). The discrete
problem via P1-FEM for (5) is to find uh ∈ Vh(g) such that

a(uh, vh) = 〈f, vh〉, ∀vh ∈ Vh. (6)
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Let NFE ∈ N be the total number of nodal points of Th in Ω̄. We denote the
i-th node by Pi (∈ Ω̄). Let JFE

0 and JFE
1 be sets of indices with

JFE
0 ∪ JFE

1 = {1, · · · , NFE}, Pi ∈ Ω (∀i ∈ JFE
0 ), Pi ∈ Γ (∀i ∈ JFE

1 ),

and set JFE ≡ (JFE
0 , JFE

1 ). Let ϕi ∈ Xh be the P1-basis function with respect to

Pi, {ϕi : Ω̄ → R}NFE

i=1 be the set of P1-basis functions of Xh with ϕi(Pj) = δij , and
ΛFE
i and ΛFE be a set of indices of adjacent nodes of Pi and a set of pairs of indices

of adjacent nodes defined by

ΛFE
i ≡ {j ∈ JFE

0 ∪ JFE
1 ; j 6= i, ∃T ∈ Th s.t. Pi and Pj ∈ T},

ΛFE ≡ {(i, j); 1 ≤ i < j ≤ NFE, ∃T ∈ Th s.t. Pi and Pj ∈ T},

respectively. Since (6) is equivalent to

a(uh, ϕi) = 〈f, ϕi〉, i ∈ JFE
0 ,

and uh ∈ Vh(g) is a function of the form

uh =
∑

j∈JFE
0 ∪JFE

1

ujϕj

(
=
∑
j∈JFE

0

ujϕj +
∑
j∈JFE

1

g(Pj)ϕj

)
for {uj}j∈JFE

0 ∪JFE
1

= {uj}N
FE

j=1 ⊂ R, it holds that

a(uh, ϕi) =
∑

j∈JFE
0 ∪JFE

1

uj a(ϕj , ϕi) =
∑
j∈ΛFE

i

uj a(ϕj , ϕi) + ui a(ϕi, ϕi)

=
∑
j∈ΛFE

i

uj a(ϕj , ϕi) + ui a
(

1−
∑
j∈ΛFE

i

ϕj , ϕi

)
(by

∑
j∈ΛFE

i

ϕj + ϕi = 1)

=
∑
j∈ΛFE

i

uj a(ϕj , ϕi)−
∑
j∈ΛFE

i

ui a(ϕj , ϕi)

=
∑
j∈ΛFE

i

a(ϕj , ϕi)(uj − ui)

for i ∈ JFE
0 . We can, therefore, set an equivalent problem to (6); find {uj}N

FE

j=1 ⊂ R
such that ∑

j∈Λi

κFE
ij (uj − ui) + FFE

i = 0, ∀i ∈ JFE
0 , (7a)

ui = gFE
i , ∀i ∈ JFE

1 , (7b)

where notations κFE
ij , FFE

i and gFE
i are defined by

κFE
ij ≡ −a(ϕj , ϕi), FFE

i ≡ 〈f, ϕi〉, gFE
i ≡ g(Pi). (8)

Let DFE = {DFE
i }N

FE

i=1 be a block division of Ω defined by

DFE
i ≡

{
x ∈ Ω; |x− Pi| < |x− Pj |, ∀j ∈ (JFE

0 ∪ JFE
1 ) \ {i}

}
, i = 1, · · · , NFE,

which is based on the Voronoi diagram [13, 12]. Problem (7) can be seen as a scalar
spring-block system with Dirichlet boundary by setting

N = NFE, D = DFE, κij = κFE
ij , Jl = JFE

l (l = 0, 1),

Fi = FFE
i , gi = gFE

i , Λi = ΛFE
i ,

in Problem 2. Figure 2 shows a part of a sample block division D = DFE.
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Pi

Pj

Di

Dj Dij

Figure 2. A part of a sample block division D = DFE. Di = DFE
i

and Dj = DFE
j are subblocks with respect to nodes Pi and Pj of a

triangular mesh, respectively. Thin lines show the triangular mesh
used for FEM.

After defining the acuteness condition [9] for Th, we present a proposition on
symmetry and positivity of the scalar spring constant κFE

ij .

Definition 2. Let Th be a triangulation of Ω ⊂ R2. We say Th is “acute” if any
interior angle of any element T ∈ Th is less than π/2.

Proposition 2. Let Th be given. Suppose (i, j) ∈ ΛFE with i or j ∈ JFE
0 . Let κFE

ij

be the scalar spring constant defined by (8).

(i) Then, it holds that

κFE
ij = κFE

ji .

(ii) Suppose n = 2 and that Th is acute. Then, κFE
ij is positive.

Proof. Let any (i, j) ∈ ΛFE in the assumption be fixed. (i) is obvious by symmetry
of a = a(·, ·), cf. (4). As for (ii) it holds that for any T ∈ Th

∇ϕj |T · ∇ϕi|T =

{∣∣∇ϕj |T ∣∣∣∣∇ϕi|T ∣∣ cos θT < 0 (Pi and Pj ∈ T )

0 (otherwise)

under the acuteness condition, where θT is the angle between the two vectors ∇ϕj |T
and ∇ϕi|T . It implies that

κFE
ij = −a(ϕj , ϕi) = −

∫
Ω

∇ϕj · ∇ϕi dx = −
∑
T∈Th

∫
T

∇ϕj · ∇ϕi dx > 0,

which is the desired result.

Remark 1. The scalar spring-block system (7) is consistent with the elliptic equa-
tion (3) since it is equivalent to P1-FEM.

4. A tensor-valued spring constant derived from P1-FEM. In this section
we derive a tensor-valued spring constant from P1-FEM for the equations of linear
elasticity.

Let cpqrs : Ω → R (p, q, r, s = 1, · · · , n), f : Ω → Rn and g : Γ → Rn be
given functions. We assume cpqrs ∈ L∞(Ω) (p, q, r, s = 1, · · · , n), f ∈ L2(Ω)n, g ∈
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C0(Γ )n ∩H1/2(Γ )n and that the fourth-order stiffness tensor c satisfies symmetry
condition, i.e.,

cpqrs = crspq = cqprs (p, q, r, s = 1, · · · , n). (9)

The elasticity problem is to find u : Ω → Rn such that

−∇{σ(u)} = f in Ω, (10a)

u = g on Γ. (10b)

where σ(u) and ε(u) are the stress and strain tensors defined by

σpq(u) ≡
n∑

r,s=1

cpqrsεrs(u) (p, q = 1, · · · , n),

εpq(u) ≡ 1

2
(up,q + uq,p) (p, q = 1, · · · , n).

Let V n(g) be the function space defined by

V n(g) ≡ {v ∈ Xn; v = g on Γ}

for a given function g : Γ → Rn and set V n ≡ V n(0). We define a bilinear form
a = a(·, ·) on Xn ×Xn and a linear functional f ∈ (Xn)′ by

a(u, v) ≡
∫
Ω

σ(u) : ε(v) dx,

〈f, v〉 ≡
∫
Ω

f(x) · v(x) dx,

respectively. Then, a weak formulation of problem (10) is to find u ∈ V (g) such
that

a(u, v) = 〈f, v〉, ∀v ∈ V n. (11)

A discrete problem for problem (11) via P1-FEM is obtained as follows. Let a
triangulation Th = {T} of Ω̄ be given and Xn

h and V nh (g) be finite element spaces
defined by

Xn
h ≡ {vh ∈ C0(Ω̄)n; vh|T ∈ P1(T )n, ∀T ∈ Th},

V nh (g) ≡ {vh ∈ Xn
h ; vh(P ) = g(P ), ∀P : node on Γ},

for a given function g : Γ → Rn, respectively, and set V nh ≡ V nh (0). The discrete
problem for (11) is to find uh ∈ V nh (g) such that

a(uh, vh) = 〈f, vh〉, ∀vh ∈ V nh . (12)

Let ek ≡ (δk1, · · · , δkn)T ∈ Rn (k = 1, · · · , n) be the orthogonal unit vectors.
Since equation (12) is equivalent to

a(uh, ϕiek) = 〈f, ϕiek〉, ∀i ∈ JFE
0 , ∀k ∈ {1, · · · , n},

and the solution uh ∈ V nh (g) is written as

uh =
∑

j∈JFE
0 ∪JFE

1

ujϕj

(
=
∑
j∈JFE

0

ujϕj +
∑
j∈JFE

1

g(Pj)ϕj

)
for {uj}j∈JFE

0 ∪JFE
1

= {uj}N
FE

j=1 ⊂ Rn, it holds that

a(uh, ϕiek) =
∑

j∈JFE
0 ∪JFE

1

a(ujϕj , ϕiek)
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=

n∑
l=1

{ ∑
j∈ΛFE

i

[uj ]l a(ϕjel, ϕiek) + [ui]l a(ϕiel, ϕiek)

}

=

n∑
l=1

{ ∑
j∈ΛFE

i

[uj ]l a(ϕjel, ϕiek) + [ui]l a

((
1−

∑
j∈ΛFE

i

ϕj

)
el, ϕiek

)}

=

n∑
l=1

{ ∑
j∈ΛFE

i

[uj ]l a(ϕjel, ϕiek)−
∑
j∈ΛFE

i

[ui]l a(ϕjel, ϕiek)

}

=

n∑
l=1

∑
j∈ΛFE

i

a(ϕjel, ϕiek)[uj − ui]l

for i ∈ JFE
0 . We can, therefore, set an equivalent problem to (12); find {uj}N

FE

j=1 ⊂
Rn such that ∑

j∈ΛFE
i

KFE
ij (uj − ui) + FFE

i = 0, ∀i ∈ JFE
0 , (13a)

ui = gFE
i , ∀i ∈ JFE

1 , (13b)

where notations KFE
ij ∈ Rn×n, FFE

i ∈ Rn and gFE
i ∈ Rn are defined by

[KFE
ij ]kl ≡ −a(ϕjel, ϕiek), [FFE

i ]k ≡ 〈f, ϕiek〉, gFE
i ≡ g(Pi), (14)

for k, l = 1, · · · , n, respectively. Problem (13) can be (formally) seen as a tensor-
valued spring-block system with Dirichlet boundary by setting

N = NFE, D = DFE, Kij = KFE
ij , Jl = JFE

l (l = 0, 1),

Fi = FFE
i , gi = gFE

i , Λi = ΛFE
i ,

in Problem 1, while in general Kij does not always have two properties, symmetry
and positive definiteness, i.e., Kij = Kji and Kij > O, respectively. The two
properties are studied in the next section.

5. Symmetry and positive definiteness of KFE
ij in two dimensions. In this

section we study two properties, symmetry and positive definiteness, of the tensor-
valued spring constant KFE

ij under n = 2.
Throughout this section we assume n = 2 and often omit the superscript “FE”

from KFE
ij and KFE

ji since there is no confusion. In the case of a scalar spring-block

system with Dirichlet boundary via P1-FEM, the scalar spring constant κFE
ij de-

fined in (8) is symmetric and positive positive definite if the triangulation satisfies
the acuteness condition, cf. Proposition 2. Here we study symmetry and positive
definiteness of tensor-valued spring constant Kij defined in (14).

In order to state and prove the next theorem on symmetry and positive defi-
niteness of Kij we prepare notations to be used. Let (i, j) ∈ ΛFE satisfying i or
j ∈ JFE

0 be fixed and T 1 and T 2 ∈ Th (T 1 6= T 2) be the two triangles including both
Pi and Pj . Without loss of generality we consider the two triangles T 1 and T 2 as
T 1 = 4PiPjQ1 and T 2 = 4PiPjQ2 and set Pi ≡ (0, 0)T , Pj ≡ (s, t)T , Q1 ≡ (a, b)T

and Q2 ≡ (c, d)T , cf. Figure 3. For a subscript m = 1 and 2 we prepare the following
constants,

θm ≡ ∠PiQmPj , θmi ≡ ∠QmPiPj , θmj ≡ ∠QmPjPi,

θi ≡ ∠Q1PiQ2 = θ1i + θ2i, θj ≡ ∠Q1PjQ2 = θ1j + θ2j ,
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kmi ≡ QmPi, kmj ≡ QmPj ,
m1 ≡ 2|T 1| = bs− at > 0, m2 ≡ 2|T 2| = ct− ds > 0,

m3 ≡ 2|4PiQ2Q1| = k1ik2i sin(θ1i + θ2i) = bc− ad > 0,

m4 ≡ 2|4PjQ1Q2| = k1jk2j sin(θ1j + θ2j) > 0,

c̄pqrs ≡
1

2
(cpqrs + cpsrq),

E ≡ E1 + E2, E1 ≡
(b− t)b

2m1
, E2 ≡

(d− t)d
2m2

,

F ≡ (s− a)b

2m1
+

(s− c)d
2m2

=
(t− b)a

2m1
+

(t− d)c

2m2
, (15)

G ≡ G1 +G2, G1 ≡
(a− s)a

2m1
, G2 ≡

(c− s)c
2m2

.

T 1

T 2

Pi = (0, 0)T

Pj = (s, t)T

Q1 = (a, b)T

Q2 = (c, d)T

θ1i

θ2i
θ1j

θ2j

θ1

θ2

k1i

k2i

k1j

k2j

Figure 3. The two triangles including both Pi and Pj .

Theorem 1. Suppose n = 2 and let Th be given. Suppose (i, j) ∈ ΛFE with i or
j ∈ JFE

0 and that the stiffness tensor c with (9) is homogeneous, i.e., c does not
depend on x. Let Kij be the tensor-valued spring constant defined by (14).

(i) Then, it holds that

Kij = Kji ∈ Rn×nsym .

(ii) Suppose that Th is acute and that the stiffness tensor c satisfies the isotropy
condition, i.e.,

cpqrs = λδpqδrs + µ(δprδqs + δpsδqr) (16)
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for positive constants λ and µ. Then, Kij is positive definite if and only if

(0 <)α ≡ F 2 − EG
(E +G)2

< 2 and
λ

µ
< f(α) ≡ 1− 2α+

√
1 + 4α

2α
.

Remark 2. The definition of Kij (14) with the assumption of c (9) implies that
Kij = KT

ji, which is different from Kij = Kji.

Remark 3. For α > 0 the function f(α) is strictly decreasing and satisfies
limα→+0 f(α) = +∞ and f(2) = 0.

We prepare the following two lemmas which are employed in the proof of Theo-
rem 1.

Lemma 1. It holds that

F 2 − EG =
m3m4

4m1m2
> 0.

Proof. From the two expressions of F in (15) we have

F 2 =

(
(a− s)b

2m1
+

(c− s)d
2m2

)(
(b− t)a

2m1
+

(d− t)c
2m2

)
=

(a− s)(b− t)ab
4m2

1

+
(a− s)(d− t)bc+ (b− t)(c− s)ad

4m1m2
+

(c− s)(d− t)cd
4m2

2

= E1G1 +
(a− s)(d− t)bc+ (b− t)(c− s)ad

4m1m2
+ E2G2. (17)

On the other hand, it holds that

EG = E1G1 + E2G1 + E1G2 + E2G2

= E1G1 +
(a− s)(d− t)ad+ (b− t)(c− s)bc

4m1m2
+ E2G2. (18)

Subtracting (18) from (17), we have

F 2 − EG =
(a− s)(d− t)(bc− ad) + (b− t)(c− s)(ad− bc)

4m1m2

=
(bc− ad)(m1 +m2 − (bc− ad))

4m1m2
=

m3m4

4m1m2
> 0,

which completes the proof.

Lemma 2. (i) For l = 1 and 2 it holds that

El +Gl =
1

2
cot θl.

(ii) We have

0 < θl <
π

2
iff El +Gl > 0.

Proof. Since (ii) is easily obtained from (i), we omit the proof of (ii). We prove (i)
with l = 1. From the law of cosines it holds that

cos θ1 =
PiQ1

2
+ PjQ1

2 − PiPj
2

2PiQ1 PjQ1

=
a2 + b2 − (as+ bt)

PiQ1 PjQ1

,

sin θ1 =
√

1− cos2 θ1 =

√
(PiQ1 PjQ1)2 − {a2 + b2 − (as+ bt)}2

PiQ1 PjQ1
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=

√
(a2 + b2)(s2 + t2)− (as+ bt)2

PiQ1 PjQ1

=
bs− at

PiQ1 PjQ1

.

We, therefore, have

E1 +G1 =
(b− t)b

2m1
+

(a− s)a
2m1

=
a2 + b2 − (bt+ as)

2m1

=
a2 + b2 − (bt+ as)

2(bs− at)
=

cos θ1

2 sin θ1
=

1

2
cot θ1,

which completes the proof. The proof of (i) with l = 2 is similar.

Now we give the proof.

Proof of Theorem 1. We assume the situation mentioned just before the theorem,
cf. Figure 3, and use the notations. First, we prove Kij ∈ R2×2

sym of (i). For any fixed
k and l ∈ {1, 2} it holds that

[Kij ]kl = −a(ϕjel, ϕiek) = −
∫
Ω

σ(ϕjel) : ε(ϕiek) dx

= −
2∑

p,q,r,s=1

∫
Ω

cpqrsεrs(ϕjel)εpq(ϕiek) dx

= −1

4

2∑
p,q,r,s=1

∫
Ω

cpqrs
(
[ϕjel]r,s + [ϕjel]s,r

)(
[ϕiek]p,q + [ϕiek]q,p

)
dx

= −1

4

2∑
p,q,r,s=1

∫
Ω

cpqrs
(
ϕj,sδlr + ϕj,rδls

)(
ϕi,qδkp + ϕi,pδkq

)
dx

= −1

4

2∑
p,q,r,s=1

∫
Ω

cpqrs
(
ϕj,sϕi,qδlrδkp + ϕj,sϕi,pδlrδkq

+ ϕj,rϕi,qδlsδkp + ϕj,rϕi,pδlsδkq
)
dx

= −1

4

{ 2∑
q,s=1

∫
Ω

ckqlsϕj,sϕi,q dx+

2∑
p,s=1

∫
Ω

cpklsϕj,sϕi,p dx

+

2∑
q,r=1

∫
Ω

ckqrlϕj,rϕi,q dx+

2∑
p,r=1

∫
Ω

cpkrlϕj,rϕi,p dx

}

= −1

4

2∑
q,s=1

∫
Ω

(
ckqlsϕj,sϕi,q + cqklsϕj,sϕi,q + ckqslϕj,sϕi,q + cqkslϕj,sϕi,q

)
dx

= −
2∑

q,s=1

∫
Ω

ckqlsϕi,qϕj,s dx (by (9)) (19)

= −
2∑

q,s=1

∫
T 1

ckqlsϕi,qϕj,s dx−
2∑

q,s=1

∫
T 2

ckqlsϕi,qϕj,s dx

≡ [Kij ]
1
kl + [Kij ]

2
kl.
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Since functions ϕi, ∇ϕi, ϕj and ∇ϕj in T 1 and T 2 are written as

ϕi|T 1(x) = 1 +
t− b
m1

x1 +
a− s
m1

x2, ∇ϕi|T 1(x) =
( t− b
m1

,
a− s
m1

)T
,

ϕj |T 1(x) =
b

m1
x1 −

a

m1
x2, ∇ϕj |T 1(x) =

( b

m1
, − a

m1

)T
,

ϕi|T 2(x) = 1 +
d− t
m2

x1 +
s− c
m2

x2, ∇ϕi|T 2(x) =
(d− t
m2

,
s− c
m2

)T
,

ϕj |T 2(x) = − d

m2
x1 +

c

m2
x2, ∇ϕj |T 2(x) =

(
− d

m2
,

c

m2

)T
,

and cpqrs is homogeneous, it holds that

[Kij ]
1
kl = −|T 1|

2∑
q,s=1

ckqlsϕi,qϕj,s

= −|T
1|

m2
1

{ck1l1(t− b)b+ ck1l2(t− b)(−a) + ck2l1(a− s)b+ ck2l2(a− s)(−a)}

=
1

2m1
{ck1l1(b− t)b+ ck1l2(−m1 + (s− a)b) + ck2l1(s− a)b+ ck2l2(a− s)a}

=
1

2m1
{ck1l1(b− t)b+ 2c̄k1l2(s− a)b+ ck2l2(a− s)a} − 1

2
ck1l2

≡ [K̃ij ]
1
kl −

1

2
ck1l2,

[Kij ]
2
kl = −|T 2|

2∑
q,s=1

ckqlsϕi,qϕj,s

= −|T
2|

m2
2

{ck1l1(d− t)(−d) + ck1l2(d− t)c+ ck2l1(s− c)(−d) + ck2l2(s− c)c}

=
1

2m2
{ck1l1(d− t)d+ ck1l2(m2 + (s− c)d) + ck2l1(s− c)d+ ck2l2(c− s)c}

=
1

2m2
{ck1l1(d− t)d+ 2c̄k1l2(s− c)d+ ck2l2(c− s)c}+

1

2
ck1l2

≡ [K̃ij ]
2
kl +

1

2
ck1l2.

We note that [K̃ij ]
m ∈ R2×2 (m = 1, 2) are symmetric from a relation, c̄mkqls = c̄mlqks.

Then, the symmetric property of [K̃ij ]
m (m = 1, 2) and the homogeneity of cpqrs

yield that

[Kij ]kl = [Kij ]
1
kl + [Kij ]

2
kl = [K̃ij ]

1
kl −

1

2
ck1l2 + [K̃ij ]

2
kl +

1

2
ck1l2

= [K̃ij ]
1
kl + [K̃ij ]

2
kl = [K̃ij ]

1
lk + [K̃ij ]

2
lk = [Kij ]lk.

Thus, we have Kij ∈ R2×2
sym, which leads to the other property of (i), Kij = Kji as

Kji = KT
ij = Kij ,

where the first equality follows from (19) (i.e., [Kij ]kl = −
∑2
q,s=1

∫
Ω
ckqlsϕi,qϕj,s dx).

Next, we prove (ii). It holds that

[Kij ]kl = [K̃ij ]
1
kl + [K̃ij ]

2
kl
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=
1

2m1

{
ck1l1(b− t)b+ 2c̄k1l2(s− a)b+ ck2l2(a− s)a

}
+

1

2m2

{
ck1l1(d− t)d+ 2c̄k1l2(s− c)d+ ck2l2(c− s)c

}
= ck1l1E + 2c̄k1l2F + ck2l2G. (20)

From (16) and (20) the tensor-valued spring constant Kij ∈ R2×2
sym can be written as

Kij =

(
[Kij ]11 [Kij ]12

[Kij ]12 [Kij ]22

)
for

[Kij ]11 ≡ (λ+ 2µ)E + µG, [Kij ]22 ≡ µE + (λ+ 2µ)G, [Kij ]12 ≡ (λ+ µ)F,

and it holds that Kij is positive definite if and only if

trKij > 0 and detKij > 0. (21)

From Lemma 2 the first condition of (21) holds. Letting

A ≡ λ+ µ

µ
=
λ

µ
+ 1 > 0,

we have

[Kij ]11 = µ(EA+ E +G), [Kij ]22 = µ(GA+ E +G), [Kij ]12 = µFA,

and

detKij = −µ2(E +G)2(αA2 −A− 1).

The above relation yields that the second condition of (21) is equivalent to

1 < A <
1 +
√

1 + 4α

2α
and 0 < α < 2,

which leads to the desired result.

Remark 4. When the stiffness tensor c is not homogeneous, we have in general

ck1l2|T 1 6= ck1l2|T 2 which implies [Kij ]kl 6= [K̃ij ]
1
kl + [K̃ij ]

2
kl. That is why Kij is not

always symmetric if c is not homogeneous.

From Theorem 1 the following two corollaries hold.

Corollary 1. (i) α can be written as

α =
sin θi sin θj sin θ1 sin θ2

sin2(θ1 + θ2)
. (22)

(ii) Suppose the two triangles including Pi and Pj are equilateral in addition to the
same assumptions of Theorem 1-(ii). Then, Kij is positive definite if and only if

λ < µ.

(iii) Under the same assumptions of (ii) and λ = µ the symmetric matrix Kij has
one positive and one zero eigenvalue.
(iv) Under the same assumptions of (ii) and µ < λ the symmetric matrix Kij has
one positive and one negative eigenvalue.
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Proof. We firstly show (i). From Lemmas 1 and 2 the expression of α (22) is
obtained by

α =
F 2 − EG
(E +G)2

=
m3m4

4m1m2

(cot θ1 + cot θ2

2

)−2

=
sin θi sin θj

4 sin θ1 sin θ2

( sin(θ1 + θ2)

2 sin θ1 sin θ2

)−2

=
sin θi sin θj sin θ1 sin θ2

sin2(θ1 + θ2)
.

Next we prove (ii)–(iv). From (i) and the additional condition, i.e., the two
triangles are equilateral, we have α = 3/4, f(α) = f(3/4) = 1 and

det Kij = −1

4
µ2(E +G)2(A− 2)(3A+ 2)

with A = λ/µ + 1, which implies detKij > 0, detKij = 0 and detKij < 0 for the
cases of (ii), (iii) and (iv), respectively, and yields the desired results of (ii)–(iv).

Let θ0 and θ∗ be fixed positive constants defined by

θ0 ≡ arctan(
√

7/3), θ∗ ≡ min{θmin, π − 2θmax},

where θmin and θmax are the minimum and the maximum interior angles of the
triangulation, respectively.

Corollary 2. In addition to the same assumptions of Theorem 1-(ii), suppose that

θ0 < θ <
π − θ0

2
(23)

is satisfied for any interior angle θ of the triangulation and

λ

µ
< f

( 1

2(1− cos θ∗)

)
. (24)

Then, Kij is positive definite for any (i, j) ∈ ΛFE satisfying i or j ∈ JFE
0 .

Proof. First we prove α < 2. The definition of θ∗ implies that

sin θ1, sin θ2 ∈
[
sin θ∗, cos

θ∗
2

]
, (25a)

sin θi, sin θj , sin(θ1 + θ2) ∈ [sin θ∗, 1]. (25b)

Combining (25) with Corollary 1-(i), we have

sin4 θ∗ ≤ α ≤
1

2(1− cos θ∗)
. (26)

On the other hand, the inequality (23) is equivalent to θ0 < θ∗, which yields another
equivalent condition,

1

2(1− cos θ∗)
< 2. (27)

The inequality α < 2, therefore, holds from (26) and (27).
Next we show λ/µ < f(α). It is obtained as

λ

µ
< f

( 1

2(1− cos θ∗)

)
≤ f(α)

from (24), (26) and Remark 3. Thus, we have the desired result from Theorem 1-
(ii).
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At the end of this section we mention about positive definiteness of the tensor-
valued spring constant KFE

ij for a specific material, i.e., concrete. Suppose (i, j) ∈
ΛFE with i or j ∈ JFE

0 . We consider a case that two triangles including nodes Pi
and Pj are both equilateral. Isotropic homogeneous materials satisfy

λ

µ
=

2ν

1− 2ν
,

where ν is Poisson’s ratio. Setting ν = 0.2 as (representative) Poisson’s ratio of
concrete, we have λ/µ = 2/3 < 1. The spring constant KFE

ij derived from P1-FEM
is, therefore, symmetric and positive definite.

6. Conclusions. We have studied symmetry and positive definiteness of scalar and
tensor-valued spring constants derived from P1-FEM for the scalar elliptic equation
and equations of linear elasticity in two dimensions. Each derived spring-block
system with the spring constant is consistent in a sense that it is equivalent to
P1-FEM. For the scalar case, it is always symmetric and positive definite under
the acuteness condition. For the tensor case, it is symmetric if the fourth-order
elastic stiffness tensor c satisfies condition (9) and is spatially homogeneous. It is
also positive definite if isotropy of c and the acuteness condition are additionally
satisfied. We found that materials with low Poisson’s ratio can be approximated by
the spring-block system which is consistent with the equations of linear elasticity.
Concrete is a typical example of a low Poisson ratio material. To construct a
mathematically sound spring constant having symmetry and positive definiteness
for more general elastic tensor and/or dimension is a future work.
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[9] J. Karátson and S. Korotov, An algebraic discrete maximum principle in Hilbert space with
applications to nonlinear cooperative elliptic systems, SIAM Journal on Numerical Analysis,

47 (2009), 2518–2549.

http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
http://www.ams.org/mathscinet-getitem?mr=MR1894376&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3658-8
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.2208/jscejam.68.10
http://dx.doi.org/10.2208/jscejam.68.10
http://www.ams.org/mathscinet-getitem?mr=MR0520174&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2116265&return=pdf
http://dx.doi.org/10.1016/j.jmps.2004.08.005
http://dx.doi.org/10.1016/j.jmps.2004.08.005
http://www.ams.org/mathscinet-getitem?mr=MR2525610&return=pdf
http://dx.doi.org/10.1137/080729566
http://dx.doi.org/10.1137/080729566


634 HIROFUMI NOTSU AND MASATO KIMURA

[10] A. Munjiza, The Combined Finite-Discrete Element Method , John Wiley & Sons, Chichester,
2004.

[11] H. Notsu and M. Tabata, A single-step characteristic-curve finite element scheme of second

order in time for the incompressible Navier-Stokes equations, Journal of Scientific Computing,
38 (2009), 1–14.

[12] A. Okabe, B. Boots, K. Sugihara and S.-N. Choi, Spatial Tessellation: Concepts and Appli-
cations of Voronoi Diagrams, John Wiley and Sons, Chichester, 1992.

[13] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadra-
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