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ABSTRACT. We study spring-block systems which are equivalent to the P1-
finite element methods for the linear elliptic partial differential equation of
second order and for the equations of linear elasticity. Each derived spring-
block system is consistent with the original partial differential equation, since
it is discretized by P1-FEM. Symmetry and positive definiteness of the scalar
and tensor-valued spring constants are studied in two dimensions. Under the
acuteness condition of the triangular mesh, positive definiteness of the scalar
spring constant is obtained. In case of homogeneous linear elasticity, we show
the symmetry of the tensor-valued spring constant in the two dimensional case.
For isotropic elastic materials, we give a necessary and sufficient condition for
the positive definiteness of the tensor-valued spring constant. Consequently,
if Poisson’s ratio of the elastic material is small enough, like concrete, we can
construct a consistent spring-block system with positive definite tensor-valued
spring constant.

1. Introduction. In computational analysis of deformation and stress field for
several elastic materials such as metals and concrete, finite element analysis based
on the equations of linear elasticity is widely used. On the other hand, spring-mass
systems or spring-block systems are also used for several purposes, for example, a
fracture model [8] etc.

The modelling of fracture phenomena is still one of the most interesting and
challenging problems. Engineers have proposed many numerical methods in order
to realize the fracture phenomena, e.g., the extended finite element method (X-
FEM) [1], the discrete element method (DEM) [3, 10] and the particle discretization
scheme (PDS-FEM) [4, 7]. Once a sort of spring-block type idea is introduced into
a model of a fracture phenomenon, a spring constant is needed. It is, however,
not easy to set the spring constant suitably. Indeed, in [7] it is pointed out that
the so-called Poisson effect may not be properly expressed if the spring constant
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is not suitably given or the mathematical analysis of the model is not performed
rigorously.

Recently, we have proposed a fracture model [8] and proved that the model is
mathematically solvable if the spring-block system to be employed is positively con-
nected, cf. [8] or Proposition 1 below. We note that the assumption, i.e., posi-
tively connected, includes symmetry and positive (non-negative) definiteness of the
spring constant.

In this paper, symmetry and positive definiteness of scalar and tensor-valued
spring constants of spring-block systems derived from the finite element method are
studied.

There are springs and blocks in a spring-block system. A domain is divided
into non-overlapping subblocks and there is a spring between each two adjacent
subblocks. Each spring has a spring constant, which is assumed to be symmetric
and positive (or non-negative) definite.

On the other hand, it is well known that the finite element method works well for
many partial differential equations, e.g., [5, 2, 11]. We focus on the scalar elliptic
partial differential equations of second order and the equations of linear elasticity
in two dimensions. The finite element method with the piecewise linear element
(P1-FEM) for each equation can be (formally) seen as a spring-block system and
virtual scalar and tensor-valued spring constants are naturally derived from the
discretization. In this paper we study symmetry and positive definiteness of the
spring constants derived from P1-FEM.

In the case of the scalar elliptic equation, the spring constant is scalar, and it
is positive (or non-negative) definite under the acuteness condition [9]. This fact
is well known through the analysis of the discrete maximum principle, cf. [9]. We
note that the obtained spring-block system is consistent with the elliptic equation
since it is equivalent to P1-FEM.

In the case of the equations of linear elasticity with a given fourth-order stiffness
tensor, symmetry and positive (or non-negative) definiteness of the derived spring
constant are not trivial. Let KiFjE € R2?*2 be the tensor-valued spring constant
between two subblocks D; and D; (i # j) derived from P1-FEM. The subblocks
D; and D; are corresponding to two nodes F; and P; of a triangular mesh used in
P1-FEM and the virtual spring is on ﬁP] Let the given fourth-order stiffness ten-
SOr ¢ = (Cpqrs) satisfy the symmetry condition cpgrs = Crspg = Cqprs (0, ¢, 7,8 = 1,2).
The condition of ¢ does not imply the symmetry KiFjE = (KZ-F]»E)T and just leads to
KEP = (KJF)", where the superscript T means transposition. We have computed
KZ-FjE carefully and obtained symmetry of the tensor-valued spring constant KZ-FjE
under some conditions including space homogeneity of ¢, which yields K;® = K1
As for the positive definiteness of the spring constant, we present an equivalent
condition under the acuteness condition for the triangular mesh and space homo-
geneity and isotropy of c¢. For the positive definiteness, Poisson’s ratio should be
sufficiently small depending on the regularity of the triangular mesh. In partic-
ular, if the mesh consists of equilateral triangles, KZI“;E is positive definite if and
only if Poisson’s ratio v is less than 1/4. Materials with relatively large Poisson’s
ratio such as metals (0.27 < v < 0.36) and rubber (0.45 < v < 0.5) do not satisfy
this condition, however, some materials with small Poisson’s ratio such as concrete
(0.1 <v <0.2) do, cf. [6] for the values of v.

The paper is organized as follows. In Section 2, scalar and tensor-valued spring-
block systems are introduced and known results are stated. In Section 3, a scalar
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spring constant is derived from P1-FEM for the scalar elliptic equation and positive
definiteness is studied. In Section 4, a tensor-valued spring constant is derived
from P1-FEM for the equations of linear elasticity. In Section 5, main results are
presented, i.e., the symmetry and positive definiteness of the tensor-valued spring
constant are well studied in two dimensions. In Section 6 conclusions are given.

In the rest of this section we prepare notations to be used in the paper. Let
n € N and let 2 C R™ be a bounded domain. The n-dimensional volume of {2
is denoted by |£2|. We use the Lebesgue and Sobolev spaces L>°(£2), L*(£2) and
H'(£2) and define || - [jo = || - [|2()- The space of continuous functions on {2 is
denoted by CO(Q). The dual pairing between a normed space X and the dual space
X' is denoted by (-,). For ¢ = 1,--- ,n, the partial derivative du/dz; of a function
u is simply denoted by wu ;. REJT is a space of real symmetric matrices of size n.
0;; is Kronecker’s delta for 7,5 = 1,--- ,n. We employ the same notations u, f, g,
a, {-,+) and so on for scalar and tensor-valued spring constant models, since there
is no confusion.

2. Scalar and tensor-valued spring constant models. This section is devoted
to state scalar and tensor-valued spring constant models.

Let n € N be a number and {2 C R" be a bounded domain with a Lipschitz
boundary I' = 9£2. We divide {2 into N subblocks D = {D;}},. We suppose that
each block D; C R™ is a nonempty connected open set and that the conditions,

N
2=\JDi, DinD; =0 (i #j),
i=1

hold. If n > 2, we additionally suppose that D; has a Lipschitz boundary for any
i € {1,---,N}. In this paper, for simplicity, we call D = {D;}; a block division
of {2 and assume the above conditions.

We introduce the following notation for adjacent blocks in a block division D.

Dy EDiﬂDj (i, 5=1,...,N, i #j),
dij =H" (D) (i, j=1,...,N, i #7),
Ai={jef{l,-- NI\ {i}; di; >0} (i =1,--- . N),
A={(,j); 1<i<j<N, d; >0},
= |J Dy
(4,5)EA
where H" 1 is the (n — 1)-dimensional Hausdorff measure, cf. Figure 1.
We define function spaces of piecewise constant functions on D; and D;; as

follows.
wor={ gy BEplp, (=L
ww={§ CER ) ien,
V(D) = {UGLOO(Q); v—zN:vixi, GER, i=1,-- ,N},
w(D)={¢e L=y ¢= _i Gixigs Gy € RY.

(i,5)EA



620 HIROFUMI NOTSU AND MASATO KIMURA

S

FIGURE 1. Sample blocks D; and D; and a common boundary D;;
of the two blocks.

In the following sections, we consider scalar or vector-valued displacement fields
which belong to V(D) and virtual springs between adjacent blocks. In order to set
the Dirichlet boundary condition, we suppose

J:(J07J1)7 JOUJIZ{]-a"'aN}a Jomjlz(bu J07é®a Jl#(ba

and that the balance of forces is considered at D; for ¢ € Jy and the displacement
of D; for i € J; is a priori given. The displacement space V(D) is a direct sum of
the following subspaces,

VZ(D)E{UEV(D); UZZUin', vieR} (i1=0,1).
i€J;
Now a tensor-valued spring constant model is constructed as follows. For a block
division D of 2 C R™ we consider a vector-valued displacement u = Zfil U;Xi €
V(D)™, where u; € R™ is a vector and

N
V(D) = {v e L¥(%R"); v=> vixi, v €R", i=1,--- ,N}.
=1

For (i,j) € A we consider a virtual spring between the adjacent blocks D; and D,
with tensor-valued spring constant K;; € R{". We suppose that the tensor-valued
spring constant satisfies the condition,

Ki; =Kj;; >0, V(i,j) €A, (1)

where K;; > O means that K;; is non-negative definite. If K;; € R{" is positive
definite, we denote it by K;; > O. We additionally suppose that the vector-valued
force acting on D; from D; is given as K;;(u; —u;) € R™. It is a sort of Hooke’s

law. Let K be a function defined by
K= Z Kinij S W(D)nxn
(i,7)EA
Under the above situation, we call (D, K) a tensor-valued spring-block system, and

call (D, K, J) a tensor-valued spring-block system with Dirichlet boundary.
We consider the following problem.
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Problem 1. Let (D, K,J) be a tensor-valued spring-block system with Dirichlet
boundary in R"™. For a given body force f = > ,c; fixi € Vo(D)" with F; =
|Di|fi € R™ and a given displacement g =, ; gix: € Vi(D)", find a displacement
u = Zf\il u;Xi € V(D)™ such that
Z KZJ(’U,]—’LLZ)-FFZ =0, Vi € Jy,
JEA;
u; = g, Vi e Jy.
We define a bilinear form (-, -) x, a seminorm |-|x and a constant ¢ = ¢o(D, K, J)
by
(w,v)k = > {Kij(uj —ui)}- (v, —v) (u, veV(D)"),
(i,9)EA

vl = V(v,0)k (v e V(D))

. [v] i
Co = C D,K,J = lnf
0 = co( ) vEVo (D)™, [lvfloz£0 [[v]lo ~

Concerning the solvability of Problem 1, we introduce some non-degeneracy condi-
tions of the spring constant K.

Definition 1. Let (D, K, J) be a tensor-valued spring-block system with Dirichlet
boundary.

(i) (D, K, J)is called “positively connected” if the following condition is satisfied;
veVp(D)and > | —v;| =0, iff v=0€eV(D). (2)
K;;>0
(ii) (D, K, J) is called “regular” if ¢o(D, K, J) > 0.

The condition (2) means that for any i € Jy block D; is connected to a Dirichlet
boundary block D; (j € J1) by a chain of positive definite springs. We also remark
that, if (D, K, J) is regular, then the inequality

lollo < gt vlx (v € Vo(D)")
holds. We give a proposition on the solvability of Problem 1, cf. [8].

Proposition 1 ([8]). Let (D, K, J) be a tensor-valued spring-block system with
Dirichlet boundary.
(i) (D, K, J) is reqular if it is positively connected.
(ii) Suppose (D, K, J) is regular. Then, there exists a unique solution u € V(D)™
of Problem 1.

Here we introduce a scalar spring constant model, which is constructed in a
similar way to the tensor-valued spring constant model. We consider a scalar virtual
spring between D; and D; and suppose that it has a spring constant x;; > 0 and
that the force acting on D; from D; is given as k;;(u; — u;) € R. A corresponding
condition to (1) is given as

Kij = ki >0, V(i,7) € A
Let k = Z(M)E[\ KijXi; € W(D). We call (D, k) a scalar spring-block system, and
call (D, k,J) a scalar spring-block system with Dirichlet boundary.

The following problem is a scalar version of Problem 1. We note that a corre-
sponding proposition of Proposition 1 holds, cf. [8].
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Problem 2. Let (D, k,J) be a scalar spring-block system with Dirichlet boundary
in R™. For a given body force f =3, ; fixi € Vo(D) with F; = f;|D;| and a given
displacement g = >, ; gixi € Vi(D), find a displacement u = Ef\il u;xi € V(D)
such that
Z Iiij(Uj—Ui)—FFi:O, Vi € JQ,
JEA;
U; = gj, Vi e Jy.

3. A scalar spring constant derived from P1-FEM for the elliptic equa-
tion. In this section we derive a scalar spring constant from P1-FEM for the elliptic
equation. The scalar spring-block system to be derived is an alternative expression
of P1-FEM for the elliptic equation, which is well known to researchers of (theo-
retical) numerical analysis of FEM. This section is, however, set in order to easily
understand a tensor-valued spring constant derived from P1-FEM for the equa-
tions of linear elasticity in Section 4 and main results, i.e., symmetry and positive
definiteness of the tensor-valued spring constant in two dimensions in Section 5.
Let B: 2 — R4 (= (0,00)), f: 2 = Rand g: I' = R be given functions. We
assume B € L>®(2), f € L*(2) and g € CO(I") N HY?(I"). The elliptic problem is
to find u : 2 — R such that
-V (BVu)=f in £, (3a)
u=g onl. (3b)
Let X = H'(£2) and
Vig)={veX; v=gon I}
for a given function g : I' — R be function spaces and set V' = V(0). We define a
bilinear form a = a(-,+) on X X X and a linear functional f € X' by

a(u,v) = /QB(:I:)VU(J:) -Vo(zx) dx, (4)

(f,v) = /Qf(z)v(x) dx,
respectively. Then, a weak formulation of problem (3) is to find u € V(g) such that
a(u,v) = (f,v), YveW (5)

A discrete problem via P1-FEM for problem (5) is obtained as follows. Let
Tr, = {T} be a triangulation of 2 and

2, = int U T
TeTh

be the approximate domain of (2. For the sake of simplicity we assume (2 = (2,
in the rest of the paper. Let P;(T) be a polynomial space of linear functions on
T € Ty, and X}, and Vj,(g) be finite element spaces defined by

X5, = {vp € CY(2); vu|r € Pi(T), VT € Tp},
Vi(g) = {vn € Xp; vp(P) =g(P), VP : node on I'},

for a given function g : I' — R, respectively, and set V}, = V},(0). The discrete
problem via P1-FEM for (5) is to find u; € V,,(g) such that

a(uh,vh) = <f, ’Uh>7 Yop € V. (6)
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Let NFF ¢ N be the total number of nodal points of 75 in 2. We denote the
i-th node by P; (€ 2). Let JEE and JI'E be sets of indices with

JEuIE={1,---  N'B}, P e (MieJ®), P el (VicJ®),
and set JFE = (JFE, JFE). Let ; € X}, be the Pl-basis function with respect to
Py, {p;: 2 — R}f\;FlE be the set of P1-basis functions of X}, with ¢;(P;) = d;;, and
AFE and AFE be a set of indices of adjacent nodes of P; and a set of pairs of indices
of adjacent nodes defined by

AF={je FEUJFE, j#4, IT € Ty, st. Prand P € T},
AP ={(i,5); 1<i<j<NFE 3T €7, st P and P; € T},
respectively. Since (6) is equivalent to
a’(uhvwl): <f’<pl>7 ZEJgEy
and up € Vi(g) is a function of the form
un =Y U (: PORCIIENDY Q(Pj)sﬂj)
jeJEBUJFE jeJgE JeJI®

for {u;};e royre = {uj}jv:f C R, it holds that

a(up, p;) = Z uj a(py, i) = Z uj a(pj, pi) + u; alps, i)

jeJEBUIFE JEATE

= > wale;,pi) +uia (1— > %,%) by D> @j+@i=1)
JEATE JEAFE JEAFE

= > wpales ) — Y uiales, i)
JEAFE JEAYE

= Z alpj, pi)(uj — ;)
JEATE

for i € J§®. We can, therefore, set an equivalent problem to (6); find {u;}¥ P CR
such that

> kg Y+ EfE =0, VieJIE, (7a)
JEA;
U; = nga Vi€ JfEa (7b)

FE FE
ij F

ki =—ale ), FU=(fe), g =g(P). (8)
Let DYE = {DlFE}f\Ll be a block division of {2 defined by
Dif={z e [z - P|<|z— Pl ¥j € (JFPUSP)\{i}}, i=1-.- NF,

which is based on the Voronoi diagram [13, 12]. Problem (7) can be seen as a scalar
spring-block system with Dirichlet boundary by setting

N =N D=D' k;=xr" J=J"(01=0.1),

Fi :Fz‘FE7 gi :ng7 Ai :AfEa

where notations k; and gI'® are defined by

in Problem 2. Figure 2 shows a part of a sample block division D = D¥E,
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FIGURE 2. A part of a sample block division D = D¥E. D; = DFE
and D; = DEE are subblocks with respect to nodes P; and P; of a
triangular mesh, respectively. Thin lines show the triangular mesh
used for FEM.

After defining the acuteness condition [9] for 7, we present a proposition on
symmetry and positivity of the scalar spring constant KJZE
Definition 2. Let 7, be a triangulation of 2 C R%2. We say Tj is “acute” if any
interior angle of any element T' € T}, is less than /2.

Proposition 2. Let T, be given. Suppose (i,j) € A¥E with i or j € J§¥. Let nij
be the scalar spring constant defined by (8).
(i) Then, it holds that

FE

FE
@] ]

Rij = Kjj -

(ii) Suppose n =2 and that Ty, is acute. Then, /ﬁij is positive.

Proof. Let any (i,j) € A'® in the assumption be fixed. (i) is obvious by symmetry
of a=af(:,-), cf. (4). As for (ii) it holds that for any T € Tj,
’V<pj|THV<pi|T’ cosp <0 (P;and P; €T)
Vjlr - Veilr = .
0 (otherwise)

under the acuteness condition, where 67 is the angle between the two vectors V|
and V;|r. Tt implies that

Kij = —alpj,¢i) = —/ Ve;-Voide=— / Vi - Vi dz >0,
2 TETh T
which is the desired result. ]

Remark 1. The scalar spring-block system (7) is consistent with the elliptic equa-
tion (3) since it is equivalent to P1-FEM.

4. A tensor-valued spring constant derived from P1-FEM. In this section
we derive a tensor-valued spring constant from P1-FEM for the equations of linear
elasticity.

Let cpgrs : 2 = R (p,q,r,s = 1,---,n), f: 2 - R"and g : I' — R” be
given functions. We assume c,qrs € L®(82) (p,q,7,8 =1, ,n), f € L2 ()", g €
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Co(r)» N H'Y/2(I')™ and that the fourth-order stiffness tensor ¢ satisfies symmetry
condition, i.e.,

Cpgrs = Cropg = Cqprs (D, ¢, 7,8 =1,-++,m). (9)

The elasticity problem is to find w : £2 — R" such that
—V{o(u)} =f in £, (10a)
u=g onl. (10b)

where o(u) and £(u) are the stress and strain tensors defined by

qu(u) = Z Cpqrsf':rs(u) (p,q =1, 7n)7

r,s=1

Epq(u) = %(Up,q +ugp) (Pg=1,---,n).
Let V"(g) be the function space defined by
Vig)={ve X", v=gon I}
for a given function ¢ : I' — R™ and set V"™ = V"(0). We define a bilinear form
a=a(,-)on X™ x X" and a linear functional f € (X™)" by

a(u,v) = /ﬂ o(u) : e(v) dx,
(frv)= [ flz)- v(z) de,
Q

respectively. Then, a weak formulation of problem (10) is to find v € V(g) such
that
a(u,v) = (f,v), YveV™ (11)

A discrete problem for problem (11) via P1-FEM is obtained as follows. Let a
triangulation 75, = {T'} of {2 be given and X' and V;"*(g) be finite element spaces
defined by

XZLL = {Uh S CO(Q)n, Uh|T c Pl(T)n, VT ¢ 'Th},
Vit (g) = {vn € X35 vp(P) = g(P), VP : node on I'},

for a given function g : I' — R", respectively, and set V;» = V;*(0). The discrete
problem for (11) is to find uy, € V;*(g) such that

a(uhavh) = <fa vh>’ Yy, € V}:l (12)

Let ex = (Op1,-+* ,0rn)T € R™ (k = 1,---,n) be the orthogonal unit vectors.
Since equation (12) is equivalent to

a’(uh7@i6k) = <f7<)0iek>a Vi S JgE’ Yk S {17 an}v
and the solution u;, € V}'(g) is written as
upn = Y ujp; (: > ueit+ Y g(Pj)%)
JEJFEUITE jeJg® JEJTE
for {u;};c royre = {uj}jv:f C R™, it holds that

a(un,pier) = Y alup;,pier)

JEJERUIFE
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n

{ > il alpjern piex) + [Udza(%ez,%ek)}

jGAFE

n { > [Uj]za(%eh%ek)—k[ui]la(<1— > ij)eb%ek)}

FE ; FE
JEA] JEAS

{ > [wilialesenpier) = Y [uz’]la(%ez,%ek)}

JEAFE JEAFE

> alejenpien)u; — uil

I=1 jeAlr®

:H

for i € J§®. We can, therefore, set an equivalent problem to (12); find {u; };V:Ff C
™ such that

> KfP(uj—w) + FFP =0, Vie 5", (13a)
JEAFE
w =g, Vie JiE (13b)
where notations KiFjE e R FFE € R™ and gf'® € R" are defined by
(K[ Pl = —alpjen, gier), [FFE, = (f, pier), 9" =g(P), (14)
for k,l = 1,--- ,n, respectively. Problem (13) can be (formally) seen as a tensor-

valued spring-block system with Dirichlet boundary by setting

N=N' D=D' K;=K" J=J7"(1=0.1),

F’i :FIL’FEv gi :ngE7 Ai :AFE7

in Problem 1, while in general K;; does not always have two properties, symmetry
and positive definiteness, i.e., K;; = Kj; and K;; > O, respectively. The two
properties are studied in the next section.

5. Symmetry and positive definiteness of K[;” in two dimensions. In this
section we study two properties, symmetry and positive definiteness, of the tensor-
valued spring constant K ZFJE under n = 2.

Throughout this section we assume n = 2 and often omit the superscript “FE”
from K FE and K; FE since there is no confusion. In the case of a scalar spring-block
system w1th D1r1chlet boundary via P1-FEM, the scalar spring constant xf;” de-
fined in (8) is symmetric and positive positive definite if the triangulation sat1sﬁes
the acuteness condition, cf. Proposition 2. Here we study symmetry and positive
definiteness of tensor-valued spring constant K;; defined in (14).

In order to state and prove the next theorem on symmetry and positive defi-
niteness of K;; we prepare notations to be used. Let (i,j) € AF® satisfying i or

Ebe fixed and T* and T? € Ty, (T* # T?) be the two triangles including both
PZ and P;. Without loss of generality we consider the two triangles 7! and T? as

APP ,Q1 and T? = AP, PjQ2 and set P, = (0,0)7, P; = (s,t)T, Q1 = (a,b)T
and Q2 = (c d)T, cf. Figure 3. For a subscript m = 1 and 2 we prepare the following
constants,

Om = LP,QmPj, Omi = LQmPiP;, Omj = LQm P P;,
0; = £0Q1P;Q2 = 015 + 0o, 0; = £Q1P;Q2 = 615 + 024,
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kmi = QmD;, kmj = QmPj,

my =2|TY =bs —at >0, mg=2|T? =ct—ds>0,
m3 = 2|AP;Q2Q1| = k1iko; sin(01; + 02;) = be — ad > 0,
ma = 2| AP Q1Qs| = kyjko; sin(6y; + ;) > 0,

Cpqrs = §(Cpqrs + Cpsrq);s

E=F 4By, E=0=0 g _d=td

2my 2mg
(s—a)b (s—c)d (t—b)a (t—d)c
F= = 1
le + 2m2 2m1 + 2m2 ’ ( 5)

G =G+ Go, GlEM’ GQE(C_S)C

2m; 2mgy
P = (07 O)T

QQ = (C, d)T

FIGURE 3. The two triangles including both P; and P;.

Theorem 1. Suppose n = 2 and let Tp, be given. Suppose (i,j) € A¥E with i or
j € J§¥ and that the stiffness tensor ¢ with (9) is homogeneous, i.e., ¢ does not
depend on x. Let K;; be the tensor-valued spring constant defined by (14).

(i) Then, it holds that
Kij = Kji € Rx™,

Sym

(ii) Suppose that Ty, is acute and that the stiffness tensor c satisfies the isotropy
condition, i.e.,

Cpgrs = AOpqOrs + [1(0prdgs + Opsgr) (16)
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for positive constants A and . Then, K;; is positive definite if and only if

F? - EG 1—2a++1+4a

(E+G)? 20 '
Remark 2. The definition of K;; (14) with the assumption of ¢ (9) implies that

Kij = K};, which is different from Kij = Kﬂ

0 <)a = <2 and %<f(a)z

Remark 3. For a > 0 the function f(a) is strictly decreasing and satisfies
limg— 40 f(a) = +00 and f(2) = 0.

We prepare the following two lemmas which are employed in the proof of Theo-
rem 1.

Lemma 1. It holds that

ms3my

F? - EG = > 0.

4m1m2

Proof. From the two expressions of F' in (15) we have

o <(a—s)b+ (c—s)d) <(b—t)a . (d—t)c)

2my 2mgy 2my 2mey
(a—s)(b—t)ab (a—s)(d—t)bc+ (b—t)(c—s)ad (c—s)(d—t)ed
= 5 + + 2
4my dmime 4ms
_BG (a—S)(d—t)bc+(b—t)(c—s)ad+E2G2. (17)
4m1m2

On the other hand, it holds that
EG = E1G1 + EsG1 + E1Go + ExGoy
a—38)(d—t)ad+ (b—t)(c—s)b

4m1m2

- BG4+

S NN (18)

Subtracting (18) from (17), we have

P BG - (a—s)(d—t)(bc —ad) + (b —t)(c — s)(ad — be)
4m1m2
_ (be — ad)(my + mo — (be — ad)) _ mama o
4m1m2 4m1m2 ’
which completes the proof. O

Lemma 2. (i) Forl =1 and 2 it holds that
E, +G, = %cot@l.
(i) We have
0<b <3 it E+G>0

Proof. Since (ii) is easily obtained from (i), we omit the proof of (ii). We prove (i)
with { = 1. From the law of cosines it holds that
PiQ12 —+ PjQ12 — PinQ - a2 —+ b2 — ((IS —+ bt)

2P,Q, P;Qq P P;Qy

(PQ1 PjQ1)? — {a? + b — (as + bt)}?
sinf; = /1 —cos?0 :\/ —
v V-t PQ P;Qy

cosf; =

)
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@ TR ST 8 (as T02 _ bs—at
P,Q1 PO - PQ, PQ:

We, therefore, have

(b—t)b  (a—s)a a®>+b>— (bt +as)

E G = =
! + ! 2m1 + 2m1 2m1
:a2+b2_(bt—|—as) _ C0'891 :lcotﬁl,
2(bs — at) 2sinf; 2
which completes the proof. The proof of (i) with [ = 2 is similar. O

Now we give the proof.

Proof of Theorem 1. We assume the situation mentioned just before the theorem,
cf. Figure 3, and use the notations. First, we prove K;; € R2%2 of (i). For any fixed
k and [ € {1,2} it holds that

Kyl = —aloyen prex) = — / o(pjer) : e(pier) da
(9]

2
== Z /Q CparsErs(Pj€r)epq(pier) dx
p,q,7,8=1
1 2
=1 2 [l +losed) (v + loieidss) do
p.g.r,s=17 1
1 2
=71 > / Cpars (94,501 + 5,r015) (Pi.q0kp + PipOnq) d
p.q,r,s=1 2
1 2
= - Z Cpqrs (‘pj,s@i,qalr(;kp + @j,s@i,p(sl'r'akq
4 p,q,m,s=1 2

+ @j,r@i,qélsékp + @jw‘pi,p(slsék)q) dx

2 2
Z /Qckqlssoj,s@i,q dx + Z /Qcpkls@j,sﬁpi,p dx

=

q,s=1 p,s=1
2 2
+ Z / ChqriPj,rPiq dl‘+ Z / CpkrlPj,rPi,p dl‘}
qr=1"% pr=17%
1 2
= *Z Z /(Ck,qlsﬂﬁj,SQOi,q+quls§0j,s§0i,q+qusl§0j,s§0i,q+qusl<ﬂj,ssﬁi,q) dx
qs=17%
2
—= Y [ cunpiapie do (o () (19)
gs=1"9
2 2
= - Z / ChqlsPiqPj,s AT — Z / ChqlsPi,gPj,s AT
q,s=1 T q,s=1 T2

= [Kijlh + [Kijli
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Since functions ¢;, V;, ¢; and Vi, in T and T2 are written as

t—>b a—s t—b a—s\T
il (z) =1+ T+ z2, Vil (z) = ( ; ) )
mi mi mi mi
a b a\T
ool () = o — o, Voilri () = (- —oo)
d—t s—c d—t s—c\T
pilra(@) =14+ “—m 4+ =, Vil (@) = ( )
meo meo ma mao
c d c\T
@=Lt Ca Vet - (L, )
pilre(@) =~ + pilra(e) = (-2, =
and cpqrs is homogeneous, it holds that
2
(Kijla = =IT" Y Charstpig®is
q,s=1
T
= {ck111(t — b)b + cg12(t — b)(—a) + cxan (a — $)b+ cxaa(a — s)(—a)}
1
1
=g {ek111(b — )b+ cpra(—my + (s — a)b) + cgai1 (s — a)b + cgoz(a — s)a}
1
1 1
=5 {cr111(b — )b+ 2Ck112(s — a)b + crarz(a — s)a} — =cr2
mq 2
1
= [Kijlh — 5Ck1I2;
2
(Kt = =IT°1 > charstpia®is
q,s=1
72|
= _W {Cklll(d — t)(—d) + Ckug(d — t)C =+ Ckgll(s — C)(—d) + Ckglg(s — C)C}
2
1
=5 {ck111(d — t)d + cr1i2(ma + (s — €)d) + cra1(s — ¢)d + cpa2(c — $)c}
2
1 _ 1
= — {crui(d — t)d + 2¢k12(s — ¢)d + craa(c — s)c} + scru
27’7’),2 2
— 1
= [Kylh + oGtz

We note that [E;]m € R?*2 (m = 1, 2) are symmetric from a relation, Crals = Cluks-
Then, the symmetric property of [E;]m (m = 1,2) and the homogeneity of cpgrs
yield that

1
5 Ck1l2

1 __
— —cpue + [Kijlu + 5

[Kijla = [Kijlh + K3 = [Kijlh
2
= [Kijli + [Kijli = [Kijlie + K5l = [Kijlun-
Thus, we have K;; € R2X2

sym

which leads to the other property of (i), K;; = Kj; as
T
Kji = Kjj = Kij,

where the first equality follows from (19) (i.e., [Kyjlm = — 25,5:1 Jo Crals@igpss dx).
Next, we prove (ii). It holds that

[Kijler = [Kijlh + [Kili
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1

=3 {cru1 (b —t)b+ 2Ck12(s — a)b + cruz(a — s)a}
mi
1
+ 2 {crun(d — t)d + 26,02(s — c)d + cpa2(c — s)c}
= cpinE + 2¢g10F + cpo0G. (20)

From (16) and (20) the tensor-valued spring constant K;; € R2%2 can be written as

= (e i)

for
(Kijlin = A+ 20)E + puG,  [Kijleo = pE+ (A +2p)G,  [Kijliz = (A +p)F,
and it holds that K;; is positive definite if and only if
tr K;; >0 and det K;; > 0. (21)
From Lemma 2 the first condition of (21) holds. Letting

A
Eﬂ=%+l>0,

we have
[Kijln = W(EA+ E+G),  [Kijloa = p(GA+E+G),  [Kijli2 = pFA,
and
det K;j = —p*(E + G)*(aA? — A —1).
The above relation yields that the second condition of (21) is equivalent to

1++v1+4
1<A<7+2+ @ and 0< a<?2,
o

which leads to the desired result. O

Remark 4. When the stiffness tensor ¢ is not homogeneous, we have in general

Ck1l2|T1 7£ Ck1l2|T2 Wthh implies [Kij]kl 7£ [Kij]llgl —+ [KU}il That is Why Kij is not
always symmetric if ¢ is not homogeneous.

From Theorem 1 the following two corollaries hold.

Corollary 1. (i) a can be written as

o sin 6; élr;Qj sin 64 sin 92. (22)
sin“ (61 + 62)

(i1) Suppose the two triangles including P; and P; are equilateral in addition to the
same assumptions of Theorem 1-(ii). Then, K;; is positive definite if and only if

A< .

(i1i) Under the same assumptions of (i) and A = p the symmetric matriz K;; has
one positive and one zero eigenvalue.

() Under the same assumptions of (i1) and p < X\ the symmetric matriz K;; has
one positive and one negative eigenvalue.
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Proof. We firstly show (i). From Lemmas 1 and 2 the expression of « (22) is
obtained by

F?2—EG  msmy (cot 0, + cot 92)*2
o= =

(E+G)2  4mimg 2
sin@;sin@; / sin(0; + 02) \ =2 sin@;sind;sin 6y sin O,
( ) B sin?(0; + 65)
Next we prove (ii)—(iv). From (i) and the additional condition, i.e., the two
triangles are equilateral, we have a = 3/4, f(«) = f(3/4) = 1 and

~ 4sin 01 sin 65 \ 2 sin 64 sin 0

1
daKM:—?ﬂE+GﬁA—DBA+m

with A = A\/p + 1, which implies det K;; > 0, det K;; = 0 and det K;; < 0 for the
cases of (ii), (iii) and (iv), respectively, and yields the desired results of (ii)—(iv). O

Let 6y and 6, be fixed positive constants defined by
0 = arctan(ﬁ/i%), 0, = min{Omin, ™ — 20max }

where iy and O, are the minimum and the maximum interior angles of the
triangulation, respectively.

Corollary 2. In addition to the same assumptions of Theorem 1-(ii), suppose that

—0
<< 20 (23)
is satisfied for any interior angle 0 of the triangulation and
A 1
— — . 24
p<f(2(1fcosé)*)) (24)
Then, K;; is positive definite for any (i,j) € A™® satisfying i or j € J§®.
Proof. First we prove a < 2. The definition of 0, implies that
0.
sinfy, sinfy € [SinH*, cos ?}, (25a)
sin@;, sind;, sin(f; + 62) € [sinb,, 1]. (25Db)
Combining (25) with Corollary 1-(i), we have
1
. 4
0, <a<——"—0. 26
ST s as 2(1 — cosb,) (26)

On the other hand, the inequality (23) is equivalent to 6y < 6., which yields another
equivalent condition,
1
2(1 — cosb.)
The inequality « < 2, therefore, holds from (26) and (27).
Next we show A\/p < f(«). It is obtained as

2<f(2(1_16089*)>§f(0‘)

from (24), (26) and Remark 3. Thus, we have the desired result from Theorem 1-
(i). m

<2 (27)
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At the end of this section we mention about positive definiteness of the tensor-
valued spring constant KZ-FjE for a specific material, i.e., concrete. Suppose (i,7) €
AFE with 4 or j € JEE. We consider a case that two triangles including nodes P;
and P; are both equilateral. Isotropic homogeneous materials satisfy

A 2u

W 1—2v
where v is Poisson’s ratio. Setting v = 0.2 as (representative) Poisson’s ratio of
concrete, we have A\/u = 2/3 < 1. The spring constant KiFjE derived from P1-FEM
is, therefore, symmetric and positive definite.

6. Conclusions. We have studied symmetry and positive definiteness of scalar and
tensor-valued spring constants derived from P1-FEM for the scalar elliptic equation
and equations of linear elasticity in two dimensions. Each derived spring-block
system with the spring constant is consistent in a sense that it is equivalent to
P1-FEM. For the scalar case, it is always symmetric and positive definite under
the acuteness condition. For the tensor case, it is symmetric if the fourth-order
elastic stiffness tensor ¢ satisfies condition (9) and is spatially homogeneous. It is
also positive definite if isotropy of ¢ and the acuteness condition are additionally
satisfied. We found that materials with low Poisson’s ratio can be approximated by
the spring-block system which is consistent with the equations of linear elasticity.
Concrete is a typical example of a low Poisson ratio material. To construct a
mathematically sound spring constant having symmetry and positive definiteness
for more general elastic tensor and/or dimension is a future work.
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