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Abstract. We present the global existence and long-time behavior of measure-

valued solutions to the kinetic Kuramoto–Daido model with inertia. For the

global existence of measure-valued solutions, we employ a Neunzert’s mean-
field approach for the Vlasov equation to construct approximate solutions.

The approximate solutions are empirical measures generated by the solution

to the Kuramoto–Daido model with inertia, and we also provide an a pri-
ori local-in-time stability estimate for measure-valued solutions in terms of a

bounded Lipschitz distance. For the asymptotic frequency synchronization, we
adopt two frameworks depending on the relative strength of inertia and show

that the diameter of the projected frequency support of the measure-valued

solutions exponentially converge to zero.

1. Introduction. Synchronization of weakly coupled limit-cycle oscillators ap-
pears in many biological systems such as metabolic synchrony in yeast cell sus-
pension, synchronous firing of a cardiac pacemaker, and the flashing of fireflies
(see [4, 5, 16, 38] for details). Owing to emerging interest in complex networks
in computer and social sciences, the synchronous dynamics of information flow
through complex networks has attracted considerable interest among researchers
from the nonlinear sciences (e.g., applied mathematics, control theory, and statisti-
cal physics). Thus far, several mathematical models have been proposed and used
for simulating collective synchronization phenomena in complex networks [1, 26].
Among them, we focus on the Kuramoto-type model, which is a minimal prototype
model for analytical treatment. The Kuramoto model (KM) [21, 22] is a system of
first-order ordinary differential equations (ODEs) for the phase of weakly coupled
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oscillators, and it can be formally derived from the coupled complex Ginzburg–
Landau system for Landau–Stuart oscillators. This model is a type of analytically
treatable minimal model, exhibiting a phase-transition-like phenomenon from dis-
ordered states to ordered states, when the strength of coupling is increased in the
thermodynamic limit (or the mean-field limit). After Kuramoto’s classical works,
several Kuramoto-type models were proposed, including the replacement of sinu-
soidal phase coupling with a general coupling as in [12, 13] and the addition of
phase-shift, inertia, and time-delay effects in the phase coupling and dynamics, re-
spectively [2, 3, 16, 19, 20, 28, 31, 32]. For a detailed discussion on the variants of
the KM, we refer the reader to [1, 30].

In this paper, we deal with a Kuramoto-type phase model incorporating a general
periodic coupling and inertia effect in the original KM, and we call this model the
Kuramoto–Daido model (KDM) with inertia. Consider an ensemble of N active

rotors moving on a circle and let zi := e
√
−1θi ∈ S be the locations of the ith rotors

on this circle. We assume that the phase θi is governed by the KDM with inertia:

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

Γ(θj − θi), t > 0, i = 1, · · · , N, (1)

subject to suitable initial data:

(θi, θ̇i)(0) = (θi0, ωi0), (2)

where m, K, and N are the strength of inertia, coupling, and the system size,
respectively, and Ωi is the natural frequency of the ith oscillator, which is randomly
extracted from the frequency distribution function g = g(Ω). The phase coupling
function Γ = Γ(θ) satisfies the following properties:

Γ(θ + 2π) = Γ(θ), |Γ(θ)− Γ(θ∗)| ≤ ‖Γ‖Lip|θ − θ∗|,
Γ(0) = Γ(π) = 0, Γ(θ) > 0, θ ∈ (0, π), Γ(−θ) = −Γ(θ).

(3)

Note that the system (1) and (3) is translational invariant and that Kuramoto’s
coupling function sin θ satisfies the structural condition (3). In the following, we
briefly present previous mathematical results for the KDM with inertia and Γ(θ) =
sin θ.

The system (1) with sinusoidal coupling was first introduced by Ermentrout [16]
for modeling slow relaxation in the synchronization process in certain biological sys-
tems (e.g., fireflies of the Pteroptyx malaccae). In the absence of inertia (m = 0),
the system (1) corresponds to the Kuramoto–Daido model [12, 13] for a general
coupling. The first-order harmonics of Γ correspond to the Kuramoto model with
inertia and the system (1) is applied for modeling superconducting Josephson junc-
tion arrays [14, 33, 34, 35, 36, 37] and power networks [15]. Compared to the vast
literature on the KM, there are few research papers on the KDM. The system (1)
has several distinct dynamic features compared to the KM: For example, it is well
known [1] that the KM exhibits a continuous second-order phase transition at the
critical coupling strength Kcr for unimodal, symmetric, and long-range distribution
functions g such as Lorentz and Gaussian distributions. In contrast, the KDM with
large inertia shows a discontinuous first-order phase transition for the aforemen-
tioned distributions, and exhibits hysteresis [31, 32]. It is unknown whether the
KDM with small inertia will show similar dynamic behaviors.

However, when the number of oscillators is sufficiently large, the kinetic version
of the KDM is often used in the physics literature [2, 3] to study phase-transition
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phenomena. Let f = f(θ, ω,Ω, t) be the one-oscillator distribution function in
[0, 2π) := R/(2πZ) with frequency ω, and natural frequency Ω at time t. Then,
the formal thermodynamic limit (N → ∞) using the Bogoliubov–Born–Green–
Kirkwood–Yvon (BBGKY) hierarchy yields a Vlasov-type kinetic equation for f :

∂tf + ∂θ(ωf) + ∂ω
(
A[f ]f

)
= 0, (θ, ω,Ω) ∈ [0, 2π)× R× R, t > 0,

A[f ](θ, ω,Ω, t) =
1

m

[
− ω + Ω

+K

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(θ∗ − θ)f(θ∗, ω∗,Ω∗, t)g(Ω∗)dθ∗dω∗dΩ∗

]
.

(4)

As far as we know, the well-posedness issue and qualitative asymptotic behavior
of the kinetic model (4) have not been addressed in the literature. In this paper,
we study fundamental mathematical questions such as the existence of solutions
and their asymptotic behavior via the finite-dimensional result for the KDM with
inertia and a rigorous thermodynamic limit. Next, we briefly discuss our main
results. First, we present a measure-theoretic formulation of the kinetic model
(4) in Section 2.3. Because we are interested in the concentration of phases or
frequencies, i.e., formation of a Dirac delta in phase and frequency, it is natural
to include such singular measures in our concept of solutions. Therefore, measure-
valued solutions to (4) are a natural class of solutions as far as asymptotics are
concerned. Using the measure-theoretic formulation, we provide the existence of
measure-valued solutions for an initial Radon measure with finite moments up to
second order in Section 4. The approximate measure-valued solutions are empirical
measures constructed from the corresponding finite-dimensional KDM with inertia
and then the local-in-time stability result in Proposition 3 yields the convergence
of the approximate measure-valued solutions. Second, for the asymptotic behavior
of measure-valued solutions, we first establish the finite-dimensional result for the
corresponding KDM with inertia, and then using the rigorous thermodynamic result
in Section 4, we lift the finite-dimensional restriction to provide infinite-dimensional
results.

The rest of the paper is outlined as follows: In Section 2, we briefly review the ba-
sic mathematical structure of the KDM and kinetic KDM with inertia, and present
a measure-theoretic formulation of the kinetic KDM with inertia. In Section 3, we
present a local-stability estimate of the KDM in terms of a bounded Lipschitz dis-
tance. In Section 4, we provide a global well-posedness of measure-valued solutions.
In Section 5, we study the asymptotic synchronization property and contraction
estimates for the measure-valued solutions. Finally, Section 6 is devoted to a sum-
mary of the main results and direction for future work. In Appendix A, we present
the detailed proof of Theorem 5.2.

2. Preliminaries. In this section, we briefly review the basic properties of the
kinetic KDM with inertia and present a measure-theoretic formulation of the kinetic
KDM.

2.1. The KDM with inertia. Consider an ensemble of many weakly coupled
limit-cycle oscillators under the effect of uniform inertia. In this case, the dynamics
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of θi is governed by the following system of first-order ODEs:

θ̇i = ωi, i = 1, · · · , N, t > 0,

ω̇i =
1

m

[
− ωi + Ωi +

K

N

N∑
j=1

Γ(θj − θi)
]
,

Ω̇i = 0.

(5)

Note that the system (5) is equivalent to the system (1), and here we added Ωi as
a part of the dynamic quantities, although it is invariant under the dynamics (5).
We first observe that the system (5) is dissipative. This can be easily seen from the
fact that the vector field generated by the first-order system (5),

F = (F1, · · · ,FN ), Fi :=
(
ωi,

1

m

[
−ωi+Ωi+

K

N

N∑
j=1

Γ(θj−θi)
]
, 0
)
, i = 1, · · · , N,

has a negative divergence:

div(θ,ω,Ω)F(θ, ω,Ω) =

N∑
i=1

div(θi,ωi,Ωi)Fi(θ, ω,Ω) = −N
m
< 0.

We also note that the equilibria to the system (5) correspond to equilibria to the
KDM without inertia and vice versa, i.e.,

ωi = 0, Ωi +
K

N

N∑
j=1

Γ(θj − θi) = 0.

We now introduce average quantities and fluctuations around the averaged ones:

θc :=
1

N

N∑
i=1

θi, ωc :=
1

N

N∑
i=1

ωi, Ωc :=
1

N

N∑
i=1

Ωi,

θ̂i := θi − θc, ω̂i := ωi − ωc, Ω̂i := Ωi − Ωc.

Note that the system can be completely decoupled as two independent systems for
averages and fluctuations:

θ̇c = ωc, ω̇c = −ωc
m

+
Ωc
m
, Ω̇c = 0, t > 0,

and

˙̂
θi = ω̂i, t > 0,

˙̂ωi =
1

m

[
− ω̂i + Ω̂i +

K

N

N∑
j=1

Γ(θ̂j − θ̂i)
]
,

˙̂
Ωi = 0.

Then it is easy to see that

ωc(t) = Ωc + (ωc(0)− Ωc)e
− t
m , Ωc(t) = Ωc(0),

θc(t) = θc(0) + Ωct+m(ωc(0)− Ωc)(1− e−
t
m ).

As far as long-time dynamics is concerned, for some well-prepared initial data with
ωc(0) = Ωc, the dynamics of the averages is indistinguishable from that of the
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KM. In this case, the inertia plays only the role of convergence rate toward the
phase-locked states.

2.2. The kinetic KDM with inertia. In this part, we present several a priori
estimates for the kinetic KDM with inertia. Consider the initial boundary value
problem for the KDM:

∂tf + ∂θ(ωf) + ∂ω
(
A[f ]f

)
= 0, (θ, ω) ∈ [0, 2π)× R, t > 0,

A[f ](θ, ω,Ω, t) =
1

m

[
− ω + Ω

+K

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(θ∗ − θ)f(θ∗, ω∗,Ω∗, t)g(Ω∗)dθ∗dω∗dΩ∗

]
,

(6)

subject to initial and boundary conditions:

f(θ, ω,Ω, 0) = f0(θ, ω,Ω) with

∫ 2π

0

∫ ∞
−∞

f0(θ, ω,Ω)dωdθ = 1,

f(0, ω,Ω, t) = f(2π, ω,Ω, t), lim
|ω|→∞

|ω|f(θ, ω,Ω, t) = 0.
(7)

Proposition 1. Let f ∈ C∞([0, 2π)× R2 × [0, T )) be a smooth solution to (6) and
(7). Then we have∫ 2π

0

∫ ∞
−∞

f(θ, ω,Ω, t)dωdθ =

∫ 2π

0

∫ ∞
−∞

f0(θ, ω,Ω)dωdθ, t > 0.

Proof. We integrate (6) with respect to (θ, ω) ∈ [0, 2π]× R to get

d

dt

∫ 2π

0

∫ ∞
−∞

f(θ, ω,Ω, t)dωdθ = 0.

By the normalization condition given in (7), we have∫ 2π

0

∫ ∞
−∞

f(θ, ω,Ω, t)dωdθ = 1.

For notational simplicity, we also introduce 〈〈 · 〉〉 to denote the integral over the
phase space [0, 2π)× R2 with respect to a measure g(Ω)dθdωdΩ:

〈〈h〉〉(t) :=

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(θ, ω,Ω, t)g(Ω)dθdωdΩ, t > 0.

Note that since θ ∈ [0, 2π) is a 2π-periodic variable, h(θ, ω,Ω) is a 2π-periodic
function with respect to θ on [0, 2π)× R× R.

Proposition 2. (Evolution of the moments) Let f be a smooth solution to (6) and
(7). Then for t > 0, we have

(i) 〈〈f〉〉(t) = 〈〈f0〉〉.
(ii) 〈〈ωf〉〉(t) = 〈〈Ωf0〉〉+ (〈〈ωf0〉〉 − 〈〈Ωf0〉〉) e−

t
m .

(iii) 〈〈θf〉〉(t) = 〈〈θf0〉〉+ 〈〈Ωf0〉〉t+m (〈〈ωf0〉〉 − 〈〈Ωf0〉〉) (1− e− t
m ).

(iv) 〈〈Ωf〉〉(t) = 〈〈Ωf0〉〉.
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Proof. (i) We integrate (6) using the periodicity to find

d

dt

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

f(θ, ω,Ω, t)g(Ω)dΩdωdθ = 0.

(ii) We multiply (6) by ωg(Ω) to get

∂t(ωfg) + ∂θ(ω
2fg) + ∂ω(ωA[f ]fg) = A[f ]fg.

Note that∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞
A[f ]fgdθdωdΩ

=
1

m

[
−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

ωfgdθdωdΩ +

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

ΩfgdθdωdΩ

+

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(θ∗ − θ)f(θ∗, ω∗,Ω, t)f(θ, ω,Ω, t)g(Ω∗)g(Ω)dθdθ∗dωdω∗dΩdΩ∗

= − 1

m

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

ωfgdθdωdΩ +
1

m

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Ωf0gdθdωdΩ.

Hence, we have
d

dt
〈〈ωf〉〉 = − 1

m
〈〈ωf〉〉+

1

m
〈〈Ωf0〉〉.

This yields

〈〈ωf〉〉(t) = 〈〈Ωf0〉〉+
(
〈〈ωf0〉〉 − 〈〈Ωf0〉〉

)
e−

t
m .

(iii) We multiply (6) by θg(Ω) to get

∂t(θfg) + ∂θ

(
θωfg

)
+ ∂ω(θA[f ]fg) = ωfg.

We integrate this equation to find the desired result.
(iv) We first multiply (6) by Ωg(Ω) to find

∂t(Ωfg) + ∂θ(Ωωfg) + ∂ω(ΩA[f ]fg) = 0.

We integrate this equation over [0, 2π)× R2 to obtain

d

dt

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Ωf(θ, ω,Ω, t)g(Ω)dΩdωdθ = 0.

This yields the desired result.

2.3. A measure theoretic formulation. In this part, we present a measure-
theoretic formulation of the kinetic KDM (6) with inertia. When the natural fre-
quencies are distributed, i.e., nonidentical oscillators, the oscillators phases cannot
collapse to a single phase asymptotically. In contrast, the frequencies of oscillators
can be collapsed to a single frequency asymptotically. Hence, when the asymptotic
complete-frequency synchronization occurs, the asymptotic limit of measure-valued
solutions will have a Dirac measure concentrated on the average natural frequency
as its component even for smooth initial data. Therefore, the suitable space for the
asymptotic behavior of the solutions will be a measure space instead of the usual
Sobolev space. In this manner, a measure-valued solution emerges as a natural con-
cept for the solution to the kinetic KDM with inertia. For this, we adopt a standard
Neunzert’s framework from [25, 29]. LetM([0, 2π)×R2) be the set of nonnegative
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Radon measures on [0, 2π)×R2, and we use a standard duality relation for a Radon
measure ν ∈M and its test function h:

〈ν, h〉 =

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(θ, ω,Ω)ν(dθ, dω, dΩ), h ∈ C0([0, 2π)× R2).

We set Cw([0, T );M([0, 2π)×R2)) a space of all weakly continuous time-dependent
measures. Next, we present the definition of a measure-valued solution to (6) as
follows.

Definition 2.1. For T ∈ [0,∞), let µ ∈ Cw([0, T );M([0, 2π)× R2)) be a measure-
valued solution to (6) with initial Radon measure µ0 ∈M([0, 2π)×R2) if and only
if µ satisfies the following conditions:

1. µ is weakly continuous; 〈µt, h〉 is continuous as a function of t, ∀h ∈ C0([0, 2π)×
R2).

2. µt satisfies the integral equation: ∀h ∈ C1
0([0, 2π)× R2 × [0, T ))

〈µt, h(t)〉 − 〈µ0, h(0)〉 =

∫ t

0

〈
µs, ∂sh+ ω∂θh+A(θ, ω,Ω, µs)∂ωh

〉
ds,

A(θ, ω,Ω, µs) :=
1

m

[
− ω + Ω−K

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(θ − θ∗)µs(dθ∗, dω∗, dΩ∗)
]
.

(8)

Remark 1. 1. For a finite measure with compact support, we can use g ∈
C1([0, 2π)× R2) as a test function in (8).

2. Let m0(t) be the total mass of µt, i.e.,

m0(t) :=

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µt(dθ, dω, dΩ).

Then it follows from (8) that we have conservation of mass:

m0(t) = m0(0), t ∈ [0, T ).

3. A local-in-time stability estimate. In this section, we provide an a priori
local-in-time stability estimate for the measure-valued solution to (6) and (7) using
a bounded Lipschitz distance.

3.1. Estimates on particle trajectories. In this part, we first study several a
priori estimates of particle trajectories generated from (6).

For (θ, ω,Ω, t) ∈ [0, 2π)×R2× [0, T ) and µ ∈ Cw([0, T );M([0, 2π)×R2)), we set

(Θµ(s),Υµ(s),Φµ(s)) := (Θµ(s; t, θ, ω,Ω),Υµ(s; t, θ, ω,Ω),Φµ(s; t, θ, ω,Ω)),

to be the particle trajectory passing through (θ, ω,Ω) at time t, i.e.,

d

ds
Θµ(s) = Υµ(s),

d

ds
Υµ(s) = − 1

m
Υµ(s) +

Φµ(s)

m

− K

m

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(Θµ(s)− θ∗)µs(dθ∗, dω∗, dΩ∗),

d

ds
Φµ(s) = 0,

(9)
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subject to initial data

(Θµ(t),Υµ(t),Φµ(t)) = (θ, ω,Ω).

We now introduce a priori conditions (P) for measure-valued solutions to (6)
and (7):

• (P1): For each t ∈ [0, T ), there exist nonnegative locally bounded functions
P (t), Q(t), R(t):

supp(µt) ∈ BP (t)(0)×BQ(t)(0)×BR(t)(0),

where supp(µ) and Br(z) denote support of measure µ and ball of radius

r around z, respectively, i.e., supp(µ) := {B ∈ [0, 2π)× R2 : µ(B) > 0} and
Br(z) := {x : |x− z| < r}.

• (P2): The mass is uniformly bounded:∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µt(dθ, dω, dΩ) <∞.

We set

F (θ, µs) := K

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(θ − θ∗)µs(dθ∗, dω∗, dΩ∗).

Lemma 3.1. Let µ ∈ Cw([0, T );M([0, 2π)×R2)) be a measure-valued function with
the property (P). Then, we have the following assertions:

1. The nonlinear term F (θ, µt) satisfies

|F (θ, µt)| ≤ K‖Γ‖L∞m0(0), |F (θ1, µt)− F (θ2, µt)| ≤ K‖Γ‖Lipm0(0)|θ1 − θ2|.

2. For any fixed (θ, ω,Ω, t) ∈ [0, 2π) × R2 × [0, T ), there exists a unique global
particle trajectory that is a C1 function of s ∈ [0, T ] and admits a unique
inverse map in the form of

θ := Θµ(t; s, θ̄, ω̄), ω := Υµ(t; s, θ̄, ω̄),

where

θ̄ := Θµ(s; t, θ, ω), ω̄ := Υµ(s; t, θ, ω).

3. Let P̂ (t), Q̂(t), and R̂(t) be the bounds for supports of the phase, velocity, and
natural frequency variables, respectively. Then, we have

P̂ (t) ≤ P̂ (0) +
(
Q̂(0) + R̂(0) +K‖Γ‖L∞m0(0)

)
t,

Q̂(t) ≤ Q̂(0) + R̂(0) +K‖Γ‖L∞m0(0),

R̂(t) = R̂(0).

Proof. (1) The first assertion directly follows from the boundedness of ‖Γ‖L∞ . For
the second assertion, we use Lipschitz continuity of Γ to get

|F (θ1, µt)− F (θ2, µt)|

≤ K
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞
|Γ(θ1 − θ∗)− Γ(θ2 − θ∗)|µt(dθ∗, dω∗, dΩ∗)

≤ ‖Γ‖LipK|θ1 − θ2|
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µt(dθ∗, dω∗, dΩ∗)

= K‖Γ‖Lipm0(0)|θ1 − θ2|.

(2) The proof is obtained from standard ordinary differential equation theory. For
more details, we refer the reader to [18].
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(3) Recall the characteristic equation (9)

dω(s)

ds
= −ω(s)

m
+

Ω

m
− F [µs]

m
,

which leads to

ω(t) = ω0e
− t
m + Ω(1− e− 1

m t)− K

m

∫ t

0

e−
t−s
m F [µs]ds.

We then use Lemma 3.1, (1) to see that

|ω(t)| ≤ |ω0|+ |Ω|+
K

m

∫ t

0

e−
t−s
m F [µs]ds

≤ |ω0|+ |Ω|+
K‖Γ‖L∞m0(0)

m

∫ t

0

e−
t−s
m ds

= |ω0|+ |Ω|+K‖Γ‖L∞m0(0)
(
1− e− t

m

)
.

Hence, we obtain the upper bound on the size of the velocity support of µ:

Q̂(t) ≤ Q̂(0) + R̂(0) +K‖Γ‖L∞m0(0). (10)

The bound on the support of θ follows from (10) and the following inequality:

|θ(t)| ≤ |θ(0)|+
∫ t

0

|ω(s)|ds

≤ P̂ (0) +

∫ t

0

|Q̂(s)|ds

≤ P̂ (0) +
(
Q̂(0) + R̂(0) +K‖Γ‖L∞m0(0)

)
t.

Lemma 3.2. Let µ ∈ Cw([0, T );M([0, 2π) × R2)) be a measure-valued solution to
(6) and (7) with the property (P). Then, for any test function h ∈ C1

0([0, 2π)×R2),
we have∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(θ, ω,Ω)µt(dθ, dω, dΩ)

=

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(Θµ(t; s, θ, ω,Ω),Υµ(t; s, θ, ω,Ω),Φµ(t; s, θ, ω,Ω))µs(dθ, dω, dΩ).

Proof. Because µ is a measure-valued solution, it follows from the defining relation
(8) that for any test function h̃ ∈ C1

0([0, 2π)× R2 × [0, T )), we have∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h̃(θ, ω,Ω, t)µt(dθ, dω, dΩ)

−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h̃(θ∗, ω∗,Ω∗, s)µs(dθ∗, dω∗, dΩ∗)

=

∫ t

s

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

(
∂τ h̃+ ω̄∂θ̄h̃+A(θ̄, ω̄, Ω̄, τ)∂ω̄h̃

)
µτ (dθ̄, dω̄, dΩ̄)dτ.

(11)

We now choose a test function h̃ so that the right-hand side of (11) vanishes. For
any h ∈ C1

0([0, 2π)× R2) and fixed t, we set

h̃(θ̄, ω̄, Ω̄, τ) := h(Θµ(t; τ, θ̄, ω̄, Ω̄),Υµ(t; τ, θ̄, ω̄, Ω̄),Φµ(t; τ, θ̄, ω̄, Ω̄)).
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By Lemma 3.1, (2), we have

h̃(Θµ(τ ; t, θ, ω,Ω),Υµ(τ ; t, θ, ω,Ω),Φµ(τ ; t, θ, ω,Ω), τ) = h(θ, ω,Ω). (12)

Direct differentiation of (12) with respect to τ and Lemma 3.1 imply

h̃ ∈ C1
0([0, 2π)× R2 × [0, T )), ∂τ h̃+ ω̄∂θ̄h̃+A(θ̄, ω̄, Ω̄, τ)∂ω̄h̃ = 0.

Hence, the relation (11) implies∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h̃(θ, ω,Ω, t)µt(dθ, dω, dΩ)

=

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h̃(θ, ω,Ω, s)µs(dθ, dω, dΩ),

or∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(θ, ω,Ω)µt(dθ, dω, dΩ)

=

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(Θµ(t; s, θ, ω,Ω),Υµ(t; s, θ, ω,Ω),Φµ(t; s, θ, ω,Ω)µs(dθ, dω, dΩ).

3.2. Local-in-time stability estimate. In this part, we provide a local-in-time
stability of measure-valued solutions to (6) and (7). We first introduce an admissible
set Λ of test functions:

Λ :=
{
h : [0, 2π)× R2 → R : ‖h‖L∞ ≤ 1, ‖h‖Lip := sup

z1 6=z2

|h(z1)− h(z2)|
|z1 − z2|

≤ 1
}
.

Definition 3.3. Let µ, ν be two Radon measures. Then, the bounded Lipschitz
distance d(µ, ν) between µ and ν is given by

d(µ, ν) := sup
h∈Λ

∣∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hµ(dθ, dω, dΩ)−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h ν(dθ, dω, dΩ)

∣∣∣∣.
Remark 2. 1.

(
M, d

)
is a complete metric space.

2. For any h ∈ C0([0, 2π)× R2) with ‖h‖L∞ ≤ a and ‖h‖Lip ≤ b, we have∣∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hµ(dθ, dω, dΩ)−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hν(dθ, dω, dΩ)

∣∣∣∣
≤ max{a, b}d(µ, ν).

3. The bounded Lipschitz distance d is equivalent to the Wasserstein-1 distance
(Kantorovich–Rubinstein distance) W1:

W1(µ, ν) := inf
γ∈

∏
(µ,ν)

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞
|x− y|γ(dx, dy),

where
∏

(µ, ν) is the set of all product measures on ([0, 2π)× R2)2 such that their
marginals are µ and ν.

Lemma 3.4. Let µ, ν ∈ Cw([0, T );M([0, 2π)×R2)) be two measure-valued solutions
to (6) and (7) with the property (P). Then for any 0 ≤ s ≤ T , we have

|Θµ(s; t, θ, ω,Ω)−Θν(s; t, θ, ω,Ω)|+ |Υµ(s; t, θ, ω,Ω)−Υν(s; t, θ, ω,Ω)|

≤
∫ max{s,t}

min{s,t}
α(τ ; s)d(µτ , ντ )dτ,
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where α is a smooth function depending only on T , K, m0, and m.

Proof. We set

x(s) := Θµ(s; t, θ, ω,Ω)−Θν(s; t, θ, ω,Ω),
y(s) := Υµ(s; t, θ, ω,Ω)−Υν(s; t, θ, ω,Ω).

It follows from (9) that

dx(τ)

dτ
= y(τ),

dy(τ)

dτ
= −y(τ)

m
− 1

m

(
F (µτ )− F (ντ )

)
,

(x(t), y(t)) = (0, 0).
(13)

We note that

|F (µτ )− F (ντ )|

≤ K
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞
|Γ(Θµ(τ)− θ∗)− Γ(Θν(τ)− θ∗)|dµτ (dθ∗, dω∗, dΩ∗)

+K
∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Γ(Θν(τ)− θ∗)
(
dµτ (dθ∗, dω∗, dΩ∗)− dντ (dθ∗, dω∗, dΩ∗)

)∣∣∣
≤ K

(
‖Γ‖L∞m0|x(τ)|+ CΓd(µτ , ντ )

)
,

where CΓ is a constant given by

CΓ := max{‖Γ‖L∞ , ‖Γ‖Lip}.

Therefore, we have from (13)

|x(s)| ≤
∫ s

t

|y(τ)|dτ,

|y(s)| ≤
(
‖Γ‖L∞m0

∫ s

t

e−
s−τ
m |x(τ)|dτ + CΓ

∫ s

t

e−
s−τ
m d(µτ , ντ )dτ

)K
m

≤
(
‖Γ‖L∞m0

∫ s

t

|x(τ)|dτ + CΓ

∫ s

t

d(µτ , ντ )dτ
)K
m
.

We add these inequalities to obtain

|x(s)|+ |y(s)| ≤
(

1 +
K‖Γ‖L∞

m
m0

)∫ s

t

(|x(τ)|+ |y(τ)|)dτ +
KCΓ

m

∫ s

t

d(µτ , ντ )dτ.

Then Gronwall lemma yields

|x(s)|+ |y(s)| ≤ KCΓ

m

∫ s

t

e−
(

1+
K||Γ||L∞

m m0

)
(τ−s)d(µτ , ντ )dτ.

Proposition 3. (Local-in-time stability) Let µ, ν ∈ Cw([0, T );M([0, 2π)× R2)) be
measure-valued solutions to (6) and (7) with the property (P). Then there exists a
nonnegative function C(T ) = C(T, d,K, P,Q,m0) satisfying

d(µt, νt) ≤ C(T )d(µ0, ν0), t ∈ [0, T ).
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Proof. Let h be a test function in Λ, then we have from Lemmas 3.2 and 3.4∣∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hµt(dθ∗, dω∗, dΩ)−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h νt(dθ, dω, dΩ)

∣∣∣∣
≤
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

∣∣∣h(Θ0
µ(t),Υ0

µ(t),Ω)− h(Θ0
ν(t),Υ0

ν(t),Ω)
∣∣∣µ0

+

∣∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(Θ0
ν(t),Υ0

ν(t),Ω)µ0 −
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

h(Θ0
ν(t),Υ0

ν(t),Ω)ν0

∣∣∣∣
≤
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

∣∣Θ0
µ(t)−Θ0

ν(t)
∣∣+
∣∣Υ0

µ(t)−Υ0
ν(t)

∣∣µ0 + d(µ0, ν0)

≤
∫ t

0

α(τ ; t)d(µτ , ντ )dτ + d(µ0, ν0),

where we employed the following notations for simplicity.

Θ0
µ(t) := Θµ(t, 0, θ, ω), Θ0

ν(t) := Θν(t, 0, θ, ω),

Υ0
µ(t) := Υµ(t, 0, θ, ω), Υ0

µ(t) := Υµ(t, 0, θ, ω).

Therefore we have

d(µt, νt) ≤
∫ t

0

α(τ ; t)d(µτ , ντ )dτ + d(µ0, ν0).

The Gronwall lemma yields

d(µt, νt) ≤ d(µ0, ν0)e
∫ t
0
α(τ ;t)dτ .

4. A global existence of measure-valued solutions. In this section, we provide
a global existence of a measure-valued solution to (6) following the approach in
[18, 25, 29].

4.1. Construction of approximate solutions. In this part, we present a con-
struction of approximate solutions using the particle method [27].

Suppose that the initial Radon measure µ0 has compact support in [0, 2π)×R2,
and it is included in a square R, i.e.,

supp(µ0) ∈ BP (0)(0)×BQ(0)(0)×BR(0)(0) ⊂ R.

Then for a given positive integer n, we can divide the square R into n3 subsquares
Ri, i.e.,

R =

n3⋃
i=1

Ri.

Let zi = (θi, ωi,Ωi) be the center ofRi. Then we construct the initial approximation
µn0 as

µn0 :=

n3∑
i=1

ciδ(z − zi0), ci :=

∫
Ri
µ0(dθ, dω, dΩ), (14)

and we define the approximate solution as

µnt :=

n3∑
i=1

ciδ(z − zi(t)),
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where zi(t) = (θi(t), ωi(t),Ωi) is a solution of the Kuramoto–Daido model with
inertia:

dθi
dt

= ωi,

dωi
dt

=
1

m

[
− ωi + Ωi +K

n3∑
j=1

cjΓ(θj − θi)
]
, t > 0, i = 1, · · ·, n3,

dΩi
dt

= 0,

subject to initial data

(θi, ωi,Ωi)(0) = (θi0, ωi0,Ωi0). (15)

Lemma 4.1. Let µ ∈ Cw([0, T );M([0, 2π)×R2)) be a given initial Radon measure
on [0, 2π)× R2 with compact support:

supp(µ0) ⊂ BP (0)(0)×BQ(0)(0)×BR(0)(0),

and let µn0 be the initial approximation given by (14). Then there exists a positive
constant C such that

d(µn0 , µ0) ≤ C

n
‖µ0‖,

where ‖µ0‖ := 〈µ0, 1〉.

Proof. For h ∈ Λ, we have∣∣∣ ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hµ0(dθ, dω, dΩ)−
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

hµn0 (dθ, dω, dΩ)
∣∣∣

≤
n3∑
i=1

∣∣∣ ∫
Ri
h(θ, ω,Ω)µ0(dθ, dω, dΩ)−

∫
Ri
h(θ, ω,Ω)µn0 (dθ, dω, dΩ)

∣∣∣
≤

n3∑
i=1

∣∣∣ ∫
Ri
h(θ, ω,Ω)µ0(dθ, dω, dΩ)−

∫
Ri
h(θi, ωj ,Ω`)µ0(dθ, dω, dΩ)

∣∣∣
≤

n3∑
i=1

∫
Ri
|h(θ, ω,Ω)− h(θi, ωj ,Ω`)|µ0(dθ, dω, dΩ)

≤
n3∑
i=1

∫
Ri
|(θ, ω,Ω)− (θi, ωj ,Ω`)|µ0(dθ, dω, dΩ)

≤ C

n
‖µ0‖,

where C is a constant proportional to the diameter of the rectangle R.

Lemma 4.2. Let µn be the approximate measure-valued solution to (6) constructed
by the procedure (14)–(15). Then we have

Pn(t) ≤ P (0) +
(
Q(0) +R(0) +K‖Γ‖L∞m0(0)

)
t+

C(1 + t)

n
,

Qn(t) ≤ Q(0) +R(0) +K‖Γ‖L∞m0(0) +
C

n
,

Rn(t) ≤ R(0) +
C

n
.
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Proof. It follows from Remark 1 and Lemma 3.1 that we have

mn
0 (t) = mn

0 (0),

and

Pn(t) ≤ Pn(0) +
(
Qn(0) +Rn(0) +K‖Γ‖L∞mn

0 (0)
)
t,

Qn(t) ≤ Qn(0) +Rn(0) +K‖Γ‖L∞mn
0 (0),

Rn(t) = Rn(0).

However, from the construction of the initial approximation µh0 , it is easy to prove
that

mn
0 (0) ≤ m0 +

C

n
,

and

Pn(0) ≤ P (0) +
C

n
, Qn(0) ≤ Q(0) +

C

n
, Rn(0) ≤ R(0) +

C

n
.

We then substitute these estimates into Lemma 3.1, (3) to obtain the desired esti-
mates.

4.2. Convergence of approximate solutions. In this part, we present the con-
vergence of the approximate measure-valued solutions constructed in the previous
subsection and establish the well-posedness of the global measure-valued solutions
to the kinetic KDM.

Theorem 4.3. Suppose that µ0 ∈M([0, 2π)×R2)) is a Radon measure with com-
pact support satisfying

supp(µ0) ∈ BP (0)(0)×BQ(0)(0)×BR(0)(0),

and let µnt be the approximate solution constructed by the procedure (14)–(15). Then
there exists a unique measure-valued solution µ ∈ Cw([0, T );M([0, 2π)×R2)) to (4)
with initial data µ0 such that µt is the weak-* limit of the approximate solutions,
i.e.,

d(µt, µ
n
t ) = 0 as n→∞.

Proof. We divide the estimates into several steps.
• Step A. (Select candidates for a measure-valued solution): We apply the local-
in-stability results in Proposition 3 to µn1 and µn2 :

d(µn1
t , µ

n2
t ) ≤ Cd(µn1

0 , µn2
0 ) ≤ C

min{n1, n2}
‖µ0‖. (16)

This yields that the sequence of approximate solutions {µnt } is a Cauchy sequence
in the complete metric space (M([0, 2π]×R2), d(·, ·)). Therefore there exists a limit
measure µt ∈M([0, 2π]×R2). However, since d convergence is equivalent to weak-*
convergence, we know that µt is the weak-* limit of µnt . The estimate (16) also
implies

d(µt, µ
n
t ) ≤ C

n
.

• Step B. (Use the weak-limit measure µt as the measure-valued solution to (4) in
the sense of Definition 2.1)
Step B.1 (Check for weak Lipschitz continuity): We check (1) of Definition 2.1.
We first observe from Lemma 3.1 that

|(ω, F [µnt ])| ≤ |ω|+ |F [µnt ]|

≤ Q(0) +R(0) +K||Γ||L∞m0 +K‖Γ‖L∞m0 +
C

n
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≤ C(T,Q(0), R(0),K, ‖Γ‖L∞ ,m0) <∞.

This yields

|Θn(t+ ∆t)−Θn(t)|+ |Υn(t+ ∆t)−Υn(t)| ≤ C(T,Q(0), R(0),K, ‖Γ‖L∞ ,m0)∆t.

Therefore, we have for h ∈ C1
0([0, 2π)× R2)∣∣〈µnt+∆t, h〉 − 〈µnt , h〉

∣∣ =
∣∣∣ ∫ h(Θn(t+ ∆t),Υn(t+ ∆t))− h(Θn(t)−Υn(t))µnt

∣∣∣
≤ ‖h‖C1mn

0

(
|Θn(t+ ∆t)−Θn(t)|+ |Υn(t+ ∆t)−Υ(t)|

)
≤ C∆t.

Step B.2 (Check the defining condition (8) of Definition 2.1): We have

〈µnt , ht〉 − 〈µn0 , h0〉 =

∫ t

0

〈
µnt , ∂th+ ω∂θh−

1

m

(
ω − Ω + F [µnt ]

)
∂ωh

〉
ds,

Since d convergence is equivalent to weak-* convergence, we have

〈µnt , ht〉 − 〈µn0 , h0〉 → 〈µt, ht〉 − 〈µ0, h0〉 as n→∞.

Therefore, we are done if we can show that, for any test function g ∈ C1
0([0, 2π) ×

R2 × [0, T )),∫ t

0

〈
µns , ∂sh+ ω∂θh−

1

m
(ω − Ω + F [µns ]∂ωh)

〉
ds

→
∫ t

0

〈
µs, ∂sh+ ω∂θh−

1

m
(ω − Ω + F [µs])∂ωh

〉
ds,

as n→∞. We will prove the following stronger estimate:∣∣∣∣〈µnt , ∂sh+ ω∂θh−
1

m
(ω − Ω + F [µns ]∂ωh)

〉
−
〈
µt, ∂sh+ ω∂θh−

1

m
(ω − Ω + F [µs])∂ωh

〉∣∣∣∣
≤ C

n
.

Note that∣∣∣〈µnt , ∂sh+ ω∂θh−
1

m
(ω − Ω)∂ωh

〉
−
〈
µt, ∂sh+ ω∂θh−

1

m
(ω − Ω)∂ωh

〉∣∣∣
≤ ‖∂sh+ ω∂θh−

1

m
(ω − Ω)∂ωh‖C1d(µnt , µt) ≤

C

n
,

and hence it is enough to show that∣∣∣〈µns , KmF [µns ]∂ωh)
〉
−
〈
µs,

K

m
F [µs]∂ωh

〉∣∣∣ ≤ C

n
.

To prove this claim, we first observe that∣∣∣〈µns , 1

m
F [µns ]∂ωh)

〉
−
〈
µs,

1

m
F [µs]∂ωh

〉∣∣∣
=

1

m
〈µns ,

(
F [µns ]− F [µs]

)
∂ωh)〉+

1

m
〈µns − µs, F [µs]∂ωh)〉

≡ I1 + I2.

We now estimate I1 and I2 separately.
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• (Estimate I1): We first recall Lemma 4.1 to see that

|F [µns ]− F [µs]| = L
∣∣∣ ∫ Γ(θ − θ∗)µns −

∫
Γ(θ − θ∗)µs

∣∣∣ = Cd(µs, µ
n
s ) ≤ C

n
.

This yields

I1 ≤
C

n
.

• (Estimate I2): To estimate the term I2, we use Lemma 3.1 to get

‖F [µt]∂ωh‖L∞ ≤ K‖Γ‖L∞ |‖∂ωh‖L∞m0,
|F [θ, µt]∂ωh(θ, ω)− F [θ∗, µt]∂ωh(θ∗, ω∗)|

≤ |F [θ, µt]− F [θ∗, µt]|‖∂ωh‖L∞ + ‖F‖L∞ |∂ωh(θ, ω)− ∂ωh(θ∗, ω∗)|
≤
(
K‖Γ‖L∞m0‖∂ωh‖L∞ + ‖F‖L∞‖h‖C2

)
|(θ, ω)− (θ∗, ω∗)|.

These two estimates lead to

I2 ≤
(
2K‖Γ‖L∞m0‖∂ωh‖L∞ + ‖F‖L∞‖h‖C2

)
d(µns , µs) ≤

C

n
.

Step C. (Verify the uniqueness of the measure-valued solution): Let µ and µ′ be
the two measure-valued solutions in the sense of Definition 2.1 corresponding to the
given initial Radon measure µ0. Then it follows from Proposition 3 that

d(µt, µ
′
t) ≤ C(T )d(µ0, µ0) = 0, t ∈ (0, T ).

Thus we have

d(µt, µ
′
t) = 0, i.e., µt = µ′t, t ∈ (0, T ).

Therefore, we have the uniqueness of measure-valued solution.

Remark 3. 1. For the KM, similar results have been studied in [7, 18, 23, 24].
2. Note that the measure-valued solution µ has a bounded first moment for each
time slice: ∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µt(dθ, dω, dΩ) <∞.

Moreover, µ has compact support for each time slice:

supp(µt) ∈ BP (t)(0)×BQ(t)(0)×BR(t)(0),

where P (t), Q(t), and R(t) satisfy

P (t) ≤ P (0) +
(
Q(0) +R(0) +K||Γ||L∞m0(0)

)
t,

Q(t) ≤ Q(0) +R(0) +K||Γ||L∞m0(0),
R(t) = R(0).

5. Large-time behavior of the measure-valued solutions. In this section, we
present an asymptotic complete-frequency estimate for the measure-valued solutions
whose existence is guaranteed by Theorem 4.3 in the previous section. For the
desired synchronization estimates to the measure-valued solutions, we first establish
the corresponding results at the oscillator level, and then using the rigorous mean-
field limit, we obtain a synchronization estimate for the measure-valued solution.
Without loss of generality, we assume that∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µ0(dθ, dω, dΩ) = 1.
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As a preliminary step for the complete synchronization, we consider the initial phase
configuration consisting of a finite number of Dirac measures. For definiteness, we
set

µn0 :=

n3∑
i=1

ciδ(z − zi0), zi0 = (θi0, ωi0,Ωi0), (17)

where zi0 is defined as in Section 4.1. Then the unique measure-valued solution to
(4) with the initial datum (17) is given by

µnt :=

n3∑
i=1

ciδ(z − zi(t)),

where zi = (θi, ωi,Ωi) is the unique solution of the Kuramoto–Daido model:

dθi
dt

= ωi, i = 1, · · · , N, t > 0,

dωi
dt

= − 1

m
ωi +

1

m
Ωi +

K

m

n3∑
j=1

cjΓ(θj − θi).

dΩi
dt

= 0,

θi(0) = θi0, ωi(0) = ωi0, Ωi(0) = Ωi0 t > 0, i = 1, · · · , n3.

(18)

In the following, we present asymptotic complete-frequency synchronization esti-
mates and the contraction property of the system (18) with distributed natural
frequencies. For the nonidentical Kuramoto oscillators, the phase-space support of
µt does not collapse to a single point. However, we will show that the projected
support of µt in frequency (ω) space will collapse to a single point as in the identical
case.

Remark 4. If we consider the initial Radon measure that is absolutely continuous
with respect to the Lebesgue measure dθdωdΩ, i.e., µ0 � dθdωdΩ, then we can
choose the following approximation for µ0 the following

µn0 =
1

n3

n3∑
i=1

δ(z − zi0),

using the similar argument in [23]. Later in Theorem 5.3 we will use this argument.

For convenience, we recall the following second-order differential inequality:

aÿ + bẏ + cy + d ≤ 0, t > 0,

y(0) = y0, ẏ(0) = y1,
(19)

where a > 0, b, c, and d are constants.

Lemma 5.1. [10] Let y = y(t) be a nonnegative C2 function satisfying the differ-
ential inequality (19). Then we have following relations:

(i) If b2 − 4ac > 0, then we have

y(t) ≤
(
y0 +

d

c

)
e−ν1t + a

e−ν2t − e−ν1t

√
b2 − 4ac

(
y1 + ν1y0 +

2d

b−
√
b2 − 4ac

)
− d

c
,

(ii) If b2 − 4ac ≤ 0, then we have

y(t) ≤ e− b
2a t
[
y0 +

4ad

b2
+
( b

2a
y0 + y1 +

2d

b

)
t
]
− 4ad

b2
,
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where decay exponents ν1 and ν2 are given as

ν1 :=
b+
√
b2 − 4ac

2a
, ν2 :=

b−
√
b2 − 4ac

2a
.

Before we present frameworks, we introduce some notation: For a given Radon
measure µ0, we set P(t), Q(t), andR(t) to be the orthogonal θ, ω, and Ω projections
of supp(µt), respectively:

Dθ(µt) := diam(P(t)), Dω(µt) := diam(Q(t)),
DΩ(µt) := diam(R(t)), Cµk (m,µ0) := max{Dθ(µ0), Dθ(µ0) + kmD′θ(µ0)},

for k = 1, 2, · · · . Furthermore, we impose an extra assumption on Γ ∈ C1:

(P3) : Γ′ is a decreasing function on (0, θ∗), Γs := sup
θ∈(0,θ∗)

Γ(θ), (20)

where θ∗ := inf{θ : Γ′(θ) = 0}.
We next present two frameworks depending on small- and large-inertia regimes.

• Framework A (Small-inertia regime): Parameters m,K and initial measure
µ0 satisfy

1.

0 <
DΩ(µ0)

K
< Γs, mK <

D∞

4Γ(D∞)
,

where D∞ ∈ (0, θ∗) is the root of Γ(x) = DΩ(µ0)
K .

2.

0 < Cµ2 (m,µ0) < D∞.

• Framework B (Large-inertia regime): Parameters m,K and initial measure
µ0 satisfy

1.

0 < 4mDΩ(µ0) < θ∗, mK >
θ∗

4Γ(θ∗)
.

2.

0 < Cµ2 (m,µ0) < 4mDΩ(µ0).

Under these frameworks, we provide the complete-frequency synchronization to
(6).

Theorem 5.2. (Complete-frequency synchronization) Suppose that either Frame-
work A or Framework B hold, and let µt ∈ M([0, 2π)× R2) be the measure-valued
solution to (6) with µ0. Then Q(t) = Pωsupp(µt) shrinks to a single point at least
exponentially fast:

Dω(µt) ≤ C exp
[
−
( 1

2m
− η
)
t
]
, t ≥ 0,

where C is a positive constant depending only on m, Γ, K, DΩ(µ0), Dθ(µ0), and

Ḋθ(µ0).

Proof. Although the proof is almost the same as in Theorem 5.1 [10], for the reader’s
convenience, we briefly sketch the proof below. For the detailed proof, see Appendix
A.
Case A (Small-inertia regime). Suppose that Framework A holds, and we set

R̄1 :=
Γ(D∞)

D∞
.
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We first show that there exists a trapping region for Dθ(µ
n
t ). For this we use the

following second-order differential inequality.

mD̈θ + Ḋθ +KR̄1Dθ −DΩ ≤ 0, a.e. t.

Then, from this inequality, we obtain

Dθ(µ
n
t ) ≤ D∞, t ≥ 0.

Next, we differentiate Equation (18) with respect to time t to get

mω̈i + ω̇i = K

n3∑
j=1

cjΓ
′(θj − θi)(ωj − ωi).

By using the lower bound of Γ′, we have

mD̈ω + Ḋω +KΓ′(D∞)Dω ≤ 0, a.e. t. (21)

We now apply Lemma 5.1 to (21) to obtain

Dω(µnt ) ≤ Ce−γt,
where γ is a positive constant.
Case B (Large-inertia regime). Suppose that Framework B holds. In a manner
similar to Case A, we have

mD̈θ + Ḋθ +KR̄2Dθ −DΩ ≤ 0, a.e. t,

where

R̄2 :=
Γ(4mDΩ)

4mDΩ
.

Then we obtain the trapping region of Dθ(µ
n
t ) such that

Dθ(µ
n
t ) ≤ 4mDΩ, t ≥ 0,

and from this we have the complete-frequency synchronization:

Dω(µnt ) ≤ Ce−( 1
2m−η)t,

where η is a positive constant. Hence by letting n → ∞, we have the desired
results.

Remark 5. 1. The synchronization problem for the Kuramoto phase model has
been treated in [9, 11, 15, 17].

2. In contrast to [10], we cannot estimate the limit of the phase and frequency of
the system (18), since the momentum of the system (18) is not conserved. However,
from Theorem 5.2, we know that the supports of µt go to one point, as t goes to
infinity. This implies that µt converges to the Dirac measure in the sense of the
weak-* limit.

Finally, we present a contraction property of the kinetic Kuramoto–Daido model
with finite inertia. In the absence of inertia, it is shown in [6] that the Kuramoto
model has a contraction property in Wasserstein distance. The optimal mass trans-
port approach for the contraction relies on the one-dimensional nature of the phase
space. However, in our setting, our dynamic phase space is two-dimensional, i.e.,
[0, 2π]×R in (θ, ω). Hence it seems that we cannot use the optimal mass transport
technique directly as in [6].

For two measure-valued solutions µ and ν to (6), we introduce a functional D(·, ·):
D(µt, νt) := diam(Pθsupp(µt − νt)), t ≥ 0.
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Theorem 5.3. Suppose that initial Radon measures µ0 and ν0 satisfy the following:

1. µ0 and ν0 have unit mass:∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

µ0(dθ, dω, dΩ) =

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

ν0(dθ, dω, dΩ) = 1.

2. µ0 and ν0 are absolutely continuous.
3. µ0 and ν0 satisfy either Framework A or Framework B simultaneously.

Let µt and νt be the measure-valued solutions to (6) with initial measures µ0 and
ν0 such that the sum of the diameter of two trapping regions is less than θ∗. Then
we have

D(µt, νt) ≤ Ce−βt, t ≥ 0,

where C, β are positive constants, and θ∗ is a positive constant appearing in (20).

Proof. From Remark 4, we can choose approximations for µ0 and ν0 as follows.

µn0 :=
1

n3

n3∑
i=1

δ(z − zi0), νn0 :=
1

n3

n3∑
i=1

δ(z − z̃i0).

Suppose either Framework A or Framework B holds, and let θn and θ̃n be the
solution to the system (18) with ci = 1/n3. Then, thanks to Theorem 5.2, the two

configurations θn(t) and θ̃n(t) satisfy

D(θn(t)) +D(θ̃n(t)) < π, t ≥ 0.

We set

αni := θni − θ̃ni , αnM := max
1≤i≤n3

αni , αnm := min
1≤i≤n3

αni , D(αn(t)) := αnM − αnm.

Since αnM is Lipschitz continuous, it is almost everywhere differentiable in time
t. More precisely, from the similar arguments as in [10, Lemma 2.1] we know that
collision times of the phases and frequencies are countable and isolated. This means
that there exists 0 ≤ t0 < t1 < · · · such that

αnM , α
n
m are C2-differentiable in the time interval (tk−1, tk), k = 1, 2, · · · .

For notational simplicity, from now on we suppress the n dependence in θn and αn,
i.e.,

θ := θn, α := αn.

By simple calculations and the mean-value theorem, we obtain

m
d2αi
dt2

+
dαi
dt

=
K

n3

n3∑
j=1

(
Γ(θj − θi)− Γ(θ̃j − θ̃i)

)

=
K

n3

n3∑
j=1

Γ′(θji)
(
αj − αi

)
, (tk−1, tk),

(22)

where θji is a value between αj and αi.
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• Step A (Derivation of Gronwall’s inequality for D(α)): It follows from (22) that

m
d2αM
dt2

+
dαM
dt
≤ K

n3
Γ′(D∗)

n3∑
j=1

(αj − αM )

= −KΓ′(D∗)
(
αM −

1

n3

n3∑
j=1

αj

)
, (tk−1, tk),

(23)

where D∗ is the upper bound for the sum of the diameter of two trapping regions.
Since D∗ is less than θ∗, we have

Γ′(θji) ≥ Γ′(D∗).

Similarly, we find

m
d2αm
dt2

+
dαm
dt
≥ −KΓ′(D∗)

(
αm −

1

n3

n3∑
j=1

αj

)
, (tk−1, tk). (24)

We combine the estimates (23) and (24) to find

m
d2D(α)

dt2
+
dD(α)

dt
+ K̄D(α) ≤ 0, K̄ := KΓ′(D∗). (25)

• Step B (Decay estimates of D(α)): We apply Lemma 5.1 to (25) to obtain

D(α(t)) ≤

 D(α0)e−µ1t +m e−µ2t−e−µ1t√
1−4mK̄

(
Ḋ(α0) + µ1D(α0)

)
, 1− 4mK̄ > 0,

e−
t

2m

[
D(α0) +

(
1

2mD(α0) + Ḋ(α0)
)
t
]
, 1− 4mK̄ ≤ 0,

where

µ1 =
1 +
√

1− 4mK̄

2m
, µ2 =

1−
√

1− 4mK̄

2m
.

Hence, for any ε ∈
(

0, 1
2m

)
, we have

D(µnt , ν
n
t ) ≈ Ce−λ(ε)t for large time t, λ(ε) := min

{
µ2,

1

2m
− ε
}
.

We finally have the desired result by letting n→∞. This completes the proof.

6. Conclusion. The effect of inertia on the phase transition in the Kuramoto
model with inertia has been extensively treated in the physics literature [2, 3, 8, 9,
16, 19, 31, 32]. As a result of large inertia, the convergence speed toward the phase-
locked state is slower than that of the Kuramoto model without inertia, and the type
of phase transition at the critical coupling strength can be dramatically changed.
Moreover, hysteresis can also emerge by varying the coupling strength from zero to
some large value or vice versa. Recently, the effect of inertia on the synchronization
problem has been studied systematically using the Lyapunov functional approach
in [10, 15]. The formal mean-field version of the Kuramoto–Daido phase model
with inertia has been employed in the physics literature [2, 3]. However, there have
been no systematic mathematical studies of the kinetic Kuramoto–Daido model
with inertia involving the well-posedness issue and its asymptotic behavior. In this
paper, we treated mathematical issues such as the well-posedness and asymptotic
behaviors. More precisely, we provided a global well-posedness of measure-valued
solutions to the kinetic Kuramoto–Daido model with finite inertia and their as-
ymptotic behavior. For this, we first established the corresponding result to the
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Kuramoto–Daido phase model with inertia at the level of phase, and then we lifted
the phase result to the level of the kinetic version via the mean-field limit.

Acknowledgments. Y.-P. Choi was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2012R1A6A3A03039496). S.-Y. Ha was
partially supported by KRF-2011-0015388.

Appendix A. Detailed proof of Theorem 5.2. In this Appendix, we give a
more detailed proof of Theorem 5.2. Since the proof of Case B is very similar to
that of Case A, we only provide the proof of Case A (small-inertia regime).
• (Trapping region of Dθ(µ

n
t )) : Suppose that Framework A holds. Then Dθ(µ

n
t ) <

D∞.

Proof. We prove the theorem by contradiction. We set

T := {t ∈ [0,∞) : Dθ(µ
n
t ) < D∞}, T∗ := sup T .

Note that since 0 ∈ T and Dθ(µ
n
t ) is continuous, the set contains some small interval

[0, ε) for some small positive constant 0 < ε� 1.
We claim

T∗ =∞.
Suppose not, i.e., T∗ <∞. Since Dθ(µ

n
t ) is continuous, we should have

lim
t→T∗−

Dθ(µ
n
t ) = D∞. (26)

We next estimate the maximal and minimal fluctuations separately.
Step A (Maximal phase fluctuation): Since θM is Lipschitz continuous, it is almost
everywhere differentiable in time t. More precisely, there exist at most countable
number of times 0 := t0 < t1 < · · · < t∞ = T∗ such that

θM is differentiable in the time interval (tk−1, tk), k = 1, 2, · · · .

We now use

Γ(x) ≤ R̄1x, x ∈ [−D∞θ , 0], where R̄1 :=
Γ(D∞)

D∞
,

−D∞ ≤ −Dθ(µ
n
t ) ≤ θi(t)− θM (t) ≤ 0, a.e. t ∈ [0, T∗),

to derive a differential inequality:

mθ̈M + θ̇M = ΩM +K

n3∑
j=1

cjΓ(θj − θM )

≤ ΩM +KR̄1

n3∑
j=1

cj(θj − θM )

= ΩM −KR̄1θM +KR̄1

n3∑
j=1

cjθj , t ∈ (tk−1, tk).

Step B (Minimal fluctuation): We use the same argument as in Case A to find

mθ̈m + θ̇m ≥ Ωm −KR̄1θm +KR̄1

n3∑
j=1

cjθj , a.e. t.
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We now combine Step A and Step B to obtain the following differential inequality:

mD̈θ + Ḋθ +KR̄1Dθ −DΩ ≤ 0, a.e. t.

Since 1− 4mKR̄1 > 0, we obtain

Dθ(µ
n
t ) ≤ e−µ̄1tDθ(0)

+ m
e−µ̄2t − e−µ̄1t√

1− 4mKR̄1

(
Ḋθ(0) + µ̄1Dθ(0)− 2DΩ

1−
√

1− 4mKR̄1

)
+

DΩ

KR̄1

(
1− e−µ̄1t

)
.

By assumption, we have

DΩ

KR̄1
=

D∞DΩ

KΓ(D∞)
= D∞.

This yields

Dθ(µ
n
t ) ≤ D∞ + (Dθ(0)−D∞)e−µ̄1t +m

e−µ̄2t − e−µ̄1t√
1− 4mKR̄1

×
(
Ḋθ(0) + µ̄1Dθ(0)− 2DΩ

1−
√

1− 4mKR̄1

)
, t ∈ [0, T∗),

where we used

Ḋθ(0) + µ̄1Dθ(0)− 2DΩ

1−
√

1− 4mKR̄1

≤ 0

and

m
e−µ̄2t − e−µ̄1t√

1− 4mKR̄1

≥ 0.

Hence we have

lim
t→T∗−

Dθ(µ
n
t ) < D∞.

This is a contradiction to (26).

• (Complete frequency synchronization): Suppose that Framework A holds. Then
we have

Dω(µnt ) ≤ Ce−γt,
where C is a positive constant depending only on m, Γ, K, DΩ(µ0), Dθ(µ0), and

Ḋθ(µ0), and γ is given by

γ :=
1−

√
1− 4mKΓ′(D∞)

2m
.

Proof. Step A (Maximal frequency fluctuation): Since ωM is Lipschitz continuous,
it is almost everywhere differentiable in time t. More precisely, there exist at most
countable number of times 0 := t0 < t1 < · · · < t∞ ≤ ∞ such that

ωM is differentiable in the time interval (tk−1, tk), k = 1, 2, · · · .

For a given time zone (tk−1, tk), k = 1, · · · , we choose an index i such that

ωi(t) = ωM (t), t ∈ (tk−1, tk).

We use the above result,

|θj(t)− θi(t)| ≤ Dθ(µ
n
t ) ≤ D∞ < θ∗,
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to get

Γ′(θj(t)− θi(t)) = Γ′
(
|θj(t)− θi(t)|

)
≥ Γ′(D∞), t ∈ (tk−1, tk).

We also obtain the following equation from (18):

mω̈i + ω̇i = K

n3∑
j=1

cjΓ
′(θj − θi)(ωj − ωi), t ∈ (tk−1, tk).

This yields

mω̈M + ω̇M ≤ KΓ′(D∞)

n3∑
j=1

cj(ωj − ωi)

= −KΓ′(D∞)
(
ωM −

n3∑
j=1

cjωj
)
, a.e. t.

Step B (Minimal frequency fluctuation): In this case, we apply the same argument
as Step A to find

mω̈m + ω̇m ≥ −KΓ′(D∞)
(
ωm −

n3∑
j=1

cjωj
)
, a.e. t.

We combine Step A and Step B to obtain the following differential inequality:

mD̈ω + Ḋω +KΓ′(D∞)Dω ≤ 0, a.e. t. (27)

By condition (P3) and the assumption on Γ′

Γ(D∞)

D∞
≥ Γ′(D∞).

The determinant of (27) satisfies

0 < 1− 4mK
Γ(D∞)

D∞
≤ 1− 4mKΓ′(D∞).

Hence we obtain the desired result.
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