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ABSTRACT. We present the global existence and long-time behavior of measure-
valued solutions to the kinetic Kuramoto—Daido model with inertia. For the
global existence of measure-valued solutions, we employ a Neunzert’s mean-
field approach for the Vlasov equation to construct approximate solutions.
The approximate solutions are empirical measures generated by the solution
to the Kuramoto—Daido model with inertia, and we also provide an a pri-
ori local-in-time stability estimate for measure-valued solutions in terms of a
bounded Lipschitz distance. For the asymptotic frequency synchronization, we
adopt two frameworks depending on the relative strength of inertia and show
that the diameter of the projected frequency support of the measure-valued
solutions exponentially converge to zero.

1. Introduction. Synchronization of weakly coupled limit-cycle oscillators ap-
pears in many biological systems such as metabolic synchrony in yeast cell sus-
pension, synchronous firing of a cardiac pacemaker, and the flashing of fireflies
(see [4, 5, 16, 38] for details). Owing to emerging interest in complex networks
in computer and social sciences, the synchronous dynamics of information flow
through complex networks has attracted considerable interest among researchers
from the nonlinear sciences (e.g., applied mathematics, control theory, and statisti-
cal physics). Thus far, several mathematical models have been proposed and used
for simulating collective synchronization phenomena in complex networks [1, 26].
Among them, we focus on the Kuramoto-type model, which is a minimal prototype
model for analytical treatment. The Kuramoto model (KM) [21, 22] is a system of
first-order ordinary differential equations (ODEs) for the phase of weakly coupled
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oscillators, and it can be formally derived from the coupled complex Ginzburg—
Landau system for Landau—Stuart oscillators. This model is a type of analytically
treatable minimal model, exhibiting a phase-transition-like phenomenon from dis-
ordered states to ordered states, when the strength of coupling is increased in the
thermodynamic limit (or the mean-field limit). After Kuramoto’s classical works,
several Kuramoto-type models were proposed, including the replacement of sinu-
soidal phase coupling with a general coupling as in [12, 13] and the addition of
phase-shift, inertia, and time-delay effects in the phase coupling and dynamics, re-
spectively [2, 3, 16, 19, 20, 28, 31, 32]. For a detailed discussion on the variants of
the KM, we refer the reader to [1, 30].

In this paper, we deal with a Kuramoto-type phase model incorporating a general
periodic coupling and inertia effect in the original KM, and we call this model the
Kuramoto-Daido model (KDM) with inertia. Consider an ensemble of N active
rotors moving on a circle and let z; := eV~ 1% € S be the locations of the ith rotors
on this circle. We assume that the phase 6; is governed by the KDM with inertia:

N
. K )
mei+9i=Qi+N;r(ej—ei), t>0, i=1,---,N, (1)

subject to suitable initial data:
(65,60,)(0) = (610, wio), (2)

where m, K, and N are the strength of inertia, coupling, and the system size,
respectively, and €2; is the natural frequency of the i¢th oscillator, which is randomly
extracted from the frequency distribution function g = g(£2). The phase coupling
function I' = T'(0) satisfies the following properties:

[0 +2m) =T(0), |T(0) = T(0.)] < ITl[Lipl6 — 64],

T(0)=T(r) =0, T(6)>0,0¢(0,7), I'(—0)=-T(0). ®)

Note that the system (1) and (3) is translational invariant and that Kuramoto’s
coupling function sin @ satisfies the structural condition (3). In the following, we
briefly present previous mathematical results for the KDM with inertia and I'(0) =
sin 6.

The system (1) with sinusoidal coupling was first introduced by Ermentrout [16]
for modeling slow relaxation in the synchronization process in certain biological sys-
tems (e.g., fireflies of the Pteroptyx malaccae). In the absence of inertia (m = 0),
the system (1) corresponds to the Kuramoto-Daido model [12, 13] for a general
coupling. The first-order harmonics of I" correspond to the Kuramoto model with
inertia and the system (1) is applied for modeling superconducting Josephson junc-
tion arrays [14, 33, 34, 35, 36, 37] and power networks [15]. Compared to the vast
literature on the KM, there are few research papers on the KDM. The system (1)
has several distinct dynamic features compared to the KM: For example, it is well
known [1] that the KM exhibits a continuous second-order phase transition at the
critical coupling strength K., for unimodal, symmetric, and long-range distribution
functions g such as Lorentz and Gaussian distributions. In contrast, the KDM with
large inertia shows a discontinuous first-order phase transition for the aforemen-
tioned distributions, and exhibits hysteresis [31, 32]. It is unknown whether the
KDM with small inertia will show similar dynamic behaviors.

However, when the number of oscillators is sufficiently large, the kinetic version
of the KDM is often used in the physics literature [2, 3] to study phase-transition
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phenomena. Let f = f(0,w,Q,t) be the one-oscillator distribution function in
[0,27) := R/(27Z) with frequency w, and natural frequency € at time ¢. Then,
the formal thermodynamic limit (N — oo) using the Bogoliubov—Born—Green—
Kirkwood-Yvon (BBGKY) hierarchy yields a Vlasov-type kinetic equation for f:

Of+0p(wf)+ 0, (A[flf) =0, (A,w,Q)€[0,2r) xRxR, ¢>0,
ALf](6,0,0,) = l[—wﬂz

m

+K/O2’T/°; /(:I‘(e*é))f(e*,w*,Q*,t)g(Q*)dﬂ*dw*dQ*(l)

As far as we know, the well-posedness issue and qualitative asymptotic behavior
of the kinetic model (4) have not been addressed in the literature. In this paper,
we study fundamental mathematical questions such as the existence of solutions
and their asymptotic behavior via the finite-dimensional result for the KDM with
inertia and a rigorous thermodynamic limit. Next, we briefly discuss our main
results. First, we present a measure-theoretic formulation of the kinetic model
(4) in Section 2.3. Because we are interested in the concentration of phases or
frequencies, i.e., formation of a Dirac delta in phase and frequency, it is natural
to include such singular measures in our concept of solutions. Therefore, measure-
valued solutions to (4) are a natural class of solutions as far as asymptotics are
concerned. Using the measure-theoretic formulation, we provide the existence of
measure-valued solutions for an initial Radon measure with finite moments up to
second order in Section 4. The approximate measure-valued solutions are empirical
measures constructed from the corresponding finite-dimensional KDM with inertia
and then the local-in-time stability result in Proposition 3 yields the convergence
of the approximate measure-valued solutions. Second, for the asymptotic behavior
of measure-valued solutions, we first establish the finite-dimensional result for the
corresponding KDM with inertia, and then using the rigorous thermodynamic result
in Section 4, we lift the finite-dimensional restriction to provide infinite-dimensional
results.

The rest of the paper is outlined as follows: In Section 2, we briefly review the ba-
sic mathematical structure of the KDM and kinetic KDM with inertia, and present
a measure-theoretic formulation of the kinetic KDM with inertia. In Section 3, we
present a local-stability estimate of the KDM in terms of a bounded Lipschitz dis-
tance. In Section 4, we provide a global well-posedness of measure-valued solutions.
In Section 5, we study the asymptotic synchronization property and contraction
estimates for the measure-valued solutions. Finally, Section 6 is devoted to a sum-
mary of the main results and direction for future work. In Appendix A, we present
the detailed proof of Theorem 5.2.

2. Preliminaries. In this section, we briefly review the basic properties of the
kinetic KDM with inertia and present a measure-theoretic formulation of the kinetic
KDM.

2.1. The KDM with inertia. Consider an ensemble of many weakly coupled
limit-cycle oscillators under the effect of uniform inertia. In this case, the dynamics
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of 0; is governed by the following system of first-order ODEs:

0;=w;, i=1,---,N, t>0,
N

. 1 K
wi = Wi+Q¢+Nj21F(9j0i):|7 (5)
Q; =0.

Note that the system (5) is equivalent to the system (1), and here we added Q; as
a part of the dynamic quantities, although it is invariant under the dynamics (5).
We first observe that the system (5) is dissipative. This can be easily seen from the
fact that the vector field generated by the first-order system (5),

N
1 K )
.F:(.Fl,-.. ,-FN)7 Fi= (wi,a[*wiwLQiJrﬁ EIF(GJ-@-)},O), i=1,--- N,
=
has a negative divergence:

N
. . N
div(g w.0) F (0w, Q) = Zldw(gwmfi(e,w,g) =-—<0.
1=
We also note that the equilibria to the system (5) correspond to equilibria to the
KDM without inertia and vice versa, i.e.,

K N
wi:0, Ql+ﬁjz=;r(9]—91):0

We now introduce average quantities and fluctuations around the averaged ones:

1Y 1 1
0.:=— 0;, Wwe:i=— wi, Qo= — Q;,
P 3 3

01' = 01 — 0c, ‘:Jz =Wy — We, Q1 = Qz — QC.

Note that the system can be completely decoupled as two independent systems for
averages and fluctuations:

and

Q; =0.
Then it is easy to see that
we(t) = Qe + (we(0) = QeJe 7, Qelt) = Q(0),
0c(t) = 0.(0) + Qut + m(we(0) — Q)(1 — e~ 7).

As far as long-time dynamics is concerned, for some well-prepared initial data with
we(0) = Q, the dynamics of the averages is indistinguishable from that of the
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KM. In this case, the inertia plays only the role of convergence rate toward the
phase-locked states.

2.2. The kinetic KDM with inertia. In this part, we present several a priori
estimates for the kinetic KDM with inertia. Consider the initial boundary value
problem for the KDM:

Of+0p(wf)+ 0, (A[flf) =0, (A,w)€[0,2m) xR, t>0,

ALF1(0, 0,9, ) = %[—w—i—Q

+K/02” /_o; /_O; r(6. —e)f(e*,w*,Q*,t)g(g*)dg*dw*dgﬂﬁ;

subject to initial and boundary conditions:

27 s}
F(0.0.9.0) = o0, ) with [ [ fulbwQ)dwds = 1
0 —00

f(07w7 Q’ t) = f(27r7w7 Q’ t)? | llim |w‘f(97w’ Q7t) = 0'
w|—0o0

Proposition 1. Let f € C°°([0,27) x R? x [0,T)) be a smooth solution to (6) and
(7). Then we have

2 0o 2w 0
/ / £(0, 0, t)dwdd = / / fo(0,w,Q)dwdd, t> 0.
0 —o0 0 —o00

Proof. We integrate (6) with respect to (6,w) € [0,27] x R to get

(7)

2m %)
% / f(0,w,Q,t)dwdf = 0.
0 —o0

By the normalization condition given in (7), we have
2T 0o
/ / f(0,w,Q,t)dwdd = 1.
0 —00

For notational simplicity, we also introduce ({ - )) to denote the integral over the
phase space [0,27) x R? with respect to a measure g(Q)dfdwd:

(R)(8) = /0% /_O; /_Z W0, w, 9, )g(Q)d0dwd, ¢ > 0.

O

Note that since 6 € [0,27) is a 2w-periodic variable, h(6,w,Q) is a 2m-periodic
function with respect to 6 on [0,27) x R x R.

Proposition 2. (Evolution of the moments) Let f be a smooth solution to (6) and
(7). Then fort >0, we have

(@) {{(FN(E) = ((fo))- t

(i) ((wN)(E) = (Q2fo)) + ({{wfo)) — ((2/0))) e .
(i) ((01))(t) = ((0.f0)) + ((fo))t +m (((wfo)) — {{2/0))) (1 — e ™).
(i) {((2f))(t) = ((fo))-
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Proof. (i) We integrate (6) using the periodicity to find

d 2 oS 0
— / / f(0,w,Q,t)g(Q)dQ2dwdd = 0.
dt 0 —o00 J —00

(ii) We multiply (6) by wg(€2) to get

O(wfg) + 0s(w’ fg) + Du(wAlf]f9) = Alf]fg.
Note that

2m o) e
/ / / A[f]fgdfdwdQ
0 —00 J —00
1 2m oo oo 2m oS 0
:7[_/ / / wfgdﬁdwdﬂ+/ / / Qf gdfdwd
m 0 —o0 J —o0 0 —oo J—00

27 e’} [e%s}
+ / / / (0. — 0)F (0,000, 2, 1) F(0, w0, 2, £)9(Q)g(2)d0d0. duodeo, dL,
0 —oo0 J —o0

1 2m o] o] 1 2m o] o]
=—— / / w fgdfdwdQ) + — / / / Qfogdfdwd2.
m Jo —oo J —oco mJo —o0 J —00

Hence, we have

%((wf)) - —%<<wf>> + %<<Qfo>>-
This yields

() = (o) + (o)) = (o)) ).
(iil) We multiply (6) by 0g(£2) to get

(019) + 0y (0wfg) + D.(0ALf)fg) = wfg.

We integrate this equation to find the desired result.
(iv) We first multiply (6) by Qg(€) to find

9 (Q2fg) + 0p(Qwfg) + 0., (QA[f]fg) = 0.

We integrate this equation over [0,27) x R? to obtain

d 27 0o oo
7 / / Qf(0,w,Q,t)g(2)dQdwdbd = 0.
0 —o0 J —oo
This yields the desired result. O

2.3. A measure theoretic formulation. In this part, we present a measure-
theoretic formulation of the kinetic KDM (6) with inertia. When the natural fre-
quencies are distributed, i.e., nonidentical oscillators, the oscillators phases cannot
collapse to a single phase asymptotically. In contrast, the frequencies of oscillators
can be collapsed to a single frequency asymptotically. Hence, when the asymptotic
complete-frequency synchronization occurs, the asymptotic limit of measure-valued
solutions will have a Dirac measure concentrated on the average natural frequency
as its component even for smooth initial data. Therefore, the suitable space for the
asymptotic behavior of the solutions will be a measure space instead of the usual
Sobolev space. In this manner, a measure-valued solution emerges as a natural con-
cept for the solution to the kinetic KDM with inertia. For this, we adopt a standard
Neunzert’s framework from [25, 29]. Let M([0, 27r) x R?) be the set of nonnegative
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Radon measures on [0, 27) x R?, and we use a standard duality relation for a Radon
measure ¥ € M and its test function h:

(v, h) :/O /_Oo /_Oo 18, w0, Q)0 (d6, dw, dQ), b € Co([0, 27) x R2).

We set C,, ([0, T); M([0,27) x R?)) a space of all weakly continuous time-dependent
measures. Next, we present the definition of a measure-valued solution to (6) as
follows.

Definition 2.1. For T € [0,00), let u € C,([0,T); M([0,27) x R?)) be a measure-
valued solution to (6) with initial Radon measure jg € M([0,27) x R?) if and only
if p satisfies the following conditions:
1. pis weakly continuous; {u, h) is continuous as a function of ¢, Vh € Co([0, 27) x
R2).
2. pu satisfies the integral equation: Vh € C4([0,27) x R? x [0,T))

t
</~Lt7 h(t» - <M07 h(0)> = / <;U’s; ash + wagh + A(gv w, Qa ;U's)awh>d33
0

1 2m 00 o)
A, 0,0 1) = E[—QH—Q—K/ / / D0 — 0.) (A . d2.)].
0 —o00 J —00
(8)
Remark 1. 1. For a finite measure with compact support, we can use g €

CY([0,27) x R?) as a test function in (8).
2. Let mo(t) be the total mass of u, i.e.,

mo(t) = /O%/C: /O;ut(de,dw,dﬁ).

Then it follows from (8) that we have conservation of mass:

mo(t) = mo(O), t e [O,T)

3. A local-in-time stability estimate. In this section, we provide an a priori
local-in-time stability estimate for the measure-valued solution to (6) and (7) using
a bounded Lipschitz distance.

3.1. Estimates on particle trajectories. In this part, we first study several a
priori estimates of particle trajectories generated from (6).
For (0, w,Q,t) € [0,2m) x R x [0,T) and p € Cy([0,T); M([0,27) x R?)), we set

(®M(8)7 TH(S)’ q)}i(s)) = (@M(S, t? 97 w, Q)a TH(S, ta 9, w, Q)a (I)H(S, t7 97 W, Q))7
to be the particle trajectory passing through (0, w, ) at time ¢, i.e.,

d
0,5 = Tu(6).
T = =) + T

o)

m
K 2m oo o]
[ reue - b, don as),
m Jo —oo0 J —oo
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subject to initial data

(©u(1), Tp(t), 2u(1)) = (6,0, Q).
We now introduce a priori conditions (P) for measure-valued solutions to (6)
and (7):
e (P1): For each t € [0,T), there exist nonnegative locally bounded functions
P(t), Q(1), R(1):
supp(ut) € Bp1)(0) X Bo)(0) X Br)(0),
where supp(u) and B,.(z) denote support of measure p and ball of radius
r around z, respectively, i.e., supp(p) := {B € [0,27) x R? : u(B) > 0} and
B.(z) i={z:|x — z| < r}.
e (P2): The mass is uniformly bounded:

2 o] e’}
/ / / pe(dl, dw, dQY) < co
0 —o0 J —00
27 e’} ')
PO, 1) ::K/ / / (0 — 0.)pa(d0,, deow, A2 ).
0 —o00 J —00

Lemma 3.1. Let p € C,([0,T); M([0,27) x R?)) be a measure-valued function with
the property (P). Then, we have the following assertions:

We set

1. The nonlinear term F (0, u;) satisfies

[F(0, pne)] < K| T|2oemo(0),  [F(01, pe) — F(02, pe)| < K||T|| Lipmo(0)[61 — 62].
2. For any fized (0,w,,t) € [0,27) x R% x [0,T), there exists a unique global
particle trajectory that is a C* function of s € [0,T] and admits a unique
inverse map in the form of
0:=0,(ts,0,0), w:="7T,(ts0w),
where
0:=0,(st,0,w), @:="7T,(s;t,0,w).

3. Let ﬁ(t), @(t), and E(t) be the bounds for supports of the phase, velocity, and
natural frequency variables, respectively. Then, we have

P(t) < P(0)+ (Q0) + R(0) + KT z=mo(0))t,
Q1) < Q(0)+ R(0) + KT 1= mo(0),
R(t) = R(0).

Proof. (1) The first assertion directly follows from the boundedness of ||T'||p~. For
the second assertion, we use Lipschitz continuity of I" to get

|F(917 Mt 92, /J't
<K/ / / [T(01 — 0.) —T(02 — 0.)|pe(dbs, dws, dS2y)

2
< Il 2ip K161 —92|/ / / 11(d0,., dw., dS2..)
= KHFHmeO( )01 — 62|

(2) The proof is obtained from standard ordinary differential equation theory. For
more details, we refer the reader to [18].
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(3) Recall the characteristic equation (9)

do(s) __w(s) Q@  Flu]
s T m Tm T T

which leads to

+ 1 K t t—s
w(t) =woe™m + QL —e"m") — = [ e Flu]ds,
0

m

We then use Lemma 3.1, (1) to see that

|w(®)]

IA

K [t
jwol + 1]+ & / 5 Flusds
KT e mo (0) /
m

IA

lwol + 12 + e~ m ds

0
= |wo| + 12| + K|[T||emo(0) (1 — ™).
Hence, we obtain the upper bound on the size of the velocity support of u:
Q(t) < Q(0) + R(0) + K||T'[| Lo mo(0). (10)
The bound on the support of 8 follows from (10) and the following inequality:

t
|6(¢)] (0 |+/ lw(s)|ds

/ 1Q(s)ds

( )+ R(0 )+K||F||Loomo(0))t.

IA

IN

O

Lemma 3.2. Let pu € Cy([0,T); M([0,27) x R?)) be a measure-valued solution to
(6) and (7) with the property (P). Then, for any test function h € C}([0,27) x R?),
we have

27 o] e’}
/ / / h(0,w, Q) (dO, dw, dQ)
0 —o0 J —o0

27 [ee] o0
= / / / h(©,(t;s,0,w,9Q), Y, (t;s,0,w,Q), @, (t;s,0,w,Q))ps(d0, dw, d?).
0 —00 J —00

Pmof Because p is a measure-valued solution, it follows from the defining relation
) that for any test function h € CA([0, 27) x R2 x [0,T)), we have

2m
/ / / h(0,w, Q) (dl, dw, dY)
21 N
—/ / / BBy 00, 20, 5)pta(d, deo, d2.)

(11)

We now choose a test function % so that the right-hand side of (11) vanishes. For
any h € C}([0,27) x R?) and fixed ¢, we set

B(é, @,Q,7) = h(©,(t; T, 0,,9), T (t;7, 0,@,9), P, (t; T,

K

0, 0).
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By Lemma 3.1, (2), we have
h(©,(T;t,0,w,9), T u(T;t,0,w,Q), 8, (7;t,0,w,9Q),7) = h(0,w,Q).  (12)
Direct differentiation of (12) with respect to 7 and Lemma 3.1 imply
hect(0,2n) x R2 x [0,T)),  0;h+ @dzh + AB,0,Q,7)dzh = 0.

Hence, the relation (11) implies

27
/ / / h(0,w, Q) (dl, dw, dY)
2m _
z/ / / h(0,w, 2, s)ps(dl, dw, dQY),
0 —oo J —oo

or
2 0o 00
/ / / h(0,w, Q) e (d, dw, d)

2
/ / / n(t8,0,0,0),T,(t;5,0,w,9Q),2,(t;s,0,w, Q) us(d, dw, dQ).
O

3.2. Local-in-time stability estimate. In this part, we provide a local-in-time
stability of measure-valued solutions to (6) and (7). We first introduce an admissible
set A of test functions:

h —h
A= {h: [0,2m) x R? = R : ||h|jz~ <1, |h|lLip:= sup [h(z1) = hiz)] < 1}.
21522 |21 _22|

Definition 3.3. Let u,v be two Radon measures. Then, the bounded Lipschitz
distance d(u, ) between p and v is given by

/%/ / h p(dl, dw, d?) — /%/ / hud@dwdﬂ)‘

Remark 2. 1. (./\/l, d) is a complete metric space.
2. For any h € Cy([0,27) x R?) with ||h||z~ < a and ||h||Lip < b, we have

‘/%/ / hu(do, dw, dY) — /h/ / hud&dwdﬂ)’

< max{a, b}d(u,v)

d(p = sup
heA

3. The bounded Lipschitz distance d is equivalent to the Wasserstein-1 distance
(Kantorovich-Rubinstein distance) Wi:

2
Wi(uv) = inf / / / @ — yl(da, dy),
vell(n,v)

where [[(,v) is the set of all product measures on ([0,27) x R?)? such that their
marginals are p and v.

Lemma 3.4. Let i, v € Cy([0,T); M([0,27) xR?)) be two measure-valued solutions
to (6) and (7) with the property (P). Then for any 0 < s < T, we have

‘Gﬂ(s;tagawag) - @y(s;t,G,w,Qﬂ + ‘TH(S;taaawvg) - Ty(s;t,ﬂ,w,Qﬂ

max{s,t}
< [ s, ve)in

min{s,t}
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where a is a smooth function depending only on T, K, mq, and m.

Proof. We set

z(s) = Ou(s;t,0,w, Q) —0O,(s;t,0,w,Q),
y(s) = Tu(s:t,0,w,Q) — T, (s5t,0,w,0).
It follows from (9) that
da(r) _ dy(r) _ y(r) 1
dr y(), dr m m (E(ur) = F(vr), (13)

We note that

F(r) — F,)]
2 00 00
< K/O /700 [m IT(0,(T) — 0.) —T(0,(7) — 0.)|du, (db., dw., dS2.)

27 0o o)
+ K’ / / / L(0,(7) = 0.) (dpr (dbs, dw., d.) — dv-(db.., dw., dQ*))‘
0 —00 J—0

< K (|0 oemola(r)| + Crd(p-, vr)),

where Cr is a constant given by

Cr := max{|[Tl| o<, [IT]| Lip }-
Therefore, we have from (13)

|ﬂﬂs[ﬂﬁﬂm,

) < (IDlmmo [ e farlldr+Cr [ 5 dlprv)ir)
t t
S S K
< (||r\|mm0 z(r)|dr +Cr | d(us, VT)dT) iy
t t m
We add these inequalities to obtain

o)+ 1)1 < (14 S0 mg) [ (a4 yrar +

Then Gronwall lemma yields
KCF/ o (1 e mo)(T_s)d(UT,VT)dT.
t

KCF/ d(pir, vy )dr.
moJg

|z(8)] + |y(s)] <
O

Proposition 3. (Local-in-time stability) Let u,v € Cy([0,T); M([0,27) x R?)) be
measure-valued solutions to (6) and (7) with the property (P). Then there exists a

nonnegative function C(T) = C(T,d, K, P,Q, mg) satisfying
d(pe,vy) < C(T)d(po,v0), te€]0,T).
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Proof. Let h be a test function in A, then we have from Lemmas 3.2 and 3.4

2m 00 00 2m o) o)
’/ / / h (0, dws , dSY) —/ / / hut(de,dw,dQ)‘
0 —00 J =0 0 —oo J —oo

< /0% /o; /o; [1(©(0). 5.(6).2) — h(©D(1), X0(1), D)o

/o% /i /O:o h(Oy(1), To(t), ) po — /:ﬂ /Z /O; MO0, To(0), Do

27 [e's) 0o
S/0 /700/700|93(t)—93(t)|+\Tﬁ(t)—TB(t)mOer(MO,VO)

+

< / a(r: t)d(pr, vr )dr + (o, vo),
0

where we employed the following notations for simplicity.
00 () 1= 0,(t,0,0,w), OY(t) :=0,(t,0,0,w),
Tz(t) =T,(t,0,0,w), Tg(t) =T,(t,0,0,w).

Therefore we have

t
A1) < [ alrs)dlpe,v)dr + (o, ).
0
The Gronwall lemma yields
(s, v2) < d(pio, vo)edo =0T,
O

4. A global existence of measure-valued solutions. In this section, we provide
a global existence of a measure-valued solution to (6) following the approach in
[18, 25, 29].

4.1. Construction of approximate solutions. In this part, we present a con-
struction of approximate solutions using the particle method [27].

Suppose that the initial Radon measure p has compact support in [0, 27) x R?,
and it is included in a square R, i.e.,

supp (o) € Bp(0)(0) X Bg()(0) x Br()(0) C R.

Then for a given positive integer n, we can divide the square R into n® subsquares
Ri, i.e.,

n3
R = U R;.
=1

Let z; = (0;, w;, §2;) be the center of R;. Then we construct the initial approximation
pHy as

i

wl = Zcié(z —Z2i0), C;:= / 1o (dO, dw, dQY), (14)
i=1 i

and we define the approximate solution as

’ILS

py = ZQJ(Z — zi(t)),

i=1
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where z;(t) = (0;(t),w;(t), ;) is a solution of the Kuramoto—Daido model with
inertia:

db; "
dt - 19
do; 1 o
i _m[ wz—i-QZ—l—sz::lc]F(QJ 91)}7 t>0, i=1,---,n°,
dS);
ke
dt ’
subject to initial data
(05, wi, 2:)(0) = (Bio, wio, io)- (15)

Lemma 4.1. Let p € C,([0,7); M([0,27) x R?)) be a given initial Radon measure
on [0,27) x R? with compact support:

supp(tto) C Bp(0)(0) X Bg(0)(0) x Bpr(0)(0),

and let ufy be the initial approximation given by (14). Then there exists a positive
constant C' such that

n C
d(pg, no) < —lloll,
where [|po| := (po,1).
Proof. For h € A, we have

2m o0 e 2m oo o0
] / / / hyo(d6, dw, dSY) — / / / hy(d8), deo, dQ)’
0 —o0 J —00 0 —o0 J —00

SZ’ h(0, w, Q)10 (d6, dw, dS2) — h(e,w,Q)ug(dQ,dw,dQ)‘
i=1 ‘R Ri

< Z ’ /R h(&w,ﬂ)ﬂo(d&dw,d(l) — /R h(eiawj7QZ)M0(d9,dw,dQ))
=1 i i

’I’L3
< h(0,w, Q) — h(0;,w;, Q)| po(d, dw, d2
j
i=17Ri

n3
< Z |(9,W,Q) - (Gi,wj;Ql)LuO(d@’dwde)
i=1 7 Ri

C
< —llmoll;
n
where C is a constant proportional to the diameter of the rectangle R. O

Lemma 4.2. Let u™ be the approzimate measure-valued solution to (6) constructed
by the procedure (14)-(15). Then we have

PO < PO)+ (Q) + BO) + KD |mo()) + LD,
Q') < QUO)+ R(O) + K[ mo(0) + .
R*(t) < R(0)+g.

n
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Proof. 1t follows from Remark 1 and Lemma 3.1 that we have
mg (t) = mg(0),
and

P(t) < P"(0)+(Q"(0) + R"(0) + K| L=mf (0))t,
Q"(t) < Q"(0)+ R"(0) + K||I'||Leemg (0),
R"(t) = R"(0).

However, from the construction of the initial approximation uf, it is easy to prove
that

mg(O) < mg -+ %,
and o o o
P(0) < P(0) + —,  Q"(0) = Q(0) + —,  R"(0) < R(0) + —.

We then substitute these estimates into Lemma 3.1, (3) to obtain the desired esti-
mates. O

4.2. Convergence of approximate solutions. In this part, we present the con-
vergence of the approximate measure-valued solutions constructed in the previous
subsection and establish the well-posedness of the global measure-valued solutions
to the kinetic KDM.

Theorem 4.3. Suppose that g € M([0,27) x R?)) is a Radon measure with com-
pact support satisfying

supp(po) € Bp(o)(0) X Bg(0)(0) X Br(o)(0),
and let uy be the approxzimate solution constructed by the procedure (14)—(15). Then
there exists a unique measure-valued solution p € C,,([0,T); M([0,27) x R?)) to (4)
with initial data po such that pg is the weak-* limit of the approzimate solutions,
i.e.,
d(pe,py) =0 as n— oo.

Proof. We divide the estimates into several steps.
e Step A. (Select candidates for a measure-valued solution): We apply the local-
in-stability results in Proposition 3 to p™ and p™?:

d(pi, 1) < Cd(pg*, pg*) < [l 1oll- (16)

min{nq, na}
This yields that the sequence of approximate solutions {u}'} is a Cauchy sequence
in the complete metric space (M([0,27] x R?),d(-,)). Therefore there exists a limit
measure iy € M([0,27] x R?). However, since d convergence is equivalent to weak-*
convergence, we know that gy is the weak-* limit of uf. The estimate (16) also
implies
C

d(pe, i) < —-
e Step B. (Use the weak-limit measure g, as the measure-valued solution to (4) in
the sense of Definition 2.1)

Step B.1 (Check for weak Lipschitz continuity): We check (1) of Definition 2.1.
We first observe from Lemma 3.1 that

(W, Flpg Dl < Jwl + [Flpd]] .
Q(0) + R(0) + K||T[| o + KT oo + —

IN
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< C(T,Q(0), R(0), K, [|[T| o< , mo) < .
This yields
|©"(t + At) — O™ (1) + [T (t + At) = X" (t)| < C(T,Q(0), R(0), K, ||T'|| Lo, mo) AL.
Therefore, we have for h € C} ([0, 27) x R?)

v ) = G 1) = | [ (@ ¢+ 20, T+ A1) — h©" (1) = X" (1))

< [[hllermg (|©7 (t + At) — O (£)] + [T (t + At) — T(1)])
< CAt.

Step B.2 (Check the defining condition (8) of Definition 2.1): We have

t
1
(i, he) — (i ) = / (it O+ wdph = — (= Q-+ Fluf])duh )ds,
0
Since d convergence is equivalent to weak-* convergence, we have

(i he) = (ug s ho) = (peshe) — (o, ho) as o — oo.

Therefore, we are done if we can show that, for any test function g € C3([0,27) x
R? x [0, 7)),

t
/ <,u?, Osh + wogh — l(w - Q4+ F[u?]@wh)>ds
0 m

t
1
— / <,us, Osh + wdph — —(w — Q + F[us])awh>ds,
0 m
as n — 0o. We will prove the following stronger estimate:

1
‘<‘U?,8sh + wOh — E(w —Q+ Flullouh))

1
_ <,ut,5sh + wdgh — E(w - Q+ F[,us])awh>‘

<<
n
Note that
Kuy,ash +wdoh — L (w— Q)&wh> - <m7 Dsh + wdgh — —(w — Q)awh>’
< 0+ wOoh = (w0~ Q)Duhllesd(uf ) <

and hence it is enough to show that

To prove this claim, we first observe that

[t S Fl0u) ) = (s - FlusJouh)|
{u, (Flt) = Flua))0m) + — (i as, Flpslouh))

m

EIl +Ig

We now estimate Z; and Z, separately.
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o (Estimate Z;): We first recall Lemma 4.1 to see that

Fl3) = Fleall = | [T6 -0 = 100~ 6.)m.

This yields

¢
n

= Cd(;“’S? /1'7;) <

C
7, < =.
n

e (Estimate Zy): To estimate the term Zy, we use Lemma 3.1 to get

|EGl0blle < KT g 8] <m0,
[F[0, 1] 07 (0, w) — F[0s;, p14) 00 h(0s, wic)|
< |F10, 1] = FlOs, pel[[|0hl| oo + [ Fl| oo [0 78, w) = O To(Brc; 1))
< (KT lpwmollOuhlz= + | Fllzelle2) (6. w) - (0,

These two estimates lead to

T, < (2K||T|| peemo|0whl| Loe + | F |l oo [|Rllc2) d(pf, ps)

slQ

Step C. (Verify the uniqueness of the measure-valued solution): Let p and u' be
the two measure-valued solutions in the sense of Definition 2.1 corresponding to the
given initial Radon measure pg. Then it follows from Proposition 3 that

d(,u‘ta ,LL;) < C(T)d(,u,o, IU’O) = 07 te (OaT)
Thus we have
d(pe, py) =0, ie., = py, te(0,7).

Therefore, we have the uniqueness of measure-valued solution. O

Remark 3. 1. For the KM, similar results have been studied in [7, 18, 23, 24].
2. Note that the measure-valued solution p has a bounded first moment for each

time slice:
27 [e’e) [ee]
/ / / we(dl, dw, dQ) < oo.
0 —o0 J —o0

Moreover, p has compact support for each time slice:

supp(pt) € Bp1)(0) x Bg(1)(0) X Br1(0),
where P(t), Q(t), and R(t) satisfy

P(t) < P(0)+ (Q(0) + R(0) + KI|T|| Lm0 (0))t,
Q(t) < Q(0)+ R(0) + KI|T||L=mo(0),
R(t) = R(0).

5. Large-time behavior of the measure-valued solutions. In this section, we
present an asymptotic complete-frequency estimate for the measure-valued solutions
whose existence is guaranteed by Theorem 4.3 in the previous section. For the
desired synchronization estimates to the measure-valued solutions, we first establish
the corresponding results at the oscillator level, and then using the rigorous mean-
field limit, we obtain a synchronization estimate for the measure-valued solution.
Without loss of generality, we assume that

2w 00 00
/ / / to(do, dw,dY) = 1.
0 —o00 J —00
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As a preliminary step for the complete synchronization, we consider the initial phase

configuration consisting of a finite number of Dirac measures. For definiteness, we
set

’I'L3
wy = Zci(5(z —zi0), 20 = (Bio, wio, o), (17)
i=1

where z;q is defined as in Section 4.1. Then the unique measure-valued solution to
(4) with the initial datum (17) is given by

pp = cid(z = z(t),
=1

where z; = (6;,w;, ;) is the unique solution of the Kuramoto—Daido model:

40 =w;, i=1,---,N, t>0,
dt
do; 1 1 K&
e 4+ —Q. T(0. —6.).
dt mwl—i_ m it m;% (0, = 6:) (18)
dQ);
a
91(0) = aio, wi(O) = W;0, Ql(O) = QiO t> 0, 7= 1,' .. ,n3.

In the following, we present asymptotic complete-frequency synchronization esti-
mates and the contraction property of the system (18) with distributed natural
frequencies. For the nonidentical Kuramoto oscillators, the phase-space support of
e does not collapse to a single point. However, we will show that the projected
support of u; in frequency (w) space will collapse to a single point as in the identical
case.

Remark 4. If we consider the initial Radon measure that is absolutely continuous
with respect to the Lebesgue measure dfdwdS}, i.e., py < dfdwd(), then we can
choose the following approximation for pg the following

1 &
Mg = E 21(5(2 — Zio),
i=

using the similar argument in [23]. Later in Theorem 5.3 we will use this argument.
For convenience, we recall the following second-order differential inequality:
aj+by+cy+d<0, t>0,
y(0) =yo, 9(0) =1,

where a > 0, b, ¢, and d are constants.

(19)

Lemma 5.1. [10] Let y = y(t) be a nonnegative C? function satisfying the differ-
ential inequality (19). Then we have following relations:

(i) If b* — 4ac > 0, then we have

(t) <( +§)6—V1t+aM( + v +27d> _g
Yy = Yo+ =2 m@h 150 b— V02 — dac Py

(ii) If b* — dac < 0, then we have
(t)<e_2it[ JF@JF(i + +%)t]—@
yit) = Yo b2 2ay0 Y1 b b2
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where decay exponents v1 and vy are given as

_b—|—\/b2—4ac b—Vb% —4dac

2a Y2 = 2a

Before we present frameworks, we introduce some notation: For a given Radon
measure Lo, we set P(t), Q(t), and R(t) to be the orthogonal 0, w, and 2 projections
of supp(p), respectively:

Dg(uy) := diam(P(t)), Dy (u) := diam(Q(t)),
Da(p) = diam(R(t)), Cj/(m, po) := max{Dy(p0), Do (o) + kmDy (o)},

1%

for k = 1,2,---. Furthermore, we impose an extra assumption on I' € C':
(P3): T’ is a decreasing function on (0,6%), Is:= sup T'(6), (20)
0€(0,6%)

where 6* := inf{6 : V() = 0}.

We next present two frameworks depending on small- and large-inertia regimes.
e Framework A (Small-inertia regime): Parameters m, K and initial measure
1o satisfy

1.
Daq (o) D>
0< —~<T K<———
< % <, mu < 4]_"(D°°)’
.\ _ Da(po)
) where D> € (0,0*) is the root of I'(x) = =22

0 < CE(m, po) < D™.
e Framework B (Large-inertia regime): Parameters m, K and initial measure
1o satisfy
1. 0
0 <4mD < 6%, K>——.
mDa(no) VT ()

0< C’;(m,uo) < 4mDQ(,U,0).
Under these frameworks, we provide the complete-frequency synchronization to
(6).
Theorem 5.2. (Complete-frequency synchronization) Suppose that either Frame-
work A or Framework B hold, and let uy € M([0,27) x R?) be the measure-valued

solution to (6) with po. Then Q(t) = P, supp(ue) shrinks to a single point at least
exponentially fast:

1
D, (u) < Cexp [— (— — n)t}, t>0,
2m
where C' is a positive constant depending only on m, ', K, Dq(ug), Dg(1o), and
Dy (p0).

Proof. Although the proof is almost the same as in Theorem 5.1 [10], for the reader’s
convenience, we briefly sketch the proof below. For the detailed proof, see Appendix
A.
Case A (Small-inertia regime). Suppose that Framework A holds, and we set
_ (D>
Ry = (DOO )
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We first show that there exists a trapping region for Dy(uj'). For this we use the
following second-order differential inequality.

mDy + Dy + KR1Dy — Do <0, ae. t.
Then, from this inequality, we obtain
Do(p?) < D®, t>0.
Next, we differentiate Equation (18) with respect to time ¢ to get

n3
mw; + w; = KchF’(ej — Gi)(wj —w;).
j=1

By using the lower bound of TV, we have
mD, + D, + KT'(D®)D,, <0, a.e. t. (21)
We now apply Lemma 5.1 to (21) to obtain
Dy (pf) < Ce™™,

where v is a positive constant.
Case B (Large-inertia regime). Suppose that Framework B holds. In a manner
similar to Case A, we have

ng + De + KRQD@ — D <0, ae.t,

where

4mDQ
Then we obtain the trapping region of Dg(uy) such that

Dy(py') <4mDq, t=>0,
and from this we have the complete-frequency synchronization:
Dy, (py') < Cei(ﬁin)ta

where 7 is a positive constant. Hence by letting n — oo, we have the desired
results. O

RQ =

Remark 5. 1. The synchronization problem for the Kuramoto phase model has
been treated in [9, 11, 15, 17].

2. In contrast to [10], we cannot estimate the limit of the phase and frequency of
the system (18), since the momentum of the system (18) is not conserved. However,
from Theorem 5.2, we know that the supports of u; go to one point, as ¢t goes to
infinity. This implies that u; converges to the Dirac measure in the sense of the
weak-* limit.

Finally, we present a contraction property of the kinetic Kuramoto—Daido model
with finite inertia. In the absence of inertia, it is shown in [6] that the Kuramoto
model has a contraction property in Wasserstein distance. The optimal mass trans-
port approach for the contraction relies on the one-dimensional nature of the phase
space. However, in our setting, our dynamic phase space is two-dimensional, i.e.,
[0,27] X R in (f,w). Hence it seems that we cannot use the optimal mass transport
technique directly as in [6].

For two measure-valued solutions p and v to (6), we introduce a functional D(-, -):

D(ut, vi) := diam(Pgsupp(ps — v¢)), t>0.
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Theorem 5.3. Suppose that initial Radon measures py and vy satisfy the following:

1. po and vy have unit mass:

/%/ / to(do, dw, dQ) /Qﬁ/ / 0(df, dw,dQ) =

2. po and vy are absolutely continuous.
3. o and vy satisfy either Framework A or Framework B simultaneously.

Let iy and vy be the measure-valued solutions to (6) with initial measures po and
vy such that the sum of the diameter of two trapping regions is less than 0*. Then
we have

D(ps, 1) < Ce Pt t>0,
where C, B are positive constants, and 0* is a positive constant appearing in (20).
Proof. From Remark 4, we can choose approximations for pg and v as follows.
. .

1 1 .
o = — 25(2 —zio), Vg i= 3 25(2 — Zio)-

n
i=1 i=1

Suppose either Framework A or Framework B holds, and let # and 6™ be the
solution to the system (18) with ¢; = 1/n3. Then, thanks to Theorem 5.2, the two
configurations 6" (t) and 0™(t) satisfy

D(0™(t)) + D™ (t)) <=,  t>0.
We set

n n nn n n n n
o = 0 — 9 « (= Imax Oé « = min Oé D(a"™(t = —
i i M 1<i<n® i m 1<i<n® ( ( )) M

Since «f; is Lipschitz continuous, it is almost everywhere differentiable in time
t. More precisely, from the similar arguments as in [10, Lemma 2.1] we know that
collision times of the phases and frequencies are countable and isolated. This means
that there exists 0 <ty < t; < --- such that

aly, o are C2-differentiable in the time interval (tx_1,tx), k=1,2,---

For notational simplicity, from now on we suppress the n dependence in 6™ and o™,
ie.,

0:=0" «a:=ao".

By simple calculations and the mean-value theorem, we obtain

Po;  da; .
md§+§£:n32(9—9 r(@; - 4))

J=1 (22)
:532 — ), (tr-1,tr),

where 0;; is a value between o; and «;.
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e Step A (Derivation of Gronwall’s inequality for D(a)): It follows from (22) that

Pay | doy _ K, .
g g S et (PN 2 05— aw)
Jj=1
L (23)
:—KF/(D*)(O[]\/ ~ 3 . 104])7 (te-1,tx),
=

where D* is the upper bound for the sum of the diameter of two trapping regions.
Since D* is less than 6%, we have

I (65:) = T(D").
Similarly, we find

ay, | dop (D) L&
m=t 4+ = > —KT'(D ( - g ) (tho1, ). (24)
We combine the estimates (23) and (24) to find
d*D(a) N dD(«)
dt? dt
e Step B (Decay estimates of D(«)): We apply Lemma 5.1 to (25) to obtain

+ KD(a) <0, K := KT'(D*). (25)

e—H2t_o—m1t

i (D(ao) + ,ulD(on)), 1—4mK >0,
ek [D(ao) + (ﬁD(ao) n D(ao))t} , 1 - 4mK <0,

D(ap)e "t +m

14+ V1—4mK 1—vV1—4mK

H1 = Ho =

2m 2m

Hence, for any ¢ € (07 ﬁ), we have

1
D(ul,vl) = Ce 2t for large time t, A(¢) := min {,UQ; o E}.
m
We finally have the desired result by letting n — co. This completes the proof. O

6. Conclusion. The effect of inertia on the phase transition in the Kuramoto
model with inertia has been extensively treated in the physics literature [2, 3, 8, 9,
16, 19, 31, 32]. As a result of large inertia, the convergence speed toward the phase-
locked state is slower than that of the Kuramoto model without inertia, and the type
of phase transition at the critical coupling strength can be dramatically changed.
Moreover, hysteresis can also emerge by varying the coupling strength from zero to
some large value or vice versa. Recently, the effect of inertia on the synchronization
problem has been studied systematically using the Lyapunov functional approach
n [10, 15]. The formal mean-field version of the Kuramoto-Daido phase model
with inertia has been employed in the physics literature [2, 3]. However, there have
been no systematic mathematical studies of the kinetic Kuramoto—Daido model
with inertia involving the well-posedness issue and its asymptotic behavior. In this
paper, we treated mathematical issues such as the well-posedness and asymptotic
behaviors. More precisely, we provided a global well-posedness of measure-valued
solutions to the kinetic Kuramoto—Daido model with finite inertia and their as-
ymptotic behavior. For this, we first established the corresponding result to the
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Kuramoto—Daido phase model with inertia at the level of phase, and then we lifted
the phase result to the level of the kinetic version via the mean-field limit.

Acknowledgments. Y.-P. Choi was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2012R1A6A3A03039496). S.-Y. Ha was
partially supported by KRF-2011-0015388.

Appendix A. Detailed proof of Theorem 5.2. In this Appendix, we give a
more detailed proof of Theorem 5.2. Since the proof of Case B is very similar to
that of Case A, we only provide the proof of Case A (small-inertia regime).

e (Trapping region of Dg(uy)) : Suppose that Framework A holds. Then Dy(p}) <
D,

Proof. We prove the theorem by contradiction. We set
T = {t S [0,00) : Dg(/},;ﬂ) < DOO}, /I;< = SupT.

Note that since 0 € T and Dy(uy) is continuous, the set contains some small interval
[0,€) for some small positive constant 0 < & < 1.
We claim
T, = c0.
Suppose not, i.e., T < oo. Since Dy(py) is continuous, we should have

lim Dg(uy) = D*. (26)
t—T,—
We next estimate the maximal and minimal fluctuations separately.
Step A (Maximal phase fluctuation): Since s is Lipschitz continuous, it is almost

everywhere differentiable in time ¢. More precisely, there exist at most countable
number of times 0 :=tg < t1 < - -+ < tse = Ty such that

Oy is differentiable in the time interval (tx—1,tx), k=1,2,--- .

We now use

_ _ I'(D®°
Iz) < Rz, z€[-Dg,0], where Ry := %,
—D*® < —Dg(up) <0;(t)—0p(t) <0, ae tel0,Ty),

to derive a differential inequality:

nS

mé]\/[—I-éM = QM-FKZC]'F(QJ'—@M)
j=1

n:}

< Qu+ KR ¢i(0;—0u)
j=1

’ILS

= QN[—KR19M+KR128]‘9]', té(tk_l,tk).
j=1
Step B (Minimal fluctuation): We use the same argument as in Case A to find

TLS

mém—&—ém > Qo —KR19m+KR120j9j, a.e. t.

j=1
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We now combine Step A and Step B to obtain the following differential inequality:
ng + Dg + KR1Dy — Dg < 0, a.e.t.
Since 1 — 4mKR; > 0, we obtain
Do(pi) < e ™'Dy(0)
e_/j'Zt — e_/jlt .
+ m e (D4(0) + 1 Du(0) -

\ 1-— 4mKR1

Dq )
= (1— e,
Y KR ( ‘

By assumption, we have

2DQ )

1—+1—4mKR,

Do D>Dg -
— = = D .
KR, KI(D%)

This yields

e~ R2t _ p—pat

Do) < D™+ (Dg(0) = D) ! 4 m—a—o—o
\ 1-— 4mKR1
x (D(0)+-D(0) 2Da ) te0,T.)
0 Hn1lJeg - = ) yLx)y
1—+v1—-4mKR;
where we used oD
Dy(0) + i1 Dg(0) — 2 <0
1-— vV 1-— 4mKR1
and . .
—p2t _ o1
ms_——° >,
vV 1-— 4TTLKR1
Hence we have
: n o0
t_1>171¥*1_ Do(pi') < D™.
This is a contradiction to (26). O

e (Complete frequency synchronization): Suppose that Framework A holds. Then
we have

Dy(uy) < Ce™,

where C is a positive constant depending only on m, I, K, Dq(uo), De(po), and
Dy (o), and = is given by

_ 1—4/1—4mKT'(D>)
B 2m

v

Proof. Step A (Maximal frequency fluctuation): Since wys is Lipschitz continuous,
it is almost everywhere differentiable in time ¢. More precisely, there exist at most
countable number of times 0 :=ty < t; < -+ < tso < 00 such that

wyy is differentiable in the time interval (tg_1,tg), k=1,2,--- .
For a given time zone (tx_1,tx), k =1, -, we choose an index ¢ such that
wi(t) =wp(t), te€ (tp_1,tr).
We use the above result,

0;(t) — 0:(t)| < Dg(puy) < D™ < 6%,
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to get
'(0;(t) = 0:(1)) = T'(10;(t) — 6:(1)]) = T'(D*),  t € (tr—1,tr)-
We also obtain the following equation from (18):

mwz +wl = KZCJ'F/(HJ' — Qi)(w]‘ — wi), te (tk_l,tk).

This yields

3

miy +wy < KIV(D™) ch i — w;)
j=1
77/3
= —KI"(DOO)(wM—ZCjwj), a.e. t.
j=1

Step B (Minimal frequency fluctuation): In this case, we apply the same argument
as Step A to find

My + O > — KT (D°° chwj a.e. t.

We combine Step A and Step B to obtain the following differential inequality:
mD,, + D, + KI'(D*)D, <0, a.e.t. (27)

By condition (P3) and the assumption on I

The determinant of (27) satisfies

/(D).

T'(D*>
0<1—-4mK ( )<1—4mK1"(D°°).
Hence we obtain the desired result. O
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