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Abstract. We study the liquidity, defined as the size of the trading volume,

in a situation where an infinite number of agents with heterogeneous beliefs

reach a trade-off between the cost of a precise estimation (variable depending
on the agent) and the expected wealth from trading. The “true” asset price is

not known and the market price is set at a level that clears the market. We
show that, under some technical assumptions, the model has natural properties

such as monotony of supply and demand functions with respect to the price,

existence of an equilibrium and monotony with respect to the marginal cost
of information. We also situate our approach within the Mean Field Games

(MFG) framework of Lions and Lasry which allows to obtain an interpretation

as a limit of Nash equilibrium for an infinite number of agents.

1. Introduction. Liquidity risk has been well illustrated by the worldwide finan-
cial crisis that started in 2007 (initially centered around “subprime” lending and
then extended to the financial sphere). The models used to price financial prod-
ucts did not take this risk into account and many well known institutions faced
substantial loss (some leading to default).

More specifically, when one wants to measure the asset liquidity, several concepts
have been discussed:

- the bid-ask spread, which takes into account the difference between the price
at which a security can be bought and sold based on real quotes available on the
market. This notion is useful for operational purposes but is sometimes too short-
sighted;

- market depth: Hachmeister [9] defines the market depth as the amount of a
security that can be bought and sold at various bid-ask spreads.

- immediacy: it indicates the time needed to successfully trade a certain amount
of an asset at a prescribed cost.

- resilience: Hachmeister refers to this as the speed at which prices return to
former levels after a shock (e.g. a large transaction, etc.); this measure requires a
time window.

Several modeling approaches have been proposed, e.g., in [3] where the authors
study the optimal submission strategies of bid and ask orders in a limit order book.
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They consider an agent optimizing his utility with a finite and infinite horizon and
obtain results such as optimal bid/ask spread etc.

Other authors consider not one but several (types of) agents that hold non-
identical estimations (also called heterogeneous beliefs) on the future price of the
asset: Gallmeyer and Hollifield ([5]) study the effects of a market-wide short-sale
constraint in a dynamic economy with heterogeneous beliefs and analyze the impact
on the stock price as generated by the optimistic investors’ intertemporal elasticity
of substitution. In [19] Emilio Osambela presents a dynamic general-equilibrium
economy in which one population of optimistic investors is subject to endogenous
liquidity constraints. On the other hand the importance of heterogeneous beliefs
on asset pricing has been recognized widely in works by e.g., Jouini et al. [11, 10].

In all these situations the typologies of the agents are intrinsically finite as the
authors are not interested in what happens when an infinite number of different
agents are present. Here we will suppose that an infinite number of agents are
acting on the market, each having his own procedure to obtain an estimation of
the “true” price of some security. We take the paradigm of heterogeneous beliefs
i.e. we suppose that all the agents receive the same (costly, see latter) information
but they differ in the way to interpret it, more precisely, in the way to obtain an
estimation out of it. The estimation is obtained in the form of a random variable
with a known mean and variance; the agent cannot change the result obtained by
his procedure; the particularity of our approach is that he can diminish the variance
by paying a price. Each agent optimizes a utility functional. Also, contrary to some
previous works, we are not interested in the dynamics of the price itself (that we
will suppose constant to simplify); instead, our focus is on the trading volume (i.e.,
how many units are traded at the market price) that we will consider as a proxy
for the liquidity. Such a substitute for liquidity is relevant to our setting which is a
one period game with no dynamics.

Considering an infinite number of optimizing agents is not technically trivial
and we resort to the “Mean Field Games” approach pioneered by Lasry and Li-
ons [16, 14, 15, 17] where a Nash equilibrium with an infinite number of agents is
analyzed. Mathematical properties for special cases of functionals (e.g., quadratic)
and examples of applications and numerical approaches are the object of several
works: in [2] the authors present a finite difference discretization in a finite and in-
finite time horizon and prove approximation properties, existence and uniqueness,
bounds on the solutions; they also introduce a Newton method for the coupled
direct-adjoint critical point equations for the finite horizon problem in a convex set-
ting. In [7] the author studies a prototypical case and its stability properties. In [12]
the authors present a numerical method and apply it to a technological transition;
another MFG model is given in [13]. In [6], MFG are stated in a finite state space.
Finally, the so-called “planning problem” i.e., where the final density of agents is
prescribed, is treated in [1].

Our analysis here has to take into account a dimension which is particular to
this setting: the “mean field” that couples the actions of all agents appears as an
equilibrium constraint. Although we only treat a particular situation in this paper,
we expect that the MFG approach can be coupled with constraints on the density
of agents and refer to future work for technical details.

The summary of the paper is the following: in Section 2 we explain the basic
properties of the model and focus on the specific investigation of this work which is
the relationship between estimation cost and the trading volume. In Section 3 we



LIQUIDITY BY HETEROGENEOUS BELIEFS AND COSTLY ESTIMATIONS 351

situate our approach within the MFG model. Finally in Section 4 we prove the main
properties of the model (the monotonicity of the supply and demand with respect
to the price, existence of an equilibrium, anti-monotony with respect to precision
cost, etc.) and give some illustrative examples.

2. The liquidity model. Let us consider a traded security of “true” value V .
The true value is unknown to the market participants and will never be revealed.
Instead, each agent x constructs his own estimation for V in the form of V Ãx where
Ãx is a random variable; we will consider, for simplicity, that V Ãx is normal, that
Ãx and Ãy are independent as soon as x 6= y and that the mean of V Ãx is V Ax

and variance of V Ãx is V 2(σx)2 and are known to the agent x. It turns out that
for technical reasons it is better to work with “precision” instead of the variance
i.e. we introduce Bx = 1/(σx)2.

We do not explain how the agents construct their estimation V Ãx but will sup-
pose that each agent has his own (deterministic) procedure that is specific to himself
and fixed in advance; the agent cannot influence in any way the average Ax during
the process (but the mean can depend on time); in particular two different agents
may (and will in practice) have different estimations (and average estimations Ax).
This is not a collateral property of the model but the mere reason for which the
agents trade: they trade because they have heterogeneous expectations about the
final value of the security.

The only thing that the agent can do is to extract as much precision as possible
from his procedure i.e., he can change Bx. However, improving the precision comes
at a cost i.e., the agent has to pay f(b) to attain precision b. The precision cost
function f : R+ → R+ is defined on positive numbers.

There are many arguments to support such a model involving a cost for a given
precision; in order to construct his estimation the agent may have to pay fees
corresponding to his information sources (newspapers, databases, data streams ...),
to pay the research staff, invest in computing infrastructures etc.

Based on his estimations, the agent decides to trade θx units; thus the size of the
position of the agent on the market is V p · θx (where V p is the market price); note
that θx > 0 means that the agent is long (buys) and θx < 0 means that the agent
is short (sells) the asset.

Thus, each agent is characterized by three quantities: his mean estimate V Ax,
the precision Bx of the estimate and the number θx of units traded ; denote
X = (A, θ,B)T (here T denotes the vectorial transposition); we set the investment
horizon of all the agents to be the final time T = 1.

Remark 1. The “time” here can be physical “wall-clock” time or “eductive time”
(cf. [8] i.e., a the mental time required by the agents to reach a decision).

We denote by m(t,X) the distribution of the agents (a probability measure) at
time t with m(0, X) = m0(X). We will also denote by Et the average with respect
to the measure m(t,X).

Let us denote by ρ(t, A) the marginal of m(t,X) with respect to the variables θ
and B at time t and ρ0(A) = ρ(0, A). Note that θ, B can (and will) depend on time.
However the evolution of Ax is autonomous i.e. not related to B and θ but imposed
by the estimation procedure chosen by the agent once for all at the beginning. It
is not subject to any choice or control between the initial and final time. Thus,
even when the average estimation of each agent may depend on time, it is natural
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to consider an “ergodic” setting where the distribution ρ(t, A), depending only on
the autonomous evolution of Ax for each x, is stationary i.e., for all t ∈ [0, T ]:
ρ(t, A) = ρ0(A). In particular this is true when Ax does not depend on time. We
introduce the average with respect to ρ0 which will be denoted EA.

From a theoretical point of view it is interesting to consider the situation when
the mean EA(A) = 1 which means that the average estimate is V i.e., in average,
the agents are neither overpricing nor underpricing the security with respect to its
(unknown) true value. We will see, however, that this is not necessarily indicating
that the market price will be V .

In order to explain how the market price is set, we introduce the basic notions of
total supply (and demand) for a price V p ≥ 0. The total demand, denoted D(p),
and total supply (also called ”total offer”), denoted O(p), are defined as:

D(p) = ET (θ+), O(p) = ET (θ−). (1)

A price p∗ such that O(p∗) = D(p∗) will be said to clear the market. Indeed,
from the definitions of D(·) and O(·), this is equivalent to ET (θ) = 0 i.e., at the
price p∗ the overall (signed) demand is null. Note that such a price may not exist
or may not be unique, cf. Remarks 2, 3 and Figures 1,2 below.

The transaction volume at some price p is defined as the number of units that
can be exchanged at that price:

TV (p) = min{O(p), D(p)}. (2)

A price p∗ where TV (·) attains its maximum is of interest because it will max-
imize the total number of units exchanged. Note that such a price may not exist,
cf. Remark 3 and Fig. 2 below. Even when it exists it may be not unique.

An elementary but important result gives information on the market price and
its properties:

Theorem 2.1. If
- O(p), D(p) are continuous,
- O(p) is strictly increasing, O(0) = 0, limp→∞O(p) > 0,
- D(p) is strictly decreasing, D(0) > 0, limp→∞D(p) = 0,
then
1/ a unique p∗1 exists such that O(p∗1) = D(p∗1);
2/ a unique p∗2 exists such that TV (p∗2) ≥ TV (p) for all p ≥ 0;
3/ p∗1 = p∗2.

Proof. For 1/ let us note that the continuous, strictly monotone function D −O is
such that in zero its value is strictly positive and at infinity is strictly negative. Thus
there exists a unique p∗1 where the function vanishes; this gives the conclusion. We
note that (D−O)(p) is strictly positive for p < p∗1 and strictly negative for p > p∗1.

For 2/ note that

TV (p) =

 O(p) for p < p∗1
D(p∗1) = O(p∗1) for p = p∗1
D(p) for p > p∗1

(3)

Then TV (p∗1)− TV (p) = O(p∗1)−O(p) for p ≤ p∗1 and D(p∗1)−D(p) for p ≥ p∗1. In
all situations TV (p∗1)− TV (p) is positive hence 2/ and 3/.

Remark 2. Condition D(0) = 0 and similar are technical. But monotonicity is
important for the equivalence between the two interpretations of the market price:
the market price is the price that maximizes the transaction volume and the market
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price is also the price matching supply and demand. Consider for instance functions
p + sin(πp) and 1/p (cf. Fig. 1): there are three points that clear the market and
none maximizes the trading volume. Such a situation is ambiguous and we want to
avoid it.
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Figure 1. An illustration of Remark 2. Here V = 1, O(p) =
p + sin(πp) and D(p) = 1/p but O(p) is not monotonic. Several
prices exist that clear the market. The first price, situated at about
p = 0.684, maximizes the trading volume among the points that
clear the market (with value around 1.541) but it does not maximize
the trading volume TV (p) whose maximum value is around 1.551.

Remark 3. Continuity is also a crucial ingredient to the equality p∗1 = p∗2; when
the supply and demand functions are not continuous a price that maximizes trading
volume may not exist, nor a price that clears the market. To illustrate this, take for

instance V = 1, O(p) = 2p2, D(p) =

{
4− p

1/p for p ≥ 1
(cf. Fig. 2). In this situation

the supremum of transaction volumes is 2 but is not attained by any price; also,
no price clears the market i.e., there does not exist any p such that O(p) = D(p).
We enter in this situation the topic of market microstructure; a market maker is
necessary on such a market to smooth out supply and demand through a “pricing
rule” or a “market making function”, cf. [18] for details.

The market price at time T , denoted V P, balances total supply and demand i.e.,
the overall demand / supply balance is null; this gives an implicit equation for P:∫

θdm(T,A, θ,B) = 0 or equivalently ET (θ) = 0. (4)

In order to model the choices of the agents, we will consider the classical situation
of an agent that is maximizing a utility function. Since the uncertainty appears as
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Figure 2. An illustration of the Remark 3: supply and demand
functions are discontinuous: no price exists that clears the market;
the maximum trading volume is not attained by any price.

a normal variable, we have two alternatives which coincide: either consider that the
utility is a function of the mean and variance of the wealth or, equivalently, take
an expected utility framework. To keep intuitive understanding, we will keep the
simplest situation of a utility function U(u, v) = u − λ

2 v where u is the expected
wealth and v its variance; the parameter λ ∈ R+ is called the risk aversion coef-
ficient. Of course, this basic utility function has several known drawbacks (not a
coherent risk measure etc.), but this does not play an important role here and this
choice considerably simplifies the results.

Note that all agents have the same utility function.
Of course, the wealth itself is a function of θx, Bx; the wealth is computed under

the assumption that the agent enters the transaction (buys or sells) at the market
price and exits the transaction (sells or buys) at a price equal to his estimation.
Thus, for a given price V p (not necessarily the market equilibrium price P) the
average expected wealth for agent x, denoted ux is ux = V θx(Ax − p)− f(Bx); the

variance of the wealth, denoted vx is vx = (θx)2V 2

(Bx)+
(here (Bx)+ is the positive part

of Bx with convention that division by zero equals +∞).
Thus, for a given price V p (not necessarily the market equilibrium price V P) the

utility of the agent x to be optimized is:

J(Xx) = V θx(Ax − p)− f(Bx)− λ

2

(θx)2V 2

(Bx)+
. (5)

Let us discuss some technicalities concerning the precision cost function f(b) (the
“research cost” to reach the precision b). Conditions for f , that seem very natural,
are f(0) = 0, f ′(0) = 0 (this is to fix the marginal cost at start; this is a non-trivial
choice but its implications are not important for the technical results of the paper).
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We will also consider that f is increasing, strictly convex (this will be seen later to
ensure well-posedness), C2 and limx→∞ f(x)/x =∞.

Now that the model has been set, several important questions are to be addressed
in order to prove that the model corresponds to the intuitive picture one may have
and also to prove the mathematical well-posedness of the overall problem:

- is the solution unique i.e., does there exist a unique P that solves the equilibrium
equation (4);

- are the total demand D(p) and total supply O(p) monotonic functions of p (in
order to be within the framework of Thm. 2.1)?

Note that P (given by Thm. 2.1) is not necessarily equal to 1 even if E0(A) = 1.

3. Comparison and interpretation as Mean Field Games (MFG). The
Mean Field Games framework (MFG) is a mathematical model describing the inter-
action among a large number of agents / players. An agent can control his situation,
based on a set of preferences and by acting on some parameters. MFG can show
the emergence of a collective behavior (fashion trends, financial crises, real estates
valuation, etc.) out of individual optimizations performed by each agent: while an
agent by himself cannot influence the collective behavior (his decisions have neg-
ligible impact on the collective parameters and as such he only optimizes his own
situation given the environmental situation) the collective choices of all agents cre-
ate an overall environment (the “mean field”) that affects in return the individual
decisions.

We refer to [16, 14, 15, 17] for further information. The MFG theory shows that
a Nash equilibrium for a game of N players will tend, in some specified sense, when
N →∞, to the so-called MFG equations.

Let Xx
t be the characteristics at time t of a agent/ player starting in x at time

0. It evolves with SDE:

dXx
t = α(t,Xx

t )dt+ σdW x
t , X

x
0 = x (6)

where α(t,Xx
t ) is the control that can be chosen by the agent/ player.

Note that each agent has his own randomness modeled with an independent
Brownian. Denote by m(t, x) the density of players at time t and position x ∈ E
with E being the state space. The optimization problem of the agent is: for a
(fixed) finite horizon T , optimize:

inf
α

E

{∫ T

0

L(Xx
t , α(t,Xx

t )) + V (Xx
t ;m(t, ·))dt+ V0(Xx

T ;m(T, ·))

}
. (7)

The operator L encodes constraints or costs on the control while V and V0 encode
the goal. Define H(x, ξ) = supα〈ξ, α〉 − L(x, α); ν = σ2/2.

For a finite number of agents (i.e., when m(t, x) is a sum of N Dirac masses)
critical point equations can be written that describe a Nash equilibrium; these
equations converge (up to sub-sequences) to solutions of the following MFG system
for N →∞:
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∂tm+ div(αm)− ν∆m = 0, (8)

m(0, x) = m0(x),

∫
m = 1, m ≥ 0 (9)

α = − ∂

∂p
H(x,∇u) (10)

∂tu+ ν∆u−H(x,∇u) + V (x,m) = 0, (11)

u(T, x) = V0(x,m(T, ·)),
∫
u = 0. (12)

To model the situation in Section 2 the evolution equations and the initial prob-
ability distribution will be:

dXx
t = d

Axtθxt
Bxt

 =

 α(t, Axt )
αθ(t,X

x
t )

αB(t,Xx
t )

 dt+

σA(t, Axt )dWA
t

σθ(t,X
x
t )dW θ

t

σB(t,Xx
t )dWB

t

 (13)

m(t,X)
∣∣∣
t=0

= m0(X). (14)

We will take operators L and V to be null. Recall that we supposed that autonomous
evolution of Ax is defining a stationary distribution ρ0. To simplify even more the
setting we can take Ax to be constant and θx and Bx to have a deterministic
evolution.

d

Axtθxt
Bxt

 =

 0
αθ(t,X

x
t )

αB(t,Xx
t )

 dt (15)

m(t,X)
∣∣∣
t=0

= m0(X). (16)

To this we add the equilibrium condition (4). This framework allows to expect an
interpretation of our setting: a Nash equilibrium for an infinite number of players.
Note that we do not explicitly show the relationship between the Nash equilibrium
of N agents and the results in the next section corresponding to an infinite number
of agents.

4. Theoretical results.

4.1. Existence of an equilibrium.

Theorem 4.1. Suppose that the precision cost function f : R+ → R+ is such that
f(0) = 0, f ′(0) = 0. Suppose also that f is increasing, strictly convex, of C2 class
and limx→∞ f(x)/x =∞. Then:

• the optimal precision cost Bx and trading size θx are

Bx = (f ′)−1
(

(Ax − p)2

2λ

)
; (17)

θx =
(Ax − p)Bx

λV
=

(Ax − p)
λV

(f ′)−1
(

(Ax − p)2

2λ

)
. (18)

In particular both are explicit functions of Ax.
• supply O(p) and demand D(p) are strictly monotone with respect to p.
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• an equilibrium price P that clears the market (eqn.(4)) exists and is unique:

P =
EA(AB)

EA(B)
. (19)

Proof. An agent only sees the others through the market price V P. If we consider
now a (possibly non-equilibrium) price V p as given, then the agent optimizes the
functional J(Xx(T )) which only depends on the final state Xx(T ) and not on the
controls. Since the controls allow to obtain each possible configuration for Xx(T )
(Ax is given and fixed), then the values Bx(T ) and θx(T ) will correspond to an
optimum of the function:

J : R+ × R+ → R : J (y, z) = V y(Ax − p)− f(z)− λ

2

y2V 2

z
. (20)

Let us denote y∗, z∗ an optimum candidate. Asking that ∂J
∂y = 0 one obtains

y∗ = (Ax−p)z∗
λV ; then z∗ optimizes the function (Ax−p)2

2λ z−f(z). It is straightforward
to see that under hypothesis taken on f optimal points indeed exist and satisfy (17)-
(18).

In order to prove the strict monotonicity of the supply and demand functions
with respect to p, it is enough to prove that e.g. (θx)+ is monotone with respect
to p (similar arguments hold for (θx)−). This is a consequence of the fact that
(Ax − p)+ is (strictly) monotone with respect to p < Ax and in the same domain

(f ′)−1
(

(Ax−p)2
2λ

)
is also monotone because of the assumptions on f , namely con-

vexity, regularity and f(0) = 0 = f ′(0).
The monotonicity, by Thm 2.1, implies that a unique price that clears the market

exists and this price also maximizes the trading volume.
Note that θx is a function of Ax, that can be written θx = θ(Ax), same for Bx =

B(Ax). Thus, equation (4) can be written ET (θ) = 0 and also EA
(

(A−p)B(A)
λV

)
= 0

which gives the conclusion.

Remark 4. Assumptions on f can be weakened (cf. [4]).

In general, the price V P depends on the cost function f(·). But for the particular
case where ρ0 is symmetric the following result proves independence:

Corollary 1. Under assumptions in Thm. 4.1 on function f if there exists p1 > 0
such that

∀α ∈ R : ρ0(p1 − α) = ρ0(p1 + α) (21)

(with the convention that ρ0 is null on R− ) then P = p1 and in particular P is
independent of f .

Proof. Of course (21) is equivalent to say that ρ0 is symmetric around p1. As a side
remark note that its support will be contained in [0, 2p1]. The proof builds on the
remark that the function B(A) is symmetric around p1 thus θ(A) is anti-symmetric.
Since the distribution ρ0 is symmetric then for p = p1 we have EA(θ(A)) = 0; this
implies, by uniqueness, that P = p1.

Remark 5. Analog results hold for more general utility functions U (cf. [20]).

The relative market price P is solution to the equation:

EA
[
(A− P)(f ′)−1

(
(A− P)2

2λ

)]
= 0. (22)
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We denote by TVf the equilibrium trading volume for precision cost function f ; it
satisfies the relation:

TVf =
1

λV
EA
[
(A− P)+(f ′)−1

(
(A− P)2

2λ

)]
. (23)

4.2. Application for a power function. Let us take a particular case f(b) = µ b
α

α
with α > 1, µ > 0. Then we have

B(A) =

(
(A− P)2

2λµ

) 1
α−1

, (24)

and P satisfies:
EA(A− P)|A− P|

2
α−1 = 0, (25)

and

TVf =
1

λ(2µλ)
1

α−1

EA(A− P)+|A− P|
2

α−1 . (26)

Remark 6. We note that the trading volume is inversely correlated with the risk
aversion coefficient λ which means more risk averse agents are, less they trade. The
same holds for the “cost of precision” µ: more expensive the information is, less
transactions the market has; this behavior is consistent with a liquidity crisis where
a sudden increase in the cost of precision can limit the market liquidity.

It is also interesting to compute the (optimal) expected wealth for an agent
having average estimation A; this wealth is:(

α− 1

λα(2µλ)
1

α−1

)
|A− P|

2α
α−1 . (27)

Remark 7. Note that for α > 1 the wealth is finite and strictly positive. For α = 1
the formula is not valid and the wealth is infinity.

If A tends to infinity, then the expected wealth also tends to infinity which means
that larger A is more the agent expects to win. In order for the distribution to have
finite moments the density of A has to decrease when A becomes large; then the
probability to be in this situation is small which means that large wealths are only
expected by a negligible amount of agents involved. Of course the real wealth of
each agent is zero because the price does not change in our model.

The total expected wealth of the entire market is finite as soon as the distribution
ρ0(A) has moments of order 2α

α−1 i.e.

EA
(

α− 1

λα(2µλ)
1

α−1

)
|A− P|

2α
α−1 <∞. (28)

For the particular case α = 2, we obtain (after simplifications) the equation for
the relative market price:

EA(A− P)3 = 0, (29)

which tells us that if the third central moment of the distribution ρ0(A) is null then
P = 1 and thus the price is exactly the true price V . The formula is interesting in
itself and also because it shows that the mere condition EA(A) = 1 is not enough
to insure that the market will trade at the “true” price V .

Other information cost functions can be proposed e.g., exponential function
f(b) = µ

(
eξb − 1− bξ

)
, ξ ∈ R.
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4.3. Dependence of the trading volume on the precision cost function. A
result that addresses the properties of the trading volume in relation to f is the
following:

Theorem 4.2 (anti-monotony of the trading volume). Let f , g be two precision cost
functions fulfilling the hypothesis of the Thm. 4.1. Also suppose that g′(b) ≥ f ′(b)
for any b ∈ R+. Denote by TVf and TVg the equilibrium trading volumes for
precision cost functions f and g respectively. Then TVf ≥ TVg.

Proof. Let us recall that if a function is monotone its inverse (when it exists) is
also monotone and of the same type of monotonicity. Since f and g are convex, it
follows that f ′ and g′ are monotone increasing.

Denote F = (f ′)−1 and G = (g′)−1; using the hypothesis we obtain from g′ > f ′

that F ≥ G with both F and G being increasing functions. For any precision cost
function h the demand at price p denoted D(h, p) is given by the formula

D(h, p) =
1

V λ
EA
[
(A− p)+(h′)−1

(
(A− p)2

2λ

)]
, (30)

and symmetrically the supply at price p

O(h, p) =
1

V λ
EA
[
(A− p)−(h′)−1

(
(A− p)2

2λ

)]
. (31)

Note that D(h, p) is a decreasing function of p and O(h, p) is increasing. Recall
that the equilibrium price Pf balances supply and demand i.e., satisfies:

D(f,Pf ) = O(f,Pf ). (32)

We also have a similar equation for g. Since F ≥ G, one obtains that for any price p:
O(g, p) ≤ O(f, p) and also D(g, p) ≤ D(f, p). In particular O(g,Pg) = D(g,Pg) ≤
D(f,Pg). Define P1 as the solution of the equation : O(g, P1) = D(f, P1) (such a
solution exists because O(g, ·) − D(f, ·) is continuous, the value in zero is strictly
negative and the value at infinity is strictly positive). Then P1 ≥ Pg because
O(g, p) is increasing and D(f, p) is decreasing. In a symmetric way one can prove
that P1 ≥ Pf .

Then TVg = O(g,Pg) ≤ O(g, P1) = D(f, P1) ≤ D(f,Pf ) = TVf , hence the
conclusion.

Remark 8. Note that each function will generate its own equilibrium market price
i.e., Pf may be different from Pg.

4.4. Results under weaker hypotheses on the precision cost function. The
hypotheses accepted so far on the precision cost function f(B) are rather strong:
strictly convex of C2 class. We relax in this section these assumptions but refer
to [4] for optimal results.

Theorem 4.3. Suppose that the precision cost function f : R+ → R+ is convex
(thus continuous for b > 0), f(0) = 0 and f is continuous in 0. Also assume f to
be coercive in the sense that lim infx→∞ f(x)/x = ∞. Then for each given price p
each agent x attains its optimum in at least a (possibly non-unique) configuration
with precision Bx and order volume θx; moreover θx is monotone (decreasing) with
respect to p. Finally, the overall demand and supply functions D(p) and O(p) are
also monotone with respect to p.
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Proof. As in the proof of Thm 4.1 we denote by y∗(p), z∗(p) an optimum candi-
date where we explicitly mark the dependence on p. Since the functional J in
equation (20) is differentiable with respect to z, we obtain as before from ∂J

∂y = 0

that

y∗(p) =
(Ax − p)z∗(p)

λV
; (33)

moreover z∗(p) optimizes the function gp(z) = (Ax−p)2
2λ z−f(z). Since f(0) = 0, f is

continuous and coercive the optimum exists but is not necessarily unique (because
f is not necessarily differentiable neither strictly convex).

Take Ax ≤ p1 ≤ p2 and suppose that some choice of optimums z∗(p1) and z∗(p2)
exists such that z∗(p1) > z∗(p2). Using the optimality properties for z∗(p1) and
z∗(p2), we obtain:

gp2(z∗(p2))− gp1(z∗(p2)) ≥ gp2(z∗(p1))− gp1(z∗(p1)),

thus

(p2 −Ax)2

2λ
z∗(p2)− (p1 −Ax)2

2λ
z∗(p2) ≥ (p2 −Ax)2

2λ
z∗(p1)− (p1 −Ax)2

2λ
z∗(p1),

which implies
z∗(p2) ≥ z∗(p1). (34)

which contradicts z∗(p1) > z∗(p2). We conclude that that z∗(p1) ≤ z∗(p2).
Recall now that z∗ stands for the optimal value of Bx thus we have monotonicity

for Bx.
Recall also that the optimal value of θx is given by the formula (33); we obtain

thus the monotonicity of θx for p ≥ Ax. An analogous argument works on the branch
p ≤ Ax and, since the optimal θx for p = Ax is zero, we obtain the monotony of θx

with respect to p. The monotony of overall supply and demand functions D(p) and
O(p) follows.

Remark 9. We do not claim that O(p) and D(p) are necessarily continuous func-
tions nor that the monotonicity is strict. This precludes the use of Thm. 2.1. But it
is obvious that convexity is better than just continuity, which means that additional
properties of D(p) and O(p) can be proved. We refer to [4] for details.

4.5. Further comments and perspectives. As this model is concerned only
with deriving a formula for the trading volume, the dynamics of the “true” price
was not considered. Of course, it would be interesting to take this into account;
also a further refinement concerns the estimation process Ã and its cost that may
possess stochastic dynamics; we refer to future work for some follow-ups.
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Pures et Appliquées (9), 92 (2009), 276–294.

[8] Roger Guesnerie, An exploration of the eductive justifications of the rational-expectations

hypothesis, The American Economic Review, 82 (1992).
[9] Alexandra Hachmeister, “Informed Traders as Liquidity Providers,” DUV, 2007.

[10] E. Jouini and C. Napp, Aggregation of heterogeneous beliefs, Journal of Mathematical Eco-
nomics, 42 (2006), 752–770.

[11] Elyès Jouini and Clotilde Napp, Heterogeneous beliefs and asset pricing in discrete time: An

analysis of pessimism and doubt , Journal of Economic Dynamics and Control, 30 (2006),
1233–1260.

[12] Aime Lachapelle, Julien Salomon and Gabriel Turinici, Computation of mean field equilibria

in economics, Math. Models Methods Appl. Sci., 20 (2010), 567–588.
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