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Abstract. We consider a mathematical model describing pooled stepped chutes
where the transport in each pooled step is described by the shallow–water equa-
tions. Such systems can be found for example at large dams in order to release
overflowing water. We analyze the mathematical conditions coupling the flows
between different chutes taken from the engineering literature. For the case of
two canals divided by a weir, we present the solution to the Riemann problem
for any initial data in the subcritical region, moreover we give a well–posedness
result. We finally report on some numerical experiments.

1. Introduction. This work deals with the modelling of water flow in the so called
pooled stepped chutes. This geometry is frequently found in dams and it also ap-
pears in mountain rivers to control the bed load transport. In both cases the main
concern is to spill excessive floodwater in additional channels next to the dam struc-
ture. These are called pooled stepped chutes or pooled steps. Within the pooled
steps additional weirs perpendicular to the flow direction are introduced to increase
energy dissipation. This problem has gained some attention in recent years in the
engineering community, see e.g. [5, 7, 8, 9, 10, 25, 28, 30]. However, only a few
mathematical discussions are currently available [18, 27]. In particular, the mod-
eling and design of the spillways and stepped channels have so far been addressed
using experiments and data fitting techniques, see e.g. [30]. From the measure-
ments empirical formulas have been derived and used in sophisticated simulations.
Empirical formulas and tables of overflow velocities and water heights over a weir
can be found for example in [19].

So far, the mathematical discussion has been limited to a consideration of the
effect of the weir at the end of a spillway neglecting the dynamics of the water inside
the pooled channels. Here, we discuss the mathematical implications of considering
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the coupled problem, i.e., the dynamics inside the pooled steps and the (empirical
or theoretical) conditions imposed closed to the weir. Typically, the water flow in
the channels is described by the shallow–water equations whereas the effect of the
weir is given by some algebraic conditions. We treat this problem using a network
approach with the conditions at the weir as coupling conditions. We present a well–
posedness result for a simple condition based on energy dissipation. The recent
literature offers several results on the modeling of systems governed by conservation
laws on networks. For instance, in [1, 2, 11, 14] the modeling of a network of gas
pipelines is considered. The basic model is the p-system or, in [15, 20], the full
set of Euler equations. The key problem in these papers is the description of the
evolution of fluid at a junction between two or more pipes. A different physical
problem, leading to a similar analytical framework, is that of the flow of water in
open channels. The recent literature on water flow in open canals where similar
analytical problems appear is very rich and we only refer to a few publications in
this direction [22, 17, 24, 23]. In these works the governing equations are as below
the St. Venant equations and they are coupled at nodes in order to describe water
flow in connected domains. A variety of coupling conditions exist and have been
discussed depending on whether the node is controllable by a gate or not. In the case
of gates controllability and stabilization properties have been established [17, 24, 3].
Those conditions are applicable in the case of waterways or small rivers. Note that
here we have different setting in mind. We consider the problem on a different
length scale. Our scale is smaller since we are only interested in the overspill water
flow next to a dam. Therefore, we need to include the small weir in the model which
influences the water dynamics. We furthermore do not have any control measures.
The analysis of the problem is therefore closely related to the work of [1, 11] and
we can consider weak solutions. The presented results in [16, 21, 22, 17]are based
on solutions of higher regularity used in particular for control measures.

Consider a water flow in an open canal affected by a weir or small dam at the
point x = 0. If the water level becomes greater than the height of the weir, some
water passes over the weir. Similarly to the models in [16, 21, 22, 17] we describe
the dynamics of the water by the shallow water equations, while the interaction
with the weir is described by coupling conditions.

Let (h, v)(t, x) be respectively the water level (with respect to the flat bottom)
and its velocity for x 6= 0. The shallow–water equations in each canal are given by

{

∂th+ ∂x(hv) = 0

∂t(hv) + ∂x
(

hv2 + 1
2gh

2
)

= 0
x 6= 0, (1)

where g is the gravity constant. Two canals are coupled by so–called pooled steps
[30]. A sketch of this situation is given in Figure 1. In the engineering literature
[10, 29, 30] (see also Remark 1) water of height h− flowing over a weir of height H−

generates a flow Q

Q = C
(

h− −H−
)3/2

, with C = C̃
√
g, (2)

where C̃ ≤ 1 is a constant depending on the air–water–ratio and the detailed ge-
ometry. In many situations C̃ = 0.6 is used. The equation (2) is called 3/2−law.
Formally, it can be derived from the following idea: the potential energy of the wa-
ter flowing over the weir is transformed to kinetic energy. Indeed, if ρ is the water
density, a water column of height h = h−−H− and mass (per unit area) ρh at rest
over a step is provided with a potential energy per unit surface equal to (ρh)12gh.
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Figure 1. This figure represents two connected pooled steps with
a weir in between and the indication of the various heights

If all the potential energy of the water mass (per unit surface) ρh becomes kinetic
energy when it falls down the weir at h = 0 we have the balance

(ρh)
1

2
gh =

1

2
(ρh)v2.

Solving for v in terms of h we obtain the previous formula and 1−C̃ is the percentage
of energy loss during the change of potential to kinetic energy. We use this idea to
deduce the coupling condition for (1) at x = 0. We conserve the total water over the
weir and hence h+v+ = h−v−. The difference in the amount of water overflowing
the weir is [h− −H−]+− [h+ −H+]+. This defines the velocity (and its sign) at the
weir according to the balance of potential and kinetic energy. Hence, the coupling
conditions are










h−v− = C
(

[h− −H−]+ − [h+ −H+]+
)

·
√

∣

∣[h− −H−]+ − [h+ −H+]+
∣

∣

h+v+ = h−v−,

(3)

where C = 0.6
√
g, (h−, v−) = (h, v)(t, 0−), (h+, v+) = (h, v)(t, 0+) while H± are

the heights of the weir to the left and the right (see Figure 1).

Remark 1. Obviously, (2) is only a first approximation on the complex dynamics
at the weir, see [8, 27, 30]. As outlined in the introduction there exists a variety
of empirical formulas in the engineering community. Many of them include further
effects as for example the water–air ratio of the overspill or the roughness of the
channel bottom. For example in [30, Equation 7.7] the following relation has been
determined

Q =
(

h− −H−
)3/2

(

2

3
µ
√

2g

)

=

C1
√
g
(

h− −H−
)3/2

+ C2
√
g
(

h− −H−
)5/2

/H−.

Here, we have µ = 0.611 + 0.08(h− − H−)/H− and the constants are C1 =
2
3

√
2 0.611 and C2 = 2

3

√
2 0.08. Since the coefficient C1 is roughly eight times

larger than C2, this equation is very similar to (2). Another example is given in
[4], [30, Equation 2.50–2.51], where the following formula has been proposed for the
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flow with H = h− −H−

Q = v−H(kc + kd) = 0.15− 0.45
(v−)2

2gH
+

(

0.57− 2

(

(v−)2

2gH
− 0.21

)2

exp

(

10

(

(v−)2

2gH
− 0.21

))

)

.

The case of no weir, i.e., H− ≡ 0 and H+ > 0, lead to the following studied
formulas, e.g. [27], [30, Equation 2.38]

Q = v−0.715h−

or [26], [30, Equation 2.39–2.42]

Q = v−H+
(

h−/H+
)1.275

.

We restrict our discussion to the still commonly used (2) to outline the ideas.
Further note that additional empirical formulas for the arising wave in the outgoing
pooled step are not needed in our approach, since these dynamics are fully covered
by the shallow–water equation.

For coupling conditions in the case of wide canals we refer to [16].

2. The Riemann problem for a single weir. By Riemann Problem at the weir
we define the problem (1), (3) with initial data

(h, v) =

{

(hl, vl) for x < 0

(hr, vr) for x > 0.
(4)

Definition 2.1. A solution to the Riemann Problem (1), (3), (4) is a function
(h, v) : R+ × R → R

2 such that (t, x) → (h, v)(t, x) is self-similar and coincides in
x > 0 with the restriction of the Lax solution to the standard Riemann Problem
for (1) with initial data

(h, v) =

{

(h, v)(t, 0+) for x < 0

(hr, vr) for x > 0.
(5)

while coincides in x < 0 with the restriction to of the Lax solution to the standard
Riemann Problem for (1) with initial data

(h, v) =

{

(hl, vl) for x < 0

(h, v)(t, 0−) for x > 0.
(6)

moreover (h, v)(t, 0±) = (h±, v±) satisfy (3).

Remark that, being (h, v) self similar, (h, v)(t, 0±) is constant.
For studying the Riemann problem we first collect the standard expressions for

the eigenvalues, eigenvectors and Lax curves for the shallow water equations (1).
The 2× 2 system of conservation laws in (1) has the eigenvalues λ1, λ2 and the

eigenvectors r1, r2, where

λ1(h, v) = v −
√
gh λ2(h, v) = v +

√
gh

r1(h, v) =

[

−1
−v +

√
gh

]

r2(h, v) =

[

1
v +

√
gh

]

(7)

∇(h,hv)λ1(h, v) · r1(h, v) =
3

2

√

g

h
> 0 ∇(h,hv)λ2(h, v) · r2(h, v) =

3

2

√

g

h
> 0.
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The Lax curves of the first and second family, described in Figure 2, are:

v = L+
1 (h;h0, v0) =







v0 − 2
(√

gh−√
gh0

)

h ≤ h0

v0 − (h− h0)
√

1
2g

h+h0

hh0
h > h0,

(8)

v = L+
2 (h;h0, v0) =







v0 + 2
(√

gh−√
gh0

)

h ≥ h0

v0 + (h− h0)
√

1
2g

h+h0

hh0
h < h0.

(9)

The reversed Lax curves of the first and second family are given by:

v = L−
1 (h;h0, v0) =







v0 − 2
(√

gh−
√
gh0

)

h ≥ h0

v0 − (h− h0)
√

1
2g

h+h0

hh0
h < h0,

(10)

v = L−
2 (h;h0, v0) =







v0 + 2
(√

gh−
√
gh0

)

h ≤ h0

v0 + (h− h0)
√

1
2g

h+h0

hh0
h > h0.

(11)

Concerning the coupling condition, we study the states which satisfy it at the point
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Figure 2. Lax curves for the shallow water system in the (h, hv) plane

x = 0. From (3), since the heights are always positive, it follows

sign v− = sign
(

[

h− −H−
]

+
−
[

h+ −H+
]

+

)

.

Moreover

h−
∣

∣v−
∣

∣ = C
∣

∣

∣

[

h− −H−
]

+
−
[

h+ −H+
]

+

∣

∣

∣

3
2

which becomes
(

h− |v−|
C

)
2
3

=
(

[

h− −H−
]

+
−
[

h+ −H+
]

+

)

· sign v−,

[

h+ −H+
]

+
=
[

h− −H−
]

+
−
(

h− |v−|
C

)
2
3

· sign v−.
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We have also to add the equality of the fluxes, hence we obtain










[h+ −H+]+ = [h− −H−]+ −
(

h−|v−|
C

)
2
3

· sign v−

h+v+ = h−v−.

(12)

Consider first the case where the water level to the right is below the weir, h+ ≤ H+

so that [h+ −H+]+ = 0. If also h− ≤ H− then no water crosses the weir, while if

h− > H− the water crosses the weir flowing from left to right. The left state must
satisfy v− > 0 and

[

h− −H−
]

+
−
(

h− |v−|
C

)
2
3

= 0,

which can be rewritten as

h−v− = C
[

h− −H−
]

3
2

+
. (13)

The curve (h−, v−) where h−, v− satisfy (13) consists of all the left states which
can be connected to a right state with h+ ≤ H+ (see Figure 3). The support of
this curve lies in the upper part of the (h, hv) plane, hence we call it Γu. The case
h+ ≥ H+, h− < H− is symmetric, hence we call Γl the support of the curve given
by

−h+v+ = C
[

h+ −H+
]

3
2

+
.

Since C [h− −H−]
3
2

+ = C̃
√
g [h− −H−]

3
2

+ ≤ √
g (h−)

3
2 , see (2), both Γu and Γl lie

in the subcritical region. If both levels are above the weir, then (12) gives a unique
state (h+, v+) which connects a given state (h−, v−) as we will see in the following
Lemma.

Lemma 2.2. Consider the (h, hv) plane, and define the following sets depicted in
Figure 3:

Ωu =
{

(h, hv) : hv > C
[

h−H−
]

3
2

+

}

,

Σl =
{

(h, hv) : v < 0, 0 < h ≤ H−
}

,

A− =
{

(h, hv) : 0 < hv < C
[

h−H−
]

3
2

+

}

,

B− =
{

(h, hv) : v ≤ 0, h > H−
}

,

Ωl =
{

(h, hv) : hv < −C
[

h−H+
]

3
2

+

}

,

Σu =
{

(h, hv) : v > 0, 0 < h ≤ H+
}

,

A+ =
{

(h, hv) : v > 0, h > H+
}

,

B+ =
{

(h, hv) : −C
[

h−H+
]

3
2

+
< hv ≤ 0

}

.

Then, we have that the coupling condition induces the following assertions:

• no left state (h−, h−v−) ∈ Ωu can be connected to any right state (h+, h+v+)
and no right state (h+, h+v+) ∈ Ωl can be connected to any left state (h−,
h−v−);

• any left state in Γu can be connected to any right state in Σu with the same
flux: h−v− = h+v+;

• any right state in Γl can be connected to any left state in Σl with the same
flux: h−v− = h+v+;
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• any left state in A− can be connected to one and only one right state in A+

and any right state in A+ can be connected to one and only one left state in
A−;

• any left state in B− can be connected to one and only one right state in B+

and any right state in B+ can be connected to one and only one left state in
B−.
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Figure 3. Representation of the regions introduced in Lemma 2.2

We omit the proof since it is a straightforward analysis of the coupling conditions
(12).

We call Φ : A− ∪B− → A+ ∪B+ the one to one map that associates to any left
state in A− ∪B− the corresponding right state in A+ ∪B+ connected through the
coupling condition:

Φ(h, hv) =

(

H+ + h−H− −
(

h|v|
C

)
2
3

sign v, hv

)

.

We also define

Φ(h, hv) =
(

(−vh/C)
2
3 +H+, hv

)

∈ Γl, for any (h, hv) ∈ Σl,

in such a way that the right state (h+, h+v+) = Φ(h−, h−v−) is connected through
the coupling condition to the left state (h−, h−v−) for any
(h−, h−v−) ∈ Σl ∪ A− ∪B− .

We are now able to show that the Riemann problem can be solved in the large.

Proposition 1. For all states (hl, vl) and (hr, vr) in the subcritical region, the
Riemann problem (1), (3), (4) has a unique solution satisfying Definition 2.1, whose
constant states depend continuously on the initial data and are constructed gluing
together a wave of the first family, the coupling condition and a wave of the second
family.

Proof. Given two states (hl, vl) and (hr, vr) in the subcritical region, we proceed
in the following way for solving the Riemann problem. Draw the Lax curve of the
first family in the (h, hv) plane through (hl, vl). Since, in the subcritical region,
the function whose graph is the support of this Lax curve is strictly decreasing,
it intersects in one and only one point (with h > 0) Γu since it is the graph of
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a convex and non decreasing function. We call the unique point of intersection
(h∗, v∗). Then, we consider the curve

γ(h) =

{
(

H+

h∗
h, h∗v∗

)

for h ≤ h∗

Φ
(

h, hL+
1 (h;hl, vl)

)

for h > h∗.
(14)

It can be checked that its support is the graph of a non increasing function. Next, we
take the inverse Lax curve related to the second characteristic field passing through
the right state (hr, vr). The support of this curve, in the subcritical region and in the
upper supercritical region is the graph of a strictly increasing function, therefore it
has one and only one point of intersection with γ (for positive h), denoted by (k, w).
This point might belong to the upper supercritical region. The Riemann problem
is finally solved in the following way: take the subcritical (or lower supercritical)
state (k∗, w∗) on the first Lax curve such that kw = k∗w∗ and connect (hl, vl) to
(k∗, w∗) with a wave of the first family. This wave has negative velocity since the
curve belongs entirely to the subcritical region or to the subcritical region and the
lower supercritical one. Then, the points (k∗, w∗) and (k, w) satisfy the coupling
conditions (3). Finally (k, w) and (hr, vr) are connected by a wave of the second
family which travels with positive velocity even if (k, w) happens to be in the upper
supercritical region, see Figure 4.
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Figure 4. These figures describe how to solve two Riemann Prob-
lem (first and second row). The states on the left and on the right
of the weir are represented respectively on the left and right figures.
The green lines separate the subcritical and supercritical regions
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3. A well posedness result. This section is devoted to show the well–posedness
of the Cauchy problem for system (1) for initial data around a constant subcritical
state satisfying the coupling condition (3). For simplicity we suppose that the water
level to the right of the weir is below the weir level, that is h+ < H+. This implies
that the water can only flow from the left to the right of the weir when its left level
overflows the weir.

Theorem 3.1. Given H−
0 , H+ and two constant states in the subcritical region

(h0, v0) and (h1, v1) such that

h0v0 = C
[

h0 −H−
0

]
3
2

+
, h0v0 = h1v1, h0 > H−

0 , h1 < H+, (15)

then, there exists a closed domain

D ⊆
{

(h, v) ∈ (h0, v0)χ(−∞,0) + (h1, v1)χ(0,∞) + ( L1 ∩BV)
(

R;R2
)}

containing all functions with sufficiently small total variation in x > 0 and x < 0
and semigroups

SH−

t : D → D
defined for all H− sufficiently close to H−

0 , such that

1) for all t, s ≥ 0 and u ∈ D

SH−

0 u = u, SH−

t SH−

s u = SH−

t+su;

2) for all u, v ∈ D, H−
1 , H−

2 in a suitable neighborhood of H−
0 and t, t′ ≥ 0:

∥

∥

∥S
H−

1

t u− S
H−

2

t′ v
∥

∥

∥

 L1
≤ L ·

{

‖u− v‖ L1 + |t− t′|+ t · |H−
1 −H−

2 |
}

;

3) if u ∈ D is piecewise constant, then for t small, SH−

t u is the glueing of solutions
to Riemann problems at the points of jump in u and at the weir in x = 0;

4) for all uo ∈ D, the map u(t, x) =
(

SH−

t uo

)

(x) is a weak entropy solution to (1),

(3) (see [6, Definition 4.1], [12, Definition 2.1]).

S is uniquely characterized by 1), 2) and 3).

Proof. Following [13, Proposition 4.2], the 2 × 2 system (1) defined for x ∈ R can
be rewritten as the following 4× 4 system defined for x ∈ R

+:
{

∂tU + F(U) = 0 (t, x) ∈ R
+ × R

+

b (U(t, 0+)) = g(t) t ∈ R
+.

(16)

the relation between U and u = (h, v), between F and the flow in (1) being:

U(t, x) =









h(t,−x)
−(hv)(t,−x)

h(t, x)
(hv)(t, x)









F(t, x) =











U2
U2

2

U1
+ 1

2gU
2
1

U4
U2

4

U3
+ 1

2gU
2
3











(17)

with x ∈ R
+; whereas the boundary conditions becomes

g(t)=̇

(

H− −H−
0

0

)

, b (U) =̇

(

U1 −
(

−U2

C

)
2
3 −H−

0

U4 + U2

)

.
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The thesis now follows from [12, Theorem 2.2]. Indeed the assumptions (γ), (b)
and (f) are therein satisfied. More precisely the eigenvalues of the Jacobian of the
flow in (17) are

U2

U1
±
√

gU1,
U4

U3
±
√

gU3;

therefore in the subcritical region exactly two are positive and exactly two are
negative. Since here γ(t) = 0, γ̇(t) = 0, condition (γ) in [12, Theorem 2.2] is
satisfied with ` = 2. Concerning condition (b), the positive eigenvalues with the
corresponding eigenvectors evaluated at U = (h0,−h0v0, h1, h1v1) are

Λ3 = −v0 +
√

gh0, R3 =









1
−v0 +

√
gh0

0
0









Λ4 = v1 +
√

gh1, R4 =









0
0
1

v1 +
√
gh1









.

Conditions (15) imply b
(

U
)

= 0, and

[

Db(U)R3, Db(U)R4

]

=

[

1 + 2
3C

(√
gh0 − v0

)

·
(

−U2

C

)− 1
3 0

−v0 +
√
gh0 v1 +

√
gh1

]

.

The determinant of the above matrix is given by
(

1 +
2

3C

(

√

gh0 − v0

)

·
(

−U2

C

)− 1
3

)

(

v1 +
√

gh1

)

which is strictly positive since (h0, v0) and (h1, v1) belong to the subcritical re-
gion. Thus condition (b) is satisfied. Concerning condition (f), system (16) is not
necessarily strictly hyperbolic, for it is obtained glueing two copies of system (1).
Nevertheless, the two systems are coupled only through the boundary conditions,
hence the whole wave front tracking procedure in the proof of [12, Theorem 2.2]
applies. Concerning the Lipschitz dependence on the height H−, observe that as in
[12, Theorem 2.2] we have for

g(t) =

(

H−
1 −H−

0

0

)

, ḡ(t) =

(

H−
2 −H−

0

0

)

,

and hence
∫ t

0

|g(τ) − ḡ(τ)| dτ =

∫ t

0

√

[(

H−
1 −H−

0

)

−
(

H−
2 −H−

0

)]2
+ 02 dτ

= t ·
∣

∣H−
1 −H−

2

∣

∣ .

4. Computational results. We present some numerical results on pooled steps
using a finite–volume method in the conservative variables to solve for the system
dynamics in each canal. The coupling conditions (3) induce boundary conditions
for each canal at each time–step. For given data U±

0 := (h±
0 , (hv)

±
0 ) close to the weir

the conditions yield the boundary states at each connected canal. In the numerical
computation of the boundary states we proceed as in Section 2 using Newton’s
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method applied to (3) where h± and (hv)± are given by the forward (backwards)
1-(2) Lax–wave curves through the initial state h±

0 , (hv)
±
0 .

According to the solution of the Riemann Problem described in Section 2 there
are three possible scenarios. If h± ≤ H± the coupling condition (3) reduce to v± = 0
and no water passes the weir. If h− > H− and h+ ≤ H+ the water is overflowing the
weir from the left to the right. If h+ > H+ and h− ≤ H− the water is overflowing
the weir from the right to the left. If h+ > H+ and h− > H− the water is flowing
from the left or from the right depending on the sign of (h− −H−)− (h+ −H+).

Now, we present a numerical result for overflowing three connected pooled–steps.
Each canal has length L = 1 and the height of each weir is 1.5. We simulate two
situations using a Lax–Friedrich finite volume scheme on a uniform grid with spacing
Nx = 100 per canal. The time–step is such that the CFL conditions holds. In the
first case the initial water level in each canal is low (equal to H−) (see Figure 5) and
in the second case the canals are already full (height is equal to H+) (see Figure 6).
In both cases the water initial is still v = 0 and a wave with a height h = 2 H+ and
hv = 5 enters on the first canal. This wave lasts until T = 20 and is then followed
by a wave of height h = H− and zero flux. The simulation time is T = 60 for both
scenarios. We present snapshots of height and velocity at different times. The solid
lines are the weir, the dotted line is ground level. It is a pooled step and therefore
the first canal is on a higher level above ground than the last one.

In the first scenario (see Figure 5) the wave enters the system of pooled steps and
overflows the connected canals. After this wave passed the system slowly reaches
again an almost steady state. In the second scenario (see Figure 6) we observe
initial dynamics due to the overflow of the pooled steps. On the second canal these
dynamics interact with the incoming wave. After the wave passed the system slowly
reaches a steady state with heights below critical (i.e., h ≤ H+) in the first and
second canal. The water is still flowing over the third weir in this simulation.
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Figure 5. Simulation results for a strong wave entering the
pooled step. Initially, the water level on each step is below crit-
ical. The solution (h, v) at different times is depicted. The time
increases from left to right and top to bottom.
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Figure 6. Simulation results for a strong wave entering the
pooled step. Initially, the water level on each step is above the
critical level. The solution (h, v) at different times is depicted.
The time increases from left to right and top to bottom.
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