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ABSTRACT. This paper concerns with the stability of the orbits for nearly
integrable Hamiltonian systems. Based on Nekehoroshev’s original works in
[14], we present the definition of quasi-effective stability and prove a theorem on
quasi-effective stability under the Riissmann’s non-degeneracy. Our result gives
a relation between KAM theorem and effective stability. A rapidly converging
iteration procedure with two parameters is designed.

1. Introduction and main result. KAM theory and effective stability are two
important contexts in the area of Hamiltonian dynamical systems. The former is
established by Kolmogorov, Arnold and Moser, in 1954-1963s (7, 1, 13]. The latter is
developed by Nekhoroshev in 1977 [14]. On the one hand, the classical KAM theory
shows that under appropriate non-degeneracy such as the classical non-degeneracy
or Riissmann’s non-degeneracy of the integrable Hamiltonian, the nearly integrable
systems persist or keep the majority of invariant tori of integrable systems. Hence,
the majority of orbits, which is in the invariant tori, is perpetual stable. On the
other hand, Nekhoroshev’s theorem points out that under the steepness of the
integrable systems the action variables slowly evolve over exponentially long time
interval under sufficiently small Hamiltonian perturbations.

A question is whether there are any relations between the KAM theory and the
effective stability. As is known to all, their similarities are that they can be used
to describe the stability of orbits in the phase space for Hamiltonian systems. A
common condition of them is convexity of the integrable Hamiltonian [9, 17]. In
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1995 Morbidelli and Giorgilli considered a kind of nearly integrable Hamiltonian
systems, and found a connection between KAM theorem and effective stability in
the sense of the diffusion speed [12]. Later on Delshams and Gutiérrez discussed
the similar problem [4]. They investigated the quasiconvex systems, and gave a
common approach to the proofs of KAM and Nekhoroshev’s theorems by applying
Nekhoroshev’s iteration with some modifications.

An interesting topic is that under the conditions of KAM theorem, such as
Riissmann’s non-degeneracy, one is wondering if there is a Nekhoroshev type result.
In this paper we investigate stability of the orbits in nearly integrable Hamiltonian
systems under Rissmann’s non-degeneracy and obtain a result about quasi-effective
stability.

Consider a nearly integrable Hamiltonian system in the form

p=—Hy(p,q), ¢ = Hy(p,q) (1)

with the Hamiltonian

H(pvq) :h(p)+f6(pvq>7 fe(p7Q) Zef*(p,q,e) (2)

for nonnegative small parameter e. Here p € D are the action variables, D is
some bounded domain in R", while ¢ € T™ are the conjugate angle variables, T" =
R™/27x7Z"™ is a usual torus. Moreover, all our Hamiltonian functions are assumed to
be real analytic in all arguments. The phase space of system (1) is D xT™ C DxR"

n
with the standard symplectic structure Z dp; A dg;.
j=1
As € =0, system (1) is said to be integrable, and its general solution is

p(t) = po, q(t) = qo + w(po)t (mod2m)

with w(po) = hp(po), which forms an invariant torus Tp, = {po} x T™.

To state our results, we need some concepts. Throughout this paper we use

Euclidean norm and the supremum norm, and denoted by |- | and || - ||, respec-
tively. For an m x n matrix function A(u) defined on some set D, let [|A] =
SUp,ep Sup|, =y [|A(u)z]-
Definition 1. ([14]) System (1) is said to be effective stable in E x T", if there exist
positive constants a, b, ¢ and €y such that, as 0 < e < ¢q, for all (pg,q0) € E x T™,
one has |p(t) — po| < ce® with (p(0),(0)) = (po, qo), provided |t| < exp(ce~*). Here
a and b are called stable exponents, T'(€) = exp(ce~?) stable time, R(e) = ce® stable
radius.

Definition 2. An orbit (p(t), ¢(t)) starting from (pg, go) of system (1) is said to be
of near-invariant tori on exponentially long time, if there exist positive constants
a, b, ¢, €g and constant d > 0, and the function w,, defined on E x T™ such that
Ip(t) — po| < ce® and |q(t) — qo — twex(Po, qo)| < ce?, provided 0 < e < ¢ and
|t] < exp(ce™@).

Definition 2 is a notion of stability of orbits. This definition is established by
Morbidelli and Giorgilli [10, 11, 12], and Perry and Wiggins ([15]), and Delshams
and Gutiérrez [4], respectively. They deal with two different cases of invariant tori
of the integrable system. In [15] and [11], the property of near-invariant tori are
expressed in terms of the distance to a given KAM torus. In [10] and [12] and [4],
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the invariant tori are considered only under the frequency vector satisfying the finite
inequalities of small denominators. This paper concerns the above two cases.

Definition 3. System (1) is said to be quasi-effective stable if there exist positive
constants a, b, ¢, d and €y such that, for any € € (0, o], there is an open subset E,
of D suiting the following
(1) measFE, = measD — O(e?).
(2) For all (pg,qo) € E. x T™, the orbit (p(t), q(t)) starting from (po, qo) satisfies
the estimate
[p(t) = po| < ce”,
provided [t| < exp(ce™?).
Here a and b are called stable exponents of the system, T'(e) = exp(ce*) stable
time, R(e) = ce® stable radius.

It directly follows from the above definitions that the effective stability implies
quasi-effective stability.

Let B be a bounded subset of C™. For a given constant § > 0, denote B 4+ § =
{z € C" : dist(z,B) < 0} and B — 0 = {x € B : dist(z,0B) > 0}, respectively,
which are used by Arnol’d in [1] . Write Re(B) = BN R™.

Note that real analytic property of Hamiltonian H (p, ¢) implies that there exists
a positive constant § such that it is analytic in (D xT™)+d. Moreover, on (D xT™)+4,
for e with 0 < e <1,

1
max{[[pll, lfell, IAll, [l llwpl[} < 5 M (3)

for some positive constant M. Here w(p) = hyp(p). Assume that w(p) satisfies
Riissmann’s nondegenerate condition as follows

(H1)
0w n
rank w,a—:VQEZ+,|a|<n—1 =n, Vp € Re(D + 9), (4)
pOt
where Z7 denotes the subset of Z" with nonnegative integer components;
% __ 8l

op> 810(111"'8]75” ) |O[| =1+ F Qp.

Now we describe the main result of this paper.

Theorem A. Under assumption (H1) system (1) is quasi-effective stable.

Recently, many achievements have been made in studying KAM theory and the
effective stability. For examples, Guzzo, Chierchia and Benettin have announced
that they obtained optimal stability exponents under the steepness [6]; Bounemoura
and Fischler make use of geometry of numbers to relate two dual Diophantine
problems which correspond to the situations of KAM and Nekhoroshev theorems,
respectively [2]. For the others, see [3, 5, 8, 19].

The paper is divided into five sections. In section 2 the stickiness of Diophantine
invariant tori is considered and the theorem on property of near-invariant tori is
described. Section 3 proposes an auxiliary proposition which plays a fundamental
role in the proofs of theorems. Finally, the proofs of the theorems are placed in
section 4 and section 5.

2. Stickiness of Diophantine invariant tori. So-called stickiness of an invariant
torus means that all orbits starting near this torus are of near-invariant torus. In
this section we consider the stickiness of Diophantine invariant tori.
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For a given py € D, if w(pp) satisfies the following inequalities
[(k,w(po))| > alk|™7, VE € Z™"\{0} (5)

for some positive constants a and 7, then T}, is said to be Diophantine.
According to KAM theory there is a nearly identity transformation ®. which

changes Diophantine invariant torus T, of a integrable system into the the invariant

torus ®.(Tp,) of perturbed system (1) (e is sufficiently small), and ®o(T;,) = T)p,.

Theorem B. If w(pg) satisfies (5), then there is €9 > 0 such that as 0 < € < €,
there exits a meighborhood O, of py satisfying that for any (p«,q«) € O x T, the
orbit (p(t),q(t)) starting from (p«,qs) of system (1) is of near-invariant torus.

3. An auxiliary proposition. We first construct a rapidly converging iteration
scheme with two small parameters. This design is important to prove theorems.
Notice that we only need finite iterations in the proof of theorems. Hence, instead
of the Diophantine condition, we employ another weaker condition. Take a fixed
po € D and a given sufficiently small positive constant k. Define two integers L(k)
and J(k) depending on &,

o= ( )]
70 = | (6)

where [-] denotes the integer part of a real number. Let

O(po,e) = {peD:|p—po| < Kive},
0(0,1) = {peR":|p|< K1}
for some constant K7 > 0. For the sake of convenience, by ci,cs,- -+, denote the

positive constants depending only on M,n, K7 and 7.
We continue to assume

(H2) For constants o > 0 and 7 > 0, w(po) suits the inequalities
|k, w(po))| = afk[™7 (7)
for any k € Z™ with 0 < |k| < L(k).

Proposition 1. Assume (H2). Then there is a positive constant €y depending on
M, n, Ky, 7,0, a and k such that, for all e with 0 < € < €g, the following statements
hold.

1) There exists a transformation ®. and a near-identity transformation U of
coordinates, defined on O(0,1) x T™, to reduce Hamiltonian (2) to the form

Ho®,0U =N, ++efuu

with
N*(p7 6) = <W(p0),p> +O(\ﬁ)7
ON,
wi(p,€) = o (p,€) = w(po) + O(Ve),

A

I furll < erveexp (f%).
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2) For all (p(0),q(0)) € O«(po,€) x T™, there is a torus
p(t) = p(0), 4(t) = q(0) + wsx (po, p(0), ¢(0), €)t (mod2m), t € R
with
wi(Po, p(0),¢(0), €) = w(po) + O(Ve),
)

(
such that the orbit (p(t),q(t)) starting from (p(0),q(0)) of (1) to satisfy the
estimates

Ip(t) = B(t)| < eskv/e,
lq(t) = 4(t)| < car,
provided |t| < ¢1 exp (C—Q> .
4k

To prove Proposition 1 we introduce a coordinate transformation @, : (O(0,1) x
T") 46 — (O(po,€) x T™) + 4,

Under this transformation the Hamiltonian is reduced to the form

=

_ h‘jg + (w(po), P) + O(VeP?) + Vefu(po + VeP, Q, ).

Without loss of generality, let h(py) = 0, and write £ = /€, wy = w(pp) and
fO(P7Q7p07€) = O(PQ) + f*(pO + €P’Qa€2)'

~

Then
H(PaQ):<w07P>+EfO(P7Q7p076)> (8)
and (P, Q) is defined on (O(0,1) x T™) + 4. Obviously, by (3) we have
|fO(P7Qap0a€)| <c¢s (9)

n ((0(0,1) x T") 4+ 6) x D x [0,1].
Rewrite H,P and Q as H,p and ¢, and omit the parameters py and ¢ in the
arguments of fy. Thus, Hamiltonian system (1) is changed into

p = _Hq(p7 q)a q = Hp(py q)
with Hamiltonian

H(p,q) = (wo,p) +&fo(p,q). (10)

Here wy suits inequality (7).
For a real analytic function f, its Fourier’s expansion is

= Z fre'a),

kezm
Let
fp) = folp),
[flLpa) = S flp)ett,
keZm,0<|k|<L
Rpfp,a) = Y fulp)e!™?

keZn k|>L
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We need the following lemmas.

Lemma 1. ([16, 18]) Assume that wy satisfies the condition (7). Then the homo-
logical equation

(wo,Sq) + [flz(p,q) =0

has only one real analytic solution S with S = 0. Moreover, for any o with0 < o < 4,

Ce
11Dy < 2 [[£1e I,

Here Dy = (O0(0,1) x T™) + 6.

Lemma 2. ([1]) Assume f(q) to be real analytic in T™ + 6. Then, as 0 < 20¢ < v
and og+v <o <1, onT"+ (§ — o9 — V) one has

2an\" 1| _ y
|RLI|| < <e) M_‘le Lo, (11)

)

Proof of Proposition 1. Consider Hamiltonian (10). Let
Dy = (0(0,1) x T") + (5 — 4kk), k= 0,1,2, -+, J(k).

Simply write ®g = P, Hy = H and Ny(p, ) = (wo, p). Assume that under jth step
Hamiltonian (10) is changed into the form

Hj(p.q) = Njp,e) +efi(p,a), (12)

Ni(p,q) = (wo,p)+ N;(p,e), (13)

Nip,e) = Y filp.e), (14)
=0

5l S M, (15)

defined on Dj;.
We introduce a symplectic transformation ®;41 : Dj41 — D; by ®;41 = (b}_H.
Here ¢, is the flow of the Hamiltonian system

d 0 -Id,
g (1, 0" ) IS, (16)

where S; will later be determined by equation (24). By applying Taylor’s formula,
we have

Hj+1(]9, q) = Hjo ‘I’j+1(Pa q)
= N;jo®;1(p,q) +efjo®iii(p,q)

1
= Nj(p, q) +5{Njasj}+52/0 (1 _t){{NjaSj}?Sj}o¢§+ldt
1
+efylpa)+ e [ {10t
= Nj(pve)—'_gf_,j(pvs)

1
Lo / (1= O){{N;, ;3,5 } 0 6ty b
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+5Rij(paQ)
+€{Nj,5j}
1
+52/ {fi, S} o ¢l dt
0
+e({No, S;} + [filL)-

Denote

Niyw = Nj+efj,
Nj+1 = Nj+€fj,

1
1= e / (1 ){{N;, 5}, 5} o 6t dt,

j2+1 = Rrfj,
j3+1 = {Nj’Sj}v
1
fly o= e /O (f5.5;) 0 6L, dt,
firi = fj+ i+ o+ Fia

To determine transformation ®;4, we choose S; satisfying

{N07Sj} + [fj]L =0.

73

(24)

It follows that under transformation ®;,; Hamiltonian H; is reduced to the form

Hj+1 = Hj o (I)j+1 = Nj+1 + Efj+1.

Inductively, by (3), (9), (15) and (17), one has
~ -1
i=0

on Dj.
Take
1 3

—K, V= —K.

8 8
Thus, by Lemma 2 and the definition of L(k), on D; — 3,

gg =

121llp, 3 = IRLElp, 2 < (

e a'6’+1

Hence,

27”’>n Hf]” e—Ll/

1
< Zlfilo,

1
171Dy < Uil - 3n < 5lF5lp5,

On the basis of (27) and Cauchy’s formula, we derive

1) llp,—2n < Willp; + 1RLfillp,— 10 + I fillp, < 31f5llp;-

(25)
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Let (P, Q) = gb;H(p, q). By applying (24), (29), Lemma 1 and Cauchy’s for-
mula, for all (P, Q:) € D; — 2k with 0 <t <1, we have

|(p,q) = (P, Q)| < el VS;(Pr, Qu)llp, —2n
2e
< ;HS]'(PtaQt)HDj—%H
2066
< m“[fj]”m—%n
6066
< g,
6066 1
< -
T arTTL 271
< 1
= ijn
< K, (30)
provided ¢ satisfies
6066
arTtt — “)
By the geometric lemma in [1], qS;frl(D- 2k) D D; — 3k, and qujl is a diffeo-
morphism defined on Dj 1. This shows that ¢%, ;(D;11) C D,
If € satisfies
3CGM€ 1
ak™t2 =% (B)
then, by Lemma 1, Cauchy’s formula, (16) and (26), we obtain
1f2llD,—2x = I{N;, S;}ID,—2x
< Hé‘?Sj
Dj—2l"€ 8 Dj—2l€
1~
< S lINilip, 1551, - 2
Me c¢q
S 3 %”[-fj]LHD:j*%KJ
3CGM€
S OZKJT+2 HfJ”DJ
< §||fj||Dj-
Hence,
3 3 1
17 41llD0 < M7 llpy—2n < g”fjHDj? (31)
1
IV 100,50 < 1 allo, e < oo, (32)
Similarly, as € satisfies the inequality
3cgMe 1
<= C
ak™2 = 8’ ©)
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we derive

||f]4+1 HD_7‘+1

for all ¢t € [0,1].

Now we estimate fj, ;. Note that

which implies that

< 5||{fja5j}¢§'+1“Dj+1
< el{f; SiHp;-sx
13
< ;Hfj”DrzmHSjHDf%
CgE
< ﬁ”fjHsznH[fj]H%fn
1 3066
1
< glfillp-sx (33)
{N;, 85} = {N;, S} + {No. S;} = firs — [fil,»
{fi + (1 =0){N;, S}, 85} ={Q = )21 + tlfi], + Fi + Rofy. S5} (34)

from (24). Hence, by employing the conclusion ¢§- 11Djy1 C Dj — 3k, Cauchy’s
formula, (31), (33), (29), (27), (28), (32) and Lemma 1, we derive

||fj1+lHDj+1 <

e(IVfillp,—sx + IV 151D, -3 + IV fill D, —3s

HIVRLfillp;~3:)IVSjllD,—3x

e 1 - 1
< Gl +fl Ll py—2 + 1 illD,—2x + 7 [1£3llD,) 1551 D, 2

9 3 366
< 5 (31500, + 315500, + 1510, ) - 2221181, -
105¢cge M
< WWJH@
1
< Lifilo, )
provided
105¢cgeM 1
— < . D
8ak™2 — 8 (D)
Hence, from (23), (27), (31), (33) and (35), it follows that
‘|fj+1||Dj+1 < Hfj1+1||Dj+1 + ||.fj2+1||Dj+1 + ||f]3+1HDj+1 + ||f;1+1||Dj+1
1
< 5lfillp,
1
< (36)

27+2

1
Put V=@;0---0®;. Then V: D; — Dy andDjDD**:(O(O,l)XT”)+§5.

Denote ¥(r,0) = (p, q). It leads

Hjy(r,0) = Ho U(r,0) = Ny(r,e) +efs(r,0)

(37)
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with
INsllp.. < Me, (38)
1 Co
I£sllp.. = 57 M =ciexp (—;) : (39)
1 log 2
where ¢; = iM and ¢y = 01g2 0.
The Hamiltonian system with (37) is the following
: ofs
A 40
T €50 (40)
: ON; | 0fy
0 = — e 41
ot or e or (41)

1
Take D, = (0(0,1) x T™) + 1(5. By Cauchy’s formula one has

max{HafL
or D

Thus, for any (r(0),60(0)) € O(0,1) x T", as |t| < exp (2%) , it follows that

or
o0

} < Sfelo... (12)
D,

C2
|r(t) — r(0)] < creexp (—%) . (43)
Denote _
ON,
wi(ry€) = wo + =5 2 (1),
Thus,
|wa(r(t), €) —wa(r(0),6)] < cselr(t) —r(0)]
< cgeexp (—2%) (44)
on O(0,1) x T™. It follows from (41), (39), (44) and Cauchy’s formula that
c
6(t) — . (r(0). )t — 0(0)| < cxpeexp (= 2 ) (45)

provided [t| < exp (:—2) .
K
Obviously, inequality (D) implies (A), (B) and (C). Let

1
eo(@, k) = min {max{e :e > 0 and e satisfies (D)}, 2} ,

that is,
i ak™? 1
go(a, k) = min {W, 2} .
Without loss of generality, take

OZI€T+2

105 M

Write €9 = 3. Let (p(t), ¢(t)) be a solution starting from (p(0), ¢(0)) € O(pg, €) x T
of system (1). Then (P(t),Q(t)) is a solution with P(0) € O(0,1), of the system

eo(a, K) (46)
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with Hamiltonian (8). By (r,0) we denote a new coordinate variables under the
change U. By (30),

1
Tk <K, (47)

J
(P.Q) = (.0)| = [¥(r,0) = (r0) < D _ 5
j=0

which and (43) imply that, as |t| < exp (Z—Z) ,
[P(t) = P0)] < [P(t) —r()[+ [P(0) = r(0)] + [r(t) — r(0)|

2K + creexp (—;—i)
C11R; (48)
Q(t) — 8(t)| + [6(t) — w«(r(0), £)t — 6(0)]

+/Q(0) — 6(0)]
2K + c1p€ exp (—%)

S C12K. (49)
Note that ®.(P, Q) = (p, q), that is,
p=po+VeP, ¢=Q.

IN

INIA

Q) — w.(r(0),£)t — Q(0)]

IN

Hence,

0).00) = v (P).00) = (M2 ). (s0)

We use P8 to denote the operator which projects the phase on the space of action
variables. From (50), it follows that

(0) =P o u! (1)(())\/21907 q(0)> .
Let

e 0,001 = (o0 (M2 g0)) ).

Choose the torus as follows,
p(t) = p(0), 4(t) = q(0) + wsx(po, p(0),q(0), €)t (mod2m), t € R.

Combining (48), (49) and the transformation ®., the proof of Proposition 1 is
finished. O

4. Proof of Theorem B. In order to prove Theorem B, we regard « as a function
in €. Choose
1 1
K = €73 = €2(7+3) ,

By applying (46) and the definition of €y, we obtain

B a 2(743)
() = {050 ce ‘

O = O(py, €).
According to Proposition 1 and its proof, as 0 < € < ¢(a), for all (p(0),¢(0)) €
O, x T™, there exists a torus {(p(t),4(t))} with frequency wi«(po, p(0),¢(0),€) such

Take
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that the orbit (p(t),¢(t)) starting from (p(0),¢(0)) of (1) to satisfy the following
inequalities

Ip(t) = B(t)] < cae T,

la(t) = 4(0)] < cae™ 7,
provided [t] < ¢q exp (%67 2(71+3>> . The proof of Theorem B is completed. O
5. Proof of Theorem A. Now we prove Theorem A. To this end we regard s and
« as a function in €, respectively, in this section. Simply, let

a=K= €D, (52)

By using (46) we determine

1 2(7+4)
0= (105Mc6) ‘

D.={peD:|[(k,w(p))| >alkl™™, forall 0 £k e Z"}.

Here 7 > n(n — 1). This condition is a requirement of the measure estimate. Let

Define

ak = {yeD:[(kwy)l <alkl™"}
D, = |J Di,
0A£kEZ"

By assumption (H1) and Lemma 2.1 in [20], one has

meas(Dg, ;) = O (a%|k|_TTH) ,
meas(D}) = O(a%).
Define
D. = D-D],
D, = U D..
>0

Then, by KAM theory, measD, = measD — O(aw), and D, is a set of full measure
in R", for any 7 > n(n — 1).
For any py € D, let

a(pp) = max{a:0<a<1and [(kw(p))| > alk|™" forall 0 # k € Z"},
e(po) = min{a(po)? ).
Write O¢(po) = O(po, €). If 0 < € < €(po), from Proposition 1, it follows that for all
((0).4(0)) € Oc(po) x T", as [t] < ey exp (e 270 ).

[p(t) = p(0)] < cze T2mem,
For any € € (0, o], define

E= U O (53)

poE{PED.:e(p)>e}

This is an open subset of D, and measE, = measD—0O (e Ty ) and h%lJr E.=D,.
€E—
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For any given (p(0),¢(0)) € E. x T™, by (53), there are py € D, and a constant
e(po) > e satisfying p(0) € O.(po). By applying Proposition 1 to py and Oc(po), we
derive that the orbit (p(t),q(t)) starting from (p(0), ¢(0)) satisfying the estimate

Ip(t) — p(0)] < cge T,

provided [t] < ¢; exp (%672(’}*4)> . The proof of Theorem A is completed. O

In the proof of Theorem A, the choices of k and a may be an another form. More
precisely, let

a:e”,n:ebandn+2L(T+2)+X:% (54)
for given positive constants 7, ¢ and x. By using (46), we obtain
1 X
€o(n, LX) = <105MCG> : (55)

Similar to the proof of Theorem A, we could obtain that, as 0 < ¢ < min{e(yo),
eo(n, ¢, x)}, for all (p(0),4(0)) € O, x T™, the orbit (p(t), ¢(t)) starting from (p(0),
¢(0)) is of near-invariant torus, and p(t) and ¢ satisfy the estimates with exponents
% + ¢ and . Hence, from (54), the stable exponents of system (1) can be chose as
Ly 1 ¢ and =Lt
2 7 2(7+2) *1 2(7+2)

Now consider Diophantine exponent 7. Under Riissmann’s non-degenerate con-
dition, 7 can be took as 7 > n(n — 1) due to the estimate of the measure. Com-

bining the above analysis the stable exponents of system (1) can be chose as

— €41, where €,1 is an arbitrary small positive number.

1 1 1 . . "
5+ gp—onga — €2 and ST onFd T %2 where €, is an arbitrary small positive
number.

In a similar way, if system (1) satisfies the classical non-degeneracy, that is,

hpp # 0,

then the stable exponents can be chose as % + ﬁ — €43 and
is an arbitrary small positive number.

_1

T3 — €3 where €,3
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