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ABSTRACT. The electromagnetic analog of an elastic spring-mass network is
constructed. These electromagnetic circuits offer the promise of manipulating
electromagnetic fields in new ways, and linear electrical circuits correspond
to a subclass of them. The electromagnetic circuits consist of thin triangular
magnetic components joined at the edges by cylindrical dielectric components.
Some of the edges can be terminal edges to which electric fields are applied.
The response is measured in terms of the real or virtual free currents that are
associated with the terminal edges. The relation between the terminal electric
fields and the terminal free currents is governed by a symmetric complex matrix
W. In the case where all the terminal edges are disjoint, and the frequency is
fixed, a complete characterization is obtained of all possible response matrices
‘W both in the lossless and lossy cases. This is done by introducing a subclass
of electromagnetic circuits, called electromagnetic ladder networks, which can
realize the response matrix W of any other type of electromagnetic circuit
with disjoint terminal edges. It is sketched how an electromagnetic ladder
network, structured as a cubic network, can have a macroscopic electromagnetic
continuum response which is non-Maxwellian, and novel.

1. Introduction. In this paper we introduce a new type of electrical circuit, called
an electromagnetic circuit, which has the potential at a fixed frequency for provid-
ing new and easily analyzable ways of manipulating electromagnetic fields beyond
those provided by electrical circuits, photonic circuits, optical lenses, waveguides,
photonic crystals, and transformation optics. To construct the electromagnetic cir-
cuit we draw upon analogs between electromagnetism, elastodynamics and acous-
tics. Analogs between electromagnetism and elastodynamics have a long history
[see, e.g. Silva [25] and references therein]. It is easy to see the connection from
the underlying partial differential equations when they are written in a form which
emphasizes the similarity. Considering for simplicity a locally isotropic medium,
Maxwell’s equations at fixed frequency w take the form

D=¢E, B=pH, VxE=iwB, VxH=j—iwD, (1)
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where D(x), E(x), B(x), H(x), and j(x) are the complex electric displacement
field, electric field, magnetic induction, magnetic field, and free current (the physical
fields are the real parts of e ™D, e “'E, e~ ™!B, ¢ ™“'H, and e "!j where t is
time) and e(x,w) and p(x,w) are the complex electric permittivity and complex
magnetic permeability. Here the free current j(x) may represent a single frequency
component of a time varying ion beam current, or a time varying current generated
by an electrochemical potential. It does not include conduction currents o E, where
o is the conductivity, that instead are included in the term D = ¢E, through the
imaginary part of e(x,w). (It is difficult, if not impossible, to distinguish oscillating
displacement currents from oscillating conduction currents.) The elimination of D,
B and H leads to the form [16],

0 OF, .
(9—.%'1, ( quSa—:CT> +w)g = _w25Eq7 (2)
where
Opqrs = epqmersm/,ua (3)

and epgm = 1 (—1) if (p, ¢, m) is an even (odd) permutation of (1,2,3) and is zero
otherwise|. This is clearly similar to the form of the equations of continuum elasto-
dynamics
0 Oug
5o (oot ) + o = = (W
in which u(x) and f(x) are the complex displacement field, and body force (the phys-

ical fields are i = (e ~*'u)’ and f = (e~*'f)’ where the prime denotes the real part)
and C(x,w) is the complex elasticity tensor (incorporating viscosity terms through
its imaginary part) and p(x,w) is the density [which, when it is the effective density
tensor of an isotropic composite material can be complex and has the same proper-
ties as a function of w as e(x,w): see Milton and Willis [19] and references therein. ]
At low frequencies, one often has the approximation that C(x,w) = C’(x) —iwv(x)
where C’(x) is the real component of the elasticity tensor, and v(x) is the viscosity
tensor, incorporating both bulk and shear viscosities. Then, upon introducing the
velocity v = 0u/0t, (4) reduces to
0 ou v, ~ v

6—%( ;qrsa—x.j+ypqrsa—w,i)+fpzpa_f (5)
which may be more familiar to readers acquainted with the Kelvin-Voigt model of
viscoelasticity.

As these analogies have been known for a long time it is rather amazing that
no electromagnetic analog of a spring network with masses at the nodes has been
constructed. Our electromagnetic circuits are this analog. In elastic networks, as
modeled by the continuum construction of figure 1, the density is concentrated
at the nodes, while the elasticity is concentrated along the edges. Everything is
surrounded by void with C =0 and p = 0.

Besides the interest of electromagnetic circuits for providing a new way of ma-
nipulating electromagnetic fields there is also a fundamental reason for studying
them. It is becoming increasingly clear that the usual continuum equations of
physics do not apply to composite materials built from high contrast constituents
and having exotic microstructures. Thus, one can obtain materials with macro-
scopic non-Ohmic, possibly non-local, conducting behavior, even though they con-
form to Ohm’s law at the microscale [13, 3, 5, 4, 7, 9]), materials with a macroscopic
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FI1GURE 1. Sketch of a two-terminal discrete elastic network, where
the terminal nodes are represented by the black circles, and the
three internal nodes are represented by the white circles. In the
idealized model these nodes have some mass and are infinitely stiff.
They are are attached by connecting rods (which act as springs)
having no mass and non-zero stiffness. Ideally the nodes should
have infinitely small diameter and the connecting rods should be
infinitely thin, although in practice one then has to worry about
buckling which is a non-linear effect.

higher order gradient or non-local elastic response even though they are governed
by usual linear elasticity equations at the microscale [21, 2, 1, 8], materials with
macroscopic behavior outside that of continuum elastodynamics even though they
are governed by continuum elastodynamics at the microscale [14], and materials
with non-Maxwellian macroscopic electromagnetic behavior [23], even though they
conform to Maxwell’s equations at the microscale [see also [10] where other non-
Maxwellian macroscopic equations are proposed]. By non-Maxwellian we mean a
three-dimensional material where the appropriate macroscopic electromagnetic de-
scriptors are smooth at the continuum level, and do not satisfy Maxwell’s equations,
but satisfy other equations instead. These descriptors might not even have an in-
terpretation as electric or magnetic fields, but of course they are derived from the
microscopic electric and magnetic fields.

One would really like to be able to characterize the possible macroscopic con-
tinuum equations that govern the behavior of materials, including materials with
exotic microstructures. A program for doing this was developed by Camar-Eddine
and Seppecher [7, 8], and successfully applied to the conductivity and elastic equa-
tions in the three-dimensional static case, assuming the macroscopic behavior was
governed by a single potential or displacement field. The program, in essence,
consists of four steps: first to show that discrete networks can be modeled by a
continuum construction; second to characterize all possible responses of discrete
networks allowing for part of the network to be hidden; third to find the possible
continuum limits of these discrete networks; and fourth to show that these possi-
ble continuum behaviors are all that there can be, even when one allows for other,
non-network based, microstructures. For the dynamic case, at fixed frequency, a
complete characterization has been obtained of the possible response matrices of
multiterminal electrical, acoustic, and elastodynamic networks, both in two and
three dimensions, thus meeting the second goal of the program in these cases [17].
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For Maxwell’s equations at fixed frequency our electromagnetic circuits accomplish,
in a formal way, the first goal of the program, and we also make progress towards
the second goal. At this time it is unclear if our electromagnetic circuits are suffi-
ciently rich in construction that their continuum limits can model the macroscopic
behavior of all other, non-network based, microstructures, and in particular the
question remains open as to whether the Maxwell equations themselves can be re-
covered as a continuum behavior of our electromagnetic circuits. It seems clear,
however, that many non-Maxwellian continuum behaviors can be achieved by tak-
ing the continuum limit of electromagnetic circuits configured in a lattice structure
(see the concluding paragraph of the paper). This is similar to the way lattices of
grounded electrical circuits produce novel metamaterial behavior in the continuum
limit as described in the book of Caloz and Itoh [6] and references therein.

We emphasize that, besides similarities, there are also important differences be-
tween Maxwell’s equations and the elasticity equations. For Maxwell’s equations
the null space of C contains all symmetric matrices, while for elasticity the null
space of C contains antisymmetric matrices, which is a space of lower dimension.
This manifests itself in the different boundary conditions: at an interface u is re-
quired to be continuous, while only the tangential component of E is required to
be continuous. In this respect Maxwell’s equations have some similarity with the
acoustic equations, which (see (11)) take also a form analogous to (2) or (4), with

Cpgrs = KOpqOrs, (6)

and the null space of C contains all matrices which have zero trace, and only the
normal component of u is required to be continuous at an interface.

There are also linguistic differences when one discusses elasticity compared to
electromagnetism. When one wants to study equation (2) in a bounded domain,
boundary conditions are needed. A natural condition is to fix the value of
n - COE/0x where n is the external unit normal to the boundary of the domain.
The analog boundary condition in the elastodynamic case is well known and called
the surface force F applied to the medium. Thus we will call the applied surface
free current the value of (iw)~'n- COE/dx on the boundary and denote it J. (The
additional factor of (iw)~! is introduced because iwj in (2) plays the role of f in
(4).) This is not a usual way of speaking in the electromagnetic framework as the
value of (iw)~'n- COE/Ox is nothing else than the tangential part of the magnetic
field H at the boundary. The interest of such a vocabulary appears later.

When one wants to study equation (2) in a domain €2 which is divided in two
subdomains €27, 9, one has to write jump conditions on the dividing surface.
This condition is the continuity of the tangential part of H (the analog of which
is the continuity of the normal part of the stress in elastodynamic framework).
Alternatively one says in the elastodynamics framework that s exerts on Q; a
surface force F while 2, exerts on (2, the opposite surface force —F. This action-
reaction law makes the link with the separate study of both subdomains as it fixes
the needed boundary conditions for these studies.

In a similar way we can say that ()5 exerts on §2; a surface free current J while 4
exerts on {2y the opposite surface free current —J. This way of thinking needs some
practice to become natural and the reader should be aware that this formulation
does not mean, in any way, that there exist actual free currents in the material (just
like action-reaction law does not imply the existence of actual surface forces inside
the domain). However the surface force F that Qs exerts on 7 has an equivalent
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effect on 2y as a body force f concentrated at the boundary replacing the stress
field in 9, and similarly the applied surface free current J that Qs exerts on
has an equivalent effect on €2, as a free current j concentrated at the boundary
replacing the H field in Q5.

It is well known that when j = 0 the Maxwell system of equations remains un-
changed when one interchanges the roles of E and H and of € and p. Therefore for
each electromagnetic circuit discussed here, there is a dual magnetoelectric circuit
(ME-circuit) obtained by making these replacements. Instead of speaking about
applied free surface electric currents, we could speak about applied free surface
magnetic monopole currents. These are then truly unphysical, but their introduc-
tion is again just a device for keeping track of boundary conditions.

Throughout the paper we use infinite or zero values of various moduli. From
a physical viewpoint one should think of such moduli as just being positive and
real and extremely large or extremely small. From a mathematical viewpoint one
should think of taking the limit as these moduli approach infinity or approach zero.
Generally values of the permittivity and permeability near zero or infinity are dif-
ficult to achieve. However, using resonance effects [22, 20] very small or very large
values which are almost real and positive may be achieved over a narrow frequency
range. The importance of this was recognized by Engheta, Salandrino, and Al [12]
and Engheta [11] who realized one could build nanoscale equivalents of electrical cir-
cuits using such metamaterials: a material with e near zero electrically insulates the
circuit, while a material with € near infinity provides the necessary electrical con-
nections (and materials with negative € simulate inductors, materials with positive
e simulate capacitors, and materials with imaginary e simulate resistors).

From a physical viewpoint perhaps the greatest barrier to the construction of elec-
tromagnetic circuits is the use of a matrix, which is the electrodynamic equivalent
of a void in elasticity, and has an extremely large value of the magnetic perme-
ability p, and (although it is not clear it is necessary) an extremely small value of
the electric permittivity e. (In the case of the dual circuits, one would need the
reverse). In fact it is not necessary that the circuit be embedded in a body with
these properties, only that a material with these properties clads the circuit. Also
note that the Maxwell equations (2) remain valid if one divides p(x) everywhere by
a constant k and correspondingly multiplies j(x) and e(x) by k. Therefore it should
be possible to renormalize the moduli in the EM-circuit in such a way, that the
moduli in the matrix take more realistic values, perhaps even that of empty space
with e = o = 1. This is similar to the way a spring-mass network can still function
when embedded in an elastic material provided the springs are appropriately stiff,
the forces sufficiently strong, and the masses are sufficiently heavy.

The objective of this paper is to introduce the concept of EM-circuits (and the
dual magnetoelectric circuits) and their basic properties. The approach is formal,
but will hopefully motivate future analytical and numerical work to place the treat-
ment given here on a firm foundation. Also it remains to be investigated the degree
to which EM-circuits can be approximated and still function like an ideal EM-
circuit. Elsewhere [18] we show how, with the introduction of an additional circuit
element (namely a tetrahedron with e = u = 0), electromagnetic and magnetoelec-
tric circuits can be joined to create hybrid circuits.
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2. Transverse electric EM-circuits. We are interested in the Helmholtz equa-
tion

V- (1/uVE) = —cw’E, (7)
describing three-dimensional TE electromagnetic wave propagation, where w is the
(fixed) frequency of oscillation, E(x) = (0,0, E) is the electric field, £(x) is the
electrical permittivity, u(x) is the magnetic permeability, and all of these quantities
do not depend on x3. Given the electric field component E the associated in-plane
magnetic field is

H = —[i/(4w)|R. VE, (8)

0 -1
ro- () ) (9
is the matrix for an anticlockwise rotation by 90° in the plane. When in some

subregion €2, the moduli are real, positive, and do not depend on frequency, the
electromagnetic energy stored in 2 is

W(Q) = /Q I HP + e B2 /4. (10)

We are only interested in solutions such that W (£2) remains bounded in all subre-
gions 2 where the moduli tend to zero or infinity, remaining real and positive in
this process.

The Helmholtz equation (7) is mathematically analogous to the acoustic equation
which in two-dimensions reads as

V- (1/pVP) = —(1/k)w?P, (11)

where P(x) is the pressure, £(x) is the bulk modulus, and p(x) is the density. Given
the pressure field P(x) the associated velocity field of the fluid is

v =—[i/(p)]VP, (12)

and when in some subregion €2 the moduli are real, positive, and do not depend on
frequency the time averaged elastokinetic energy in €2 is

W(Q) = /Q [PV + | PP/s]/4. (13)

(The extra factor of 2 arises because the physical velocity and pressure is the real
part of ety and e~“!P).

To conceive TE electromagnetic circuits we just have to understand how discrete
acoustic networks are made and transcribe their structure in terms of electrody-
namic quantities. As illustrated in figure 2 we consider a network of channels
connected by junctions. Each channel has parallel sides and contains a segment
of incompressible, non-viscous, fluid with some constant density p possibly varying
from channel to channel, moving in a time harmonic oscillatory manner in response
to time harmonic pressures at the junctions. We define the entire cavity associated
with a junction to be the cavity at the junction, plus the remaining region in the
channels not occupied by the incompressible fluid. If the junction is a terminal
so that there is an open channel leading to it, we insert a segment of massless
incompressible fluid in that channel to keep track of the response of the acoustic
network.

Each entire cavity contains a compressible, non-viscous, massless fluid with com-
pressibility possibly varying from cavity to cavity. In this model the compressibility

where
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FIGURE 2. A two-terminal discrete acoustic network. In the ide-
alized model the four cavities contain compressible massless fluid,
while the grey shaded fluid plugs in the five tubes contain incom-
pessible fluid with some mass

is localized in the cavities and the mass is localized in the channels between cavities.
The surfaces between the compressible and incompressible fluids are assumed to be
flat and perpendicular to the channel. When one conceives an acoustic network, the
area outside the network is assumed to be occupied by a rigid body (or cladded by
rigid tubes). However we can, in a equivalent way, assume that this area g is filled
by an incompressible fluid having infinite density, i.e. with Kk = p = co. Indeed, the
infinite density, and the boundedness of W () ensures that the velocity v (as one
might physically expect) will be zero outside the network and consequently that the
walls of the network remain fixed. The incompressibility ensures that both sides of
(11) are zero in the matrix, without requiring that P = 0 in the matrix. Hence the
acoustic equation (11) describes the system in the whole space.

In each entire cavity, €2, where 1/p is infinite (or more precisely is real positive
and approaches infinity), VP must be zero, since otherwise p|v|?> = |VP|?/(pw?)
would be infinite and W (£2;) would be unbounded. Thus, as expected, the pressure
is constant in each junction region. Within each segment of incompressible fluid of
constant density, both sides of (11) must vanish, which implies V2P = 0 in each
such segment. From the boundary conditions (that P is constant at the ends of
the fluid segment, and at the sides n- VP = 0, since n - v = 0) it follows that the
pressure P will be constant in each cross section normal to the channel, and will
vary linearly along the fluid segment. The fluid velocity v will therefore be constant
in the segment, and directed parallel to the fluid channel. From (12) we see that
in a channel joining cavity ¢ and cavity j the fluid velocity in the direction of the
channel, from j to k will be

vjk = =i/ (pjrwlsn)(Px — Fj), (14)
where /j;, is the length of the fluid segment, p;j is its density and P; and P} are
the complex pressures at junctions j and k respectively. This is basically Newton’s
second law, relating the acceleration of the fluid segment, —iwv; ;, to its mass and

the force acting on it.
In entire cavity j, (11) and (12) imply

V-v=_(i/k)wPj, (15)
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which when integrated over the entire cavity implies, by the divergence theorem,
m
Zh’l)jk = aj(i/mj)ij, (16)
k=1

where a; is the area of the entire cavity, x; is the bulk modulus of the fluid within
it, and we have assumed that m channels enter the cavity, each with width h and
carrying a fluid segment with velocity v;;. This is essentially Hooke’s law, applied
to the compressible fluid occupying the entire cavity. If the cavity is a terminal and
there is an open channel carrying a current I; into it, then the relation (16) takes

the modified form
h

1; +Zh’vjk Zaj(i/lij)ij. (17)
k=1

Given the pressures P; at the terminal cavities, the equations (14) and (16) provide
a discrete set of equations, which can be solved for the pressures in the other cavities,
the velocities of the fluid plugs in the channels, and the currents I; flowing into the
terminal cavities. Assuming that the cavities are numbered in such a way that the
first n are terminals, and the remaining ones are not, the response of the network
is expressed in terms of the linear relation

I=MP (18)

between the set of pressures P = { Py, P,..., P, } at the terminals and the currents
I1={0,1,...,1,} flowing into them.

Everything carries through to the electromagnetic case where the fields are trans-
verse electric (TE). By comparing (11) and (12) with (7) and (8) we see that p and
e play the role of p and 1/k; E plays the role of P and H plays the role of R v
(and is therefore perpendicular to the channel walls). The channels themselves are
now thin plates containing a material with ¢ = 0 and g # 0. The cavities are now
aligned dielectric cylinders with € # 0 and g = 0. The electric field is constant
in each cylinder, which also can be seen directly from the result of Silveirinha and
Engheta [26] who show that, for the dual transverse magnetic (TM) problem, cylin-
ders having 4 # 0 and € = 0 have a constant magnetic field in them. It follows that
H = 0 in the matrix by direct analogy with the acoustic case where v = 0 in the
matrix. (Although magnetic fields tend to be concentrated inside a material with
positive and very large permeability, this concentration refers to the B field and not
to the H field).

We call such a circuit a transverse electric EM-circuit (see figure 3). Each equa-
tion we discussed has its analog. For example (17) becomes

I; + Z hHj, = ajiwe; B, (19)
k=1

where Hjj, is the value of H in the direction perpendicular to the walls of the plate
jk, I; is the line integral of H across the open channel, €; is the dielectric constant of
cylinder j while Ej; is the electric field in the cylinder j. So the left hand side of (19)
is the line integral of H around the terminal dielectric cylinder, while the right hand
side of (19) is the total displacement current flowing through the cylinder. Thus
(19) is nothing but Ampere’s circuital law (with Maxwell’s correction). Notice that
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instead of having an open channel one could have a free current —/; flowing next
to the terminal dielectric cylinder.
The analog of (14) is

Hjp = =i/ (ujpwlin)|(Ex — Ej), (20)

where 115 is the permeability of the plate jk. This is Faraday’s law of induction,
relating the time derivative of flux of B through any rectangle with two opposite
sides along the dielectric cylinders j and k, to the line integral of E around this
rectangle. Since H is constant and perpendicular to the plate walls, it follows from
(8) that E in the plate depends linearly on x; and zo in such a way that it is
constant along lines perpendicular to the plate walls.

In the particular case when the cylinder j has zero dielectric constant, i.e. e; =0,
(so that the junction is the analog of a cavity filled with incompressible fluid) (19)
becomes

m
I+ hHj =0, (21)
k=1
where [; = 0 if the cylinder is not a terminal cylinder. If all cylinders have zero
dielectric constant, then we call the circuit a transverse electric magnetic circuit
(M-circuit).

€20 ;8

FIGURE 3. A two-terminal transverse electric EM-circuit which is
the exact analog of the discrete acoustic network of Figure 1

It is now important to understand how can these circuits be used and in partic-
ular how they can interact with ordinary materials. The problem is analogous for
connecting an acoustic discrete network to an ordinary acoustic three-dimensional
domain. Assume that the matrix with u = oo and € = 0 only has finite extent, and
is surrounded by space with y = & = 1, in which there are TE fields. Also suppose
each terminal edge is connected to the exterior by an open channel, of width h,
containing material with ¢ = = 0. The external field E (which is the analog of
the pressure) will fix the mean value of E; at every open channel mouth j. Then
the response of the transverse EM-circuit will determine the values I;, that is of
H (which is analog to the velocity) at the open channel mouths. Let Q denote
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the region occupied by the circuit plus the remaining matrix. On the part of the
boundary of €y which corresponds to the matrix we have H = 0. Hence the E-to-
tangential value of H map (which is equivalent to the Dirichlet to Neumann map)
of Q0 will be governed by the response of the circuit. It will be completely different
from a pure matrix (for which the tangential value of H vanishes on 0€) or from
void where € = p = 1.

Note that the external field E will fix the value of the electrical field at each
open channel mouth in a efficient way if h is large enough. If h is too small this
connection will be weak, and E near each mouth will be strongly affected by flux
of R H (which is analogous to current in the acoustic setting) through the narrow
channel openings. (In a region near but not too close to each mouth the E field will
be like that generated from a line source.) However this problem can be corrected
by adding at each open channel mouth a material with e = u = 0 (see figure 4).
Hence the value of E at each mouth will be fixed by the value of E on the 'relatively
large’ cap boundary, and the flux of R H through the channel will be transferred to
the outside of the cap. This is similar to the way Silveirinha and Engheta [26] has,
for the dual TM problem, suggested the use of materials with € = 0 for transferring
energy through narrow openings.

FIGURE 4. A semicircular plug of material with ¢ = 4 = 0 can
serve to couple the open channels of an transverse electric EM-
circuit with exterior TE fields, allowing the H field to be transfered
to the exterior with negligable drop in F.

3. Electromagnetic circuits in the general case. We need to generalize the
EM-circuits to allow for fields that are not transverse electric. Like in the transverse
electric case the circuit will be composed of plates of material having ¢ = 0 and
1 # 0, joined by cylinders of dielectric material having € # 0 and p = 0, embedded
in a matrix having 4 = oo and € = 0, so that the matrix is the electrodynamic
equivalent of a void in elasticity according to (2)-(4).
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The plates and the dielectric cylinders play the physical role in our circuits that
springs and masses play in an elastic network, despite the fact that they are com-
pletely different geometrical objects. The assumption that the electromagnetic en-
ergy density in the matrix remains bounded as y — oo and € — 0 when the moduli
w and e are positive and independent of frequency, again implies that H =D = 0
in the matrix. (Note that if H = 0 in the matrix then necessarily D = iV x H/w
is also zero).

We emphasize that when € and i are real and positive in the matrix and p is very
large, while ¢ is very small then there certainly exist (high energy) solutions where
H in the matrix is not small: after all an electromagnetic wave could propagate
there, and its amplitude scaled as one desires. However, we believe (and this needs
to be rigorously verified) that the solutions in the matrix almost decouple from
the solutions in the electromagnetic circuit when p is very large and e is very
small. This should be similar to the way electromagnetic fields almost decouple at
a planar interface between two non-absorbing media, 1 and 2, for which there is a
large mismatch in the electromagnetic impedances 71 = \/p1/e1 and 19y = \/p2/ea:
when 7y /2 is very large then a plane electromagnetic wave incident from either
side of the interface will have only a tiny portion of its energy transmitted.

Alternatively, and as kindly suggested to us by a referee, one may assume that
in the matrix the product eu is large and negative. Then electromagnetic fields in
the matrix will be confined within a small skin depth of the surface which tends to
zero as €/ — —o0, again implying that H = D = 0 in the limit as ¢ — oo and
€ — 0 in such a way that ey — —o0.

Let us now analyze in detail the response of each plate. The plate could be
polygonal in shape, but for simplicity we use a basic element which is a very thin
triangular prism, of uniform height A containing a material having e = 0 and u # 0,
the top and bottom faces of which are surrounded by the matrix, as illustrated in
figure 5. We call this element a magnetic element.

X3

H=0, D=0

=0, =0 —~f L ARRRRRAPRARARRARANAIAIAL -

/I’ g\ X1
M= oo, £=0,

H=0, D=0

FIGURE 5. A triangular prism containing material with e = 0 and
1 # 0 is one basic element of a magnetic or electromagnetic circuit.
Here the arrows denote direction of the magnetic field H within
the prism.
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Let us choose our coordinate system so the bottom surface of the prism is at
x3 = 0 and the top surface at x3 = h. The triangle at the bottom of the prism
has vertices ¢,  and s, labeled in an anticlockwise order when viewed from above,
and edges qr, rs and sq. Let f14,s denote the constant value of p within the prism.
Since V-H = 0 and V x H = 0 in the prism it follows that H = V¢ where Ay = 0.
Also since the tangential component of H = V1) is zero at the top and bottom
surfaces of the prism, it follows that v is constant on the top and bottom plates:
1 is like the potential between two closely spaced capacitor plates. Hence H is
essentially constant within the prism and normal to the top and bottom surfaces,
ie. H = (0,0, Hs) where Hs cannot depend on z3 since V - H = 0 within the
prism. (In fact H will only be approximately constant due to fringing fields which,
however, should become negligible away from the edges, in the limit as the prism
becomes very thin.)

Let x' = (x1,22) denote coordinates in the plane. Assuming the point r is at
x1 = xo = 0, the three edges of the triangle lie along the three lines

x' =aty, X =at.s, X =x)+ats, (22)

each parameterized by « where t,,, is the unit vector directed from vertex m
to vertex n, and x{, is a point along the edge sq. In electromagnetic circuits we
constrain the tangential component of the electric field to take constant values
Egrtqr, Erstrs, and Eg,ts, along the three sides gr, rs and sq of the triangle. (As
we will see later the presence of dielectric cylinders along these edges will allow this
constraint to be satisfied). Let £y, {rs and £, denote the lengths of the edges gr,
rs and sq. Then Faraday’s law of induction applied to a circuit around the triangle
implies

by Eqr + lrsErg + LsqEgq = cagrs, (23)

where ¢ = iwpgrs Hz and agrs is the area of the triangle.

To find an explicit expression for the electric field in the prism, although it is not
clear we need it, let us assume that € in the prism is arbitrarily small, but non-zero
(and many factors greater than the e in the matrix which we treat as being zero),
so that in the prism V- D = 0 implies V - E = 0. Since D = 0 in the matrix and
V -D = 0 it follows that D and hence E are tangential to the top and bottom
surfaces of the prism.

Having a material with zero permittivity outside the prism allows us to have a
non-zero E field there. Then the tangential components of E can be continuous
across the top and bottom surfaces of the prism. It is not clear that this zero
permittivity in the matrix is necessary. One could instead have € # 0 and E = 0
outside the prism, with a concentrated surface B current to compensate for the
jump in the tangential component of E across the surface. Such a concentrated
surface B current should be allowed since g = oo in the matrix. (Similarly in an
elastic network, it is not necessary that the surrounding material have density p = 0,
although that is the case when the surrounding material is void. If p is non-zero
and C is close to zero then only a small boundary layer near the elastic network
will move.)

Since V x E = iwpH, we infer that

E = (—cx2/2,¢x1/2,0) + Vo, (24)

where A¢ = 0 and without loss of generality one can assume that ¢ = 0 at the
origin. The potential ¢ satisfies the Neumann boundary conditions that n-V¢ =0
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on the top and bottom surfaces of the prism, and Dirichlet boundary conditions on
the sides of the prism (specifying the tangential value of V¢ around the sides, and
the value ¢ = 0 at the origin determines the value of ¢ along the sides). Thus ¢ is
uniquely determined and a simple calculation using (22), the identity

gqrtqr + Erstrs + Esqtsq =0, (25)

(as follows from the fact that the edges form a triangle) and the fact that ages =
loqtsq - R1X(/2 is the area of the triangle (as can be easily seen by choosing xj,
to be perpendicular to ts, ) shows that the boundary conditions are satisfied with
V¢ = (a1, az2,0) where a = (a1, az2) is constant and determined by

tgr-a=Ey, trs-a=E.;. (26)

(The condition (23) ensures that E - t,, = E, along the edge sq).
It is natural to introduce three new variables

‘/:17‘ = gqrEqru ‘/7‘.9 = grsErsu ‘/sq = Equsqa (27)

which when Hs = 0 would represent the potential drops along the three edges.
Then (23) implies that Hs depends on V., V., and V, only through the sum
Vi + Vi + Vi

In keeping with the vocabulary introduced in the introduction, the material sur-
rounding the edges of the basic element exerts total applied surface free currents
Jgrs J s and Jg, along the edges gr, rs and sq, flowing in directions tg,, t,s, and tgq,
where the superscript is kept to signify that the currents are associated with the
triangle grs. (Here total signifies that these are the applied surface free current den-
sities integrated over the width of each edge, but from now on this will be assumed
so we will drop the word total). In other words, the boundary conditions on the
edges of the basic element are essentially the same as if we completely surrounded
the basic element by matrix material with ¢ = 0 and g # 0 having H = 0 and
inserted these surface free currents along the edges.

From Ampere’s circuital law applied to a circuit around each edge we deduce
that these currents are all equal and take the value hHs, by virtue of the fact that
H is constant within the triangular prism. It may seem superfluous to keep track
of the three currents Jg,, J and J; when they are all equal. However, consider
the analogous elastodynamic framework: to write the balance of forces at each
node, one introduces the forces that each spring exerts on each node even though
the forces exerted by a spring on its two extremity nodes are equal and opposite,
and given by the tension in the spring. Without introducing Jg., Jf, and Jg, it
would be difficult to derive an expression for the response matrix of an general
electromagnetic circuit, as we do in section 5.

Thus we have the relation

s iwJs, 11 1\ (Vi
T | = liwd? | =kgs [1 1 1| [Vie ], (28)
Tsrq ’L'LUJ;q 1 1 1 ‘/sq

where kqrs = h/(agrstiqrs). We use the quantities T' rather than the free currents J
so that the matrix entering the above relation is real and so that the parallel with
elastodynamics is maintained, since iwj in (2) plays the role of the body force f in
(4).

Also our introduction of the variables V rather than the variables E ensures that
the matrix is symmetric which is desirable since this property will then extend to
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the matrix describing the response of electromagnetic circuits with many elements.
(Again, this is why it is important to introduce the three currents Jg,, Jii and Jg,
rather than just a single current.) This relation (28), which is essentially Faraday’s

law of induction, is the analog of Hooke’s law,

Fi _ trs & trs _trs & trs u,

(Fg) a krs (_trs ® t’l"S t’l"S ® tTS ) (u5> ’ (29)
describing the response of a spring, where F; and F), = —F? are the forces node
r and node s, respectively, exert on the spring joining these nodes, (which is the
opposite of the definition given in [17]), u, and uy are the displacements at these
two nodes, t,s is the unit vector pointing from node r to node s, and ks is the
spring constant. Note that the matrix entering both relations (28) and (29) is real,
symmetric, degenerate and positive semidefinite. Also iwJ is playing the role of

a force, and 1/p4rs is playing the role of the elastic spring constant (to within a
proportionality factor) as might be expected by comparing (2) and (4).

i<

FIGURE 6. A magnetic circuit (M-circuit) is obtained by joining
together a collection of triangular prisms, of the type illustrated
in figure 5. At each edge there is a small diameter cylinder, not
illustrated, having € = 4 = 0. Here the terminal edges are marked
by thicker lines. An EM-circuit is obtained when a selection of the

cylinders along the edges are assigned are a dielectric constant & #
0.

A magnetic circuit (the analog of an elastic network with springs but no masses),
as illustrated in figure 6, is a collection of such triangular prisms, joined at common
edges by cylinders having u = ¢ = 0 and with a constant diameter d of the order of
h. In fact it is desirable to take e in these cylinders arbitrarily small but non zero,
since then E will be constant along the cylinder because D is (essentially) constant.
Edges in such a magnetic circuit (M-circuit) play the role of nodes in an elastic
network, and just as applied forces are confined to the terminal nodes in an elastic
network, so too can applied free currents be confined to a subset of the edges in a
magnetic circuit. We call these the terminal edges, and we call the others internal
edges. If a magnetic circuit contains an internal edge gr which is connected to only
one triangle grs, then T, = T} = T, = 0 and the triangle grs can be removed
without effecting the response of the network. (Analogously, if a spring network
contains an internal node with only one spring and no mass attached to it then that
spring can be removed without affecting the response of the network). Thus we can
restrict attention to magnetic circuits where all internal edges are connected to at
least two triangles.
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Consider an internal edge gr where m triangles meet at a cylinder. Since Ty, /(iwh)
is the value of the constant magnetic field H within the triangular prism ¢rs, at an
internal edge qr where m triangles meet at a cylinder, we have

S1m =0, (30)
s=1

as follows from Ampere’s circuital law that the line integral of H around the cylinder
is zero. Equation (30) is analogous to the balance of forces at a node in a spring
network: the sum of all free currents must be zero if there is no net free current.
At a terminal edge gr, Ampere’s circuital law implies

> Th = Ay, (31)
s=1

where A,/ (iw) is the free current applied to that edge.

We label the edges in the network so that no edge is repeated twice, i.e. if
qr labels an edge in our list, then the label rq does not appear in the list. This
essentially assigns an arrow (from ¢ to r) to each edge, and it may be impossible to
assign arrows so that no two arrows point to the same vertex in every triangle in
the circuit. Accordingly, for example, we may want the relation (28) to involve T,
and V;, rather than T}, and V,s when the label rs does not occur in the list. To
eliminate the unwanted variables in (28) we can then use the relations

Vis = ~Var, (32)
which hold for all 7, s and ¢g. Thus (28) becomes

Trqs =-T]

ST

T3, iwJs, 1 -1 1\ [V,
T | = (iwds | =kgps | -1 1 =1 [Var |, (33)
TSTq ingq 1 - 1 1 ‘/sq

and still involves a real, symmetric, degenerate, positive semi-definite matrix.

To obtain an electromagnetic circuit from a magnetic circuit (including those
magnetic circuits where some internal edges are only connected to one triangle) we
assign a non-zero value to the dielectric constant (to some or all) of the cylinders,
of diameter d, at the junctions of the triangles. (This is analogous to adding mass
to the nodes of a spring network). An example is illustrated in figure 7. At any
vertex where two or more dielectric cylinders meet we need to make sure there is
a good electrical connection between the dielectric cylinders to allow displacement
current to flow between the cylinders. (Otherwise allowing a cylinder along the edge
gr disconnected from its neighbors would introduce the extra constraint Vg, = 0
on the network, which we do not want to consider: this would be analogous to
introducing fixed internal nodes in a mass-spring network). At such vertices there
is a conservation of current: the net total current (displacement current plus applied
surface free current) flowing into each vertex must be zero. This junction condition
is automatically ensured by the constitutive law (28), as the current in the set of
edges is the sum of a set of current loops around the triangles, each conserving
current. (For simplicity we assume every edge is connected to at least one triangle.)

Now at an internal edge ¢r where m triangles meet at a dielectric cylinder the
junction locally looks similar to the junction in a transverse electric EM-circuit
where m plates meet at a dielectric cylinder, and so one expects an equation similar
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FIGURE 7. An electromagnetic circuit (EM-circuit) has small di-
ameter dielectric cylinders with € # 0 and p = 0 along a selection
of edges including possibly the terminal edges. Here there are three
terminal edges are marked by thicker lines. The dielectric cylin-
ders should be much thinner than drawn here. One internal edge,
marked by the thin line, has a cylinder with e = p = 0 attached to
it.

to (19) to hold. Ampere’s circuital law (with Maxwell’s correction) taken around a
circuit surrounding the cylinder gr implies

Z = w? 9arVars (34)

where g, = md%ey/(44y), in which g4, is the dielectric constant of the cylinder.
The term on the right arises from the fact that —i(md?/4)wey, E, is the total
displacement current flowing through the dielectric cylinder. Inside the cylinder
D = Vx (since V-D =0 and V x E = 0) where n- Vx = 0 at the cylinder walls
(since D = 0 in the matrix and in the triangular elements). At the cylinder ends
one has some flux of D. From the solution to this Neumann problem D will be
essentially constant inside the small diameter cylinder away from the ends. This
justifies our assumption that the electric field takes constant values along the edges
of a magnetic triangular element, at least when there are dielectric cylinders along
each of these edges.

The equation (34) which is essentially the same as (19) when I; = 0, is the analog
in an elastic network of Newton’s law,

ZFi = w?m,u,, (35)
s=1

describing the motion of a mass m,. at a node r where m springs meet. At a terminal
edge (34) generalizes to

Z Ty = Agr + ‘*ﬂgqrvzzr (36)
s=1
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where again A, /(iw) is the free current applied to that edge. The equations (28),
(34), and (36) hold for each triangle and each edge, and provide a system of equa-
tions which can be solved to determine the response of an arbitrary electromagnetic
circuit. This will be done in section 5.

The mathematical idealization of an electromagnetic circuit is obtained by taking
the limits h — 0 and d — 0, while say keeping the ratio d/h fixed. The moduli
of the constituent materials need to be scaled in such a way that the parameters
entering the final equations, such as k45 and gq-, remain fixed. Thus one should
take f14s proportional to h (and thus very small) and &4, proportional to 1/d? (and
thus very large).

4. Acting upon an electromagnetic circuit and creating virtual free cur-
rents. One might ask how one could conceivably act on an EM-circuit, and measure
its response. A possible scenario, as sketched in figure 8, might be to have electro-
magnetic fields incident on a body, say a cube, of material with 4 = co and € =0
containing an EM-circuit, with no two terminal edges sharing a common vertex,
positioned in such a way that only the terminal edges are exposed at the surface
of the cube. Let us suppose that there are no dielectric cylinders attached to the
terminal edges. Then the electric field will not be constant along each terminal
edge. If gr is a terminal edge between points g and r both on the same face of the
cube, then Faraday’s law of induction implies that the line integral of E along that
terminal edge will play the role of the quantity Vg, in the electromagnetic circuit
so that (28) remains satisfied.

~

I p=1, e=
’\

- U=co, €=0

FIGURE 8. A cube of material with ;1 = oo and € = 0 containing
an EM-circuit with four terminal edges exposed on the faces of the
cube. From the outside it will look as if there are free currents flow-
ing along the terminal edges (although in reality they do not exist)
with the endpoints acting as sources and sinks for the displace-
ment current field outside the cube. These virtual free currents
will be generated according to the values of the line integrals of E
along the terminal edges, and according to the response matrix of
the EM-circuit. In the dual setting, it will look like a ME-circuit
generates virtual magnetic monopole currents.

The EM-circuit causes the magnetic field H outside the body to be altered in
such a way that Ampere’s circuital law (with Maxwell’s corrections) holds around
each terminal edge. If one was not aware of the existence of the EM-circuit, from
outside the body it would look as if the magnetic field H near the terminal edge qr
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was generated by a free-current —A,, /(iw) flowing from ¢ to r. In other words, if
one incorrectly assumes that H = 0 throughout the cube, then Ampere’s circuital
law would falsely imply the existence of this free current, which we call a virtual
free current, flowing along the terminal edge. It is nothing else but the surface free
current which the EM-circuit exerts on the surrounding material at the terminal
edge gr. (In a similar fashion one can insert a mass-spring network into a cavity
in an elastic body, with only the terminal nodes attached to the boundary of the
cavity. If one is not aware of the existence of the spring mass network from outside
the cavity, it would look like the stress field in the body was altered by concentrated
forces acting at the positions of the terminal nodes.)

Now the internal edges will carry some displacement current Ay, /(iw) out of the
vicinity of the point ¢ and a displacement current Ag, /(iw) into the vicinity of r. If
one is not aware of the existence of the electromagnetic circuit it would look like the
point p is a current source and the point r is a current sink: it would look like the
ends of the virtual free-current —A,, /(iw) along the terminal edge, act as sources
and sinks for the displacement current outside the body.

If the thickness h of each terminal edge is very small, then the coupling between
the electromagnetic circuit and the fields in the exterior will be weak. As in the
case of transverse electric EM-circuits, small virtual free-currents along the terminal
edges will cause the field E(x) to be modified in the near vicinity of each terminal
edge. One suggestion to enhance the coupling is to cap each terminal edge ¢r with a
€ = p1 = 0 semicircular cylinder of length £, and diameter dy, where dy is not small.
At the two ends of this cylinder one could attach e = oo, © = 0 quarter spheres of
diameter dy, to allow the displacement current to enter and exit the points ¢ and
r with little resistance. In these quarter spheres E = 0. Faraday’s law of induction
then implies that the line integral of E along the outer surface of the semicircular
cylinder will equal the line integral of E along the terminal edge.

5. A formula for the response matrix of an EM-circuit, and the properties
of this response matrix. In a magnetic or electromagnetic circuit with n terminal
edges let us suppose these edges have been numbered from 1 to n. Then the response
of the network is governed by the linear relation

A=WV (37)

between the terminal variables A = (41, As,..., A,) which measure the real or
virtual free currents at these edges, and the variables V. = (V1,V5,...,V;,) which
measure the line integral of the electric field along these edges. When all the edges
in the circuit are terminal edges the response matrix W equals a symmetric matrix
WY with an especially simple form. From (28) and (36) the diagonal elements of
WV are given by

W g = =g + Y _ kgrs, (38)

where the sum is over vertices s such that qrs is a triangle in the circuit, while
the off-diagonal elements qur,st are zero when ¢r and st are not two edges of some
triangle in the circuit, and the remaining off diagonal elements are each given by

one of the formulas

wo o =w? kgrs, WO o =W2 = —kgrs, (39)

qr,rs qr,sq — qr,sr qr,qs
according to what edge labels are in our list, where grs is a triangle in our circuit.
Suppose we divide these edges into two groups, and order the edges so that one
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group comes first. Then the matrix relation (37) takes the block form

A\ [ WY W%\ [V, 40

Ax)  \(Wh)" W5, ) \V2)’ (40)
where A and V; are the set of variables associated with the first group and Ao
and V4 are the set of variables associated with the second group. Now consider the
case where the first group are terminal edges, while the second group are internal
edges. Then Ay = 0 and (40) implies A; = W'V, with the response matrix W of
the circuit being the Schur complement

W = W{, - Wi, (W3,) " (W{,)". (41)

This is our formula for the response matrix of an arbitrary electromagnetic circuit.
In particular it shows that the response matrix is always symmetric. It may be
that the matrix W9, is singular, in which case if A; is finite there are generally
restrictions on the possible values that V; can take.

Also recall that the matrix entering the relation (28) is positive semidefinite.
Therefore if p4.s has a non-negative imaginary part, and hence k4.5 has a non-
positive imaginary part, for each triangle ¢rs in the circuit and ¢4, and hence g4,
have a non-negative imaginary part for each edge qr in the circuit, the imaginary
part of W? will be negative semidefinite, being a sum of negative semidefinite
matrices. It follows that the quantity

S=A"-V'_A".V = _V'. (WO)//V/ _Vv". (WO)//V// (42)

will be non-negative, where the primes denote real parts, and the double primes
imaginary parts. In particular if Ao in (40) is zero, the left hand side of the above
equation reduces to

S=AL- VI —A" -V, = -V, W'V, -V . W'V, (43)

and since this is non-negative for all values of V1 we deduce that W, like (W?)"
is negative semidefinite.

6. The energy dissipated in an electromagnetic circuit. Let us consider
how much electromagnetic energy is dissipated into heat within the electromagnetic
circuit when the moduli are complex and depend on frequency. Locally the time
averaged electrical and magnetic power dissipated into heat per unit volume will be
we"|E[?/2 and wp'"|H|? /2, respectively. Within the magnetic element grs this will
integrate to

whagrspiges| H3l*/2 = (1/kqrs)"|T5.|*/ (2w)
= [(T5)(Tg. [kqrs)"” — (T5,)" (Tg, [kqrs)l/ (2w).  (44)

Now we can substitute (28) into this, and associate a portion of the resultant ex-
pression to each edge, where the portion assigned to edge qr is

(T3 Var = (T5.)" Vgl / (2w). (45)
In the dielectric cylinder ¢r the time averaged electrical power dissipated into heat
is
(mlgrd® [Hweg, | Eqr /2 = w|Ver|?gg, /2
[(_WQQqTV:zT)IVZ; - (_w29qrvzzr)”v:1/r]/(2w)' (46)
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Adding up all the contributions (45) and (46) associated with edge ¢r and using
the relation (36) we see that the total contribution associated with edge gr is zero
for an internal edge and

[AL VI — AV V! ]/ (2w) (47)

qrVqr qrVqr
for a terminal edge. By summing this expression over all terminal edges we see that
the quantity S/(2w), where S is given by (43), is the time averaged electromagnetic
energy converted into heat in the circuit.
This is consistent with Poynting’s theorem. Suppose we attached to the edge qr
a rectangular plate of thickness A and width £, in which there is a magnetic field
H with component H,,. = —Ag,/(iwh) perpendicular to the plate (and surrounded
by material with p = oo and € = 0) so that Ampere’s circuital law (with Maxwell’s
corrections) is satisfied around the terminal edge. At any instant in time the flux of
energy into the terminal gr will be hly,. (Eq.e ") (Hyre ™)', so the time averaged
energy flux is

Thus the quantity (47) has the physical interpretation as this time averaged energy
flux, and it is then natural that its sum over all terminal edges should be the time
averaged electromagnetic energy converted into heat in the circuit.

7. A correspondence between electrical circuits and a subclass of elec-
tromagnetic circuits. At fixed frequency, linear electrical circuits composed of
resistors, capacitors, and inductors, correspond to a subclass of EM-circuits, namely
those where there are a sufficient number of magnetic elements and these all have
tgrs = 0. Let us consider, for simplicity, an n-terminal planar electrical network
with terminal nodes at the vertices of a polygon and with the remainder of the
circuit lying with the polygon. If J,, is the complex current flowing from node ¢ to
node r and these nodes have complex voltages V;; and V,., then we have

Jor = Yor (Vg = Vo), (49)

where Y, is the complex admittance (having non-negative real part) of the circuit
element joining these two nodes.

@ (b) (©

F1GURE 9. Construction of an EM-circuit corresponding to the
planar electrical 4-terminal network (a). The first step in (b) is to
triangulate the network, and place appropriately valued dielectric
cylinders (not shown) along the edges, and magnetic triangles with
k = oo in each triangle. Then one adds a vertex below the network,
and magnetic triangles with £ = oo on the four triangular sides.
The four new edges, marked by thicker lines, are the terminal edges
of the EM-circuit
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For example, one may consider the four terminal network of figure 9(a) which has
two internal nodes. To build an associated EM-circuit, the first step is to triangulate
the network by adding additional edges with zero admittance, as illustrated in
9(b). To each triangle formed by this triangulation (not containing any nodes) with
vertices ¢, r and s we assign a constant k4.5 = 00. In the limit as k4. — oo the
equation (28) reduces to

qur = Tﬁs = Tqua VIJT + Vs + ‘/sq =0. (50)

Following the ideas of Engheta, Salandrino, and Ald [12] and Engheta [11] we attach
to each edge ¢r a dielectric cylinder with constant g = 1Yy, /w, which therefore
will have non-negative imaginary part. [If the circuit element is a capacitor, then
this will correspond to taking a value of the dielectric constant g, which is real and
positive; if the circuit element is a resistor, then this will correspond to taking gq,
with zero real part and positive imaginary part; if the circuit element is an inductor,
then this will correspond to taking g, almost real and negative.]
The equation (34) then becomes

1 & -
Jgr =Yy Vyr,  where Jy = o ZT‘IST = ZJ;m (51)
s=1 s=1

in which m = 1 or 2 is the number of triangles sharing the edge ¢gr, and s indexes
each of these triangles.

We next introduce an additional node 0 below the network, and for each pair ¢
and u of neighboring terminal nodes around the polygon we construct the triangle
tu0 with constant k0 = co. As illustrated in figure 9(c). This implies we have

The edges u0, with v = 1,2,...n are taken as the terminal edges of the electro-
dynamic circuit, and no dielectric cylinders are attached to them. The second
equations in (50) and (52) imply that we can assign a voltage V; to each node such
that

Var =Vg =V, V=0, V=V, (53)
Thus (51) reduces to (49). Also the first equations in (50) and (52) ensure that the
total current is a sum of loop currents. Therefore Kirchoff’s law that the sum of
currents flowing into a node equals the sum of currents flowing out of that node is
automatically satisfied. Thus the standard electrical circuit equations are satisfied.

Now the terminal edge variables V.9, v = 1,2,...n, are the voltages at the
terminal nodes of the electrical circuit. Also it is easy to see that the terminal edge
variable Jy,0 = Ayo/(iw) is the net current flowing out of the electrical circuit from
node u to node 0. Thus the map W/ (iw) is the Dirichlet to Neumann map of the
electrical circuit.

If the electrical circuit is non-planar, then we modify the circuit so that all
the terminal nodes are at the vertices of a (not necessarily convex) polygon lying
on a plane below the circuit. Then the circuit above the plane is appropriately
triangulated by adding additional nodes if necessary. A magnetic element with
k = oo is inserted in each triangle and appropriately valued dielectric cylinders are
attached to the edges. Each pair of neighboring terminal nodes on the polygon are
then attached with a magnetic element having k£ = co to an additional ground node
situated below the plane. Each edge between a terminal node and the ground node
is a terminal edge of the resulting EM-circuit.
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8. The characterization of possible response matrices. In order to character-
ize the possible response matrices of electromagnetic circuits we start by analyzing
an important subclass of them which we call electromagnetic ladder networks (EM-
ladder networks). These EM-ladder networks are constructed from the following
basic circuit element. Consider, as illustrated in the simple EM-circuit consisting
of two magnetic triangles ¢grs and rst joined by a cylinder with e = p = 0 along the
internal edge rs. Assume they have the same constant kg5 = k,ss = k. Then (28)
implies

T;T = Tﬁs = Tqu = k(‘/qT + ‘/TS + ‘/Sq)a
T} = To=T5=kVis+ Vo + Vir). (54)

The edges sq and tr, labeled 1 and 2, are taken to be the terminal edges. They are
without dielectric cylinders, so (36) and (34) imply

Tiy=Asg=—lo, T =Ay=—In, TL+T/,=0. (55)

Suppose there are dielectric cylinders along the internal edges gr and st with the
same constants ggr = gsr = g. At these edges (34) implies

T, = WiV, To = w?gViy. (56)
Solving these equations for I1o and Io; in terms of V; =V, and Vo =V, gives
Ly = —Is1 = ki2(Va — V1), (57)
where
bz = 1k~ 1/(?g)] ! (59)

has non-positive imaginary part, because k has non-positive imaginary part and
¢ has non-negative imaginary part. From now on we ignore the internal edges
of this simple EM-circuit, treating the simple EM-circuit itself as a basic ladder
network element. According to (47) and the above relations the time averaged
electromagnetic energy converted into heat in this basic ladder network element is

[115(Va = V)" = I (Ve = V1)']/ (2w) = —k{a[Va — Vi */ (2w) (59)

tn

t

Ficure 10. A simple EM-circuit which is the basic element for
constructing EM-ladder networks. The triangles qrs and rst are
magnetic elements, and dielectric cylinders are attached to the
edges gr and st. A cylinder, not shown, with e = ;4 = 0 is attached
to the edge rs to join the two magnetic elements. The edges tr and
sq (which need not be coplanar) are terminal edges.
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The relation (57) is directly analogous to that associated with an element in an
electrical circuit, although the physical interpretation of the variables is completely
different. In the setting of an electrical circuit, using the notation of [17], 1 and 2
label two nodes, V3 and V, are the potentials at these nodes, il;2/w is the current
flowing from node 1 to node 2, while il /w is the current flowing from node 2
to node 1, and ki2 = 1/L for an inductor, k12 = —w?C for a capacitor, and
k12 = —iw/R for a resistor, where L is the inductance, C' the capacitance, and R
the resistance.

We say now that the edges sq and tr are rungs connected by the basic element.
We now join a set of these basic elements together attached at the rungs, as illus-
trated in figure 11(a). Each rung may be connected one, two, or more basic elements,
and each rung may have a dielectric cylinder attached to it. An n-terminal EM-
ladder network consists of n + m rungs @, indexed by a = 1,2,...,n + m, having
no vertex in common. Each pair of rungs (Q.,@3) may have a basic element (of
the type just discussed) joining them, and from (57), we have the relation

Iop = —Iga = kap(V — Va), (60)

where kog is the constant associated with the basic element and ko = 0 if there
is no basic element joining the rungs. The first n rungs @, are the terminal edges
of the EM-ladder network and the remaining m rungs are internal rungs (and in
addition there are other internal edges in each basic element).

s~ |/

@ (b)

FIGURE 11. Figure (a) shows an EM-ladder network which is the
analog of the classical Wheatstone bridge, although its physical be-
havior is completely different. The two terminal edges are marked
by the thicker lines, and for simplicity the dielectric cylinders along
the edges of each basic ladder network element are not shown. Di-
electric cylinders could be inserted along the rungs between neigh-
boring basic ladder network elements, in which case the EM-ladder
network becomes equivalent of a Wheatstone bridge with each node
connected by a capacitor to ground. In figure (b) we have twisted
the central bridge element so that it has a response governed by
(63)

Let g, be the constant (possibly zero) associated with the dielectric cylinder
attached to the rung Q.. If this rung is an internal rung of the EM-ladder network
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then from (34) we have

n+m

Z Iaﬁ = _w2gOZVO¢7 (61)
p=1

(in which we set In, = 0) while if this rung is a terminal edge of the EM-ladder
network then from (36) we have,

n+m

A, + Z Ing = —w?2gaVa. (62)
=1

The response of the EM-ladder network is then governed by the relation A =
WYV between the terminal variables A = (A1, Ao, ..., A,) which measure the free
currents at these edges, and the variables V = (V3, V4, ..., V,,) which measure the
tangential electric field at these edges.

Note that in the basic ladder network element of figure 10 we can choose the
orientation and length of the rung ¢r as desired, and take the rung sq to be very
short and positioned near the edge tr. Also, similar to the way a single resistor
can be replaced by four resistors in series, so too can we replace a basic ladder
network element with four ladder network elements in series where the two middle
ladder network elements are very thin, and at some angle to each other. By such
constructions we can avoid intersections between ladder network elements, and we
can choose to place the terminal edges of a ladder network in whatever positions we
like, with whatever orientations we like, and with whatever lengths we like, provided
the terminal edges do not intersect.

Equations (60)-(62) are the same as those for electrical circuit in which the nodes
may be connected to ground by a capacitor. Then we can apply directly the results
of sections 2(a) and 2(b) of [17] concerning realizability of the response matrices of
electrical circuits:

For any fized real frequency w any real symmetric matric W may be realized by
an EM-ladder network having real positive values of the constants kqg and go, and
any complexr symmetric matric W with ImW > 0 can be realized by an EM-ladder
network having real positive values of the constants kog and complex values of the
constants go, having non-negative real and imaginary parts.

From this complete characterization (at fixed frequency w) of the possible re-
sponse matrices W of EM-ladder networks, both in the lossless case, and in the
lossy case we obtain the same characterization of the possible response matrices
W associated with all electromagnetic circuits having any prescribed set of discon-
nected terminal edges, both in the lossless case, and in the lossy case. Indeed, as
shown in section 5 any EM-network has a symmetric response matrix W, which is
real in the lossless case and complex with ImW > 0 in the lossy case. The previous
result states that W is the response of some EM-ladder network having the given
set of terminal edges, and this is a particular EM-circuit.

Remark 1: It could be the case that EM-circuits with some connected terminal
edges realize a smaller set of response matrices W but we do not explore this here.

Remark 2: We can introduce another basic ladder network element of an EM-
ladder network. Just by reversing the roles of the vertices ¢t and r in the original
basic ladder network element and using (32), we obtain a basic ladder network
element with the response

Ly = Ir = —kio(Vi + V). (63)
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Of course utilizing such basic ladder network elements, as done in the example of
figure 11(b), does not enlarge the class of possible response matrices W of EM-
ladder networks at fixed frequency (which is already as large as possible without
the introduction of such elements).

9. Conclusion and perspectives. Using metamaterials it is now clear that at a
given frequency any combination of properties of € and p is theoretically possible and
some have already been obtained experimentally (see [15] and references therein)
and this opens the way to the possibility of constructing EM-circuits. Our results
lay the foundations of the theory and show that EM-circuits can have a very diverse
range of behaviors. As an preliminary example of novel behaviors let us now sketch
how one could get a material with non-Maxwellian macroscopic behavior using
electromagnetic ladder networks.

In the same way that one can build a cubic network of identical resistors so too
can one build a cubic EM-ladder network, with cubes of side length ¢, of identical
basic network elements with the response (60) and the scaling ko3 = 0k where k is
some fixed constant (possibly complex, with non-positive imaginary part) joined at
edges @, with no dielectric cylinders attached to these edges (so that all g, = 0
and it corresponds mathematically to the cubic network of resistors). Just as the
cubic network of resistors responds macroscopically as a material with some effec-
tive conductivity, so too will the cubic EM-ladder network respond macroscopically
in a way which is analogous and definitely non-Maxwellian. For this periodic cubic
ladder network one will in the limit § — 0 have the relation K = kVV, where
V(x) is a local average (over say a ball of radius v/§ centered at x) of the vari-
ables V,,, and K;(x), ¢ = 1,2,3, is a local average (within this same ball) of the
variables I,5/° taken over the subset of basic ladder network elements which are
“aligned” parallel to the z;-axis. The analog of Kirchoff’s current law will imply
that macroscopically V - K = 0, and thus V satisfies V2V = 0. If such a cubic
EM-ladder network is embedded in a large cube having © = oo and € = 0 with the
terminal edges exposed at the boundary of the cube, then the interface conditions
between the electromagnetic fields outside the cube, and the fields K(x) and V (x)
inside the cube will presumably depend on the geometric microconfiguration of the
terminal edges of the EM-ladder network at the cube faces, and in particular on
the terminal edge orientations at the cube faces. The coupling between the fields
inside this metamaterial and the exterior fields could presumably be improved by
the introduction of appropriate antenna devices at the surface, in a similar way
as done by Shin, Shen and Fan [24], to couple their non-Maxwellian material to
surrounding fields.
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