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ABSTRACT. The main objective of this article is to study the dynamic tran-
sition and pattern formation for chemotactic systems modeled by the Keller-
Segel equations. We study chemotactic systems with either rich or moderated
stimulant supplies. For the rich stimulant chemotactic system, we show that
the chemotactic system always undergoes a Type-I or Type-II dynamic transi-
tion from the homogeneous state to steady state solutions. The type of transi-
tion is dictated by the sign of a non dimensional parameter b, which is derived
by incorporating the nonlinear interactions of both stable and unstable modes.
For the general Keller-Segel model where the stimulant is moderately supplied,
the system can undergo a dynamic transition to either steady state patterns
or spatiotemporal oscillations. From the pattern formation point of view, the
formation and the mechanism of both the lamella and rectangular patterns are
derived.

1. Introduction. Chemotaxis is an important phenomenon occurring in many bi-
ological individuals, and involves mobility and aggregation of the species in two
aspects: one is random walk, and the other is the chemically directed movement.
For example, in the slime mold Dictyostelium discoideum, the single-cell amoebae
move towards regions of relatively high concentration of a chemical called cylic-
AAMP which is secreted by the amoebae themselves. Many experiments demon-
strate that under proper conditions a bacterial colony can form a rather regular
pattern, which is relatively stable in certain time scale. For example, a series of ex-
perimental results on the patterns formed by the bacteria Escherichia coli (E. coli)
and Salmonella typhimurium (S. Typhimurium) were derived in [2, 3], where two
types of experiments were conducted: one is in semi-solid medium, and the other
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is in liquid medium. Both showed that when the bacteria are exposed to interme-
diates of TCA cycle, they can form various regular patterns, typically as ringlike
and sunflowerlike formations. In all these experiments, the bacteria are known to
secrete aspartate, a potent chemoattractant; also see [10, 1].

In their pioneering work [5], E. F. Keller and L. A. Segel proposed a model
in 1970, called the Keller-Segel equations, to describe the chemotactic behavior of
the slime mold amoebae. In their equations, the growth rate of amoeba cells was
ignored, i.e., the model can only depict the chemotaxis process in a small timescale,
as exhibited in the liquid medium experiments with E. Coli and S. Typhimurium by
[2, 3]. However, in the semi-solid medium experiments, the timescale of a pattern
formation process is long enough to accommodate many generations of bacteria.
Therefore, various revised models were presented by many authors, taking into
consideration the effects of the stimulant (i.e. food source) and the growth rate of
population; see among others [10] and the references therein. Also, there is a vast
literature on the mathematical studies for the Keller-Segel model; see among others
[13, 4, 12, 11].

The main objective of this article is to study the dynamic transition and pattern
formation for chemotactic systems modeled by the Keller-Segel equations. The
study is based on the dynamic transition theory developed recently by the authors.
The theory studies dynamical transitions of dissipative systems in Nature. The key
philosophy for the dynamic transition theory is to search for all transition states.
The stability and the basin of attraction of the transition states provide naturally
the mechanism of pattern formation associated with chemotactic systems.

One most important ingredient of this theory is the derivation of a general dy-
namic principle of dynamic transitions for dissipative systems., stating that all
dynamic transitions of a dissipative system are classified into three categories: con-
tinuous, catastrophic, and random, which are also called respectively as Type-I,
Type-IT and Type-III.

The continuous transition amounts to saying that the control parameter crosses
the threshold, the transition states stay in the close neighborhood of the basic
state. In fact, continuous transition is essentially characterized by the attractor
bifurcation theorem, which amounts to saying that when the system losses linear
stability and the basic state is asymptotically stable at the critical parameter value
Ao, the system undergoes a continuous dynamic transition, which is described by
the bifurcated attractor. There are many physical systems which can undergo a
continuous transition. For example, consider the classical Bénard convection, as
the Rayleigh number crosses the critical Rayleigh number, the system undergoes
a continuous transition to an attractor, homeomorphic to an (m — 1)-dimensional
sphere S™~1, which consists of steady states and transients. Here m is the number
of unstable modes of the linearized eigenvalue problem at the critical Rayleigh
number, dictated by the spatial geometry, which also defines the pattern formation
mechanism of the problem.

When the asymptotic stability of the basic state at the critical parameter is
no longer valid, the system undergoes either catastrophic or random transitions,
dictated by the nonlinear interactions as well. The dynamic transition theory gives
a systematic approach to distinguish these transitions.

Intuitively speaking, catastrophic transition corresponds to the case where the
system undergoes a more drastic change as the control parameter crosses the critical
threshold. The random transition corresponds to the case where the neighborhood
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(fluctuations) of the basic state can be divided into two regions such that fluctu-
ations in one of the regions lead to continuous transitions and those in the other
region lead to catastrophic transitions.

Two types of Keller-Segel models are addressed in this article. The first is the
model for rich stimulant chemotactic systems (with rich nutrient supplies). In this
case, the equations are a two-component system, describing the evolution of the
population density of biological individuals and the chemoattractant concentration.
We show that the chemotactic system always undergoes a Type-I or Type-1I dy-
namic transition from the homogeneous state to steady state solutions. The type
of transition is dictated by the sign of a nondimensional parameter . This pa-
rameter is derived by carefully reducing the original model to the center manifold
generated by the unstable modes, taking into consideration of the highly nonlinear
interactions of both stable and unstable modes. Hence such a parameter cannot be
derived from any linear theory, and provides a key characterization of the related
phase transitions and pattern formations.

For example, in a non-growth system in a narrow domain the system undergoes a
Type-I (continuous) transition if the spatial scale is smaller than a critical number.
Otherwise the system undergoes a Type-II (catastrophic ) transition, leading to a
more complex pattern away from the basic homogeneous state.

The second is a more general Keller-Segel model where the stimulant is moder-
ately supplied. This model is a three-component system describing the evolution
of the population density of biological individuals, the chemoattractant concentra-
tion, and the stimulant concentration. In this case, the system undergoes a dy-
namic transition to either steady state patterns or spatiotemporal oscillations. In
both transition scenarios, the transitions can be either a continuous or catastrophic
dictated respectively by two nondimensional parameter by and b;.

For simplicity, we consider in this article only the case where the first eigenvalue
of the linearized problem around the homogeneous pattern is simple (real or com-
plex), and we shall explore more general case elsewhere. In the case considered, for
the continuous transition, when the linearized eigenvalue is simple, we show that
both the lamella and rectangular pattern can form depending on the geometry of
the spatial domain. Namely, for narrow domains, the lamella pattern forms, other-
wise the rectangular pattern occurs. Of course, for catastrophic transitions, more
complex patterns emerge far from the basic homogeneous state.

We end this section by mentioning that the main objective of this article is to
determine the types of dynamic transitions, which are dictated by non-dimensional
parameters, given in terms of key system parameters as well as the geometry of
the spatial domain of the underlying system. There parameters are derived by
taking into consideration of the highly nonlinear interactions of both stable and
unstable modes. Further biological implications of the main theorems and the main
results will be carried out elsewhere, and, as a motivation, biological implications
on extreme cases are very briefly mentioned in Section 5.

The paper is arranged as follows. Section 2 introduces the Keller-Segel model.
The rich stimulant case is addressed in Section 3, and the general there-component
system is studied in Section 4. Section 5 explores some biological conclusions of the
main theorems.
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2. Keller-Segel model. The general form of the revised Keller-Segel model is
given by

ou QU3

5 = k1Auy — xV(u1 Vug) + agug <0z0+ug — u% ,

% = kgA’LLQ + iUl — ro2u2, (21)
ot

0

% = ksAuz — rzuyuz + q(x),

where u; is the population density of biological individuals, us is the chemoattrac-
tant concentration, ug is the stimulant concentration, ¢(z) is the nutrient source,
and x is a chemotactic response coefficient.

Equations (2.1) are supplemented with the Neumann condition:

8(“1, Uz, u3)

n =0 on 0. (2.2)

For simplicity, we consider in this article the case where the spatial domain 2 is
a two-dimensional (2D) rectangle:

Q= (O,ll) X (0,12) for ll 74— ZQ.

It is convenient to introduce the nondimensional form of the model. For this pur-
pose, let

t=1t'/ro, x=/ko/r27,

2.3
Ur = v O[QUI17 Ug = k2u/2/X7 usz = Oéoug, ( )

and we define the following non dimensional parameters:
A =riyagx/rake, o =aaiaa/ra, = ki/ks, (2.4)

r = ks/ka, d =r3/a/ra, 6o = q/r2000.

Then suppressing the primes, the non-dimensional form of the Keller-Segel model
is given by:

ouy us

E = /,LAUl - V(U1VUQ) + auq (1+u3 — U?) 5
0

% = Aus — us + Auq,

0

s = rAug — duius + do, (25)
ot

ou

- — 07

P
u(0) = g in Q.

The non-dimensional of € is written as

Q= (07L1) X (O,Lg) with L1 7& LQ.
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Often times, the following form of the Keller-Segel equations is discussed in some
literatures:

ou U

0”71 = pAuy — V(u1 Vug) + auq (1 +3u3 — u?) ,

% = ?”AUg — 5U1’LL3 + 507

— Aug + ug = Aug. (2.6)
ol _,

In|yq

u(0) = ug.

The biological significance of (2.6) is that the diffusion and degradation of the
chemoattractant secreted by the bacteria themselves are almost balanced by their
production. The main advantage of (2.6) lies in its mathematical simplicity. Math-
ematically it is easy to see that all eigenvalues of the linear terms Aus — us are all
negative. Hence by the center manifold reduction technique, it is not hard to see
that the solutions of (2.5) will converge to solutions of (2.6) as time goes to infinity.
This is consistent that from the main results of this article, the main characteristics
of the pattern formation associated with this reduced model are retained.

Of course, the reduced system may loss certain transient biological behavior,
and it appears that it may provide a better description for the system where the
chemoattractant is much faster the dynamics of the organisms.

3. Dynamic transitions for rich stimulant system.

3.1. The model. We know that as nutrient ug is richly supplied, the Keller-Segel
model (2.1) is reduced to a two-component system:

% = pAuy — V(u1 Vug) 4+ auq (1 — u?),
8“2 o
W = AUQ — Ug + )\’U,l, (31)
8(U1,U2) -0
on  pq
u(0) = up.

It is easy to see that u* = (1, A) is a steady state of (3.1). Consider the deviation
from u*:

u=u"+u.

Suppressing the primes, the system (3.1) is then transformed into

% = pAuy — 20u; — Aug — V(us Vug) — 3au% — aui’,
8u2
—Z = Auy — A
ot U — U2 + Aug, (3.2)
3(’&1, ’UQ)
AU, B2) =0,
on 20

u(0) = up.
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3.2. Dynamic transition and pattern formation for the diffusion and degra-
dation balanced case. We start with an important case where the diffusion and
degradation of the chemoattractant secreted by the bacteria themselves are almost
balanced by their production. In this case, the second equation in (3.2) is given by
0= AUQ — U2 + A’U,l.

With the Newman boundary condition for ug, we have ug = A\[-A + 1]71u; and
the functional form of the resulting equations are given by

ou

aTl = Laur + G(us, N), (3.3)
where the operators L) : Hy — H and G : H; x R — R are defined by

Laug = pAuy — 20u; — AA[=A + T 1y,
G(u1, A) = = AV (u1 V[=A + I17 ) — 3aui — au?.
Here the two Hilbert spaces H and H; are defined by
| ur
on
To study the dynamic transition of this problem, we need to consider the lin-
earized eigenvalue problem of (3.3):

Lye = B(Ne. (3.5)

Let pr and e; be the eigenvalues and eigenfunctions of —A with the Neumann
boundary condition given by

klﬂl’l k’QTFJCQ 2 ]{3% k%
= C0S ——— COS ——— = — + = 3.6
CL Ll L2 5 Pk 7T L% + L% ’ ( )
for any k = (ki,k2) € N3. Here N, is the set of all nonnegative integers. In
particular, eg = 1 and py = 0.

Obviously, the functions in (3.6) are also eigenvectors of (3.5), and the corre-
sponding eigenvalues (5 are

(3.4)

H = L*(Q), Hy = {u; € H*(Q) =0on Q}.

APk
A)=— —2a+ . 3.7
Be(A) = —ppr — 20 T+ on (3.7)
Define a critical parameter by
1 2
Mo = min e Dor +20) (3.8)
Pk Pk

Let
S={K=(K,K>) € N?% achieves the minimization in (3.8)}.
Then it follows from (3.7) and (3.8) that

<0 A<

Br(A\) {4 =0 if A=\ VK = (K, K>») € S, (3.9)
>0 if A> A,

Br(Ae) <0 Vk € Z* with k ¢ S. (3.10)

Notice that for any K = (K1, K3) € S, K # 0, and

A, = Wox & Dl +20) (3.11)

PK
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We note that for properly choosing spatial geometry, we have

K? K2 200

2 (181 2 /

= =4 = | =4/ = VK = (K1, K S .12
PK =T ( % g> 7 ( 1, 2) €0, (3 )
Ae =20+ p+ 24/ 2. (3.13)

Conditions (3.9) and (3.10) give rise to a dynamic transition of (3.3) from (u, \) =
(0, A.). For simplicity, we denote

K £ (K1,0), K>=(0,K>),
and K = (K3, K3) € S. Also, we introduce a parameter as
24 — 15sign(K1 K>)
4 — 2sign(K; K»)
(2upK + @) 2upi + 28apik + 4o — ppi)
[1 +sign(K K2)] - [(pp2x + 2a)(1 4 par) — Aepax]
22upK pr, + dopx, — 3api)
(1 + signKy)p% [(uparc, +20)(1 + parc,) — Aep2k, )
x [(ppx +20)(2p%, — 6pK, prc, — pic) + 6aprc (4pre, +1)]
2(2upk pr, + dopi, — 3api)
(1 + signKs)pf ((1parc, + 20) (1 + par,) — Aep2k,)
X [(npr + 20)(2p%, — 6pK, prc, — pic) + 6aprc (dpxc, + 1)),

b=—3upx + |12 — (3.14)

The following is the main dynamic transition theorem, providing a precise crite-
rion for the transition type and the pattern formation mechanism of the system.

Theorem 3.1. Let b be the parameter defined by (3.14). Assume that the eigenvalue
B satisfying (3.9) is simple. Then, for the system (3.3) we have the following
assertions:

(1) The system always undergoes a dynamic transition at (u, \) = (0, A\.). Namely,
the basic state u = 0 is asymptotically stable for X < A, and is unstable for
A> A

(2) For the case where b < 0, this transition is continuous (Type-I). I particular,
the system bifurcates from (0, A.) to two steady state solutions on A > A,
which can be expressed as

1 5}(()\) Klﬂ'l'l KQTFZZ?Q 1/2
uf(x,)\):iy/ 20 cos I cos T +0<K/), (3.15)

and ui (z,\) are attractors.

(8) For the case b > 0, this transition is jump (Type-1I), and the system has two
saddle-node bifurcation solutions at some A*(0 < X\* < A.) such that there are
two branches vy and vj of steady states bifurcated from (v*, \*), and there are
two other branches vy and vy bifurcated from (u*, \*). In addition, vy and vy
are saddles, vy and vy are attractors, with v}, vy — 0 as A — ..

Two remarks are now in order.

Remark 3.1. From the pattern formation point of view, for the Type-I transition,
the patterns described by the transition solutions given in (3.15) are either lamella
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or rectangular:

lamella pattern for K1 Ko =0,
rectangular pattern for K1 K5 # 0.

In the case where b > 0, the system undergoes a more drastic change. As \* <
A < A, the homogeneous state, the new patterns v3 and v} are metastable. For
A > A, the system undergoes transitions to more complex patterns away from the
basic homogeneous sate form.

Remark 3.2. If we take the growth term f(u) as f = au;(1 — u;) instead of
f=au(1—u?)in (3.1), (3.2) and (3.3), then Theorem 3.1 still holds true except
the assertion on the existence of the two saddle-node bifurcation solutions, and the
parameter should be replaced by

(2ppr + ) (2p\ + 10apx + a — ppk)
2(1 + sign K Ko)[(up2x + ) (1 + p2r) — Acprk]
upkpr, +2apK, — apk)
(1 +signK 1)\ % [(up2r, +a)(1+ par,) — Aepar, |

X [(mpk + @) (20, — 6pK, pr, — i) + 200K (4pK, + 1))

(2ppK pKs + 200K, — OpK)
(1 +signKo) A% [(up2r, + a)(1+ par,) — Aepar,]

x [(upx + @) (2N, — 6pK, pi, — pi) + 20pK (4px, + 1))

b=—pupx +a—

3.3. Pattern formation and dynamic transition for the general case. Con-
sider the general case (3.1). In this case, the unknown variable becomes v = (u1, uz2),
and the basic function spaces are then defined by

H = L*(Q,R?), Hy = {u € H*(Q,R?) | % =0on Q} .
n

Let Ly : Hi — H and G : H; — H be defined by

L,\u:<MA2a —-A )u,

A A—-1 (3.16)
Glu) = ( —V(u1 Vug) (; 3au? — au$ > . .
The linearized eigenvalue problem of (3.2) is
Lap = By, (3.17)
where Ly : H; — H is defined by (3.16). Let By be the matrices given by
r_ [ —(ppr +2a) Pk
B} = ( | oy ) (3.18)

where pj are the eigenvalues as in (3.6). It is easy to see that all eigenvectors ¢y,
and eigenvalues [y of (3.17) can be expressed as follows

o = < Sk1ck ) : (3.19)

Eraek

A k1) k1
B ( Ero ) —Bk( Ero > (3.20)
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where ey, are as in (3.6), and Sy, are also the eigenvalues of By. By (3.18), B¢ can
be expressed by

1
BEN) = 5 [~B % VB = 4(ox + 1){upe +20) — pw)|
B=(p+1)ps+2a+1
Let A\, be the parameter as defined by (3.8). It follows from (3.21) and (3.8) that

(3.21)

<0 if A<,
Br(N)q =0 ifx=A, (3.22)
>0 i A> A,

{ Ref, (\c) <0 Vk € Z2, (3.23)

ReB (\) <0 Vk € Z* with pi # pk,
with K = (K1, K2) as in (3.11).
Then we have the following dynamic transition theorem.

Theorem 3.2. Letb be the parameter defined by (3.14). Assume that the eigenvalue
BI"; satisfying (3.22) is simple. Then the assertions of Theorem 3.1 hold true for
(3.2), with the expression (3.15) replaced by

K K
o = k) () ) eon S o B 4 o
8(upr + pr + 20 +1)
(px +1)3[b]

3.4. Proof of main theorems.

Proof of Theorem 3.1. Assertion (1) follows directly from the general dynamic tran-
sition theorem in Chapter 2 of [7]. To prove Assertions (2) and (3), we need to reduce
(3.3) to the center manifold near A = A.. We note that although the underlying
system is now quasilinear in this general case, the center manifold reduction holds
true as well; see [6] for details.
To this end, let u = zey, + @, where ®(x) the center manifold function of (3.3).
Since Ly : Hy — H is symmetric, the reduced equation is given by
dx
e A -
dt ﬂK( )1‘—|— (6[{,6[{)
where G : Hy — H is defined by (3.4), and
2 — sign(K K.
(ex,ex) = / efedr = WKN (3.25)
Q

It is known that the center manifold function satisfies that ®(x) = O(x?). A
direct computation shows that

< G(IGK + P, )\C), e > (3.26)

= —ax?’/e}l(dm—Gax/e%((I)dx
Q Q

—I—)\Cx/ lexVer - V(=A + )10 + 3V, - V(—A + 1) exc]da + o(a?).
Q

(G(zex + D, M), ex), (3.24)

It is clear that
1

pr +1

(—A —I-I)_le[( = €K, Aex = —pgek.
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We infer from (3.26) that

(Glzerx + @, Ac), ex) :—am?’/ e}l(dm—Gax/ e2-ddx (3.27)
Q Q
1
+ A / Vek[*® — [Vex [* (A7)~ '@
v Q|:PK+1| x| Vex"(=A1)

+orek(—A+1)7'®] dx + o(z?).

Using the approximation formula for center manifold functions given in (A.11)
in [8], ® satisfies the equation

— Ly, ® = Go(weg, )+ o(x?) (3.28)
2 PEAc 2 Ac 2 2
= —_ 3 —_— .
T [(pKJrl a) ex pK+1|VeK| + o(z?)

In view of (3.6), we find

1
6%{ = 1[60 + ek, + ek, + 62}(},

(3.29)
9 1
Ve |” = Jloreo + (pre = pri)ezi, + (pry = prz)ezr, — prezl.
Thus, (3.28) is written as
Cr = [gaee+ (20 50) (3.30)
AP =7 0 Py 2K, .
2055 Ae ) < 2pK A > } 2
+ —3a e + es —3a | e + o(z”).
(22202 — 50 ) cam, + (2252 30 ) ear| + o)
Denote by
D = Ppeg + Dok, €2k, + Par,e2K, + Pakeax. (3.31)
Note that
— L)\CGQK = 1 [(1 + pQK)(,upK + 204) — )\CpQK] €K - (3.32)
P2K
Then, by (3.11) and (3.30)-(3.32) we obtain
3
(PO = _g7
Do — (1T P2r:)CHprpr, +40pK, — 3apK)
2K
(3.33)

 Apr (1 + pare, ) (mp2k, + 200) — par, Ac]’
Borc, = (14 p2ks) (2ppK pKs + dapr, — 3apk)
Apr (14 p2ry ) (1p2rc, +20) = p2ry A
(14 por)2ppx + )
A[(1 + poxc) P2k + 20) — parAc]

b

Do =
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Inserting (3.31) and (3.6) into (3.27) we get

< G(zeg + D, A\.), e >= —amg/ e%(da: (3.34)
Q
2 — sign(K K
~ Gax( S1§n( 1K3)) / [@oed + Pok, €3, + Por, €3, + Paredy] da
Q
Ac(2 — sign(K1 K>))
Ad(px +1) /Q [pr®oel + (pKs — Pi,y) P2k, €3k,

+(pr, — Prcs) P2y €35, — PrParcedy | da

)\Cx(2—sign(K1K2))/ { 2, PKy — PK
. Ppes + Fhz P21
1 o PR T

2
¢2I(l 62K1

PK: — PKs 2 PK 2
+——=Pog. e — Pye dzr
Lt po, 0o T gy K QK}

)\CPKQS(Q — sign(KlKg)) / |: 2 (I)QK 2 @2}{ 2

+ Ppeh + ————e ———¢
1 ; 0€0 1+ porc, 2K, 1 por, 2K

n Dox

1+ pak

e%K} dx + o(z?®)

_ —a:r3/ e‘}(dm—l— |Q|x(2 — sign(K1 K>))
Q 4

1 (AC(PKQ — PKy) | 2Acpi,

1+ signK; 1+ pr 1+ pak,
. 1 ()\c(pKl —PKs) | 2AePr,
1+ signKo 1+ pk 1+ pak,

1 AcPK 2Xep

+2(1—|-sign(K1K2)) <_1+pK 14 pax

X {(MPK —4a)Pg + - 6a> Pok,

- 6a> (I)2K2

- 6a> (I)ZK:| dx + o(x?).

Also, we note that

L L 24 — 15sign(K, K.
/(;}L{ :/ e%(.ldxl/ e}L(dez — 5slgn( 1 2)'
Q 0 0 64

Then, putting (3.33) into (3.34) we get

(2 = sign(K1 K»)) |2,

< Greg + P, \.), e >= 3

+ o(z?), (3.35)

where b is the parameter given by (3.14).
By (3.24) and (3.35), we derive the reduced equation on the center manifold as

follows:

d b

dit” = fr(Nz + 2o’ + ofa?). (3.36)
Based on the dynamic transition theory developed in Chapter 2 in [7], we obtain
Assertions (2) and (3), except that two saddle-node bifurcations occur at the same
point A = A*. To prove this conclusion, we note that if u*(z) is a steady state

solution of (3.3), then
vi(z)=u"(z+7)=u(z—m)

is also a steady state solution of (3.3). This is because the eigenvectors (3.6) form
an orthogonal base of H;. Hence, two saddle-node bifurcations on A < A. imply
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that they must occur at the same point A = A\*. Thus the proof of the theorem is
complete. O

Proof of Theorem 3.2. Assertion (1) follows from (3.22) and (3.23). To prove As-
sertions (2) and (3), we need to get the reduced equation of (3.2) to the center
manifold near A = ..
Let u = z- @i + P, where @ is the eigenvector of (3.17) corresponding to Sk at
A = A, and ®(x) the center manifold function of (3.2). Then the reduced equation
of (3.2) read
d—x—ﬁ+()\)x+;<G($- + @), o) > (3.37)
dt 7K <9,k > pRTE R '
Here @7 is the conjugate eigenvector of .
By (3.19) and (3.20), @ is written as

or = (Grer, &ex)’, (3.38)
with (&1, &2) satisfying
—(upK + 2a) PK &\
( N o 1) ) ( : ) =0, (3.39)
from which we get
(&1,6) = (px +1, Ac). (3.40)

Likewise, ¢% is
o = (Een, Eer)', (3.41)

with (£F,&5) satisfying
< —(upx + 200) A ) (é“i‘ >_0
PK —(pr +1) & ’

(&1,8) = (pr+1, PK)- (3.42)
By (3.16), the nonlinear operator G is

G(ur,u2) = Go(ur, uz2) + Ga(u1,us),
Ga(ur,uz) = —(Vuy Vug 4 uy Auy + 3aus) ( (1) ) ;

which yields

Gs(uy,uz) = —ou? ( (1) ) .
It is known that the center manifold function
B(z) = (P1(2), P2()) = O(?).
Then, in view of (3.38) and (3.40), by direct computation we derive that
(G(x&iex + @1, xéoex + P2), ¢k) (3.43)
= (2Ga(&rex, B2) + 2Ga(P1, &oec) + 2°Gi(Erer, Saex ), i) + o(a”)

1
= €] /9[52(1’1|V€K|2 - 551A<I)26%( — 60, P15 ]dx

- affffﬁ/ eedr + o(x3).
Q



DYNAMIC TRANSITION AND PATTERN FORMATION 2821

Using the approximation formula for center manifold functions given in (A.11)
in [8], ® = (P, P2) satisfies

—Ly,® = —2°Go(&rex, boex) + o(2?) (3.44)

—2*(&16[Ver[* + (307 — Q162px)e) ( 5 ) +o(%).

From (3.6) we see that

1 1
6% 21(1 + ear, ) (1 + eak,) = 1(60 + eak, + €2k, + €2k),

K K
Ver[? =74 (1 = ear (L + o) + P42 (L4 ear, ) (1 = earc)
:pTKeO —+ PKy — Py ;pKl esr, + Py~ PK, ;PKZ €K, — pTKCQK.
Thus, (3.44) is written as
&2
L,\CCI) = — 1 (30&5160 + (30&51 — 2€2pK1)62K1 (345)

+ (Bads — 282pK, )e2k, + (3aés — 262pK )ear) ( é ) + o(a?).

Let

(Pl @0 ¢2K1 ®2K2 ¢2K
< o, > B ( @é )60+< @%Kl €25, + (I)%Kz €2k, + @%K earc (3.46)

It is clear that
(I,k (I)k
L)\(q)é:)e}c232<¢é)€k,

where Bj is the matrix given by (3.18). Then by (3.45) and (3.46) we have

( o ) _ (30} — 2§1§2Pk)372B,1 ( 1 )

(D%k 4 2k O

for k = K, K1, Ko, and By, = BJy.
Direct computation shows that

< ié ) _ 35%81’2 ( A1 ) (3.47)

&30y — 282pK,) (14 pak,
P .4
4d€tBQK1 )\c ’ (3 8)

4detB2K2 Ac

4det By

(3=
< 2K ) _ &1(3061 — 26pk,) ( L+ par, ) : (3.49)
()

_ &(3a&i — 26pk) ( 1 +)\p2K ) . (3.50)
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Inserting (3.47) into (3.43), by (3.40) and (3.42) we get

(2 —sign Ky Ko)(px + 1)
8

+ 2(&pr — 601) PV

< Glzpg + ), 0 >=

8a(px + 1)3a® [, efeda
(2 — signK1 K>)[Q|
2 2K
- —_ _ @ 1
+ 1+ Sigl’lKl (52(pK2 pKl) 60451) 1z
(& (px, — i) — Ba) O
1+ signKy ! 2 2

2 —sien K1 K-
—#(ﬁsz + 6a&;) 035w

(pK + 1)p2K1 2K
@ 1
T +signk, 2 *7F

(P + Dpr, 22y
1+ signKy
(pr + 1)parc (2 — signK 1 K»)

+ 1 (D%Kx} + o(z?).

By definition, we have
PK, + PK, = PK, P2 = 4pK VK = (K7, Ka),

<, " >= [(PK + 1)2 + pK)\c] / e%{dm
Q

- 2 — Sign(KlKg)
= #

In view of (3.47)-(3.50), the reduced equation (3.37) is given by

(px + D (upr + pr + 200+ 1)[Q].

dx + (pr +1)3ba3
— = BNz +
dt BNz 8(upk + pr + 200+ 1)

+o(z?), (3.51)

where b is the parameter as in (3.14). Then the theorem follows readily from (3.51).
The proof is complete. O

4. Transition of three-component systems.

4.1. The model. Hereafter §; > 0 is always assumed to be a constant. Hence,
(2.6) has a positive constant steady state u* given by

do

. N 1/2
“3> Couwi=al, el =20 (41)

1+ w3

0

* * * : *
(ul,u3,u3) with u] = <

It is easy to see that uj is the unique positive real root of the cubic equation
5\” 5\”
3 0 0
zr—=(—=] z—|—=) =0.

(u1,ug,us3) = (uy + uy, us + ug, uj + uq). (4.2)

Consider the translation
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Then equations (2.6) are equivalent to

0

—5;1 = pAuy — 200t u; — ulAuy +

0

% = rAug — dujug — duzuy — dujus,

— AUQ —+ Uo = )\Ul,
5(”1&2#3)

—0
on 00 ’

u(0) = uyg,

where u = (u1,u3), ug = \[-A + 1] uy, and

*

afuy + uy)(us + uj)

au + o(u)
— 1 u),
(14 u3)? 319

g(u) = —V(u1Vug) — 3auju? — aui + T+
oaujus oaujus auzuy
14wy (14wu$)? 1+ul
The Taylor expansion of g at u = 0 is expressed by
2
U Uus oujug
u) = —V(uVug) — 3auiu? + —
g( ) ( 1 2) 1%1 (1 ¥ u§)2 (1 ¥ u§)3
2 *,3
o — ouug auiuy +o(3).

Let
H = L*(Q,R?),

(T+wuz)® ~ (1+u3)t

Hy, = {u € H*(Q,R?)| g—z =0 on IN}.

Define the operators Ly : Hy — H and G : H; — H by

LAu: uA—2ozu*1‘2 —)\UTA[_A‘i‘I]_l m < U7
—ouj rA — duj

G(%/\):( g(u) )

75U1U3

Then the problem (4.3) takes the following the abstract form:

It is known that the inverse mapping
[~A+ I ' H — H

is a bounded linear operator. Therefore we have

Ly : Hi — H is a sector operator, and

1
Gy : Hy — H is C*° bounded operator for 6 > 3

us3

2823

(4.3)

We note that the transition of (4.3) from u = 0 is equivalent to that of (2.6) from

u=u*.
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Theorems 3.1 and 3.2 show that a two-component system undergoes only a dy-
namic transition to steady states. As we shall see, the transition for the three-
component system (2.5) is quite different — it can undergo both steady state and
spatiotemporal transitions.

4.2. Linearized eigenvalue of (2.6). The eigenvalue equations of (2.6) at the
steady state (u}, ud,ul) given by (4.1) in their abstract form are given by

Lap = By, (4.7)
where Ly : Hy — H as defined in (4.5). The explicit form of (4.7) is given by

pA —2aui? — MuiA[-A+ 171 % < U1 > _ﬂ< P >
—duj rA — duj V3 Y3 )

As before, let pi and e be the eigenvalue and eigenvector of —/A with Neumann
boundary condition given by (3.6), and let

Ui = (), 105) = (Errens Ersen)-

Then, it is easy to see that 1, is an eigenvector of (4.7) provided that (£x1,&x3) € R?
is an eigenvector of the matrix Ag:

A Skt k1
Ak(fk?))ﬂk<§k3 )’

Aprus %2 au’
A= | Tree THeE 2008 e ) (4.8)
—ouj —rpp — 0uj

with

The eigenvalues ), of A, which are also eigenvalues of (4.7), are expressed by

ﬂlf()\) = % {a +4/a? — 4detA2‘] ,

ot (4.9)
PEUL #2 *
a=trd) = — — 2aui® — rpg — ouj.
1+ pr HPk 1 Pk 1
To derive the PES, we introduce two parameters as follows:
1
A, = min M (oK + 20ui” + rpg + dui], (4.10)
PK PK Uy
1 0
Ac = min o +1) pupK + 20u}* + a (4.11)

P PRUT (1+u3)?(rpk +0uy) |’
Let K = (K1, K») and K* = (K7, K3) be the integer pairs such that px and pg«
satisfy (4.10) and (4.11) respectively.
Theorem 4.1. Let A. and ). be the parameters defined by (4.10) and (4.11) re-
spectively. Then we have the following assertions:

(1) As A. < A, the eigenvalues B (\) of (4.9) are a pair of conjugate complex
numbers near A = A, and all eigenvalues of (/.9) satisfy

<0 A<A,,
Re (V)¢ =0 A=A, (4.12)
>0 A> A,

Re BE(A.) <0, Vk € Z2 with py # px (4.13)
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(2) As . < A, the eigenvalue 5. () is real near X = ., and all of (/.9) satisfy

<0, A<,
Br-(N)3 =0, A=, (4.14)
>0, A> ),

ReBy; (X)) <0, V[k| > 0. (4.15)

Proof. By (4.9) we can see that i (\) are a pair of complex eigenvalues of (4.7)
near some A = \*, and satisfy

<0, A<\
RefE(N){ =0, A=),
>0, A> N\

if and only if
trA)” =0, det Ay > 0.

Likewise, 8, (A) is real near A = \* and satisfies

<0, A<AY,
BEN =0, A=,
>0, A> A\,

if and only if
trAy” <0, det A} =0
Due to the definition of A\, and A., when A. < A\. we have
tr A?{ =0,

N . (4.16)
tr Aye <0, Vk e Z® with py # prk,
det Ale >0, V]k| >0,
and when A\, < A,
det Ay =0,
det Aye >0, Vk € Z* with py # pk, (4.17)

tr Ay <0, V|k|>0.
It is known that the real parts of Bki are negative at A if and only if
det A} >0, tr A} <0.

Hence, Assertions (1) and (2) follow from (4.16) and (4.17) respectively. The theo-
rem is proved. O

4.3. Dynamic transition theorem for (2.6). Based on Theorem 4.1, we imme-
diately get the following transition theorem for (4.3).

Theorem 4.2. Let A, and A\, be given by (4.10) and (4.11) respectively. Then the
following assertions hold true for (4.3):

(1) When A. < A, the system undergoes a dynamic transition to periodic solu-
tions at (u, \) = (0, A.). In particular, if the eigenvalues ,Bli( satisfying (4.12)
are complex simple, then there is a parameter by such that the dynamic tran-
sition is continuous (Type-I) as by < 0, and is jump (Type-1I) as by > 0 with
a singularity separation of periodic solutions at some X\* < A..
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(2) When A\. < A., the system undergoes a dynamic transition to steady states
at (u,\) = (0,\.). If Bf.(N\) satisfying (4.14) is simple, then there exists a
parameter by such that the transition is continuous as by < 0, and jumping

as b1~> 0 with two saddle-node bifurcations at some A< A from (u™,\) and
(u™, A).

Remark 4.1. By applying the standard procedure used in the preceding sections,
we can derive explicit formulas for the two parameters by and by in Theorem 4.2.
However, due to their complexity, we omit the details. Instead in the following, we
shall give a method to calculate by, and for b; we refer the interested readers to the
proof of Theorem 3.2.

4.4. Computational procedure of by. The procedure to compute the parameter
bo in Assertion (1) of Theorem 4.2 is divided into a few steps as follows.

Step 1. The reduced equations of (4.6) to center manifold at A = A, are expressed

by
— = — <G DA, 0" >,
dt py+<<p7<p*> (ot yp+ @A) 0 (4.18)
dy 1 '
Y g —— O, A, 0" >,
7 px+<w7¢*><G(xcp+yw+ JA) T >

where ¢ and 1 are the eigenvectors of Ly at A = A.,¢* and ¥* the conjugate
eigenvectors, and Ly, Gy : Hy — H the operators defined by (4.5), @ is the center
manifold function.

Step 2. Solving the eigenvectors o, and their conjugates ¢*, 1¥*. We know that
¥; and 1} are

P = (77161(777261()7

Y= (gleKvé-QeK)?
4.19
2 1/}* = (nikeK7n;eK>7 ( )

* = (5;61(7 5561{)’

and &;, & satisfy

*
QU

Aeprul *
Thow —HPK =207y ( e ﬂ( " ) :
—duj —rpr — ouj &2 2
Aeprul * au’
14p—I;K1 — pupx — 2cui? 7(1_“;;)2 ( mo\ _ _p ( &1 ) 7
—duj —rpg — ou} 72 &2
and
Acpru’ * *
o~ MPK —200i7 —bu g\__ (m
auy o _Sut 5* = —p n*
(Itu3)? TPK — 0Uy 2 2
A uy * * * *
B~ How =200t 0 ( " ) - p( ; )
% —rpg — 0uj 73 3 )’

where A. is as in (4.10), e, as in (3.6), and

A pKU* * *

710 ; L_ UPK — 2au12 =rpx + 0uj,
ad .

p = det AAKC = 0 i - (vpK + 6u1)2.

(143
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Here, we use that ujuf = dp/J. From these equations we obtain
&1 = —(rpx +duj), fzzgu§7
-0 &= (420
n = ous, M37PK + Oui.

Due to (4.19) and (4.20) we see that

<@t >=<1h, Y7 >= (mny +77277§)/ ekdr = —5pu§/ ekd,
Q Q
<@, " >=< 1, " >=0.
Step 3. We need to calculate
<Gzo+yy + @A), w; >,

with w] = ¢*,we = Y™.

By (4.5) we have G = G5 + (i, and

autw?
Gao(w,\) = ( —)\V(W1V(—A+I)—1w1)5— Sauiw? + (?1552 _ (1+1u§§3 ) |
—0Wi1Wo
_aw3_ awwﬁ + au;wg
G3(CJJ,)\) = 1 (1+u0§)3 (1+u§)4 ,

for w = (w13w2) € H,. By (4.20) we find
< Gs(ze+yp 4+ P, A.), 0" >=0.

Noting that

/ exejerdr =0, VK,J, I€ ZQ,
<I>Q: (®1,®2) = O(2?),
we have
< Ga(zp+yd + 0,A.),¢7)
= /SZ[G‘@ngl + &3k gald
= (by & =0)
= /Q Sex[—6(x6iex +ymex + @1)(x&2 + yn2 + o)]dx

= —0& <§2:E/ <I>1e§(d:c+§1x/ CIDQe%(dermy/ @26%{d$>.
Q Q Q
Thus, we get
<Glze+yp + 0,Ac), 0" > (4.21)

= =& |:§2£C/ <I>1eﬁ<dx+§1x/ ége%dx—i—nly/ @26%(d$:| + 0(3).
Q Q Q
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In the same fashion, we derive

<Gro+yp + @A), 9" > (4.22)
_ a£277>1k 6 * * * 2 * * 2
=\ 7z auiéiny — 0y | | @rejdr — 6auimniy | Piexdx
(1+u3) Q Q

amny 20ui&ony *) / 2
+ - ) z | Pyesdx
<<1+u§)2 (a8 ) " J P26

* A *
+ <ozn1771 - (577177§> y/ doed dr + S x/ ®,|Veg [*dz
( Q L+ Q

1+ ujf)? PK
Acming 1
4 i y/ O |Ver|?dr — fAcflnfx/ A A(~A+ 1) Dy dr
1+por7 Jo 2 Q
1
- §Acn17ﬁy/ 2 A=A+ 1)7'®dx
Q

| ouy 3 _ af3& 3 / 4 3
{”l<<1+u;>4§2 0+ ) ‘“51) o K|
* 0‘53771 2 4 2
i (i doctm) [ ] %

- <3a€mfni‘ /Q e‘iﬂ%) zy? — (omf’ni‘ /Q e‘;‘ﬂ%) ¥+ o(3).

Step 4. By the formula of center manifold function in the complex case in Theorem
A1 in [8], we have

o-(5)-() () ()

q)l
— Ly, ( ‘Di ) = 2°G11 + 2y(G12 + Ga1) + ¥* G,

with

(I)2
— (Lir +4p2)L>\C ( (I)é ) = 2p2 [(562 — yg)(GQQ — Gll) — QZy(Glg + Ggl)] s

(DS
(L3, +4p°) < <I>§ > =p [(y° — #%)(G12 + Ga1) + 22y(G11 — Ga2)] -

(4.24)
Here G;; = Go(¥%, W7, \.) with U! = ¢ and U2 = 1), and G is as defined in Step
3. Namely

i —1yJ vigg gl i ]
Gij = ( —ANV(UV(=A+1)710) > n (C{_Hlt;fz - a(?fiuz)f - 3au; W vy 7
0 AR

with U! = Teg,1 <4, <2, and
ri=¢&, Ty=6&, Ti=m, TI3=n, (4.25)

which are given by (4.20).
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Direct calculation shows that

AT r 1
Gij = 1+ e LV (exVek) ( 0 > (4.26)
aliT? au*Tird i ]
+e% Tr)? ~ (1Jlru§)_32 - BauiliIy .
—TT

For simplicity, we only consider the case where K = (K7,0). In this case, by (3.6)
we can see that

1
e = 5(60 +ek), Vi(exVek)= —pgesk.

Then, by (4.26), we have

ho. h2K
1J iJ
where
1| alir? auTiT? o
0 1+2 1+2+2 *1 T
0 _ — — — 30T
0T M tu)? Qtug)d 1] :
ok _ PEALID, o (4.28)
1+ pK Ea
1o
o = g3l = —2aTiT,
Let
P ( o ) ( o )
= ey + e, 1<k<3. 4.29
(ol )= )eor (G ) 2

Then it follows from (4.24) and (4.27) that
0 0 0 0 0
©11) _ g-1 [mz (hu) s <h12 + h21> 12 (%2)]
(@?2) 0 g% Y 9% + 9% Y 9% /)]’
2K 2K 2K | 12K 2K
Y1\ _ p-1 hiy ) (h12 + hay ) 2 <h22 )]
=B x +x + ,
P15 ) 2K { (g%f( INGE + 3K ) 7Y g3k
Ao 2 i (B, ()
P39 Bo(B2 + 4pI) 932 — 9i1 912t 921 /)|’
2K 2 2 h2K _ h2K) <h2K + h >:|
21 P 2 2 22 11
= ‘- — 2zy )
%5) Bok (B3 + 4p%1) {( ) <9§£{ — gt 3+ 931
0
31 P hi; h22>}
+ 2z ,
22) BZ + 4p21 [ (912 + 21> Y (911 — 9%
2K 2K
¥31 P hiy — h3s ﬂ
= + 2z ,
<<ﬂ§§) B2, +4p21 {( =) ( 5+ 931 > Y (gff — g3
30)

where By = fAQC with Azc as defined by (4.8). By (4.23) and (4.29) we obtain an
explicit expression of ® as follows:

D1 = (9% + ¢ + 3 )eo + (D1 + @3 + 03 earc +0(2),

(4.31)
Dy = (5 + 995 + 93 )e0 + (15 + 035 + 935 Jea + o(2).
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Here, by (4.30), (4.28), and (4.25), @fj are 2-order homogeneous functions of (z,y),
with the coefficients depending explicitly on the parameters defined in (2.4).

Step 5. Finally, inserting (4.31) into (4.21) and (4.22), we can write (4.18) in the
following form

dzx
TR + a112® + a127%y + arzzy® + a1ay® + o(4),

dy

pr pr + 12> 4 a2y + asszy® + asuy® + o(4).

Then, by Theorem 2.4.5 in [7], the parameter by in Theorem 4.2 is obtained by
bo = 3a11 + 3az4 + a1z + asgs,

where a1, aa4, @12, azs can be explicitly expressed in the terms in (4.20)-(4.22).

4.5. Transition for the system (2.5). We are now in a position to discuss the
transition of (2.5). With the translation (4.2), the system (2.5) is rewritten in the
following form

8’[1,1
ot
8u2
ot
8’[1,3
ot

ou
oo,
u(0) = uy,

auju+3

W +g(u),

= puAuy — 2au1‘2u1 —ujAug +
= Auos — us + Auq,
(4.32)

= rAug — dujus — duzu; — dujus,

:07

where g(u) is as in (4.4). Here the notation u stands for three-component unknown:

u = (uy, ug, us).

Let
pA — 20ui? —uiA % Uy
Lyu= A A-1 0 (&)
—duj 0 rA — du} us3

Then, all eigenvalues ,Bi (M) and eigenvectors wi of Ly satisfy

J J
k1 ) k1
Dyl &, | =8N & 1<j<3, kez?
k 1]@2 k ;;2 ) >J]>9 )
k3 k3

with
= (Elier Elolr, Elser),

and ey, as in (3.6), Dy is a 3 x 3 matrix given by

) * _ouy
. —(ppr + 2aui”?) U1 Pk Trus)?
D} = A —(px +1) 0

—ouj 0 —(rpx + out)
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We introduce the following three parameters:

A} = —trD) = ppr + 20032 + pr + 1+ rpp + 0ul,

- 20u3?) ui pr
g ( A —(pr +1)
o *2 auy
det [ ~kewt 200 (TFu3)? + (pr + 1) (rpr + 0ui),
—duj —(rpr + ouy)

Cp = —detDp = (pp + 20u3%) (pr + 1) (rpx + 6uj)

Uy N
. 26u3<pk + 1)

* * a
—uippA(rpr + ouj) + O tup)?
3

By the Routh-Hurwitz theorem, we know that all eigenvalues ﬁi of Di have negative
real parts if and only if

A} >0, AXBY—-Cpr>0, Cp>0. (4.33)
Let A¢ and K = (K3, K») satisfy

A%e >0, ABR —Cpe=0, (% >0,

. (4.34)
ARe >0, ANBpe —Cpe >0, Cpe>0, Vkwith py # pr.
Then A. satisfies that
1
Ac =inf ——[(u + 7)px + 20} + Suf] (4.35)
Pr PrUY

ad

X [(r+1Dpp +ouf +1+
( ok ! (wpr + 20ui? + p + 1) (1 + uj)?

)

and pg satisfies (4.35). In particular, under the condition (4.34), there is a pair of
complex eigenvalues 85 () and 8% (\) of Dy, such that

<0, A<A,,
Re Bi°(A) ¢ =0, A=A, (4.36)
>0, A>A,

and the other eigenvalues ﬂi (A) of Ly satisfy

Re BL(A.) <0, Vk with py # pg, and 1 < j < 3,
s (4.37)
B (Ae) <O.
Let A. and K* = (K7, K}) satisfy
Ay, >0, Ap.Br —Cp >0, Cp. =0, (438
Ay >0, ApBle—Cpe >0, Cpe>0, Vkwith py # pre-. '
Then A, is given by
1 0
Ae = inf (o 1) ppk + 2003 + a (4.39)

PE PRUT (1+u3)?(rpg + 0uy) |’
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and A, arrives its minimal at pg~. From the Routh-Hurwitz criterion (4.33), we
deduce that with (4.38) there is a real eigenvalue Sk.(\) of Dye. satisfies

<0, A<\,
Br-(A) 4 =0, A=A, (4.40)
>0, A> )\,
Refj. (X)) <0, j=2,3, (4.41)
Refl(Xe) <0, Vke 72 with py # pg+ and 1 < j < 3. ’

It is clear that (4.36) and (4.37) hold true as A, < A, and (4.39)-(4.40) hold true
as A\. < A.. Hence, we have the following transition theorem for (4.32).

Theorem 4.3. Let A. and \. be given by (4.35) and (4.39) respectively. Then,
Assertions (1) and (2) of Theorem 4.2 hold true for the system (4.32).

5. Biological conclusions. The main objective of this article is to determine the
types of dynamic transitions, which are dictated by non-dimensional parameters,
given in terms of key system parameters as well as the geometry of the spatial do-
main of the underlying system. In this section, we give some biological implications
on extreme cases, and further biological implications of the main theorems and the
main results will be carried out elsewhere.

5.1. Biological significance of transition theorems. Pattern formation is one
of the characteristics for bacteria chemotaxis, and is fully characterized by the
dynamic transitions. Theorems 3.1-4.3 tell us that the nondimensional parameter
A, given by
A= Yaarix (5.1)
rakso

plays a crucial role to determine the dynamic transition and pattern formation.
Actually, the key factor in (5.1) is the product of the chemotactic coefficient x and
the production rate r; : xr1, which depends on the type of bacteria. When X is less
than some critical value \., the uniform distribution of biological individuals is a
stable state. When A\ exceeds A, the bacteria cells aggregate to form more complex
and stable patterns.

As seen in (3.11), (4.10), (4.11) and (4.35), under different biological conditions,
the critical parameter \. takes different forms and values. But, a general formula
for A. is of the following type:

. a2 az (€%}
Ae=a +1nf(a + =+ + >, 5.2
0 e\ pr bipk +bo  pr(bipr + bo) (5:2)

where p are taken as the eigenvalues of —A with the Neumann boundary condition.
When Q is a rectangular region, py are given by (3.6), and the coefficients a,
(1<j<4),by,b; >0 depend on the parameters in (2.4), with

a07a17a27b07b1 > 07 ag, aq > 0.

In particular, for the system with rich nutrient supplies, (5.2) becomes

Ae = qg + inf [alpk + GQ} .
Pk Pk
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The eigenvalues pg, depending on the geometry of €2, satisfy
Pk — 00 if kK — oo,
1
P1 X ﬁv
where L is the length scale of €.
We infer from (5.2) and (5.3) that
Ae 00 as [ =0 (L—0).

It implies that when the container €2 is small, the homogenous state is state and
there is no pattern formation of bacteria under any biological conditions.

5.2. Spatiotemporal oscillation. Theorems 4.2 and 4.3 show that there are two
critical parameters A. and A., such that

e if A\, < A, the patterns formed by biological organisms are steady states, as
exhibited by many experimental results, and
o if A, < )., a spatial-temporal oscillatory behavior takes place.

For the case with rich nutrient,
ul =1, uj=o0.
In this situation, A, in (4.11) is reduced to (3.8), and obviously we have that
Ae < A, for both (4.10) and (4.35),

and the dynamic transition and pattern formation are determined by Theorems 3.1
and 3.2. Hence there is no spatiotemporal oscillations for the rich nutrient case,
and the time periodic oscillation of chemotaxis occurs only for the case where the
nutrient is moderately supplied.

In particular, if p,r = 0, and

S2ut? (14 u3)? < ado,
then for A. defined by (4.10) and (4.35), we have
Ac < Ae.

In this case, a spatial-temporal oscillation pattern are expected for A > A..

5.3. Transition types. One of the most important aspects of the study for phase
transitions is to determine the transition types for a given system. The main theo-
rems in this article provide precise information on the transition types. In all cases,
types are precisely determined by the sign of some non dimensional parameters; see
b, by andb; respectively in the main theorems. Hence a global phase diagram can
be obtained easily by setting the related parameter to be zero.

For example, when Q = (0, L;) is one-dimensional or when K = (K7,0) (resp.
K = (0, K3)), the parameter b in (3.14) can be simplified into the following form

(2upx + @) 2% + 28apr +4a — ppk)
(o2 + 2a)(p2x + 1) — parcAc
For a non-growth system, o« = 0, K = (1,0), A\ = pu(px+1). Then, (5.4) becomes

b=2|-3upx + 9 —

(5.4)

b= %(1 —20M), A= = (5.5)
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and \ = urdz. Tt follows from (5.5) that

b{ <0 if Ly <2V5m,

(5.6)
>0 if Ly > 2V5m.
By Theorems 3.1 and 3.2, the phase transition of (3.3) and (3.1) from (u,\) =
(u*, \.) is continuous if the length scale L; of Q is less than 2v/57, and jump if L,
is bigger than 2v/5m.
In addition, when we take

X1U1
(B + uz)?

as the chemotaxis function, by Remark 4.1, the parameter b of (5.5) is replaced by

20 2 4 2.2
3 L2 %,

k‘2 (ﬂ'2 )
- adh=u(E 41).
By + kahe M\

The above conclusion amounts to saying that for a non-growth system, the pa-
rameter

x(u) =

with

r 1
A= nx a, witha= —/ urdx,
’I"ng ‘Q| O
is proportional to the average density a of initial condition of uq (u; is conservation).
Hence, the biological individual is in a homogenous distribution state provided

1 7“2]{)2 7'1'2
= [ pdr < —p (= +1 = u1(0
|ﬂ|/9“<nx“(L%+ el

and the bacteria will aggregate to form numbers of high density regions provided

St e

Moreover, under the condition (5.7), if the bcale L, of Q is smaller than some critical
value L, (in (5.6) L. = 2v/57), i.e. L1 < L., the continuous transition implies that
there is only one high density region of bacteria to be formed, and if L; > L. then
the jump transition expects a large number of high density regions to appear.

5.4. Pattern formation. As mentioned before, the pattern formation behavior is
dictated by the dynamic transition of the system. In this article, we studied the
formation of two type patterns—the lamella and the rectangular patterns, although
the approach can be generalized to study the formation of other more complex
patterns.

For a growth system, the critical parameter A\, takes its value at some eigenvalue
pr of —=A for K = (K1, K>), as shown by (3.11) and (4.11). From the pattern
formation point of view, for the Type-I transition, the patterns described by the
transition solutions in thee main theorems are either lamella or rectangular:

lamella pattern for K1 K5 =0,
rectangular pattern for K1 K5 # 0.

In the case where b > 0, the system undergoes a more drastic change. As \* <
A < A, the homogeneous state, the new patterns v%‘ and vi‘ are metastable. For
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A > )., the system undergoes transitions to more complex patterns away from the
basic homogeneous state.

REFERENCES

[1] M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical mechanisms for chemotactic pattern

formation by bacteria, Biophysical Journal, 74 (1998), 1677-1693.

[2] E. O. Budrene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli,

(3]

Nature, 349 (1991), 630-633.
, Dynamics of formation of symmetric patterns of chemotactic bacteria, Nature, 376
(1995), 49-53.

[4] Y. Guo and H. J. Hwang, Pattern formation (I): the Keller-Segel model, J. Differential

Equations, 249 (2010), 1519-1530.

[5] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J.

Theor. Biol., 26 (1970), 399-415.

| H. Liu, T. Sengul and S. Wang, Dynamic transitions for quasilinear systems and Cahn-Hilliard

equation with Onsager mobility, Journal of Mathematical Physics, 53 (2012), 1-31.

] T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, 555+XXII pp, 2013.

, Dynamic transition theory for thermohaline circulation, Physica D, 239 (2010), 167—
189.

[9] P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain

and applications to Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202
(2009), vi+71.

[10] J. Murray, Mathematical Biology, II, 3rd Ed. Springer-Verlag, 2002.
[11] G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher

birth terms, Interfaces Free Bound., 10 (2008), 517-538.

[12] B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,

Trans. Amer. Math. Soc., 361 (2009), 2319-2335.

[13] B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Travelling plateaus for a hyperbolic

Keller-Segel system with attraction and repulsion: Existence and branching instabilities, Non-
linearity, 24 (2011), 1253-1270.
Received June 2012; 1st revision December 2012; 2nd revision June 2014.

E-mail address: matian56@sina.com
E-mail address: showang@indiana.edu


http://dx.doi.org/10.1016/S0006-3495(98)77880-4
http://dx.doi.org/10.1016/S0006-3495(98)77880-4
http://dx.doi.org/10.1038/349630a0
http://www.ams.org/mathscinet-getitem?mr=MR2677805&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.07.025
http://dx.doi.org/10.1016/0022-5193(70)90092-5
http://www.ams.org/mathscinet-getitem?mr=MR2920486 &return=pdf
http://dx.doi.org/10.1063/1.3687414
http://dx.doi.org/10.1063/1.3687414
http://www.ams.org/mathscinet-getitem?mr=MR3154868&return=pdf
http://dx.doi.org/10.1007/978-1-4614-8963-4
http://www.ams.org/mathscinet-getitem?mr=MR2570291&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2559965&return=pdf
http://dx.doi.org/10.1090/S0065-9266-09-00568-7
http://dx.doi.org/10.1090/S0065-9266-09-00568-7
http://www.ams.org/mathscinet-getitem?mr=MR1952568&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2465272&return=pdf
http://dx.doi.org/10.4171/IFB/200
http://dx.doi.org/10.4171/IFB/200
http://www.ams.org/mathscinet-getitem?mr=MR2471920&return=pdf
http://dx.doi.org/10.1090/S0002-9947-08-04656-4
http://www.ams.org/mathscinet-getitem?mr=MR2776119&return=pdf
http://dx.doi.org/10.1088/0951-7715/24/4/012
http://dx.doi.org/10.1088/0951-7715/24/4/012
mailto:matian56@sina.com
mailto:showang@indiana.edu

	1. Introduction
	2. Keller-Segel model
	3. Dynamic transitions for rich stimulant system
	3.1. The model
	3.2. Dynamic transition and pattern formation for the diffusion and degradation balanced case
	3.3. Pattern formation and dynamic transition for the general case
	3.4. Proof of main theorems

	4. Transition of three-component systems
	4.1. The model
	4.2. Linearized eigenvalue of (2.6)
	4.3. Dynamic transition theorem for (2.6)
	4.4. Computational procedure of b0
	4.5. Transition for the system (2.5)

	5. Biological conclusions
	5.1. Biological significance of transition theorems
	5.2. Spatiotemporal oscillation
	5.3. Transition types
	5.4. Pattern formation

	REFERENCES

