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Abstract. The main objective of this article is to study the dynamic tran-

sition and pattern formation for chemotactic systems modeled by the Keller-
Segel equations. We study chemotactic systems with either rich or moderated

stimulant supplies. For the rich stimulant chemotactic system, we show that

the chemotactic system always undergoes a Type-I or Type-II dynamic transi-
tion from the homogeneous state to steady state solutions. The type of transi-

tion is dictated by the sign of a non dimensional parameter b, which is derived

by incorporating the nonlinear interactions of both stable and unstable modes.
For the general Keller-Segel model where the stimulant is moderately supplied,

the system can undergo a dynamic transition to either steady state patterns
or spatiotemporal oscillations. From the pattern formation point of view, the

formation and the mechanism of both the lamella and rectangular patterns are

derived.

1. Introduction. Chemotaxis is an important phenomenon occurring in many bi-
ological individuals, and involves mobility and aggregation of the species in two
aspects: one is random walk, and the other is the chemically directed movement.
For example, in the slime mold Dictyostelium discoideum, the single-cell amoebae
move towards regions of relatively high concentration of a chemical called cylic-
AAMP which is secreted by the amoebae themselves. Many experiments demon-
strate that under proper conditions a bacterial colony can form a rather regular
pattern, which is relatively stable in certain time scale. For example, a series of ex-
perimental results on the patterns formed by the bacteria Escherichia coli (E. coli)
and Salmonella typhimurium (S. Typhimurium) were derived in [2, 3], where two
types of experiments were conducted: one is in semi-solid medium, and the other
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is in liquid medium. Both showed that when the bacteria are exposed to interme-
diates of TCA cycle, they can form various regular patterns, typically as ringlike
and sunflowerlike formations. In all these experiments, the bacteria are known to
secrete aspartate, a potent chemoattractant; also see [10, 1].

In their pioneering work [5], E. F. Keller and L. A. Segel proposed a model
in 1970, called the Keller-Segel equations, to describe the chemotactic behavior of
the slime mold amoebae. In their equations, the growth rate of amoeba cells was
ignored, i.e., the model can only depict the chemotaxis process in a small timescale,
as exhibited in the liquid medium experiments with E. Coli and S. Typhimurium by
[2, 3]. However, in the semi-solid medium experiments, the timescale of a pattern
formation process is long enough to accommodate many generations of bacteria.
Therefore, various revised models were presented by many authors, taking into
consideration the effects of the stimulant (i.e. food source) and the growth rate of
population; see among others [10] and the references therein. Also, there is a vast
literature on the mathematical studies for the Keller-Segel model; see among others
[13, 4, 12, 11].

The main objective of this article is to study the dynamic transition and pattern
formation for chemotactic systems modeled by the Keller-Segel equations. The
study is based on the dynamic transition theory developed recently by the authors.
The theory studies dynamical transitions of dissipative systems in Nature. The key
philosophy for the dynamic transition theory is to search for all transition states.
The stability and the basin of attraction of the transition states provide naturally
the mechanism of pattern formation associated with chemotactic systems.

One most important ingredient of this theory is the derivation of a general dy-
namic principle of dynamic transitions for dissipative systems., stating that all
dynamic transitions of a dissipative system are classified into three categories: con-
tinuous, catastrophic, and random, which are also called respectively as Type-I,
Type-II and Type-III.

The continuous transition amounts to saying that the control parameter crosses
the threshold, the transition states stay in the close neighborhood of the basic
state. In fact, continuous transition is essentially characterized by the attractor
bifurcation theorem, which amounts to saying that when the system losses linear
stability and the basic state is asymptotically stable at the critical parameter value
λ0, the system undergoes a continuous dynamic transition, which is described by
the bifurcated attractor. There are many physical systems which can undergo a
continuous transition. For example, consider the classical Bénard convection, as
the Rayleigh number crosses the critical Rayleigh number, the system undergoes
a continuous transition to an attractor, homeomorphic to an (m − 1)-dimensional
sphere Sm−1, which consists of steady states and transients. Here m is the number
of unstable modes of the linearized eigenvalue problem at the critical Rayleigh
number, dictated by the spatial geometry, which also defines the pattern formation
mechanism of the problem.

When the asymptotic stability of the basic state at the critical parameter is
no longer valid, the system undergoes either catastrophic or random transitions,
dictated by the nonlinear interactions as well. The dynamic transition theory gives
a systematic approach to distinguish these transitions.

Intuitively speaking, catastrophic transition corresponds to the case where the
system undergoes a more drastic change as the control parameter crosses the critical
threshold. The random transition corresponds to the case where the neighborhood
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(fluctuations) of the basic state can be divided into two regions such that fluctu-
ations in one of the regions lead to continuous transitions and those in the other
region lead to catastrophic transitions.

Two types of Keller-Segel models are addressed in this article. The first is the
model for rich stimulant chemotactic systems (with rich nutrient supplies). In this
case, the equations are a two-component system, describing the evolution of the
population density of biological individuals and the chemoattractant concentration.
We show that the chemotactic system always undergoes a Type-I or Type-II dy-
namic transition from the homogeneous state to steady state solutions. The type
of transition is dictated by the sign of a nondimensional parameter b. This pa-
rameter is derived by carefully reducing the original model to the center manifold
generated by the unstable modes, taking into consideration of the highly nonlinear
interactions of both stable and unstable modes. Hence such a parameter cannot be
derived from any linear theory, and provides a key characterization of the related
phase transitions and pattern formations.

For example, in a non-growth system in a narrow domain the system undergoes a
Type-I (continuous) transition if the spatial scale is smaller than a critical number.
Otherwise the system undergoes a Type-II (catastrophic ) transition, leading to a
more complex pattern away from the basic homogeneous state.

The second is a more general Keller-Segel model where the stimulant is moder-
ately supplied. This model is a three-component system describing the evolution
of the population density of biological individuals, the chemoattractant concentra-
tion, and the stimulant concentration. In this case, the system undergoes a dy-
namic transition to either steady state patterns or spatiotemporal oscillations. In
both transition scenarios, the transitions can be either a continuous or catastrophic
dictated respectively by two nondimensional parameter b0 and b1.

For simplicity, we consider in this article only the case where the first eigenvalue
of the linearized problem around the homogeneous pattern is simple (real or com-
plex), and we shall explore more general case elsewhere. In the case considered, for
the continuous transition, when the linearized eigenvalue is simple, we show that
both the lamella and rectangular pattern can form depending on the geometry of
the spatial domain. Namely, for narrow domains, the lamella pattern forms, other-
wise the rectangular pattern occurs. Of course, for catastrophic transitions, more
complex patterns emerge far from the basic homogeneous state.

We end this section by mentioning that the main objective of this article is to
determine the types of dynamic transitions, which are dictated by non-dimensional
parameters, given in terms of key system parameters as well as the geometry of
the spatial domain of the underlying system. There parameters are derived by
taking into consideration of the highly nonlinear interactions of both stable and
unstable modes. Further biological implications of the main theorems and the main
results will be carried out elsewhere, and, as a motivation, biological implications
on extreme cases are very briefly mentioned in Section 5.

The paper is arranged as follows. Section 2 introduces the Keller-Segel model.
The rich stimulant case is addressed in Section 3, and the general there-component
system is studied in Section 4. Section 5 explores some biological conclusions of the
main theorems.
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2. Keller-Segel model. The general form of the revised Keller-Segel model is
given by

∂u1

∂t
= k1∆u1 − χ∇(u1∇u2) + α1u1

(
α2u3

α0 + u3
− u2

1

)
,

∂u2

∂t
= k2∆u2 + r1u1 − r2u2,

∂u3

∂t
= k3∆u3 − r3u1u3 + q(x),

(2.1)

where u1 is the population density of biological individuals, u2 is the chemoattrac-
tant concentration, u3 is the stimulant concentration, q(x) is the nutrient source,
and χ is a chemotactic response coefficient.

Equations (2.1) are supplemented with the Neumann condition:

∂(u1, u2, u3)

∂n
= 0 on ∂Ω. (2.2)

For simplicity, we consider in this article the case where the spatial domain Ω is
a two-dimensional (2D) rectangle:

Ω = (0, l1)× (0, l2) for l1 6= l2.

It is convenient to introduce the nondimensional form of the model. For this pur-
pose, let

t = t′/r2, x =
√
k2/r2x

′,

u1 =
√
α2u

′
1, u2 = k2u

′
2/χ, u3 = α0u

′
3,

(2.3)

and we define the following non dimensional parameters:

λ = r1
√
α2χ/r2k2, α = α1α2/r2, µ = k1/k2,

r = k3/k2, δ = r3
√
α2/r2, δ0 = q/r2α0.

(2.4)

Then suppressing the primes, the non-dimensional form of the Keller-Segel model
is given by:

∂u1

∂t
= µ∆u1 −∇(u1∇u2) + αu1

(
u3

1 + u3
− u2

1

)
,

∂u2

∂t
= ∆u2 − u2 + λu1,

∂u3

∂t
= r∆u3 − δu1u3 + δ0,

∂u

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0 in Ω.

(2.5)

The non-dimensional of Ω is written as

Ω = (0, L1)× (0, L2) with L1 6= L2.
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Often times, the following form of the Keller-Segel equations is discussed in some
literatures:

∂u1

∂t
= µ∆u1 −∇(u1∇u2) + αu1

(
u3

1 + u3
− u2

1

)
,

∂u3

∂t
= r∆u3 − δu1u3 + δ0,

−∆u2 + u2 = λu1.

∂u

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0.

(2.6)

The biological significance of (2.6) is that the diffusion and degradation of the
chemoattractant secreted by the bacteria themselves are almost balanced by their
production. The main advantage of (2.6) lies in its mathematical simplicity. Math-
ematically it is easy to see that all eigenvalues of the linear terms 4u2 − u2 are all
negative. Hence by the center manifold reduction technique, it is not hard to see
that the solutions of (2.5) will converge to solutions of (2.6) as time goes to infinity.
This is consistent that from the main results of this article, the main characteristics
of the pattern formation associated with this reduced model are retained.

Of course, the reduced system may loss certain transient biological behavior,
and it appears that it may provide a better description for the system where the
chemoattractant is much faster the dynamics of the organisms.

3. Dynamic transitions for rich stimulant system.

3.1. The model. We know that as nutrient u3 is richly supplied, the Keller-Segel
model (2.1) is reduced to a two-component system:

∂u1

∂t
= µ∆u1 −∇(u1∇u2) + αu1(1− u2

1),

∂u2

∂t
= ∆u2 − u2 + λu1,

∂(u1, u2)

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0.

(3.1)

It is easy to see that u∗ = (1, λ) is a steady state of (3.1). Consider the deviation
from u∗:

u = u∗ + u′.

Suppressing the primes, the system (3.1) is then transformed into

∂u1

∂t
= µ∆u1 − 2αu1 −∆u2 −∇(u1∇u2)− 3αu2

1 − αu3
1,

∂u2

∂t
= ∆u2 − u2 + λu1,

∂(u1, u2)

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0.

(3.2)
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3.2. Dynamic transition and pattern formation for the diffusion and degra-
dation balanced case. We start with an important case where the diffusion and
degradation of the chemoattractant secreted by the bacteria themselves are almost
balanced by their production. In this case, the second equation in (3.2) is given by

0 = 4u2 − u2 + λu1.

With the Newman boundary condition for u2, we have u2 = λ[−4 + 1]−1u1 and
the functional form of the resulting equations are given by

∂u1

∂t
= Lλu1 +G(u1, λ), (3.3)

where the operators Lλ : H1 → H and G : H1 × R→ R are defined by

Lλu1 = µ∆u1 − 2αu1 − λ∆[−∆ + I]−1u1,

G(u1, λ) = −λ∇(u1∇[−∆ + I]−1u1)− 3αu2
1 − αu3

1.
(3.4)

Here the two Hilbert spaces H and H1 are defined by

H = L2(Ω), H1 = {u1 ∈ H2(Ω) | ∂u1

∂n
= 0 on Ω}.

To study the dynamic transition of this problem, we need to consider the lin-
earized eigenvalue problem of (3.3):

Lλe = β(λ)e. (3.5)

Let ρk and ek be the eigenvalues and eigenfunctions of −∆ with the Neumann
boundary condition given by

ek = cos
k1πx1

L1
cos

k2πx2

L2
, ρk = π2

(
k2

1

L2
1

+
k2

2

L2
2

)
, (3.6)

for any k = (k1, k2) ∈ N2
+. Here N+ is the set of all nonnegative integers. In

particular, e0 = 1 and ρ0 = 0.
Obviously, the functions in (3.6) are also eigenvectors of (3.5), and the corre-

sponding eigenvalues βk are

βk(λ) = −µρk − 2α+
λρk

1 + ρk
. (3.7)

Define a critical parameter by

λc = min
ρk

(ρk + 1)(µρk + 2α)

ρk
. (3.8)

Let

S =
{
K = (K1,K2) ∈ N2

+ achieves the minimization in (3.8)
}
.

Then it follows from (3.7) and (3.8) that

βK(λ)

 < 0 if λ < λc
= 0 if λ = λc
> 0 if λ > λc

∀K = (K1,K2) ∈ S, (3.9)

βk(λc) < 0 ∀k ∈ Z2 with k /∈ S. (3.10)

Notice that for any K = (K1,K2) ∈ S, K 6= 0, and

λc =
(ρK + 1)(µρK + 2α)

ρK
. (3.11)
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We note that for properly choosing spatial geometry, we have

ρK = π2

(
K2

1

L2
1

+
K2

2

L2
2

)
=

√
2α

µ
∀K = (K1,K2) ∈ S, (3.12)

λc = 2α+ µ+ 2
√

2αµ. (3.13)

Conditions (3.9) and (3.10) give rise to a dynamic transition of (3.3) from (u, λ) =
(0, λc). For simplicity, we denote

K1 , (K1, 0), K2 , (0,K2),

and K = (K1,K2) ∈ S. Also, we introduce a parameter as

b =− 3µρK +

[
12− 24− 15sign(K1K2)

4− 2sign(K1K2)

]
α (3.14)

− (2µρK + α)(2µρ2
K + 28αρK + 4α− µρK)

[1 + sign(K1K2)] · [(µρ2K + 2α)(1 + ρ2K)− λcρ2K ]

− 2(2µρKρK1 + 4αρK1 − 3αρK)

(1 + signK1)ρ2
K [(µρ2K1

+ 2α)(1 + ρ2K1
)− λcρ2K1

]

× [(µρK + 2α)(2ρ2
K1
− 6ρK1

ρK2
− ρK) + 6αρK(4ρK1

+ 1)]

− 2(2µρKρK2
+ 4αρK2

− 3αρK)

(1 + signK2)ρ2
K((µρ2K2 + 2α)(1 + ρ2K2)− λcρ2K2)

× [(µρK + 2α)(2ρ2
K2
− 6ρK1

ρK2
− ρK) + 6αρK(4ρK2

+ 1)].

The following is the main dynamic transition theorem, providing a precise crite-
rion for the transition type and the pattern formation mechanism of the system.

Theorem 3.1. Let b be the parameter defined by (3.14). Assume that the eigenvalue
βk satisfying (3.9) is simple. Then, for the system (3.3) we have the following
assertions:

(1) The system always undergoes a dynamic transition at (u, λ) = (0, λc). Namely,
the basic state u = 0 is asymptotically stable for λ < λc, and is unstable for
λ > λc.

(2) For the case where b < 0, this transition is continuous (Type-I). I particular,
the system bifurcates from (0, λc) to two steady state solutions on λ > λc,
which can be expressed as

u±1 (x, λ) = ±1

2

√
βK(λ)

2|b|
cos

K1πx1

L1
cos

K2πx2

L2
+ o

(
β

1/2
K

)
, (3.15)

and u±1 (x, λ) are attractors.
(3) For the case b > 0, this transition is jump (Type-II), and the system has two

saddle-node bifurcation solutions at some λ∗(0 < λ∗ < λc) such that there are
two branches vλ1 and vλ2 of steady states bifurcated from (v∗, λ∗), and there are
two other branches vλ3 and vλ4 bifurcated from (u∗, λ∗). In addition, vλ1 and vλ3
are saddles, vλ2 and vλ4 are attractors, with vλ1 , v

λ
3 → 0 as λ→ λc.

Two remarks are now in order.

Remark 3.1. From the pattern formation point of view, for the Type-I transition,
the patterns described by the transition solutions given in (3.15) are either lamella
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or rectangular:

lamella pattern for K1K2 = 0,

rectangular pattern for K1K2 6= 0.

In the case where b > 0, the system undergoes a more drastic change. As λ∗ <
λ < λc, the homogeneous state, the new patterns vλ2 and vλ4 are metastable. For
λ > λc, the system undergoes transitions to more complex patterns away from the
basic homogeneous sate form.

Remark 3.2. If we take the growth term f(u) as f = αu1(1 − u1) instead of
f = αu1(1− u2

1) in (3.1), (3.2) and (3.3), then Theorem 3.1 still holds true except
the assertion on the existence of the two saddle-node bifurcation solutions, and the
parameter should be replaced by

b =− µρK + α− (2µρK + α)(2µλ2
K + 10αρK + α− µρK)

2(1 + signK1K2)[(µρ2K + α)(1 + ρ2K)− λcρ2K ]

− (2µρKρK1
+ 2αρK1

− αρK)

(1 + signK1)λ2
K [(µρ2K1 + α)(1 + ρ2K1)− λcρ2K1 ]

× [(µρK + α)(2λ2
K1
− 6ρK1

ρK2
− ρK) + 2αρK(4ρK1

+ 1)]

− (2µρKρK2
+ 2αρK2

− αρK)

(1 + signK2)λ2
K [(µρ2K2 + α)(1 + ρ2K1)− λcρ2K2 ]

× [(µρK + α)(2λ2
K1
− 6ρK1ρK2 − ρK) + 2αρK(4ρK2 + 1)].

3.3. Pattern formation and dynamic transition for the general case. Con-
sider the general case (3.1). In this case, the unknown variable becomes u = (u1, u2),
and the basic function spaces are then defined by

H = L2(Ω,R2), H1 =

{
u ∈ H2(Ω,R2) | ∂u

∂n
= 0 on Ω

}
.

Let Lλ : H1 → H and G : H1 → H be defined by

Lλu =

(
µ∆− 2α −∆

λ ∆− 1

)
u,

G(u) =

(
−∇(u1∇u2)− 3αu2

1 − αu3
1

0

)
.

(3.16)

The linearized eigenvalue problem of (3.2) is

Lλϕ = βϕ, (3.17)

where Lλ : H1 → H is defined by (3.16). Let Bλk be the matrices given by

Bλk =

(
−(µρk + 2α) ρk

λ −(ρk + 1)

)
, (3.18)

where ρk are the eigenvalues as in (3.6). It is easy to see that all eigenvectors ϕk
and eigenvalues βk of (3.17) can be expressed as follows

ϕk =

(
ξk1ek
ξk2ek

)
, (3.19)

Bλk

(
ξk1

ξk2

)
= βk

(
ξk1

ξk2

)
, (3.20)
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where ek are as in (3.6), and βk are also the eigenvalues of Bλk . By (3.18), βk can
be expressed by

β±k (λ) =
1

2

[
−B ±

√
B2 − 4((ρk + 1)(µρk + 2α)− λρk)

]
,

B = (µ+ 1)ρk + 2α+ 1.
(3.21)

Let λc be the parameter as defined by (3.8). It follows from (3.21) and (3.8) that

β+
K(λ)

 < 0 if λ < λc,
= 0 if λ = λc,
> 0 if λ > λc,

(3.22)

{
Reβ−k (λc) < 0 ∀k ∈ Z2,
Reβ+

k (λc) < 0 ∀k ∈ Z2 with ρk 6= ρK ,
(3.23)

with K = (K1,K2) as in (3.11).
Then we have the following dynamic transition theorem.

Theorem 3.2. Let b be the parameter defined by (3.14). Assume that the eigenvalue
β+
K satisfying (3.22) is simple. Then the assertions of Theorem 3.1 hold true for

(3.2), with the expression (3.15) replaced by

u±λ = ±
√
aβ+

K(λ)

(
ρK + 1
λc

)
cos

K1πx1

L1
cos

K2πx2

L2
+ o(|β+

K |
1/2),

a =
8(µρK + ρK + 2α+ 1)

(ρK + 1)3|b|
.

3.4. Proof of main theorems.

Proof of Theorem 3.1. Assertion (1) follows directly from the general dynamic tran-
sition theorem in Chapter 2 of [7]. To prove Assertions (2) and (3), we need to reduce
(3.3) to the center manifold near λ = λc. We note that although the underlying
system is now quasilinear in this general case, the center manifold reduction holds
true as well; see [6] for details.

To this end, let u = xek + Φ, where Φ(x) the center manifold function of (3.3).
Since Lλ : H1 → H is symmetric, the reduced equation is given by

dx

dt
= βK(λ)x+

1

(eK , eK)
(G(xeK + Φ, λ), eK), (3.24)

where G : H1 → H is defined by (3.4), and

(eK , eK) =

∫
Ω

e2
Kdx =

2− sign(K1K2)

4
|Ω|. (3.25)

It is known that the center manifold function satisfies that Φ(x) = O(x2). A
direct computation shows that

< G(xeK + Φ, λc), eK > (3.26)

= −αx3

∫
Ω

e4
Kdx− 6αx

∫
Ω

e2
KΦdx

+λcx

∫
Ω

[eK∇ek · ∇(−∆ + I)−1Φ + Φ∇ek · ∇(−∆ + I)−1eK ]dx+ o(x3).

It is clear that

(−∆ + I)−1eK =
1

ρK + 1
eK , ∆eK = −ρKeK .
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We infer from (3.26) that

(G(xeK + Φ, λc), eK) =− αx3

∫
Ω

e4
Kdx− 6αx

∫
Ω

e2
KΦdx (3.27)

+ λcx

∫
Ω

[
1

ρK + 1
|∇eK |2Φ− |∇eK |2(−∆I)

−1Φ

+ρKe
2
K(−∆ + I)−1Φ

]
dx+ o(x3).

Using the approximation formula for center manifold functions given in (A.11)
in [8], Φ satisfies the equation

− Lλc
Φ = G2(xeK , λc) + o(x2) (3.28)

= x2

[(
ρKλc
ρK + 1

− 3α

)
e2
K −

λc
ρK + 1

|∇eK |2
]

+ o(x2).

In view of (3.6), we find

e2
K =

1

4
[e0 + e2K1

+ e2K2
+ e2K ],

|∇eK |2 =
1

4
[ρKe0 + (ρK2

− ρK1
)e2K1

+ (ρK1
− ρK2

)e2K2
− ρKe2K ].

(3.29)

Thus, (3.28) is written as

−LλcΦ =
x2

4

[
−3αe0 +

(
2ρK1

λc
ρK + 1

− 3α

)
e2K1 (3.30)

+

(
2ρK2λc
ρK + 1

− 3α

)
e2K2

+

(
2ρKλc
ρK + 1

e2K − 3α

)
e2K

]
+ o(x2).

Denote by

Φ = Φ0e0 + Φ2K1
e2K1

+ Φ2K2
e2K2

+ Φ2Ke2K . (3.31)

Note that

− Lλce2K =
1

1 + ρ2K
[(1 + ρ2K)(µρK + 2α)− λcρ2K ] e2K . (3.32)

Then, by (3.11) and (3.30)-(3.32) we obtain

Φ0 = −3

8
,

Φ2K1
=

(1 + ρ2K1)(2µρKρK1 + 4αρK1 − 3αρK)

4ρK [(1 + ρ2K1
)(µρ2K1

+ 2α)− ρ2K1
λc]

,

Φ2K2
=

(1 + ρ2K2
)(2µρKρK2

+ 4αρK2
− 3αρK)

4ρK [(1 + ρ2K2)(µρ2K2 + 2α)− ρ2K2λc]
,

Φ2K =
(1 + ρ2K)(2µρK + α)

4[(1 + ρ2K)(µρ2K + 2α)− ρ2Kλc]
.

(3.33)
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Inserting (3.31) and (3.6) into (3.27) we get

< G(xeK + Φ, λc), eK >= −αx3

∫
Ω

e4
Kdx (3.34)

− 6αx(2− sign(K1K2))

4

∫
Ω

[
Φ0e

2
0 + Φ2K1

e2
2K1

+ Φ2K2
e2

2K2
+ Φ2Ke

2
2K

]
dx

+
λcx(2− sign(K1K2))

4(ρK + 1)

∫
Ω

[
ρKΦ0e

2
0 + (ρK2

− ρK1
)Φ2K1

e2
2K1

+(ρK1
− ρK2

)Φ2K2
e2

2K2
− ρKΦ2Ke

2
2K

]
dx

− λcx(2− sign(K1K2))

4

∫
Ω

[
ρKΦ0e

2
0 +

ρK2
− ρK1

1 + ρ2K1

Φ2K1
e2

2K1

+
ρK1 − ρK2

1 + ρ2K2

Φ2K2e
2
2K2
− ρK

1 + ρ2K
Φ2Ke

2
2K

]
dx

+
λcρKx(2− sign(K1K2))

4

∫
Ω

[
Φ0e

2
0 +

Φ2K1

1 + ρ2K1

e2
2K1

+
Φ2K2

1 + ρ2K2

e2
2K2

+
Φ2K

1 + ρ2K
e2

2K

]
dx+ o(x3)

= −αx3

∫
Ω

e4
Kdx+

|Ω|x(2− sign(K1K2))

4

×
[
(µρK − 4α)Φ0 +

1

1 + signK1

(
λc(ρK2 − ρK1)

1 + ρK
+

2λcρK1

1 + ρ2K1

− 6α

)
Φ2K1

+
1

1 + signK2

(
λc(ρK1

− ρK2
)

1 + ρK
+

2λcρK2

1 + ρ2K1

− 6α

)
Φ2K2

+
1

2(1 + sign(K1K2))

(
− λcρK

1 + ρK
+

2λcρK
1 + ρ2K

− 6α

)
Φ2K

]
dx+ o(x3).

Also, we note that∫
Ω

e4
K =

∫ L1

0

e4
K1
dx1

∫ L2

0

e4
K2
dx2 =

24− 15sign(K1K2)

64
.

Then, putting (3.33) into (3.34) we get

< G(xeK + Φ, λc), eK >=
(2− sign(K1K2))|Ω|x3

32
b+ o(x3), (3.35)

where b is the parameter given by (3.14).
By (3.24) and (3.35), we derive the reduced equation on the center manifold as

follows:
dx

dt
= βK(λ)x+

b

8
x3 + o(x3). (3.36)

Based on the dynamic transition theory developed in Chapter 2 in [7], we obtain
Assertions (2) and (3), except that two saddle-node bifurcations occur at the same
point λ = λ∗. To prove this conclusion, we note that if u∗(x) is a steady state
solution of (3.3), then

v∗(x) = u∗(x+ π) = u∗(x− π)

is also a steady state solution of (3.3). This is because the eigenvectors (3.6) form
an orthogonal base of H1. Hence, two saddle-node bifurcations on λ < λc imply
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that they must occur at the same point λ = λ∗. Thus the proof of the theorem is
complete.

Proof of Theorem 3.2. Assertion (1) follows from (3.22) and (3.23). To prove As-
sertions (2) and (3), we need to get the reduced equation of (3.2) to the center
manifold near λ = λc.

Let u = x ·ϕK +Φ, where ϕK is the eigenvector of (3.17) corresponding to βK at
λ = λc, and Φ(x) the center manifold function of (3.2). Then the reduced equation
of (3.2) read

dx

dt
= β+

K(λ)x+
1

< ϕK , ϕ∗K >
< G(x · ϕK + Φ), ϕ∗K >, (3.37)

Here ϕ∗K is the conjugate eigenvector of ϕK .
By (3.19) and (3.20), ϕK is written as

ϕK = (ξ1ek, ξ2eK)T , (3.38)

with (ξ1, ξ2) satisfying(
−(µρK + 2α) ρK

λc −(ρK + 1)

)(
ξ1
ξ2

)
= 0, (3.39)

from which we get

(ξ1, ξ2) = (ρK + 1, λc). (3.40)

Likewise, ϕ∗K is

ϕ∗K = (ξ∗1ek, ξ∗2ek)T , (3.41)

with (ξ∗1 , ξ
∗
2) satisfying(

−(µρK + 2α) λc
ρK −(ρK + 1)

)(
ξ∗1
ξ∗2

)
= 0,

which yields

(ξ∗1 , ξ
∗
2) = (ρK+1, ρK). (3.42)

By (3.16), the nonlinear operator G is

G(u1, u2) = G2(u1, u2) +G3(u1, u2),

G2(u1, u2) = −(∇u1∇u2 + u1∆u2 + 3αu2
1)

(
1
0

)
,

G3(u1, u2) = −αu3

(
1
0

)
.

It is known that the center manifold function

Φ(x) = (Φ1(x),Φ2(x)) = O(x2).

Then, in view of (3.38) and (3.40), by direct computation we derive that

(G(xξ1eK + Φ1, xξ2eK + Φ2), ϕ∗K) (3.43)

= (xG2(ξ1eK ,Φ2) + xG2(Φ1, ξ2eK) + x3G3(ξ1eK , ξ2eK), ϕ∗K) + o(x3)

= xξ∗1

∫
Ω

[ξ2Φ1|∇eK |2 −
1

2
ξ1∆Φ2e

2
K − 6αξ1Φ1e

2
K ]dx

− αξ∗1ξ3
1x

3

∫
Ω

e4
Kdx+ o(x3).
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Using the approximation formula for center manifold functions given in (A.11)
in [8], Φ = (Φ1,Φ2) satisfies

− Lλc
Φ = −x2G2(ξ1ek, ξ2eK) + o(x2) (3.44)

= −x2(ξ1ξ2|∇eK |2 + (3αξ2
1 − ξ1ξ2ρK)e2

K)

(
1
0

)
+ o(x2).

From (3.6) we see that

e2
K =

1

4
(1 + e2K1)(1 + e2K2) =

1

4
(e0 + e2K1 + e2K2 + e2K),

|∇eK |2 =
ρK1

4
(1− e2K1)(1 + e2K2) +

ρK2

4
(1 + e2K1)(1− e2K2)

=
ρK
4
e0 +

ρK2
− ρK1

4
e2K1

+
ρK1
− ρK2

4
e2K2

− ρK
4
e2K .

Thus, (3.44) is written as

Lλc
Φ =− ξ1x

2

4
(3αξ1e0 + (3αξ1 − 2ξ2ρK1

)e2K1
(3.45)

+ (3αξ1 − 2ξ2ρK2
)e2K2

+ (3αξ1 − 2ξ2ρK)e2K)

(
1
0

)
+ o(x3).

Let(
Φ1

Φ2

)
=

(
Φ0

1

Φ0
2

)
e0 +

(
Φ2K1

1

Φ2K1
2

)
e2K1

+

(
Φ2K2

1

Φ2K2
2

)
e2K2

+

(
Φ2K

1

Φ2K
2

)
e2K (3.46)

It is clear that

Lλ

(
Φk1
Φk2

)
ek = Bλk

(
Φk1
Φk2

)
ek,

where Bλk is the matrix given by (3.18). Then by (3.45) and (3.46) we have(
Φ2k

1

Φ2k
2

)
= − (3αξ2

1 − 2ξ1ξ2ρk)x2

4
B−1

2k

(
1
0

)
,

for k = K,K1,K2, and B2k = Bλc

2k .
Direct computation shows that(

Φ0
1

Φ0
2

)
=

3ξ2
1x

2

8

(
1
λc

)
, (3.47)

(
Φ2K1

1

Φ2K2
2

)
=
ξ1(3αξ1 − 2ξ2ρK1)

4detB2K1

(
1 + ρ2K1

λc

)
, (3.48)

(
Φ2K2

1

Φ2K2
2

)
=
ξ1(3αξ1 − 2ξ2ρK2

)

4detB2K2

(
1 + ρ2K2

λc

)
, (3.49)

(
Φ2K

1

Φ2K
2

)
=
ξ1(3αξ1 − 2ξ2ρK)

4detB2K

(
1 + ρ2K

λc

)
. (3.50)
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Inserting (3.47) into (3.43), by (3.40) and (3.42) we get

< G(xϕK + Φ), ϕ∗K >=
(2− signK1K2)(ρK + 1)|Ω|

8

×
[
−

8α(ρK + 1)3x3
∫

Ω
e4
Kdx

(2− signK1K2)|Ω|
+ 2(ξ2ρK − 6αξ1)Φ0

1x

+
2

1 + signK1
(ξ2(ρK2

− ρK1
)− 6αξ1)Φ2K1

1 x

+
2

1 + signK2
(ξ2(ρK1

− ρK2
)− 6αξ1)Φ2k2

2 x

−2− signK1K2

2
(ξ2ρK + 6αξ1)Φ2K

1 x

+
(ρK + 1)ρ2K1

1 + signK1
Φ2K1

2 x+
(ρK + 1)ρK2

1 + signK2
Φ2K2

2 x

+
(ρK + 1)ρ2K(2− signK1K2)

4
Φ2K

2 x

]
+ o(x3).

By definition, we have

ρK1 + ρK2 = ρK , ρ2K = 4ρK ∀K = (K1,K2),

< ϕ, ϕ∗ >=
[
(ρK + 1)2 + ρKλc

] ∫
Ω

e2
Kdx

=
2− sign(K1K2)

4
(ρK + 1)(µρK + ρK + 2α+ 1)|Ω|.

In view of (3.47)-(3.50), the reduced equation (3.37) is given by

dx

dt
= β+

K(λ)x+
(ρK + 1)3bx3

8(µρK + ρK + 2α+ 1)
+ o(x3), (3.51)

where b is the parameter as in (3.14). Then the theorem follows readily from (3.51).
The proof is complete.

4. Transition of three-component systems.

4.1. The model. Hereafter δ0 ≥ 0 is always assumed to be a constant. Hence,
(2.6) has a positive constant steady state u∗ given by

(u∗1, u
∗
2, u
∗
3) with u∗1 =

(
u∗3

1 + u∗3

)1/2

, u∗2 = λu∗1, u∗3u
∗
1 =

δ0
δ
. (4.1)

It is easy to see that u∗3 is the unique positive real root of the cubic equation

x3 −
(
δ0
δ

)2

x−
(
δ0
δ

)2

= 0.

Consider the translation

(u1, u2, u3)→ (u∗1 + u1, u
∗
2 + u2, u

∗
1 + u1). (4.2)
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Then equations (2.6) are equivalent to

∂u1

∂t
= µ∆u1 − 2αu∗21 u1 − u∗1∆u2 +

αu∗1
(1 + u∗3)2

u3 + g(u),

∂u3

∂t
= r∆u3 − δu∗1u3 − δu∗3u1 − δu1u3,

−∆u2 + u2 = λu1,

∂(u1, u2, u3)

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0,

(4.3)

where u = (u1, u3), u2 = λ[−4+ 1]−1u1, and

g(u) = −∇(u1∇u2)− 3αu∗1u
2
1 − αu3

1 +
α(u1 + u∗1)(u3 + u∗3)

1 + u∗3 + u3
(4.4)

−αu
∗
1u
∗
3

1 + u∗3
− αu∗1u3

(1 + u∗3)2
− αu∗3u1

1 + u∗3
.

The Taylor expansion of g at u = 0 is expressed by

g(u) = −∇(u1∇u2)− 3αu∗1u
2
1 +

αu1u3

(1 + u∗3)2
− αu∗1u

2
3

(1 + u∗3)3

−αu3
1 −

αu1u
2
3

(1 + u∗3)3
+

αu∗1u
3
3

(1 + u∗3)4
+ o(3).

Let

H = L2(Ω,R2),

H1 = {u ∈ H2(Ω,R2)| ∂u
∂n

= 0 on ∂Ω}.

Define the operators Lλ : H1 → H and Gλ : H1 → H by

Lλu =

(
µ∆− 2αu∗21 − λu∗1∆[−∆ + I]−1 αu∗

1

(1+u∗
3)2

−δu∗3 r∆− δu∗1

)(
u1

u3

)
,

G(u, λ) =

(
g(u)
−δu1u3

)
,

(4.5)

Then the problem (4.3) takes the following the abstract form:

du

dt
= Lλu+G(u, λ),

u(0) = u0.
(4.6)

It is known that the inverse mapping

[−∆ + I]−1 : H → H1

is a bounded linear operator. Therefore we have

Lλ : H1 → H is a sector operator, and

Gλ : Hθ → H is C∞ bounded operator for θ ≥ 1

2
.

We note that the transition of (4.3) from u = 0 is equivalent to that of (2.6) from
u = u∗.
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Theorems 3.1 and 3.2 show that a two-component system undergoes only a dy-
namic transition to steady states. As we shall see, the transition for the three-
component system (2.5) is quite different – it can undergo both steady state and
spatiotemporal transitions.

4.2. Linearized eigenvalue of (2.6). The eigenvalue equations of (2.6) at the
steady state (u∗1, u

∗
2, u
∗
3) given by (4.1) in their abstract form are given by

Lλϕ = βϕ, (4.7)

where Lλ : H1 → H as defined in (4.5). The explicit form of (4.7) is given by(
µ∆− 2αu∗21 − λu∗1∆[−∆ + I]−1 αu∗

1

(1+u∗
3)2

−δu∗3 r∆− δu∗1

)(
ψ1

ψ3

)
= β

(
ψ1

ψ3

)
.

As before, let ρk and ek be the eigenvalue and eigenvector of −4 with Neumann
boundary condition given by (3.6), and let

ψk = (ψk1 , ψ
k
3 ) = (ξk1ek, ξk3ek).

Then, it is easy to see that ψk is an eigenvector of (4.7) provided that (ξk1, ξk3) ∈ R2

is an eigenvector of the matrix Aλk :

Aλk

(
ξk1

ξk3

)
= βk

(
ξk1

ξk3

)
,

with

Aλk =

(
λρku

∗
1

1+ρk
− µρk − 2αu∗21

αu∗
1

(1+u∗
3)2

−δu∗3 −rρk − δu∗1

)
. (4.8)

The eigenvalues βk of Aλk , which are also eigenvalues of (4.7), are expressed by

β±k (λ) =
1

2

[
a±

√
a2 − 4detAλk

]
,

a = trAλk =
λρku

∗
1

1 + ρk
− µρk − 2αu∗21 − rρk − δu∗1.

(4.9)

To derive the PES, we introduce two parameters as follows:

Λc = min
ρK

(ρK + 1)

ρKu∗1

[
µρK + 2αu∗21 + rρK + δu∗1

]
, (4.10)

λc = min
ρK

(ρK + 1)

ρKu∗1

[
µρK + 2αu∗21 +

αδ

(1 + u∗3)2(rρK + δu∗1)

]
. (4.11)

Let K = (K1,K2) and K∗ = (K∗1 ,K
∗
2 ) be the integer pairs such that ρK and ρK∗

satisfy (4.10) and (4.11) respectively.

Theorem 4.1. Let Λc and λc be the parameters defined by (4.10) and (4.11) re-
spectively. Then we have the following assertions:

(1) As Λc < λc, the eigenvalues β±K(λ) of (4.9) are a pair of conjugate complex
numbers near λ = Λc, and all eigenvalues of (4.9) satisfy

Re β±K(λ)

 < 0 λ < Λc,
= 0 λ = Λc,
> 0 λ > Λc,

(4.12)

Re β±k (Λc) < 0, ∀k ∈ Z2 with ρk 6= ρK (4.13)
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(2) As λc < Λc, the eigenvalue β+
K∗(λ) is real near λ = λc, and all of (4.9) satisfy

β+
K∗(λ)

 < 0, λ < λc,
= 0, λ = λc,
> 0, λ > λc,

(4.14)

{
Reβ+

k (λc) < 0, ∀k ∈ Z2 with ρk 6= ρK∗ ,
Reβ−k (λc) < 0, ∀|k| ≥ 0.

(4.15)

Proof. By (4.9) we can see that β±k (λ) are a pair of complex eigenvalues of (4.7)
near some λ = λ∗, and satisfy

Reβ±k (λ)

 < 0, λ < λ∗,
= 0, λ = λ∗,
> 0, λ > λ∗,

if and only if

trAλ
∗

k = 0, det Aλ
∗

k > 0.

Likewise, β+
k (λ) is real near λ = λ∗ and satisfies

β+
k (λ)

 < 0, λ < λ∗,
= 0, λ = λ∗,
> 0, λ > λ∗,

if and only if

trAλ
∗

k < 0, det Aλ
∗

k = 0

Due to the definition of λc and Λc, when Λc < λc we have

tr AΛc

K = 0,

tr AΛc

k < 0, ∀k ∈ Z2 with ρk 6= ρK ,
(4.16)

det AΛc

k > 0, ∀|k| ≥ 0,

and when λc < Λc,

det Aλc

K∗ = 0,

det Aλc

k > 0, ∀k ∈ Z2 with ρk 6= ρK ,

tr Aλc

k < 0, ∀|k| ≥ 0.

(4.17)

It is known that the real parts of β±k are negative at λ if and only if

det Aλk > 0, tr Aλk < 0.

Hence, Assertions (1) and (2) follow from (4.16) and (4.17) respectively. The theo-
rem is proved.

4.3. Dynamic transition theorem for (2.6). Based on Theorem 4.1, we imme-
diately get the following transition theorem for (4.3).

Theorem 4.2. Let Λc and λc be given by (4.10) and (4.11) respectively. Then the
following assertions hold true for (4.3):

(1) When Λc < λc, the system undergoes a dynamic transition to periodic solu-
tions at (u, λ) = (0,Λc). In particular, if the eigenvalues β±K satisfying (4.12)
are complex simple, then there is a parameter b0 such that the dynamic tran-
sition is continuous (Type-I) as b0 < 0, and is jump (Type-II) as b0 > 0 with
a singularity separation of periodic solutions at some λ∗ < Λc.
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(2) When λc < Λc, the system undergoes a dynamic transition to steady states
at (u, λ) = (0, λc). If β+

K∗(λ) satisfying (4.14) is simple, then there exists a
parameter b1 such that the transition is continuous as b1 < 0, and jumping
as b1 > 0 with two saddle-node bifurcations at some λ̃ < λc from (u+, λ̃) and

(u−, λ̃).

Remark 4.1. By applying the standard procedure used in the preceding sections,
we can derive explicit formulas for the two parameters b0 and b1 in Theorem 4.2.
However, due to their complexity, we omit the details. Instead in the following, we
shall give a method to calculate b0, and for b1 we refer the interested readers to the
proof of Theorem 3.2.

4.4. Computational procedure of b0. The procedure to compute the parameter
b0 in Assertion (1) of Theorem 4.2 is divided into a few steps as follows.

Step 1. The reduced equations of (4.6) to center manifold at λ = Λc are expressed
by

dx

dt
= −ρy +

1

< ϕ,ϕ∗ >
< G(xϕ+ yψ + Φ,Λc), ϕ

∗ >,

dy

dt
= ρx+

1

< ψ,ψ∗ >
< G(xϕ+ yψ + Φ,Λc), ψ

∗ >,

(4.18)

where ϕ and ψ are the eigenvectors of Lλ at λ = Λc, ϕ
∗ and ψ∗ the conjugate

eigenvectors, and Lλ, Gλ : H1 → H the operators defined by (4.5), Φ is the center
manifold function.

Step 2. Solving the eigenvectors ϕ,ψ and their conjugates ϕ∗, ψ∗. We know that
ψi and ψ∗i are

ϕ = (ξ1eK , ξ2eK), ψ = (η1eK , η2eK),

ϕ∗ = (ξ∗1eK , ξ
∗
2eK), ψ∗ = (η∗1eK , η

∗
2eK),

(4.19)

and ξi, ξ
∗
i satisfy(

ΛcρKu
∗
1

1+ρK
− µρK − 2αu∗21

αu∗
1

(1+u∗
3)2

−δu∗3 −rρK − δu∗1

)(
ξ1
ξ2

)
= ρ

(
η1

η2

)
,(

ΛcρKu
∗
1

1+ρK
− µρK − 2αu∗21

αu∗
1

(1+u∗
3)2

−δu∗3 −rρK − δu∗1

)(
η1

η2

)
= −ρ

(
ξ1
ξ2

)
,

and (
ΛcρKu

∗
1

1+ρK
− µρK − 2αu∗21 −δu∗3
αu∗

1

(1+u∗
3)2 −rρK − δu∗1

)(
ξ∗1
ξ∗2

)
= −ρ

(
η∗1
η∗2

)
(

ΛcρKu
∗
1

1+ρK
− µρK − 2αu∗21 −δu∗3
αu∗

1

(1+u∗
3)2 −rρK − δu∗1

)(
η∗1
η∗2

)
= ρ

(
ξ∗1
ξ∗2

)
,

where Λc is as in (4.10), ek as in (3.6), and

ΛcρKu
∗
1

1 + ρK
− µρK − 2αu∗21 = rρK + δu∗1,

ρ = det AΛc

K =
αδ0

(1 + u∗3)2
− (γρK + δu∗1)2.
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Here, we use that u∗1u
∗
3 = δ0/δ. From these equations we obtain

ξ1 = −(rρK + δu∗1), ξ2 = δu∗3,
η1 = −ρ, η2 = 0,
ξ∗1 = 0, ξ∗2 = −ρ,
η∗1 = δu∗3, η∗2γρK + δu∗1.

(4.20)

Due to (4.19) and (4.20) we see that

< ϕ,ϕ∗ >=< ψ,ψ∗ >= (η1η
∗
1 + η2η

∗
2)

∫
Ω

e2
Kdx = −δρu∗3

∫
Ω

e2
Kdx,

< ϕ, ψ∗ >=< ψ,ϕ∗ >= 0.

Step 3. We need to calculate

< G(xϕ+ yψ + Φ,Λc), ω
∗
j >, with ω∗1 = ϕ∗, ω2 = ψ∗.

By (4.5) we have G = G2 +G3, and

G2(ω, λ) =

(
−λ∇(ω1∇(−∆ + I)−1ω1)− 3αu∗1ω

2
1 + αω1ω2

(1+u∗
3)2 −

αu∗
1ω

2
2

(1+u∗
3)3

−δω1ω2

)
,

G3(ω, λ) =

(
−αω3

1 −
αω1ω

2
2

(1+u∗
3)3 +

αu∗
1ω

3
2

(1+u∗
3)4

0

)
,

for ω = (ω1, ω2) ∈ H1. By (4.20) we find

< G3(xϕ+ yψ + Φ,Λc), ϕ
∗ >= 0.

Noting that ∫
Ω

eKeJeIdx = 0, ∀K,J, I ∈ Z2,

Φ = (Φ1,Φ2) = O(x2),

we have

< G2(xϕ+ yψ + Φ,Λc), ϕ
∗)

=

∫
Ω

[ξ∗1eKg21 + ξ∗2eKg22]dx

= (by ξ∗1 = 0)

=

∫
Ω

ξ∗2eK [−δ(xξ1eK + yη1eK + Φ1)(xξ2 + yη2 + Φ2)]dx

= −δξ∗2
(
ξ2x

∫
Ω

Φ1e
2
Kdx+ ξ1x

∫
Ω

Φ2e
2
Kdx+ η1y

∫
Ω

Φ2e
2
Kdx

)
.

Thus, we get

< G(xϕ+ yψ + Φ,Λc), ϕ
∗ > (4.21)

= −δξ∗2
[
ξ2x

∫
Ω

Φ1e
2
Kdx+ ξ1x

∫
Ω

Φ2e
2
Kdx+ η1y

∫
Ω

Φ2e
2
Kdx

]
+ o(3).
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In the same fashion, we derive

< G(xϕ+ yψ + Φ,Λc), ψ
∗ > (4.22)

=

(
αξ2η

∗
1

(1 + u∗3)2
− 6αu∗1ξ1η

∗
1 − δξ2η∗2

)
x

∫
Ω

Φ1e
2
Kdx− 6αu∗1η1η

∗
1y

∫
Ω

Φ1e
2
Kdx

+

(
αη1η

∗
1

(1 + u∗3)2
− 2αu∗1ξ2η

∗
1

(1 + u∗3)3
− δξ1η∗2

)
x

∫
Ω

Φ2e
2
Kdx

+

(
αη1η

∗
1

(1 + u∗3)2
− δη1η

∗
3

)
y

∫
Ω

Φ2e
2
Kdx+

Λcξ1η
∗
1

1 + ρK
x

∫
Ω

Φ1|∇eK |2dx

+
Λcη1η

∗
1

1 + ρK
y

∫
Ω

Φ1|∇eK |2dx−
1

2
Λcξ1η

∗
1x

∫
Ω

e2
K∆(−∆ + I)−1Φ1dx

− 1

2
Λcη1η

∗
1y

∫
Ω

e2
K∆(−∆ + I)−1Φ1dx

−
[
η∗1

(
αu∗1

(1 + u∗3)4
ξ3
2 −

αξ2
2ξ1

(1 + u∗3)3
− αξ3

1

)∫
Ω

e4
Kdx

]
x3

−
[
η∗1

(
αξ2

2η1

(1 + u∗3)3
+ 3αξ2

1η1

)∫
Ω

e4
Kdx

]
x2y

−
(

3αξ1η
2
1η
∗
1

∫
Ω

e4
Kdx

)
xy2 −

(
αη3

1η
∗
1

∫
Ω

e4
Kdx

)
y3 + o(3).

Step 4. By the formula of center manifold function in the complex case in Theorem
A.1 in [8], we have

Φ =

(
Φ1

Φ2

)
=

(
Φ1

1

Φ1
2

)
+

(
Φ2

1

Φ2
2

)
+

(
Φ3

1

Φ3
2

)
+ o(3), (4.23)

with

− Lλc

(
Φ1

1

Φ1
2

)
= x2G11 + xy(G12 +G21) + y2G22,

− (L2
λc

+ 4ρ2)Lλc

(
Φ2

1

Φ2
2

)
= 2ρ2

[
(x2 − y2)(G22 −G11)− 2xy(G12 +G21)

]
,

(L2
λc

+ 4ρ2)

(
Φ3

1

Φ3
2

)
= ρ

[
(y2 − x2)(G12 +G21) + 2xy(G11 −G22)

]
.

(4.24)
Here Gij = G2(Ψi,Ψj , λc) with Ψ1 = ϕ and Ψ2 = ψ, and G2 is as defined in Step
3. Namely

Gij =

(
−Λc∇(Ψi

1∇(−∆ + I)−1Ψj
1)

0

)
+

(
αΨi

1Ψj
2

(1+u∗
3)2 −

αu∗
1Ψi

2Ψj
2

(1+u∗
3)2 − 3αu∗1Ψi

1Ψj
1

−δΨi
1Ψj

2

)
,

with Ψi
l = ΓileK , 1 ≤ i, l ≤ 2, and

Γ1
1 = ξ1, Γ1

2 = ξ2, Γ2
1 = η1, Γ2

2 = η2, (4.25)

which are given by (4.20).
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Direct calculation shows that

Gij = −ΛcΓ
i
1Γj1

1 + ρK
∇(eK∇eK)

(
1
0

)
(4.26)

+e2
K

(
αΓi

1Γj
2

(1+u∗
3)2 −

αu∗
1Γi

2Γj
2

(1+u∗
3)3 − 3αu∗1Γi1Γj1

−δΓi1Γj2

)
.

For simplicity, we only consider the case where K = (K1, 0). In this case, by (3.6)
we can see that

e2
K =

1

2
(e0 + e2K), ∇(eK∇eK) = −ρKe2K .

Then, by (4.26), we have

Gij =

(
h0
ij

g0
ij

)
e0 +

(
h2K
ij

g2K
ij

)
e2K , 1 ≤ i, j ≤ 2, (4.27)

where

h0
ij =

1

2

[
αΓi1Γj2

(1 + u∗3)2
− αu∗1Γi2Γj2

(1 + u∗3)3
− 3αu∗1Γi1Γj1

]
,

h2K
ij =

ρKλcΓ
i
1Γj1

1 + ρK
+ h0

ij ,

g0
ij = g2K

ij = −1

2
δΓi1Γj2.

(4.28)

Let (
ΦK1
ΦK2

)
=

(
ϕ0
k1

ϕ0
k2

)
e0 +

(
ϕ2K
k1

ϕ2K
k2

)
e2K , 1 ≤ k ≤ 3. (4.29)

Then it follows from (4.24) and (4.27) that(
ϕ0

11

ϕ0
12

)
= B−1

0

[
x2

(
h0

11

g0
11

)
+ xy

(
h0

12 + h0
21

g0
12 + g0

21

)
+ y2

(
h0

22

g0
22

)]
,(

ϕ2K
11

ϕ2K
12

)
= B−1

2K

[
x

(
h2K

11

g2K
11

)
+ xy

(
h2K

12 + h2K
21

g2K
12 + g2K

21

)
+ y2

(
h2K

22

g2K
22

)]
,(

ϕ0
21

ϕ0
22

)
=

2ρ2

B0(B2
0 + 4ρ2I)

[
(x2 − y2)

(
h0

22 − h0
11

g0
22 − g0

11

)
− 2xy

(
h0

12 + h0
21

g0
12 + g0

21

)]
,(

ϕ2K
21

ϕ2K
22

)
=

2ρ2

B2K(B2
2K + 4ρ2I)

[
(x2 − y2)

(
h2K

22 − h2K
11

g2K
22 − g2K

11

)
− 2xy

(
h2K

12 + h2K
21

g2K
12 + g2K

21

)]
,(

ϕ0
31

ϕ0
32

)
=

ρ

B2
0 + 4ρ2I

[
(y2 − x2)

(
h0

12 + h0
21

g0
12 + g0

21

)
+ 2xy

(
h0

11 − h0
22

g0
11 − g0

22

)]
,(

ϕ2K
31

ϕ2K
32

)
=

ρ

B2
2K + 4ρ2I

[
(y2 − x2)

(
h2K

12 + h2K
21

g2K
12 + g2K

21

)
+ 2xy

(
h2K

11 − h2K
22

g2K
11 − g2K

22

)]
,

(4.30)

where Bk = −Aλc

k with Aλc

k as defined by (4.8). By (4.23) and (4.29) we obtain an
explicit expression of Φ as follows:

Φ1 = (ϕ0
11 + ϕ0

21 + ϕ0
31)e0 + (ϕ2K

11 + ϕ2K
21 + ϕ2K

31 )e2K + o(2),

Φ2 = (ϕ0
12 + ϕ0

22 + ϕ0
32)e0 + (ϕ2K

12 + ϕ2K
22 + ϕ2K

32 )e2K + o(2).
(4.31)
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Here, by (4.30), (4.28), and (4.25), ϕkij are 2-order homogeneous functions of (x, y),
with the coefficients depending explicitly on the parameters defined in (2.4).

Step 5. Finally, inserting (4.31) into (4.21) and (4.22), we can write (4.18) in the
following form

dx

dt
= −ρy + a11x

3 + a12x
2y + a13xy

2 + a14y
3 + o(4),

dy

dt
= ρx+ a21x

3 + a22x
2y + a23xy

2 + a24y
3 + o(4).

Then, by Theorem 2.4.5 in [7], the parameter b0 in Theorem 4.2 is obtained by

b0 = 3a11 + 3a24 + a12 + a23,

where a11, a24, a12, a23 can be explicitly expressed in the terms in (4.20)-(4.22).

4.5. Transition for the system (2.5). We are now in a position to discuss the
transition of (2.5). With the translation (4.2), the system (2.5) is rewritten in the
following form

∂u1

∂t
= µ∆u1 − 2αu∗21 u1 − u∗1∆u2 +

αu∗1u+ 3

(1 + u∗3)2
+ g(u),

∂u2

∂t
= ∆u2 − u2 + λu1,

∂u3

∂t
= r∆u3 − δu∗1u3 − δu∗3u1 − δu1u3,

∂u

∂n

∣∣∣∣
∂Ω

= 0,

u(0) = u0,

(4.32)

where g(u) is as in (4.4). Here the notation u stands for three-component unknown:

u = (u1, u2, u3).

Let

Lλu =

 µ∆− 2αu∗21 −u∗1∆
αu∗

1

(1+u∗
3)2

λ ∆− 1 0
−δu∗3 0 r∆− δu∗1


 u1

u2

u3

 .

Then, all eigenvalues βjk(λ) and eigenvectors ψjk of Lλ satisfy

Dλ
k

 ξjk1

ξjk2

ξjk3

 = βjk(λ)

 ξjk1

ξjk2

ξjk3

 , 1 ≤ j ≤ 3, k ∈ Z2,

with

ψjk = (ξjk1ek, ξ
j
k2ek, ξ

j
k3ek),

and ek as in (3.6), Dλ
k is a 3× 3 matrix given by

Dλ
k =

 −(µρk + 2αu∗21 ) u∗1ρk
αu∗

1

(1+u∗
3)2

λ −(ρk + 1) 0
−δu∗3 0 −(rρk + δu∗1)

 .
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We introduce the following three parameters:

Aλk = −trDλ
k = µρk + 2αu∗21 + ρk + 1 + rρk + δu∗1,

Bλk = det

(
−(µρk + 2αu∗21 ) u∗1ρk

λ −(ρk + 1)

)
+ det

(
−(µρk + 2αu∗21 )

αu∗
1

(1+u∗
3)2

−δu∗3 −(rρk + δu∗1)

)
+ (ρk + 1)(rρk + δu∗1),

Cλk = −detDλ
k = (µρk + 2αu∗21 )(ρk + 1)(rρk + δu∗1)

− u∗1ρkλ(rρk + δu∗1) +
αu∗1

(1 + u∗3)2
δu∗3(ρk + 1).

By the Routh-Hurwitz theorem, we know that all eigenvalues βjk of Dj
k have negative

real parts if and only if

Aλk > 0, AλkB
λ
k − Cλk > 0, Cλk > 0. (4.33)

Let Λc and K = (K1,K2) satisfy

AΛc

K > 0, AΛc

K BΛc

K − C
λc

K = 0, CΛc

K > 0,

AΛc

k > 0, AΛc

k BΛc

k − C
Λc

k > 0, CΛc

k > 0, ∀k with ρk 6= ρK .
(4.34)

Then Λc satisfies that

Λc = inf
ρk

1

ρku∗1
[(µ+ r)ρk + 2αu∗21 + δu∗1] (4.35)

×
[
(r + 1)ρk + δu∗1 + 1 +

αδ

(µρk + 2αu∗21 + ρk + 1)(1 + u∗3)2

]
,

and ρK satisfies (4.35). In particular, under the condition (4.34), there is a pair of
complex eigenvalues β1

K(λ) and β2
K(λ) of Dλ

K , such that

Re β1,2
K (λ)

 < 0, λ < Λc,
= 0, λ = Λc,
> 0, λ > Λc,

(4.36)

and the other eigenvalues βjk(λ) of Lλ satisfy{
Re βjk(Λc) < 0, ∀k with ρk 6= ρK , and 1 ≤ j ≤ 3,
β3
K(Λc) < 0.

(4.37)

Let λc and K∗ = (K∗1 ,K
∗
2 ) satisfy

Aλc

K∗ > 0, Aλc

K∗B
λc

K∗ − Cλc

K∗ > 0, Cλc

K∗ = 0,

Aλc

k > 0, Aλc

k B
λc

k − C
λc

k > 0, Cλc

k > 0, ∀k with ρk 6= ρK∗ .
(4.38)

Then λc is given by

λc = inf
ρk

(ρk + 1)

ρku∗1

[
µρk + 2αu∗21 +

αδ

(1 + u∗3)2(rρk + δu∗1)

]
, (4.39)
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and λc arrives its minimal at ρK∗ . From the Routh-Hurwitz criterion (4.33), we

deduce that with (4.38) there is a real eigenvalue β1
K∗(λ) of Dλc

K∗ satisfies

βK∗(λ)

 < 0, λ < λc,
= 0, λ = λc,
> 0, λ > λc,

(4.40)

{
ReβjK∗(λc) < 0, j = 2, 3,

Reβjk(λc) < 0, ∀k ∈ Z2 with ρk 6= ρK∗ and 1 ≤ j ≤ 3.
(4.41)

It is clear that (4.36) and (4.37) hold true as Λc < λc, and (4.39)-(4.40) hold true
as λc < Λc. Hence, we have the following transition theorem for (4.32).

Theorem 4.3. Let Λc and λc be given by (4.35) and (4.39) respectively. Then,
Assertions (1) and (2) of Theorem 4.2 hold true for the system (4.32).

5. Biological conclusions. The main objective of this article is to determine the
types of dynamic transitions, which are dictated by non-dimensional parameters,
given in terms of key system parameters as well as the geometry of the spatial do-
main of the underlying system. In this section, we give some biological implications
on extreme cases, and further biological implications of the main theorems and the
main results will be carried out elsewhere.

5.1. Biological significance of transition theorems. Pattern formation is one
of the characteristics for bacteria chemotaxis, and is fully characterized by the
dynamic transitions. Theorems 3.1–4.3 tell us that the nondimensional parameter
λ, given by

λ =

√
α2r1χ

r2k2
, (5.1)

plays a crucial role to determine the dynamic transition and pattern formation.
Actually, the key factor in (5.1) is the product of the chemotactic coefficient χ and
the production rate r1 : χr1, which depends on the type of bacteria. When λ is less
than some critical value λc, the uniform distribution of biological individuals is a
stable state. When λ exceeds λc, the bacteria cells aggregate to form more complex
and stable patterns.

As seen in (3.11), (4.10), (4.11) and (4.35), under different biological conditions,
the critical parameter λc takes different forms and values. But, a general formula
for λc is of the following type:

λc = a0 + inf
ρk

(
a1ρk +

a2

ρk
+

a3

b1ρk + b0
+

a4

ρk(b1ρk + b0)

)
, (5.2)

where ρk are taken as the eigenvalues of −∆ with the Neumann boundary condition.
When Ω is a rectangular region, ρk are given by (3.6), and the coefficients aj
(1 ≤ j ≤ 4), b0, b1 ≥ 0 depend on the parameters in (2.4), with

a0, a1, a2, b0, b1 > 0, a3, a4 ≥ 0.

In particular, for the system with rich nutrient supplies, (5.2) becomes

λc = a0 + inf
ρk

[
a1ρk +

a2

ρk

]
.
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The eigenvalues ρk, depending on the geometry of Ω, satisfy

0 = ρ0 < ρ1 ≤ · · · ≤ ρk ≤ · · · ,
ρk →∞ if k →∞,

ρ1 ∝
1

L2
,

(5.3)

where L is the length scale of Ω.
We infer from (5.2) and (5.3) that

λc →∞ as |Ω| → 0 (L→ 0).

It implies that when the container Ω is small, the homogenous state is state and
there is no pattern formation of bacteria under any biological conditions.

5.2. Spatiotemporal oscillation. Theorems 4.2 and 4.3 show that there are two
critical parameters λc and Λc, such that

• if λc < Λc, the patterns formed by biological organisms are steady states, as
exhibited by many experimental results, and

• if Λc < λc, a spatial-temporal oscillatory behavior takes place.

For the case with rich nutrient,

u∗1 = 1, u∗3 =∞.

In this situation, λc in (4.11) is reduced to (3.8), and obviously we have that

λc < Λc for both (4.10) and (4.35),

and the dynamic transition and pattern formation are determined by Theorems 3.1
and 3.2. Hence there is no spatiotemporal oscillations for the rich nutrient case,
and the time periodic oscillation of chemotaxis occurs only for the case where the
nutrient is moderately supplied.

In particular, if µ, r ∼= 0, and

δ2u∗21 (1 + u∗3)2 < αδ0,

then for Λc defined by (4.10) and (4.35), we have

Λc < λc.

In this case, a spatial-temporal oscillation pattern are expected for λ > Λc.

5.3. Transition types. One of the most important aspects of the study for phase
transitions is to determine the transition types for a given system. The main theo-
rems in this article provide precise information on the transition types. In all cases,
types are precisely determined by the sign of some non dimensional parameters; see
b, b0 andb1 respectively in the main theorems. Hence a global phase diagram can
be obtained easily by setting the related parameter to be zero.

For example, when Ω = (0, L1) is one-dimensional or when K = (K1, 0) (resp.
K = (0,K2)), the parameter b in (3.14) can be simplified into the following form

b = 2

[
−3µρK + 9α− (2µρK + α)(2µλ2

K + 28αρK + 4α− µρK)

(µρ2K + 2α)(ρ2K + 1)− ρ2Kλc

]
. (5.4)

For a non-growth system, α = 0,K = (1, 0), λc = µ(ρK+1). Then, (5.4) becomes

b =
µ

3
(1− 20λ1), λ1 =

π2

L2
1

, (5.5)
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and λ = ar1x
r2k2

, with a = 1
|Ω|
∫

Ω
u1dx. It follows from (5.5) that

b

{
< 0 if L1 < 2

√
5π,

> 0 if L1 > 2
√

5π.
(5.6)

By Theorems 3.1 and 3.2, the phase transition of (3.3) and (3.1) from (u, λ) =

(u∗, λc) is continuous if the length scale L1 of Ω is less than 2
√

5π, and jump if L1

is bigger than 2
√

5π.
In addition, when we take

χ(u) =
χ1u1

(β + u2)2

as the chemotaxis function, by Remark 4.1, the parameter b of (5.5) is replaced by

b1 =
µ

3

(
1− 20π2

L2
1

)
+

4κµ2π2

L2
1

with

κ =
k2

βχ+ k2λc
, and λc = µ

(
π2

L2
1

+ 1

)
.

The above conclusion amounts to saying that for a non-growth system, the pa-
rameter

λ =
r1χ

r2k2
a, with a =

1

|Ω|

∫
Ω

u1dx,

is proportional to the average density a of initial condition of u1(u1 is conservation).
Hence, the biological individual is in a homogenous distribution state provided

1

|Ω|

∫
Ω

ϕdx <
r2k2

r1χ
µ

(
π2

L2
1

+ 1

)
, ϕ = u1(0),

and the bacteria will aggregate to form numbers of high density regions provided

1

|Ω|

∫
Ω

ϕdx >
r2k2

r1χ
µ

(
π2

L2
1

+ 1

)
. (5.7)

Moreover, under the condition (5.7), if the scale L1 of Ω is smaller than some critical

value Lc (in (5.6) Lc = 2
√

5π), i.e. L1 < Lc, the continuous transition implies that
there is only one high density region of bacteria to be formed, and if L1 > Lc then
the jump transition expects a large number of high density regions to appear.

5.4. Pattern formation. As mentioned before, the pattern formation behavior is
dictated by the dynamic transition of the system. In this article, we studied the
formation of two type patterns–the lamella and the rectangular patterns, although
the approach can be generalized to study the formation of other more complex
patterns.

For a growth system, the critical parameter λc takes its value at some eigenvalue
ρK of −∆ for K = (K1,K2), as shown by (3.11) and (4.11). From the pattern
formation point of view, for the Type-I transition, the patterns described by the
transition solutions in thee main theorems are either lamella or rectangular:

lamella pattern for K1K2 = 0,

rectangular pattern for K1K2 6= 0.

In the case where b > 0, the system undergoes a more drastic change. As λ∗ <
λ < λc, the homogeneous state, the new patterns vλ2 and vλ4 are metastable. For
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λ > λc, the system undergoes transitions to more complex patterns away from the
basic homogeneous state.
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