
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2009.4.1
c©American Institute of Mathematical Sciences
Volume 4, Number 1, March 2009 pp. 1–18

SELF–MOTION OF CAMPHOR DISCS.

MODEL AND ANALYSIS

Xinfu Chen

Department of Mathematics, University of Pittsburgh
Pittsburgh, PA 15260, USA

Shin-Ichiro Ei

Faculty of Mathematics, Kyushu University
Fukuoka, 812-8581, Japan

Masayasu Mimura

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University

Kawasaki, 214-8571, Japan

(Communicated by Roberto Natalini)

Abstract. In the present paper, a model describing the self-motion of a cam-
phor disc on water is proposed. The stability of a standing camphor disc is
investigated by analyzing the model equation, and a pitchfork type bifurcation
diagram of a traveling spot is shown. Multiple camphor discs are also treated
by the model equations, and the repulsive interaction of spots is discussed.

1. Introduction. In order to clarify biological and molecular motors, autonomous
motors under isothermal conditions have been investigated experimentally and
through mathematical modeling. For example, the driving force behind the self-
motion of a floating camphor scraping has been explained as being due to the
difference in the surface tension around the camphor scraping ([3], for instance).
However, this explanation raises a number of questions. Will the camphor move
under small asymmetric disturbances if the camphor is disc shaped? If the disc
does move in a rectangular water vessel, what is the motion of the disc? In or-
der to investigate these questions experimentally, we prepare a water phase in a
square polystyrene cell (length: 200 mm; depth: 50 mm) and drop a camphor disc
(diameter: 13.5 mm, thickness: 0.5 mm, weight: 0.1 g, pure camphor) onto the
water phase. Figure 1 shows the trajectory of a disc that moves continuously for
10 seconds. The camphor disc was observed to move. In addition, when the disc
approaches a wall, it changes direction before colliding with the wall, as if it were
an elastic body.
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The goal of the present paper is to understand these phenomena by using a
mathematical model. In Section 2, we introduce a mathematical model to describe
the motion of several camphor discs floating on the water phase. In Section 3, we
consider a single disc in the space R

2 and discuss the existence and stability of
a radially symmetric equilibrium solution corresponding to a motionless disc. It
is shown that, in some parameter range, the disc loses its stability. This destabi-
lization implies that the camphor disc moves under small non-radially symmetric
disturbances. In Section 4, we consider the interaction of camphor discs.

Figure 1. A camphor disc moving in a square vessel of water phase.

2. Mathematical modeling.

Figure 2. A cross section view of the camphor disc in water.

2.1. Driving force for the motion of a camphor disc. We believe that the
driving force behind the motion of a camphor disc is the surface tension. Sur-
face tension is caused by the attraction between the liquid’s molecules by various
intermolecular forces. In the bulk of the liquid, each molecule is pulled equally
in all directions by neighboring liquid molecules, resulting in a net force of zero.
At the liquid-solid and liquid-air interfaces, the molecules are pulled inwards by
other molecules deeper inside the liquid and are not attracted as intensely by the
molecules in the neighboring medium. Therefore, all of the molecules at the surface
are subject to an inward force of molecular attraction which is balanced only by the
liquid’s resistance to compression, meaning there is no net inward force. Mathemat-
ically, surface tension, represented by the symbol σ, is defined as the force along a
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line of unit length, where the force is parallel to the surface but perpendicular to
the line. It has the unit of dyn/cm.

We denote by σls, σla, σas the surface tension of liquid-solid, liquid-air, and solid-
air, respectively. We assume that σls and σas depend on the (surface) concentration
of camphor that is dissolved in the water. Using x = (x1, x2) for plane coordinates
and t for time, we denote by c = c(x, t) (mol/cm2) the surface concentration of
camphor in liquid. Thus, the surface tension σls and σla is a function of c.

Denote by r the radius of the camphor disc and by p = p(t) the center of disc at
time t. The location of the disc is then at B(p, r) := {x ∈ R

2 | |x − p| < r}. The
boundary of the disc is denoted by ∂B(p, r).

We divide the total contribution of surface tension into three pieces.
(1) In Figure 2, we denote by C the tri-intersection of the air-liquid-solid which

can be regarded as a circle. Take from C a piece of length ds, with horizontal
projected unit normal ~n. The net driving force in the horizontal direction is

d~f1 = ~n ds σla sin θ,

where θ (also a function of c) is the contact angel determined by the balance of
surface tension in the vertical direction

σls − σsa = −σla cos θ.

Eliminating θ we obtain

d~f1 = ~n ds σla

√
1 − (σls − σsa)2/σ2

la.

The total contribution of the surface tension along the tri-intersection C is

~f1 =

∫

∂B(p,r)

√
1 − (σls − σsa)2/σ2

la σla ~n ds.

(2) Since surface tension is in the direction tangential to the surface, there is no
horizontal force contributed by the lateral surface of the disc.

(3) On the bottom surface of the camphor disc, the surface tension is not uniform
since σls depends on the concentration. The surface tension differences cause a well-
known Marangoni effect (sometimes also called the Gibbs-Marangoni effect). Since
a liquid with a high surface tension pulls more strongly on the surrounding liquid
than one with a low surface tension, the presence of a gradient in surface tension
will naturally cause the liquid to flow away from regions of low surface tension.
Regarding the motion of liquid as driving force given towards the camphor disc, the
total contribution can be calculated as

~f3 =

∫

B(p,r)

∇σls dx =

∫

∂B(p,r)

σls ~n ds.

Here in the second equation, we have used the divergence theorem.
We see that the total surface tension can be written as

~FST = ~f1 +~0 + ~f3 =

∫

∂B(p,r)

Γ d~s,

where

d~s = ~nds, Γ = σls + σla

√
1 − (σls − σsa)2/σ2

la.

We assume that Γ = Γ(c) depends only on the surface camphor concentration c.



4 X. CHEN, S.-I. EI AND M. MIMURA

Laboratory experiments suggest that

Γ(c) =
Γ0

1 +Ac
,

where A is approximately a positive constant (which may depend on temperature
[3]). In general, if c = 1 represents saturation, then Γ(0)/Γ(1) = 1 + A can be
significantly large. That is to say, the forces on various parts of the disc may be
very unbalanced if the concentration at different points on the disc surface are very
different.

Although only a small amount of camphor is dissolved into the water tank, and
consequently the mean concentration (or the concentration a few millimeters away
from the disk) can be considered to be zero, the concentration near the camphor
surface can be very high. When a camphor disc is in motion, the concentration
difference at the lateral boundary of the disc can be significant. The front edge of
the disc continues to move toward areas of fresh water in which the concentration
is low and the molecular pulling force is large, whereas the back edge of the disc
moves into areas of previous dissolution, in which the concentration is high and the
molecular dragging force is small. We believe that this net difference in the pulling
and dragging forces is the mechanism that causes a camphor disc to move with a
constant velocity, as was observed in a laboratory experiment.

As mentioned, the Marangoni effect will cause the motion of liquid, so does the
motion of camphor disc. Since the motion of camphor disc is not very large, at this
stage, we shall not take into account the motion of liquid.

2.2. Equation of motion for a single camphor disc. Due to the
above-described driving force, the camphor disc will move if not secured. When
the disc is in motion, the liquid will apply a viscous force on the disc. Since the
disc is thin, the forces on the edge can be neglected. Hence, we can assume that the
viscous motion resisting force is in the negative direction of motion and is propor-
tional to the speed and the area of contact. Thus, the viscous force can be written
as ∫

∂B(P,r)

~Fvisd~s = −µπr2Ṗ (t),

where µ (dyn· sec/cm2) is the viscous coefficient, and P (t) is the center of the disc.
The motion equation for the solid camphor disc can then be written as

(ρcπr
2h)P̈ (t) = ~FST +

∫

∂B(P,r)

~Fvisd~s =

∫

∂B(P,r)

Γ(c) d~s− µπr2Ṗ ,

where ρc is the density of the camphor disc, and h is the thickness. Since h is small
and the motion of the camphor disc is observed to have an almost-constant-velocity

motion, the acceleration term ρπr2ĥP̈ on the left-hand side can be neglected. There-
fore, we can obtain the approximate equation of motion for the camphor disc, as
follows:

Ṗ =
1

µπr2

∫

∂B(P,r)

Γ(c)d~s. (1)

In the time interval of interest, for simplicity, we shall assume that the size of the
camphor does not change, i.e., we assume hereafter h = h0 and r = r0 for constants
h0, r0 > 0.
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2.3. Diffusion of the camphor in its solution. As mentioned earlier, the large
size of the water tank (compared to the camphor disc) makes the mean concentration
of camphor approximately zero. Nevertheless, the concentration near the surface of
the camphor disc can be very high, and so the gradient of the contraction may not
be small.

Since camphor does not dilute into water very well, we only consider diffusion of
camphor on the surface. Hence, we use c(x1, x2, t) (mol/cm2) to denote the surface
concentration of camphor.

We assume that there are a total of three effects that cause the change of surface
concentration of camphor in liquid. The first is the classical diffusion for which we
introduce a constant, D (cm2/sec), for the diffusion coefficient of camphor in water.
Since camphor evaporates, we use −αc to denote the decreasing rate of change of
concentration due to evaporation, where α can be a (small) constant or a function

of c. Finally, we use F̃ (c) to denote the rate of dissolution of camphor from disc to
water, which should be a decreasing function from the phenomenological point of
view. Combining these three effect, we end with the reaction-diffusion equation

ct = D∆c− α c χΩ\B(P,r0) + F̃ (c)χB(P,r0), (x, t) ∈ Ω × (0,∞),

where χA is the characteristic function of the set A. Set F (c) = F̃ (c) + αc, the
above equation can be written as

ct = D∆c− α c + F (c)χB(P,r0), (x, t) ∈ Ω × (0,∞). (2)

2.4. A moving boundary model for interaction of camphor discs. We can
now formulate the self-motion of camphor discs as follows. Assume that there are
m disks, of radius r1, · · · , rm, respectively. We search for functions c(x, t) and
P1(t), · · · , Pm(t), such that






ct = D∆c− α c+ F (c)
∑m

j=1 χB(Pj ,rj)(x), x ∈ Ω, t ∈ (0,∞),

Ṗj(t) = βj

∫
∂B(Pj ,rj)

Γ(c)d~s, t > 0, j = 1, · · · ,m,
∂nc = 0, x ∈ ∂Ω, t > 0,

(3)

where βj is given by

βj =
1

πµr2j
.

Clearly, the parameters µ, α and the structural functions Γ and F depend on envi-
ronmental factors, such as the temperature.

With appropriate initial conditions (c(·, 0), P1(0), · · · , Pm(0)), the system (3) is
well-posed and has a unique global solution.

In the following sections, we show that when m = 1 and Ω = R
2, (3) has a

radially symmetric solution with P1(t) ≡ (0, 0) for all t > 0 and that in a certain
parameter range, this solution is unstable and generates a bifurcating traveling spot
having constant velocity. Finally, we shall discuss the interactions between different
camphor discs.

3. A single camphor disc in R
2. In this section, we consider a single camphor

disc (i.e. m = 1) and hereinafter assume that Ω = R
2. We write (P1, r1, β1) simply

as (P, r0, β). Thus, we need to find (c(x, t), P (t)), x ∈ R
2, t > 0, such that

{
ct(x, t) = D∆c− α c+ F (c)H(r0 − |x− P |), x ∈ Ω, t ∈ (0,∞),

Ṗ (t) = β
∫

Cr0

Γ(c(P + x))d~s, t > 0,
(4)
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where Cr0
= {x ∈ R

2| |x| = r0} is a circle of radius r0 centered at the origin, and
H is the Heaviside function: H(ξ) = 0 for ξ < 0 and H(ξ) = 1 for ξ > 0.

When we consider only one disc, it is convenient to change the variables via

y = x− P (t), u(y, t) = c(P (t) + y, t). (5)

The system (1) can then be written as a single non-local equation, for u(y, t),

ut = D∆u− αu + β

∫

Cr0

Γ(u)d~s · ∇u+ F (u)H(r − |y|), y ∈ R
2, t > 0. (6)

Once we find u, the function P can be recovered by integrating

Ṗ = β

∫

Cr0

Γ(u) d~s.

3.1. A radially symmetric equilibrium solution (standing spot). By sym-
metry, (3) admits a radially symmetric equilibrium, given by u(y, t) = S(|y|), where
S(r) solves

{
D(S′′ + r−1S′) − αS + F (S)H(r0 − r) = 0, r ∈ (0,∞),

S′(0) = 0, S(∞) = 0.
(7)

Note that Ṗ ≡ 0 for all t > 0, and hence the disc does not move.
In the following, we shall analyze the stability of this steady state solution. We

shall show that in some parameter range, this steady state lost its stability, and
hence small perturbation from radial symmetry will give rise to the motion of a
camphor disc.

3.2. Linear stability of the standing spot. There are two ways to linearize our
problem. The first is to linearize the original system (1), which will be useful in the
case of multiple discs. The second is to linearize (4), which works only for a single
disc, but the calculation is simpler.

As shown later herein, the loss of stability of the equilibrium near a critical pa-
rameter is shown in different ways for the linearizations of (3) and (1), respectively.

For (3), the change in stability of the radially symmetric equilibrium is shown by
the change of the sign of the principle eigenvalue of the linearized operator L on the
right-hand side of (3), the eigenspace of which is spanned by {ψ(r) cos θ, ψ(r) sin θ}
for some positive ψ, where (r, θ) are the polar coordinates. This eigenspace corre-
sponds to spatial dilation.

For (1), the linearized operator L of the right-hand side of (3) always has zero as
its eigenvalue with eigenspace spanned by {(−Sxj

, ej)}, j = 1, 2, which corresponds
to the spatial dilation invariance of the system (1). The change in stability of the
radially symmetric equilibrium is shown by the change in the algebraic simplicity
of the eigenvalue 0 of L, namely, a Jordan block appears.

In the following section, we first consider the linearization of (3), and then return
to (1).

3.3. Linearization of (3). Equation (3) can be written as

ut = A(u), A(u) := D∆u− αu+ β

∫

Cr0

γ(u)d~s · ∇u+ F (u)H(r0 − |y|). (8)

Its linearization around u(x, t) = S(|y|) can be written as

φt = Lφ, (9)
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where

Lφ := {D∆ − α+ F ′(S)H(r0 − |y|)}φ+ βΓ′(S(r))∇S ·
∫

Cr0

φd~s. (10)

The equilibrium is linearly stable, if the spectrum of L lies on the left-half complex
plane; otherwise, it is unstable.

Now, we consider the eigenvalue problem

Lφ = λφ. (11)

This problem can be rewritten as follows: Find (λ, φ) and vector ~v = (v1, v2), such
that

{
~v = βΓ′(S(r0))

∫
Cr0

φd~s,

{−D∆ − F ′(S)H + α+ λ}φ = ~v · ∇U.
(12)

Note that the vector ~v is related to the velocity of the motion of the disc. The
velocity for the linearized system is Ṗ = ~veλt.

In polar coordinates y = (r cos θ, r sin θ), (9) can be easily analyzed.
When λ 6∈ (−∞,−α], the second equation in (9) has a unique solution φ given

by

φ = ψ(r, λ)
(
v1 cos θ + v2 sin θ

)
, (13)

where ψ(r, λ) is a unique solution of
{

(L1
R + λ)ψ = S′(r), ρ > 0,

ψr(0, λ) = 0, ψ(∞, λ) = 0,
(14)

L1
Rψ :=

[
−D

( d2

dr2
+

1

r

d

dr
− 1

r2

)
− F ′(S(r))H(r0 − r) + α

]
ψ.

Hence, for Re(λ) > −α, (λ, φ) is an eigenpair if and only if the first equation in (9)
holds for some non-trivial ~v, when we substitute φ by (10).

For φ in (10), it is easy to find
∫

Cr0

φd~s = πr0ψ(r0, λ) ~v.

Hence, we have the following:

Lemma 3.1. λ 6∈ (−∞,−α] is an eigenvalue of L if and only if

− ψ(r0, λ) = b :=
1

πr0β|Γ′(S(r0))|
. (15)

If this equation is satisfied, then the eigenspace, for φ, is spanned by

{ψ(r, λ) cos θ, ψ(r, λ) sin θ)}.

Recall that Γ′(c) < 0.

Lemma 3.2. All of the eigenvalues of L are real.

Proof. Equipped with inner product

(ψ1, ψ1)R := 2π

∫ ∞

0

rψ1ψ2 dr
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the operator L1
R is positive definite. In addition, differentiating (4) with respect to

r gives

L1
RS

′ = −F (S(r0))δr0
, (16)

where δr0
is the Dirac measure with mass at r = r0.

Now, assume that λ 6∈ (−∞,−α] is an eigenvalue of L. Taking the inner product
of (L1

R+λ)ψ = S′ with ψ and S′, respectively, and using (L1
Rψ, S

′)R = (ψ,L1
RS

′)R =
−2πr0ψ(r0, λ)F (S(r0)), we obtain

λ‖ψ‖2
R = (S′, ψ)R − (L1

Rψ, ψ)R, λ(ψ, S′)R = ‖S′‖2
R + 2πr0ψ(r0, λ)F (S(r0)). (17)

Using (ψ, S′)R = (S′, ψ)R, we then obtain

|λ|2‖ψ‖2
R = ‖S′‖2

R + 2πr0ψ̄(r0, λ)F (S(r0)) − λ̄(L1
Rψ, ψ)R.

Since ψ(r0, λ) = −b is real and (L1
Rψ, ψ)R is positive, λ must be real. �

Lemma 3.3. Let σ(L) be the spectrum of L. Then,

σ(L) = (−∞,−α] ∪ {λ∗(b)}
where λ∗(b), the solution to (12), is real and satisfies the following: Define

b∗ :=
‖S′‖2

R

2πr0F (S(r0))
.

Therefore, λ(b∗) = 0, d
db
λ∗(b∗) < 0 and λ∗(b) < 0 if and only if b > b∗.

Proof. From the equation L1
RS

′ = −F (S(r0))δr0
we see that S′ < 0 for all r ∈

(0,∞). Consequently, for real λ > −α, ψ(r, λ) = (L1
R + λ)−1S′ < 0 for all r ≥ 0,

|ψ(r0, λ)| is a decreasing function of λ, and limλ→∞ |ψ(r0, λ)| = 0. Hence, for every
b > 0, (12) has a unique solution λ = λ∗(b) (When b > |ψ(r0,−α)|, we simply define
λ∗(b) = −α). From (14), we see that when λ = 0, ψ(r, 0) = −b∗. It follows that
λ∗(b∗) = 0, d

db
λ∗(b∗) < 0, and λ∗(b) < 0 if and only if b > b∗. This completes the

proof. �

Remark 1. From the above discussion, we see that the equilibrium is linearly
stable if and only if b > b∗; that is, the radially symmetric equilibrium is linearly
stable if and only if

β :=
1

πµr20
<

2F (S(r0))

|Γ′(S(r0))|
∫∞

0 rS′2(r) dr
, (18)

where r0 is the radius of the disc, and S is the solution to (4).

3.4. Linearization of (1). To clarify the difference and relationship between the
linearizations of (1) and (3) mentioned above, we investigate the linearization of
(1).

Since the derivative of the Heaviside function is the Dirac mass and
∫

Cr0

(∇S ·
P ) d~n = πr0S

′(r0)P , the linearization of (1) around the equilibrium (S(|x|), 0) takes
the form

[
φ
P

]

t

= L

[
φ
P

]
:=

[
(D∆ − α+ F ′H)φ+ FδCr0

e(θ) · P
βΓ′(S(r0))[πr0S

′(r0)P +
∫

Cr0

φd~s]

]
, (19)

where δCr0
is the Dirac measure with mass on the circle Cr0

, namely,∫
R2 δCr0

ζ(x)dx =
∫

Cr0

ζds for any continuous function ζ and e(θ) := (cos θ, sin θ)T .
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In the sequel, we denote Φ = (φ, P )T , where T denotes the transpose. Next, we
investigate the eigenvalue problem

λΦ = LΦ (20)

It is easy to see that the continuum spectrum of L is (−∞,−α], whereas the rests
are point spectrum. Since for each P ∈ R

2, (c, P ) = (S(|x−P |), P ) is in equilibrium
with (1), after differentiating with respect to P , for any ~v ∈ R

2, Φ = (−∇S · ~v,~v)T

is an eigenfunction of L with eigenvalue zero. Thus, 0 is an eigenvalue of L with an
eigenspace of at least two dimensions.

Let P = (p1, p2). Note that in polar coordinates,
FδCr0

e(θ) · P = F (S(r0))(p1 cos θ + p2 sin θ)δr0
. Hence, as before, when λ 6∈

(−∞,−α], we can solve for φ to obtain

φ(r, θ) = −ψ̂(r, λ)(p1 cos θ + p2 sin θ),

where ψ̂ = F (S(r0)) (L1
R + λ)−1δr0

. A simple evaluation of

∫

Cr0

φd~s reveals that

λ 6∈ (−∞,−α] is an eigenvalue of L if and only if

bλ+ S′(r0) + ψ̂(r0, λ) = 0, ψ̂ = F (S(r0)) (L1
R + λ)−1δr0

, (21)

where b = (πr0βΓ′(S(r0)))
−1 is the same as before.

Taking the inner product of (L1
R + λ)ψ̂ = Fδr0

with ψ̂ and S′, respectively, we
obtain

F (S(r0))ψ̂(r0, λ) = (L1
Rψ̂, ψ̂)R + λ‖ψ̂‖2

R, (22)

λ(ψ̂, S′)R = 2πr0F (S(r0))[S
′(r0) + ψ̂(r0, λ)]. (23)

From the second equation, we see that λ is an eigenvalue if and only if

λ { 2πr0bF (S(r0)) + (S′, ψ̂(·, λ))R } = 0.

Here, (19) and (20) imply that (S′, ψ(r0, λ))R is not real if λ is not real. Hence, we
conclude that all eigenvalues are real, and λ ∈ (−α, 0) ∪ (0,∞) is an eigenvalue if
and only if

2πr0 − bF (S(r0)) + (S′, ψ̂(·, λ))R = 0. (24)

Note that (i) S′ < 0, (ii) ψ̂(·, λ) > 0 for all λ > −α, (iii) ψ̂ is decreasing in

λ ∈ (−α,∞), (iv) as λ → ∞, ψ̂ → 0. Hence, there exists a unique solution λ̂(b)

solve (20) (When b > (S′, ψ̂(·,−α))R), and we simply define λ̂(b) = −α. Since when

λ = 0, ψ̂ = −S′, we see that λ̂(b∗) = 0 for b∗ = (S′, S′)R/(2πr0F (S(r0)), which is

the same b∗ as in the previous subsection. Hence, λ̂(b) < 0 if b > b∗ and λ > 0 if
b < b∗.

In the previous section, we see that when b = b∗, zero is an eigenvalue of L,
whereas when b 6= b∗, zero is not an eigenvalue. Next, we investigate what happen
to L when b = b∗. Hence, we assume that b = b∗.

From the previous analysis, we see that if LΦ = 0, then we must have Φ =

(ψ̂(·, 0)(p1 cos θ + p2 sin θ), P )T = (−∇S · P, P )T . Hence, the space Ker(L) :=
{Φ |LΦ = 0} is two-dimensional, which is true for all other b.

Now, we show that the union of the null space of Lk for all k = 1, 2, · · · is four-
dimensional and is spanned by Φj = (−Sxj

, ej), j = 1, 2, and Φ3 and Φ4 which
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are solutions to LΦj+2 = Φj , j = 1, 2, where e1 = (1, 0) and e2 = (0, 1). For this
purpose, we introduce the inner product

((φ1, P1)
T , (φ2, P2)

T )L2 =

∫

R2

φ1φ̄2 dx+ P1 · P̄2.

Then, it is easy to verify (LΦ,Ψ)L2 = (Φ,L∗Ψ)L2 , where

L∗

[
φ
P

]
:=

[
(D∆ − α+ F ′Hφ+ βΓ′(S(r0))δCr0

e(θ) · P
βΓ′(S(r0))πr0S

′(r0)P + F (S(r0))
∫

Cr0

φd~s

]

It is then easy to show, for j = 1, 2, that Φ∗
j := (Sxj

,− F (S(r0))
βΓ′(S(r0))

ej) satisfies

L∗Φ∗
j = 0. In addition, the space Ker(L∗) := {Φ | L∗Φ = 0} is exactly spanned by

Φ∗
1 and Φ∗

2. It is then easy to show that Ker(L) ⊥ Ker(L∗) if and only if b = b∗.
With a little more work, we can show that the algebraic multiplicity of the zero
eigenvalue of L is just four when b = b∗. In addition, Φ3 and Φ4 can be expressed
in terms of the solution ψ in (11). We omit the details but present a lemma on the
eigenfunctions of L and L∗ at b = b∗.

Lemma 3.4. Let φ0(r) be the solution of L1
Rφ0 = S′, and let

S1(y) :=

(
S′(r) cos θ

−e1

)
, S2(y) :=

(
S′(r) sin θ

−e2

)
,

Ψ1(y) :=

(
φ0(r) cos θ

0

)
, Ψ2(y) :=

(
φ0(r) sin θ

0

)

Φ∗
1(y) :=

(
S′(r) cos θ

− F (S0)
βΓ′(S0)

e1

)
, Φ∗

2(y) :=

(
S′(r) sin θ

− F (S0)
βΓ′(S0)

e2

)
,

and

Ψ∗
1(y) :=

(
(−a0S

′(r) + φ0(r)) cos θ
a0F (S0)
βΓ′(S0)

e1

)
, Ψ∗

2(y) :=

(
(−a0S

′(r) + φ0(r)) sin θ
a0F (S0)
βΓ′(S0)

e2

)
,

where y = re(θ), S0 := S(r0) and a0 :=
‖φ0‖2

R

(S′, φ0)R

. Then, LSj = 0, LΨj = −Sj

and L∗Φ∗
j = 0, L∗Ψ∗

j = −Φ∗
j and the normalizations hold

(Sj ,Φ
∗
j )L2 = (Ψj ,Ψ

∗
j )L2 = 0, (Ψj ,Φ

∗
j )L2 = (Sj ,Ψ

∗
j )L2 =

1

2
(S′, φ0)R > 0.

Sj and Ψj are orthogonal to Φ∗
k and Ψ∗

k for j 6= k.

3.5. A traveling wave solution (traveling spot). When b cross b∗, the zero
eigenvalue of L degenerates with the Jordan Block as per Lemma3.4. Since the
parameter b is determined by (12), for simplicity, we hereinafter consider β as the
bifurcation parameter, while all other parameters are fixed. Let β∗ be the value
corresponding to b∗, and write β = β∗ + η for |η| << 1. Then, (1) is given as
{
ct(x, t) = D∆c− α c+ F (c)H(r0 − |x− P |), x ∈ Ω, t ∈ (0,∞),

Ṗ (t) = β∗
∫

Cr0

Γ(c(P + x))d~s+ η
∫

Cr0

Γ(c(P + x))d~s, t > 0.

(25)
The system (22) has stationary solutions S(x − P ;P ) := (S(x − P ), P )T for

an arbitrarily given constant vector P ∈ R
2 independent of η. Regarding S as a

trivial solution, we consider the bifurcation structure in the neighborhood of η = 0
(β = β∗).
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Let M := {S(·−P ;P )T ; P ∈ R
2} and U(y, ζ, P ) := S(y;P )+ζ1Ψ1(y)+ζ2Ψ2(y)

(ζ = (ζ1, ζ2)). Define E := span{S1, S2, Ψ1, Ψ2} and the orthogonal space

E⊥ := {v; (v,Φ∗
j )L2 = (v,Ψ∗

j )L2 = 0 (j = 1, 2)}. Then, u = (u, P̂ )T in the

neighborhood of M is uniquely represented by u = U(x − P ; ζ, P ) + (v(x − P ),q)
for P ∈ R

2 and v = (v(y),q)T ∈ E⊥ by a standard manner.
By u = (c(x − P, t), P + q)T , (22) becomes






ct(y, t) = D∆c− α c+ F (c)H(r0 − |y − q|) + Ṗ · ∇c,
d

dt
(P + q) = β∗

∫

Cr0

Γ(c(q + y))d~s+ η

∫

Cr0

Γ(c(q + y))d~s
(26)

for y = x− P ∈ Ω and t ∈ (0,∞), which we write as

ut = A0(u) + ηG1(u) + G2(c, Ṗ ), (27)

where

u =

(
c

P + q

)
, G2(c, Ṗ ) :=

(
Ṗ · ∇c

0

)
,

A0(u) :=

(
D∆c− α c+ F (c)H(r0 − |y − q|)

β∗
∫

Cr0

Γ(c(q + y))d~s

)
,

G1(u) :=

(
0∫

Cr0

Γ(c(q + y))d~s

)
.

By the representation of u = U(y; ζ, P ) + v with v = (v(y, t),q) ∈ E⊥, (24)
becomes

vt = Lv + L(ζ1Ψ1 + ζ2Ψ2) − (ζ̇1Ψ1 + ζ̇2Ψ2) +
1

2
A′′

0(S)(ζ1Ψ1 + ζ2Ψ2 + v)2 + · · ·

+ηG1(U + v) + G2(U, Ṗ ) − (0, Ṗ )T + G2(v, Ṗ )

= Lv − (ζ1S1 + ζ2S2) − (ζ̇1Ψ1 + ζ̇2Ψ2) +
1

2
A′′

0 (S)(ζ1Ψ1 + ζ2Ψ2 + v)2 + · · ·

+ηG1(U + v) + ṗ1S1 + ṗ2S2 + G2(ζ1Ψ1 + ζ2Ψ2, Ṗ ) + G2(v, Ṗ ),

where L = A′
0(S) and P = (p1, p2)

T . Thus, all the necessary properties of the
equation for v are satisfied together with the property of L, as in Lemma 3.4, so
that we can apply the results of [1]. As a consequence, we have the following results
corresponding to Theorem 2.2 in [1]:

Lemma 3.5. P (t) and ζ(t) = (ζ1(t), ζ2(t)) satisfy

{
Ṗ = ζ +O(|ζ|3 + |η| 32 ),

ζ̇ = −∇ζW + O(|ζ|4 + |η|2) (28)
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as long as |ζ| < ζ∗ and |η| < η∗ for positive constants ζ∗ and η∗, where W =

W (ζ) :=
1

4
M1|ζ|4 +

1

2
M2η|ζ|2. M1 and M2 are given by

M1 :=
2

(S′, φ0)R

(
−1

8
{
∫ r0

0

rF ′′′(S(r))φ3
0(r)Sr(r)dr −

Γ′′′(S0)

Γ′(S0)
φ3

0(r0)F (S0)}

−1

4

∫ r0

0

rF ′′(S(r))φ0(r)(V1(r) +
1

2
W1(r))Sr(r)dr

+
Γ′′(S0)F (S0)φ0(r0)

4Γ′(S0)
(V1(r0) +

1

2
W1(r0))

−1

2

∫ r0

0

(2r∂rV1(r) + r∂rW1(r) + 2W1(r))Sr(r)dr

)
,

M2 :=
φ0(r0)F (S0)

β∗(S′, φ0)R

,

where V1(r) and W1(r) are the solutions of

− L0
RV1 =

1

2

(
∂rφ0 −

1

2
F ′′(S(r))H(r0 − r)φ2

0 +
1

r
φ0(r)

)
, (29)

−L2
RW1 =

1

2

(
∂rφ0 −

1

2
F ′′(S(r))H(r0 − r)φ2

0 −
1

r
φ0(r)

)
, (30)

respectively and LN
R := −D

(
d2

dr2 + 1
r

d
dr

− N2

r2

)
− F ′(S(r))H(r0 − r) + α.

Proof. The proof is basically the same as that for Theorem 2.2 in [1]. We simply
show that the constants M1 and M2 are given by the above equations.

First, we shall consider M1. From (25), we have

ζ̇1 = −M1(ζ
2
1 + ζ2

2 )ζ1 −M2ηζ1 + h.o.t.

Thus, M1 is the coefficient of ζ3
1 and ζ2

2 ζ1. According to the proof of Theorem 2.2
([1]), ζ3

1 and ζ2
2 ζ1 are derived from

1

6
(A′′′

0 (S)(ζ1Ψ1 + ζ2Ψ2)
3,Φ∗

1)L2 , (31)

(A′′
0 (S)(ζ1Ψ1)(ζ

2
1v1),Φ

∗
1)L2 , (32)

−(∂xv1,Φ
∗
1)L2 , (33)

where the function v1 is defined by

−Lv1 =
1

2
A′′

0 (S)Ψ2
1 + ∂y1

Ψ1.

First, we consider the coefficient ζ3
1 in (28), that is,

1

6
(A′′′

0 (S)Ψ3
1,Φ

∗
1)L2 .

We calculate

(A′′′
0 (S)Ψ3

1,Φ
∗
1)L2

= (




cos3 θF ′′′(S(r))H(r0 − r)φ3

0(r)

β∗Γ′′′(S0)

∫

Cr0

cos3 θφ0(r) d~s



 ,




Sr cos θ

− F (S0)

β∗Γ′(S0)
e1



)L2

=
3

4
πM ′

1,
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where

M ′
1 :=

∫ r0

0

rF ′′′(S(r))φ3
0(r)S

′(r)dr − Γ′′′(S0)

Γ′(S0)
φ3

0(r0)F (S0).

Next, consider (29), that is,

(A′′
0 (S)Ψ1 · v1,Φ

∗
1)L2 . (34)

This requires the calculation of v1. Since the equation of v1 is written for v1 = (v,q)

Lv1 =




(D∆ − α+ F ′(S(r))H(r0 − r)v + F (S0)δ(r0 − r)e(θ) · q

β∗Γ′(S0)[πr0S
′q +

∫

Cr0

vd~s]





=




(cos2 θ∂rφ0 −

sin2 θ

r
φ0) +

1

2
F ′′(S(r))H(r0 − r) cos2 θφ2

0(r)

1

2
β∗F ′′(S0)

∫

Cr0

cos2 θφ2
0(r)d~s





=



 (cos2 θ∂rφ0 +
sin2 θ

r
φ0) −

1

2
F ′′(S(r))H(r0 − r) cos2 θφ2

0(r)

0



 ,

v1 =

(
V1(r) + cos 2θW1(r)

0

)
satisfies the above equation of v1 together with

v1 ∈ E⊥ if V1 and W1 are defined by (26) and (27). Substituting v1 of this form
into (31), we have

(A′′
0 (S)Ψ1 · v1,Φ

∗
1)L2 = πM ′′

1 ,

where

M ′′
1 :=

∫ r0

0

rF ′′(S(r))φ0(r)(V1(r) +
1

2
W1(r))S

′(r)dr

−Γ′′(S0)F (S0)φ0(r0)

4Γ′(S0)
(V1(r0) +

1

2
W1(r0)).

Finally, we obtain (30). Since

∂xv1 = cos θ∂rv1 +
sin θ

r
∂θv1 =

(
cos θ∂rV1 + cos θ cos 2θ∂rW1 − 2 sin θ sin 2θ

r
W1

0

)
,

(30) is calculated as

πM ′′′
1 := −(∂xv1,Φ

∗
1)L2 = −1

2
π

∫ r0

0

(2r∂rV1(r) + r∂rW1(r) + 2W1(r))Sr(r)dr.

Thus, the coefficient of ζ3
1 is given by

1

6
· 3

4
πM ′

1 + πM ′′
1 + πM ′′′

1 = π(
1

8
M ′

1 +

M ′′
1 + M ′′′

1 ). Since (Ψ1,Φ
∗
1)L2 =

1

2
π(S′, φ0)R from Lemma3.4, M1 is given by

M1 = − 2

(S′, φ0)R

(
1

8
M ′

1 +M ′′
1 +M ′′′

1 ), which is used in this lemma.

Similarly, M2 is given by

M2 = − 2

(S′, φ0)R

(G′
1(S)Ψ1,Φ

∗
1)L2 ,

which proves this lemma. �
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Remark 2. By Lemma 3.5, ζ denotes the deformation of solution c from the radially
symmetric solution S(y) as well as the velocity of the camphor disc, because ζ gives

Ṗ for the location P (t).

Remark 3. Here, φ0(r) ≤ 0, and F (c) is positive. Hence, M2 is a negative constant,
while the sign of M1 is not fixed and depends on various factors, such as F , Γ, and.
in particular, the radius of the camphor disc, r0.

Remark 4. The negative sign of the constant M2 and (25) implies that the radially
symmetric stationary solution S(x−P ;P ) is stable for η < 0(β < β∗) and unstable
for η > 0(β > β∗), whereas the sign of M1 determines the direction of bifurcation,
that is, super-critical bifurcation occurs when M1 > 0 and sub-critical bifurcation
occurs when M1 < 0.

4. Interaction of spots. In the introduction, we observed that a moving disc is
reflected by a wall, as shown in Figure 1. In order to clarify this property, two
moving spots are located in a mirror symmetric manner such that they reflect each
other when they approach each other closely. For this purpose, we consider the
interaction of the two moving spots. Assume Ω to be R

2. The model equation of
multiple camphor discs is
{
ct = D∆c− α c+ F (c)

∑m
j=1H(rj − |x− Pj |), x ∈ R

2, t ∈ (0,∞),

Ṗj(t) = βj

∫
Crj

Γ(c(Pj + x)d~s, t > 0, j = 1, · · · ,m. (35)

For simplicity, we consider only the case of two discs (m = 2). Let S1(y;P1) :=
(S1(y), P1, 0)T and S2(y;P2) := (S2(y), 0, P2)

T , where Sj(y) are the radially sym-
metric solutions with radius r = rj (j = 1, 2) discussed in Section 3.1. We assume
the asymptotic forms as

Sj(r) →
1√
r
e−αrbj (r → ∞).

We write (32) (m = 2) by y = x− P1 and h = P2 − P1





ct = D∆c− α c+ F (c){H(r1 − r) +H(r2 − |y − h|)} + Ṗ1 · ∇c,
Ṗ1(t) = β1

∫
Cr1

Γ(c(y))d~s,

Ṗ2(t) = β2

∫
Cr2

Γ(c(y − h))d~s,

(36)

or simply

ut = A(u) + (Ṗ1 · ∇c, 0, 0)T

for u = (c, P1, P2)
T . Here, we assume that β1 is close to the bifurcation point, say

β∗
1 , as in the previous section, whereas this assumption is not made for β2. Let
β1 = β∗

1 + η. We write A = A0 + ηG.
We consider only the dynamics of P1 and ζ1, and in the remainder of this section,

we simply express S1, β1, and r1 as S, β, and r0. The dynamics of P = P1 =
(p1, p2)

T and ζ = ζ1 = (ζ1, ζ2)
T are then basically given by






Ṗ = ζ +
2

(S′, φ0)L2

(
(A0(S(y;P ) + S2(y − h;P2)),Ψ

∗
1)L2

(A0(S(y;P ) + S2(y − h;P2)),Ψ
∗
2)L2

)
+ h.o.t.

ζ̇ = −∇ζW +
2

(S′, φ0)L2

(
(A0(S(y;P ) + S2(y − h;P2)),Φ

∗
1)L2

(A0(S(y;P ) + S2(y − h;P2)),Φ
∗
2)L2

)
+ h.o.t.

(37)
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which are obtained in a manner similar to the system in Theorem 4.1 [1]. Here, Ψ∗
1

denotes Ψ∗
1 = (−a0S

′(r) + φ0(r)) cos θ, a0F (S0)
βΓ′(S0)

e1, 0)T , and the remaining notation

is similar to that used in Theorem 4.1.

Lemma 4.1. Let h := |h|, e = (e1, e2)
T :=

1

h
(P2 − P ). Then

(A0(S(y;P ) + S2(y − h;P2)),Ψ
∗
j )L2 =

b2√
h
e−αhM0ej(1 + o(1)) (j = 1, 2),

(A0(S(y;P ) + S2(y − h;P2)),Φ
∗
j )L2 =

b2√
h
e−αhM0ej(1 + o(1)) (j = 1, 2),

hold, where

M0 := a0F (S0)r0

∫ 2π

0

eαr0 cos θ cos θdθ +

∫ r0

0

G0(r)

∫ 2π

0

eαr cos θ cos θdθdr

with G0(r) := {F ′(S(r)) − F ′(0)}(−a0S
′(r) + φ0(r)), and

M0 := a0F (S0)r0

∫ 2π

0

eαr0 cos θ cos θdθ +

∫ r0

0

G1(r)

∫ 2π

0

eαr cos θ cos θdθdr

with G1(r) := {F ′(S(r)) − F ′(0)}S′(r),

Proof. Since the proof of this lemma is quite similar to the proof of Theorem 4.2
[1], we present only an outline by showing the first equation of this lemma

(A0(S(y;P ) + S2(y − h;P2)),Ψ
∗
j )L2 =

b2√
h
e−αhM0e1(1 + o(1)),

but the other equations are omitted.
Let A0 = (L1(c),L2(c),L3(c))

T . Then. the left-hand side of the above expression
is

(L1(S(y)+S2(y−h)), (−a0S
′+φ0) cos θ)L2+

a0F (S0)

Γ′(S0)

∫

Cr0

Γ(S(y)+S2(y−h)) cos θds,

where y = r0(cos θ, sin θ)T .
First, we calculate

a0F (S0)

Γ′(S0)

∫

Cr0

Γ(S(y) + S2(y − h)) cos θds. (38)

Since S2(y− h) ∼ 1√
|y − h|

e−α|y−h|b2 ∼ 1√
h
e−αhe−αr cos(θ−γ)b2 for e1 = cos γ, we

substitute this expression into (35) to obtain

a0F (S0)

Γ′(S0)

(∫

Cr0

Γ(S(y)) cos θds+

∫

Cr0

Γ′(S(y))S2(y − h) cos θds

)

∼ a0F (S0)

∫

Cr0

S2(y − h) cos θds

∼ a0F (S0)
1√
h
e−αhb2r0e1

∫ 2π

0

eαr0 cos θ cos θdθ.
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Here, f ∼ g denotes f = (1 + o(1))g as h→ ∞. Thus,

a0F (S0)

Γ′(S0)

∫

Cr0

Γ(S(y) +S2(y−h)) cos θds ∼ b2√
h
e−αha0F (S0)r0e1

∫ 2π

0

eαr0 cos θ cos θdθ

(39)
holds.

Next, we compute

(L1(S(y) + S2(y − h)), (−a0S
′ + φ0) cos θ)L2 .

Since

L1(S(y) + S2(y − h))

∼ {F ′(S(r)) − F ′(0)}{H(r0 − r) +H(r2 − |y − h|)} 1√
h
e−αheαr cos(θ−γ)b2,

we see that

(L1(S(y) + S2(y − h)), (−a0S
′ + φ0) cos θ)L2

∼ b2√
h
e−αh

∫ r0

0

r{F ′(S(r)) − F ′(0)}(−a0S
′(r) + φ0(r))

∫ 2π

0

eαr cos θ cos(θ + γ)dθdr

=
b2√
h
e−αhe1

∫ r0

0

G0(r)

∫ 2π

0

eαr cos θ cos θdθdr,

where G0(r) := r{F ′(S(r)) − F ′(0)}(−a0S
′(r) + φ0(r)). Thus, based on the above

considerations, and taking (36) into account, this lemma is proven. �

Remark 5. For a simple example of F such as F (c) = F0−d0c for positive constants
F0 and d0, G0(r) = G1(r) = 0 holds, and the coefficients M0, M0 can be simply
calculated to be positive.

If two camphor discs are identical, that is, r1 = r2 =: r0 and β2 = β1 =: β∗ + η
in (32), then by (34) and Lemma4.1, the movement of two interacting discs is
essentially described as follows:






Ṗ1 = ζ1 −
M∗

0√
h
e−αhe,

ζ̇1 = −∇ζW − M∗
0√
h
e−αhe,

Ṗ2 = ζ2 +
M∗

0√
h
e−αhe,

ζ̇2 = −∇ζW +
M∗

0√
h
e−αhe,

(40)

where e := (e1, e2)
T :=

1

h
(P2 − P1), M∗

0 := − 2

(S′, φ0)L2

b0M0,

M∗
0 := − 2

(S′, φ0)L2

b0M0, and b0 := b1 = b2.

Moreover, if two discs are mirror-symmetric with respect to the y-axis in R
2, then

for P2 = (p, q)T and ζ2 = (ζ, ξ)T , P1 and ζ1 are, respectively, given by P1 = (−p, q)T
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and ζ1 = (−ζ, ξ)T , which makes (37) simpler as





ṗ = ζ +
M∗

0√
2p
e−2αp,

q̇ = ξ,

ζ̇ = −{M1(ζ
2 + ξ2) +M2η}ζ +

M∗
0√
2p
e−2αp,

ξ̇ = −{M1(ζ
2 + ξ2) +M2η}ξ.

(41)

Figure 3 shows a numerical simulation of (38). Thus, the reflection behavior ob-
served in the experiment (Figure1) is theoretically confirmed by the reduced equa-
tion (38).

Figure 3. Interaction of two moving spots of (38), which are mir-
ror symmetric in R

2. Numerical simulation of (38) with η = 0.06,
M1 = −M2 = M∗

0 = M∗
0 = 1.

5. Concluding remarks. Several types of model equations describing camphor
movements have been proposed (e.g., see [1], [5]). If a camphor scrap is disc shaped,
numerical simulations show that such model equations have similar bifurcation di-
agrams with respect to certain parameters, which is a pitchfork bifurcation of trav-
eling spots. It is shown that the model equation in the present paper also has a
similar pitchfork bifurcation diagram. We emphasize here that the bifurcation dia-
gram is shown theoretically together with eigenfunctions. The equation describing
the motion of two interacting spots is also derived theoretically. This reveals that
the interaction is repulsive. Therefore, the model equation introduced in the present
paper is important and will be useful in the precise analysis of camphor motions.

As an application of the reduced ODE (37), we considered the problem of a
moving camphor disc in a rectangular domain. This problem is presented as a new
type of billiard problem ([4]). In [4], it was reported that a camphor disc follows a
complicated orbit in the domain, which is quite different from the usual orbits in
billiard problems.
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