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ABSTRACT. In the present paper, a model describing the self-motion of a cam-
phor disc on water is proposed. The stability of a standing camphor disc is
investigated by analyzing the model equation, and a pitchfork type bifurcation
diagram of a traveling spot is shown. Multiple camphor discs are also treated
by the model equations, and the repulsive interaction of spots is discussed.

1. Introduction. In order to clarify biological and molecular motors, autonomous
motors under isothermal conditions have been investigated experimentally and
through mathematical modeling. For example, the driving force behind the self-
motion of a floating camphor scraping has been explained as being due to the
difference in the surface tension around the camphor scraping ([3], for instance).
However, this explanation raises a number of questions. Will the camphor move
under small asymmetric disturbances if the camphor is disc shaped? If the disc
does move in a rectangular water vessel, what is the motion of the disc? In or-
der to investigate these questions experimentally, we prepare a water phase in a
square polystyrene cell (length: 200 mm; depth: 50 mm) and drop a camphor disc
(diameter: 13.5 mm, thickness: 0.5 mm, weight: 0.1 g, pure camphor) onto the
water phase. Figure 1 shows the trajectory of a disc that moves continuously for
10 seconds. The camphor disc was observed to move. In addition, when the disc
approaches a wall, it changes direction before colliding with the wall, as if it were
an elastic body.
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The goal of the present paper is to understand these phenomena by using a
mathematical model. In Section 2, we introduce a mathematical model to describe
the motion of several camphor discs floating on the water phase. In Section 3, we
consider a single disc in the space R? and discuss the existence and stability of
a radially symmetric equilibrium solution corresponding to a motionless disc. It
is shown that, in some parameter range, the disc loses its stability. This destabi-
lization implies that the camphor disc moves under small non-radially symmetric
disturbances. In Section 4, we consider the interaction of camphor discs.

FIGURE 1. A camphor disc moving in a square vessel of water phase.

2. Mathematical modeling.
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FIGURE 2. A cross section view of the camphor disc in water.

2.1. Driving force for the motion of a camphor disc. We believe that the
driving force behind the motion of a camphor disc is the surface tension. Sur-
face tension is caused by the attraction between the liquid’s molecules by various
intermolecular forces. In the bulk of the liquid, each molecule is pulled equally
in all directions by neighboring liquid molecules, resulting in a net force of zero.
At the liquid-solid and liquid-air interfaces, the molecules are pulled inwards by
other molecules deeper inside the liquid and are not attracted as intensely by the
molecules in the neighboring medium. Therefore, all of the molecules at the surface
are subject to an inward force of molecular attraction which is balanced only by the
liquid’s resistance to compression, meaning there is no net inward force. Mathemat-
ically, surface tension, represented by the symbol o, is defined as the force along a
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line of unit length, where the force is parallel to the surface but perpendicular to
the line. Tt has the unit of dyn/cm.

We denote by 0ys, 014, 045 the surface tension of liquid-solid, liquid-air, and solid-
air, respectively. We assume that o5 and 0,5 depend on the (surface) concentration
of camphor that is dissolved in the water. Using x = (1, 22) for plane coordinates
and t for time, we denote by ¢ = c¢(x,t) (mol/cm?) the surface concentration of
camphor in liquid. Thus, the surface tension o;5 and oy, is a function of c.

Denote by r the radius of the camphor disc and by p = p(t) the center of disc at
time ¢. The location of the disc is then at B(p,r) := {z € R? | |z — p| < r}. The
boundary of the disc is denoted by dB(p, ).

We divide the total contribution of surface tension into three pieces.

(1) In Figure 2, we denote by C the tri-intersection of the air-liquid-solid which
can be regarded as a circle. Take from C a piece of length ds, with horizontal
projected unit normal 7. The net driving force in the horizontal direction is

dfi =7 ds oyq sind,

where 6 (also a function of ¢) is the contact angel determined by the balance of
surface tension in the vertical direction

Ols — Ogq = —0Jq COSH.

Eliminating 6 we obtain

dfi =1 ds Ula\/l - (Uls - Usa)2/0l2a'

The total contribution of the surface tension along the tri-intersection C is
fi= / \/1 — (015 — 050)%/ 0}, 010 TT ds.
O0B(p,r)

(2) Since surface tension is in the direction tangential to the surface, there is no
horizontal force contributed by the lateral surface of the disc.

(3) On the bottom surface of the camphor disc, the surface tension is not uniform
since 05 depends on the concentration. The surface tension differences cause a well-
known Marangoni effect (sometimes also called the Gibbs-Marangoni effect). Since
a liquid with a high surface tension pulls more strongly on the surrounding liquid
than one with a low surface tension, the presence of a gradient in surface tension
will naturally cause the liquid to flow away from regions of low surface tension.
Regarding the motion of liquid as driving force given towards the camphor disc, the
total contribution can be calculated as

fs = / Vo, do = / ous 71 ds.
B(p,r) 0B(p,r)

Here in the second equation, we have used the divergence theorem.
We see that the total surface tension can be written as

ﬁST:ﬁ+6+ﬁ:/ I ds,
9B(p.r)

where

ds=rnds, T =o5+ Ula\/l — (o1s — Usa)2/ol2a'

We assume that I' = I'(¢) depends only on the surface camphor concentration c.
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Laboratory experiments suggest that
L'y

T(e) = 1+ Ac’
where A is approximately a positive constant (which may depend on temperature
[3]). In general, if ¢ = 1 represents saturation, then T'(0)/T'(1) = 1 4+ A can be
significantly large. That is to say, the forces on various parts of the disc may be
very unbalanced if the concentration at different points on the disc surface are very
different.

Although only a small amount of camphor is dissolved into the water tank, and
consequently the mean concentration (or the concentration a few millimeters away
from the disk) can be considered to be zero, the concentration near the camphor
surface can be very high. When a camphor disc is in motion, the concentration
difference at the lateral boundary of the disc can be significant. The front edge of
the disc continues to move toward areas of fresh water in which the concentration
is low and the molecular pulling force is large, whereas the back edge of the disc
moves into areas of previous dissolution, in which the concentration is high and the
molecular dragging force is small. We believe that this net difference in the pulling
and dragging forces is the mechanism that causes a camphor disc to move with a
constant velocity, as was observed in a laboratory experiment.

As mentioned, the Marangoni effect will cause the motion of liquid, so does the
motion of camphor disc. Since the motion of camphor disc is not very large, at this
stage, we shall not take into account the motion of liquid.

2.2. Equation of motion for a single camphor disc. Due to the
above-described driving force, the camphor disc will move if not secured. When
the disc is in motion, the liquid will apply a viscous force on the disc. Since the
disc is thin, the forces on the edge can be neglected. Hence, we can assume that the
viscous motion resisting force is in the negative direction of motion and is propor-
tional to the speed and the area of contact. Thus, the viscous force can be written
as

/ ﬁvisdgz _,UJTFTQP(t)a
OB(P,r)

where 1 (dyn- sec/cm?) is the viscous coefficient, and P(t) is the center of the disc.
The motion equation for the solid camphor disc can then be written as

(pc7T7°2h)P(t) = ﬁST +/(9

Fyisd3 = / T(c) d§ — prr?P,
B(P,r) OB(P,r)

where p,. is the density of the camphor disc, and h is the thickness. Since h is small
and the motion of the camphor disc is observed to have an almost-constant-velocity
motion, the acceleration term prr? hP on the left-hand side can be neglected. There-
fore, we can obtain the approximate equation of motion for the camphor disc, as
follows:

. 1
P = / I'(c)ds. 1
pr? dB(P,r) ( ) )

In the time interval of interest, for simplicity, we shall assume that the size of the
camphor does not change, i.e., we assume hereafter h = hy and r = r( for constants
hg, ro > 0.
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2.3. Diffusion of the camphor in its solution. As mentioned earlier, the large
size of the water tank (compared to the camphor disc) makes the mean concentration
of camphor approximately zero. Nevertheless, the concentration near the surface of
the camphor disc can be very high, and so the gradient of the contraction may not
be small.

Since camphor does not dilute into water very well, we only consider diffusion of
camphor on the surface. Hence, we use c(x1, z2,t) (mol/cm?) to denote the surface
concentration of camphor.

We assume that there are a total of three effects that cause the change of surface
concentration of camphor in liquid. The first is the classical diffusion for which we
introduce a constant, D (cm?/sec), for the diffusion coefficient of camphor in water.
Since camphor evaporates, we use —ac to denote the decreasing rate of change of
concentration due to evaporation, where « can be a (small) constant or a function
of ¢. Finally, we use F(c) to denote the rate of dissolution of camphor from disc to
water, which should be a decreasing function from the phenomenological point of
view. Combining these three effect, we end with the reaction-diffusion equation

¢t = DAc — a ¢ xo\B(Pro) + F(C)XB(P,To)u (7,t) € Q x (0,00),

where x4 is the characteristic function of the set A. Set F(c) = F(c) + ac, the
above equation can be written as

¢t = DAc—ac + F(c)xB(pry), (2,t)€Qx(0,00). (2)
2.4. A moving boundary model for interaction of camphor discs. We can
now formulate the self-motion of camphor discs as follows. Assume that there are

m disks, of radius rq,---,r,, respectively. We search for functions ¢(x,t) and
Pi(t), -, Pn(t), such that

¢t =DAc—ac+ F(c) X7 xBp,ry)(®), x€Q,te(0,00),

Py(t) =55 fopp, ., T(c)d5, t>0,j=1,---,m, (3)
Onc =0, x €0, t>0,
where §; is given by
1
bi wur?'

Clearly, the parameters p, & and the structural functions I' and F' depend on envi-
ronmental factors, such as the temperature.

With appropriate initial conditions (¢(+,0), P1(0),- -, P, (0)), the system (3) is
well-posed and has a unique global solution.

In the following sections, we show that when m = 1 and = R?, (3) has a
radially symmetric solution with P;(¢t) = (0,0) for all ¢ > 0 and that in a certain
parameter range, this solution is unstable and generates a bifurcating traveling spot
having constant velocity. Finally, we shall discuss the interactions between different
camphor discs.

3. A single camphor disc in R?. In this section, we consider a single camphor
disc (i.e. m = 1) and hereinafter assume that Q = R%. We write (P, 71, 31) simply
as (P,rg,3). Thus, we need to find (c(x,t), P(t)), € R?,t > 0, such that

{ ci(z,t) = DAc— ac+ F(c)H(rg — |x — PJ), z €, te(0,00),

P(t) = 6 o, T(e(P +2)d5, £>0, )
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where C,, = {z € R?||z| = ro} is a circle of radius 7o centered at the origin, and
H is the Heaviside function: H(§) =0 for £ < 0 and H(§) =1 for £ > 0.
When we consider only one disc, it is convenient to change the variables via

y=z—P), wulyt)=cP{)+y1) (5)

The system (1) can then be written as a single non-local equation, for u(y,t),
ut:DAu—ozu—l—ﬁ/ T'(u)ds - Vu+ F(u)H(r — lyl), yeR*t>0. (6)
Cry
Once we find u, the function P can be recovered by integrating

P_B/C I'(u) d3.

3.1. A radially symmetric equilibrium solution (standing spot). By sym-
metry, (3) admits a radially symmetric equilibrium, given by u(y,t) = S(|y|), where
S(r) solves

{ D(S" + 718" —aS+ F(S)H(ro —r) =0, 7€ (0,00),

S(0) =0, S(co)=0. @)

Note that P = 0 for all ¢t > 0, and hence the disc does not move.

In the following, we shall analyze the stability of this steady state solution. We
shall show that in some parameter range, this steady state lost its stability, and
hence small perturbation from radial symmetry will give rise to the motion of a
camphor disc.

3.2. Linear stability of the standing spot. There are two ways to linearize our
problem. The first is to linearize the original system (1), which will be useful in the
case of multiple discs. The second is to linearize (4), which works only for a single
disc, but the calculation is simpler.

As shown later herein, the loss of stability of the equilibrium near a critical pa-
rameter is shown in different ways for the linearizations of (3) and (1), respectively.

For (3), the change in stability of the radially symmetric equilibrium is shown by
the change of the sign of the principle eigenvalue of the linearized operator L on the
right-hand side of (3), the eigenspace of which is spanned by {t(r) cos 6,1 (r)sin 0}
for some positive 1, where (r,0) are the polar coordinates. This eigenspace corre-
sponds to spatial dilation.

For (1), the linearized operator L of the right-hand side of (3) always has zero as
its eigenvalue with eigenspace spanned by {(—Sz,,e;)}, j = 1,2, which corresponds
to the spatial dilation invariance of the system (1). The change in stability of the
radially symmetric equilibrium is shown by the change in the algebraic simplicity
of the eigenvalue 0 of L, namely, a Jordan block appears.

In the following section, we first consider the linearization of (3), and then return
to (1).

3.3. Linearization of (3). Equation (3) can be written as
ur = A(u), A(u) == DAu — au + 6/ Y(u)ds - Vu+ F(u)H(ro — |y]). (8)
Cry

Its linearization around u(x,t) = S(|y|) can be written as

(bt = L¢7 (9)
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where
Lo := {DA — a+ F'(S)H (ro — |y|) }¢ + BT’ (S(r)) VS - /C ¢ ds. (10)

The equilibrium is linearly stable, if the spectrum of L lies on the left-half complex
plane; otherwise, it is unstable.
Now, we consider the eigenvalue problem

Lo = Ao (11)

This problem can be rewritten as follows: Find (A, ¢) and vector ¥ = (vy, v2), such
that
U= pBr'(S(ro)) J¢,, ¢d5, 12)
{=DA - F'(S)H + o+ A\}¢p = VU.

Note that the vector ¥ is related to the velocity of the motion of the disc. The

velocity for the linearized system is P = ge.

In polar coordinates y = (rcosf,rsinf), (9) can be easily analyzed.
When A € (—o0, —a], the second equation in (9) has a unique solution ¢ given
by

¢ =(r,\) (vl cos 0 + vy sin@), (13)
where (7, \) is a unique solution of

{ (Lr+ Ay =5'(r), p>0, (14
¥ (0,\) = 0,7 (00, A) =0,

2
Lt = [ - D(% + %% - Tiz) ~ P(S(m)H(ro —7) +a] .

Hence, for Re(\) > —a, (A, ¢) is an eigenpair if and only if the first equation in (9)
holds for some non-trivial ¥, when we substitute ¢ by (10).
For ¢ in (10), it is easy to find

/ ¢ d§ = mwrop(ro, \) U.
Cro

Hence, we have the following:

Lemma 3.1. A &€ (—o0,—a] is an eigenvalue of L if and only if
1
1o BIT(S(ro))|
If this equation is satisfied, then the eigenspace, for ¢, is spanned by

{(r, \) cos @, (r, \)sin0)}.

—(ro,\) =b:=

Recall that TV(c) < 0.
Lemma 3.2. All of the eigenvalues of L are real.

Proof. Equipped with inner product

(V1,91)R = 27r/ 1) dr

0
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the operator L}, is positive definite. In addition, differentiating (4) with respect to
r gives

L}?Sl = _F(S(TO))(ST(H (16)
where 6., is the Dirac measure with mass at r = rg.

Now, assume that A ¢ (—oo, —a] is an eigenvalue of L. Taking the inner product
of (Lk+\)p = S with ¢ and S, respectively, and using (Lk, ) g = (¢, LkS" ) g =
—27roi(ro, \)F(S(ro)), we obtain
AH‘/’”?% = (S/v 1/))1% - (L}?wv w)Ra )\(1/)7 S/)R = ||S/H2R + 27TT01/}(T05 A)F‘(‘S’(TO)) (17)
Using (¢, S")r = (5',¢) R, we then obtain

AP I% = 151% + 27709 (ro, N F(S(r0)) — AL, ) k-
Since 1(rg, \) = —b is real and (Liv, ¥)g is positive, A must be real. O

Lemma 3.3. Let o(L) be the spectrum of L. Then,
(L) = (=00, —a] U{A"(b)}
where \*(b), the solution to (12), is real and satisfies the following: Define

IS
" 21 F(S(ro))

Therefore, A(b*) = 0, SX*(b*) < 0 and A*(b) < 0 if and only if b > b*.

Proof. From the equation LES’ = —F(S(rg))d,, we see that S’ < 0 for all r €
(0,00). Consequently, for real A > —a, ¥(r,\) = (L +A)~'S" < 0 for all » > 0,
[t)(ro, A)| is a decreasing function of A, and limy_.« [¢)(70, A)| = 0. Hence, for every
b > 0, (12) has a unique solution A = A*(b) (When b > |¢(rg, —«)|, we simply define
A*(b) = —a). From (14), we see that when A = 0, ¢(r,0) = —b*. It follows that
A(b*) = 0, £X*(b*) < 0, and A*(b) < 0 if and only if b > b*. This completes the
proof. O

Remark 1. From the above discussion, we see that the equilibrium is linearly
stable if and only if b > b*; that is, the radially symmetric equilibrium is linearly
stable if and only if

1 - 2F(S(ro))
murd (S (o)) fooo rS"%(r) dr’

where 7 is the radius of the disc, and S is the solution to (4).

b= (18)

3.4. Linearization of (1). To clarify the difference and relationship between the
linearizations of (1) and (3) mentioned above, we investigate the linearization of

(1)

Since the derivative of the Heaviside function is the Dirac mass and [, (VS -
70
P)dit = mroS’ (o) P, the linearization of (1) around the equilibrium (S(|z|),0) takes

the form
o | L o] | (DA—a+F'H)p+Fic,e(0)-P
{ P L - { P } o 5F/(S(TO))[WTOS/(T0)P+fcm $ds] |’

where dc, ~is the Dirac measure with mass on the circle Cy,, namely,
Jr2 0c,, C(x)da = fCTO (ds for any continuous function ¢ and e(f) := (cos6,sin )7

(19)
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In the sequel, we denote ® = (¢, P)T', where T denotes the transpose. Next, we
investigate the eigenvalue problem

AP =L (20)

It is easy to see that the continuum spectrum of L is (—oo, —«], whereas the rests
are point spectrum. Since for each P € R?, (¢, P) = (S(|z— PJ), P) is in equilibrium
with (1), after differentiating with respect to P, for any 7 € R?, ® = (-VS - 7, 7)T
is an eigenfunction of L with eigenvalue zero. Thus, 0 is an eigenvalue of L with an
eigenspace of at least two dimensions.

Let P = (p1,p2)- Note that in  polar  coordinates,
Féc, e(®) - P = F(S(ro))(p1cos® + pasin®)d,,. Hence, as before, when \ ¢
(—o0, —a], we can solve for ¢ to obtain

¢(r,0) = =b(r, A)(p1 cos 0 + py sin0),
where ¢ = F(S(r)) (Lk + A)"'4,,. A simple evaluation of / ¢ds reveals that
A € (—o0, —a] is an eigenvalue of L if and only if o
DA+ 8'(r0) + ¥(ro,\) =0, = F(S(rg)) (L + A) " '0r,, (21)

where b = (mro31"(S(ro))) ! is the same as before.
Taking the inner product of (L 4+ A)i) = Fé,, with ¢ and S’, respectively, we
obtain

F(S(r0))d(ro, \) = (L, &) r + All¥ | %, (22)

AW, 8" g = 2110 F(S(10))[S" (r0) + ¥ (o, \)]- (23)
From the second equation, we see that X is an eigenvalue if and only if

A { 2mrgbF(S(ro)) + (8", (- M) } = 0.

Here, (19) and (20) imply that (S’, (7o, A))r is not real if A is not real. Hence, we
conclude that all eigenvalues are real, and A € (—«,0) U (0,00) is an eigenvalue if
and only if

219 — bF(S(r0)) + (S, 9 (-,\))r = 0. (24)

Note that (i) S’ < 0, (i) (-, A) > 0 for all A\ > —a, (iii) ¢ is decreasing in
A € (—a,00), (iv) as A — oo, ¢ — 0. Hence, there exists a unique solution A(b)
solve (20) (When b > (S’,4(-, —a))g), and we simply define A(b) = —a. Since when
A =0, ¢ = -5, we see that A(b*) = 0 for b* = (5", 5")r/(27r0F(S(ro)), which is
the same b* as in the previous subsection. Hence, A(b) < 0 if b > b* and X > 0 if
b < b*.

In the previous section, we see that when b = b*, zero is an eigenvalue of L,
whereas when b # b*, zero is not an eigenvalue. Next, we investigate what happen
to L when b = b*. Hence, we assume that b = b*.

From the previous analysis, we see that if L& = 0, then we must have ® =
(1(-,0)(p1 cos @ + pasind), P)T = (—VS - P,P)T. Hence, the space Ker(L) :=
{® |L® = 0} is two-dimensional, which is true for all other b.

Now, we show that the union of the null space of L* for all k = 1,2, --- is four-
dimensional and is spanned by ®; = (—Swj,ej), 7 = 1,2, and &3 and &, which
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are solutions to L®;2 = ®;, j = 1,2, where e; = (1,0) and ey = (0,1). For this
purpose, we introduce the inner product

(61, P)T, (¢, P2)" )2 = /2 P12 dx + Py - Ps.
R
Then, it is easy to verify (L®, )2 = (®,L*¥);2, where

L[ 0] [ (PA=a+ FHO+ A1 (S(r0))dc, €(0) - P
|: P ] T ﬁF/(S(TQ))TF’f‘Osl(TQ)P'FF(S(TQ)) fCro ¢d§

It is then easy to show, for j = 1,2, that @} := (Swj,—%ej) satisfies

L*®% = 0. In addition, the space Ker(L*) := {® | L*® = 0} is exactly spanned by
@3 and 3. Tt is then easy to show that Ker(L) L Ker(L*) if and only if b = b*.
With a little more work, we can show that the algebraic multiplicity of the zero
eigenvalue of L is just four when b = b*. In addition, ®3 and ®, can be expressed
in terms of the solution ¢ in (11). We omit the details but present a lemma on the
eigenfunctions of L and L* at b = b*.

Lemma 3.4. Let ¢o(r) be the solution of L}%qﬁo =9, and let

. ( S'(r) cos ) Sale) = ( S'(r) sin 0 )

—e; —€3

Ui (y) = ( %(TECOSH ) Uy(y) = ( ¢0(T2)sin6‘ )

) :—< §'(r)cos >,<1>3<y> :—< §'(r)sind )

T Ar(50) 1 T BI(S0) 2

and
) e (—aoS’(r) + ¢o(r)) cos ey [ (=aoS'(r) + ¢o(r))sing

1(y) == a0 F(S0) o » Ua(y) = aoF(So) o ,

BT7(So) ~1 BT7(S0) 2
2
where y = re(d), So := S(ro) and ag := M. Then, LS; = 0, L¥; = —8;
(S 7¢0)R

and L*®% =0, L*V? = —®% and the normalizations hold

* * * * 1
(Sj,®5)p2 = (V, ) )2 =0, (¥, DF) 2 = (S;,¥]) 2 = 5(5/7¢0)R > 0.
S; and ¥; are orthogonal to ®; and V5 for j # k.

3.5. A traveling wave solution (traveling spot). When b cross b*, the zero
eigenvalue of L degenerates with the Jordan Block as per Lemma3.4. Since the
parameter b is determined by (12), for simplicity, we hereinafter consider § as the
bifurcation parameter, while all other parameters are fixed. Let §* be the value
corresponding to b*, and write 8 = * + 7 for |n| << 1. Then, (1) is given as

ci(z,t) = DAc— ac+ F(c¢)H(rg — |x — P|), x €, te(0,00),
{ P(t) = p* fcm [(c(P + x))ds + nf% I(e(P + x))ds, t>0.

(25)

The system (22) has stationary solutions S(z — P; P) := (S(x — P), P)T for

an arbitrarily given constant vector P € R? independent of 7. Regarding S as a

trivial solution, we consider the bifurcation structure in the neighborhood of n =0

(B=p57).
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Let M := {S(-— P; P)"; P € R?} and U(y, ¢, P) := S(y; P) + W1 (y) + & Pa(y)
(¢ = (¢1,¢2)). Define E := span{S1, S2, ¥i, Py} and the orthogonal space
Et = {v; (v,®)> = (v,¥5)2 = 0 (j = 1,2)}. Then, u = (u, P)T in the
neighborhood of M is uniquely represented by u = U(z — P;(, P) + (v(z — P),q)
for P € R? and v = (v(y),q)’ € E+ by a standard manner.

By u = (c(z — P,t), P+ q)7, (22) becomes

ci(y,t) = DAc —ac+ F(c)H(ro — |y — q|) + P - Ve,

d ' - . 26
Sera =5 [ Tetaroasn [ Telarpas 2
Cro Cro
fory=x—P € Qandt € (0,00), which we write as
uy = AO(u) + 77G1(u) + G2(Ca P)a (27)

where

co (i) sen ()

DAc—ac+ F(c)H(ro — |y —dl)
Ao(u) = < 8 Jo. F(c(q+?y))d§ ) ’
0
Gi(u) = < f% D(c(q+y))ds )

By the representation of u = U(y;(, P) + v with v = (v(y,t),q) € E+, (24)
becomes

vi = Lv+L(GU+GP) — (G + () + %A({(S)(Q\Iﬁ + QU+ v) -
+1G1(U 4 v) + Go(U, P) — (0, P)T + Gy(v, P)
= Lv— (G814 GS2) — (G + GWs) + %A{{(S)(Q\I/l + QU+ V)2
+1G1(U + V) + 181 + 1282 + G2 (101 + Va2, P) + Ga(v, P),
where L = A((S) and P = (p1,p2)?. Thus, all the necessary properties of the
equation for v are satisfied together with the property of L, as in Lemma 3.4, so

that we can apply the results of [1]. As a consequence, we have the following results
corresponding to Theorem 2.2 in [1]:

Lemma 3.5. P(t) and ((t) = (¢1(¢), (2(t)) satisfy

P o= C+O(CP + ),
{é = LU+ O(C* 4 P (28)



12 X. CHEN, S.-I. EI AND M. MIMURA

as long as |C| < ¢* and |n| < n* for positive constants (* and n*, where W =
1 1
W) = ZM1|C|4 + §M277|C|2. M and My are given by

— L _l TOT gy . . T_FW(S)
M= g (U008, )i~ B b (50}
1| S W)+ 5W S
P<%£$$%“Nwm»+yW%»
_% /0 (20 VA (1) + 10, W (1) + 2W1(T))Sr(r)dr> :
_ 9o(ro)F(So)
M = S don
where Vi(r) and W1(r) are the solutions of
U = 3 (96— SISO HE - NG+ T ) (@9
-LaW, = % <3r¢0 - %FN(S(T))H(TO —7r)gg — %éf’o(ﬂ) ; (30)

respectively and Lg = _D(de + 1 p dr - —) F'(S(r)H(ro —7) + a.

Proof. The proof is basically the same as that for Theorem 2.2 in [1]. We simply
show that the constants M; and M are given by the above equations.
First, we shall consider M;. From (25), we have

G = —Mi(G+E)a — ManG + heo.t.

Thus, M; is the coefficient of ¢§ and ¢3¢;. According to the proof of Theorem 2.2
([1]), ¢ and ¢3¢y are derived from

HAY(S)(W1 + G, B) 0, (31)
(AG(S)(C1W1)(¢Tve), @)1z, (32)
—(0xv1, PY) L2, (33)

where the function v, is defined by
1
—Lv; = 5A{;(S)\Iff + 0y, V1.

First, we consider the coefficient ¢ in (28), that is,

1

C(AL(8)W2, ®)),0
We calculate

(AG' ()T, @)

cos® OF" (S(r))H (ro — )3 (r) Sy cos 0
= “T( ) F(S) )L
BT (So) e cos® ¢ (r) d —mel

3
== Z']TM{,
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where
To F///(SO)
M= [ rES0)60)S (r)dr - 63(ro) F(So).
0 I"(So)
Next, consider (29), that is,
(AG(S)Wy - vy, ®F) L. (34)

This requires the calculation of vy. Since the equation of vy is written for vi = (v, q)
(DA —a+ F'(S(r)H(ro — r)v+ F(Sp)d(ro — r)e(d) - q

Lvi = B*F’(SO)[WTOS’q—I—/ vds]
CTO

-2 9
(cos? 00,.¢g — S

¢o) + %F”(S(T))H(TO —r) cos> 9¢(2)(r)
%B*F”(SO) / cos® g3 (r)ds

Cry
in% 6 1
_ (cos? 00, ¢ + SH; o) — §F”(S(r))H(ro —r) cos? 9(;53(7“)
0

0

vy € EL if V; and W, are defined by (26) and (27). Substituting v; of this form
into (31), we have

v, = ( Vi(r) + cos 20Wa(r) ) satisfies the above equation of vi together with

(Ag(S)\Ifl Vi, (I)T)Lz = FM{/,
where
i ro 173 1 /
M =[SV + 5WA)S ()
0

_ I"(S0) F(S0)¢o(ro)
4T (S0)

(Viro) + 3Wi().

Finally, we obtain (30). Since
sin ¢ ( cos 00, Vi + cos ) cos 200, W, — 2sinfsin20 HTSi“ 207y, >
, 89V1 = ,

Opvi = cos00,vy + 0

(30) is calculated as

M| = —(0yv1, P2 = ——171' 2r0, Vi(r) + ro, Wi(r) + 2W1(r)) S, (r)dr.
! ! 2
0

1 3 1
Thus, the coefficient of ¢} is given by G Z?TM{ + M + M = w(gM{ +
1
M{ + M{"). Since (U1, P})r2 = §7T(S/,¢0>R from Lemma3.4, M; is given by
2 1
M; = ———— (=M + M + M]"), which is used in this lemma.
(8", ¢0)r 8
Similarly, Ms is given by
2
My = ———— (G (S)¥,, D]
2 (S/,¢O)R( 1( ) 1 1)L27

which proves this lemma. O
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Remark 2. By Lemma 3.5, ( denotes the deformation of solution ¢ from the radially
symmetric solution S(y) as well as the velocity of the camphor disc, because ¢ gives
P for the location P(t).

Remark 3. Here, ¢o(r) < 0, and F(c) is positive. Hence, My is a negative constant,
while the sign of M is not fixed and depends on various factors, such as F', I, and.
in particular, the radius of the camphor disc, ry.

Remark 4. The negative sign of the constant Ms and (25) implies that the radially
symmetric stationary solution S(x — P; P) is stable for 7 < 0(8 < 3*) and unstable
for n > 0(8 > (*), whereas the sign of M; determines the direction of bifurcation,
that is, super-critical bifurcation occurs when M; > 0 and sub-critical bifurcation
occurs when M; < 0.

4. Interaction of spots. In the introduction, we observed that a moving disc is
reflected by a wall, as shown in Figure 1. In order to clarify this property, two
moving spots are located in a mirror symmetric manner such that they reflect each
other when they approach each other closely. For this purpose, we consider the
interaction of the two moving spots. Assume ) to be R?. The model equation of
multiple camphor discs is

{ zDAc—ac—I—F()Z;.n,lH(rj—kv—PjD, z €R2, t € (0,00),

35
ﬁjfc (e(P; + )ds, t>0,5j=1,---,m (35)

For simplicity, we consider only the case of two discs (m = 2). Let Sy(y; P1) :=
(S1(y), P1,0)T and Sa(y; P») := (Sa(y),0, P)T, where S;(y) are the radially sym-
metric solutions with radius r = r; (j = 1,2) discussed in Section 3.1. We assume
the asymptotic forms as

S;(r) —

1
Wefo”bj (r — 00).
We write (32) (m=2)byy=a—P,andh =P, — P,

o = DAc—ac—i-F(c){H(rl—T)+H(T2—|y—h|)}+P1~Vc,
Pty = B, Tle(y))ds. (36)
B(t) = b fc c(y — h))ds,
or simply

w, = A(u) + (P, - Ve,0,0)T
for u = (¢, P, P»)T. Here, we assume that 3 is close to the bifurcation point, say
5%, as in the previous section, whereas this assumption is not made for Js. Let
B1 = B +n. We write A = Ay +nG.
We consider only the dynamics of P, and (7, and in the remainder of this section,
we simply express S1, (1, and r; as S, 3, and rg. The dynamics of P = P, =
(p1,p2)T and ¢ = (1 = (1, ¢2)T are then basically given by

- 2 [ (Ao(S(y; P) + S2(y — h; P2)), ¥F) 2 )
P = ¢+ (S’,¢0)L22< (Ao(S ((Ei ()(—l—Sg)(y —Sh(;p2))};\12))32@>)+ h.o.t.

. N _ - + 2 y_ ;) * L2 o
¢ = —-VW+ (8", ¢0) > \ (Ao(S(y: )+Sz(y—h;P2)),q>%)L2 + h.o.t
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which are obtained in a manner similar to the system in Theorem 4.1 [1]. Here, U3}

denotes U3 = (—aoS’'(r) + ¢o(r)) cosb, %“15((53)) e1,0)T, and the remaining notation
is similar to that used in Theorem 4.1.

1
Lemma 4.1. Let h := |h|, e = (e, e3)" := E(PQ — P). Then

(Ao(S(y; P) + Sa(y — h; P»)), V)2 = %efahMoej(l +0(1)) (j = 1,2),
(Ao(S(y; P) + S2(y — h; %)), %) 12 = %eahmej(l +o(1)) (j =1,2),

hold, where
27 0 27
My == aogF(So)ro / 270030 (65 0d + / Go(r) / €789 cos 0dfdr
0 0 0
with Go(r) :={F'(S(r)) — F'(0)}(—apS’(r) + ¢o(r)), and
o 27 70 27
My := agF(So)ro / €270 9 cos0dh + / G1(r) / €27 %59 o5 0ddr
0 0 0

with G1(r) :={F'(S(r)) — F'(0)}S'(r),
Proof. Since the proof of this lemma is quite similar to the proof of Theorem 4.2
[1], we present only an outline by showing the first equation of this lemma

(Ao(S(y; P) +Sa(y —h; P2)), W3) 2 = —e~ " Moes (1 + o(1)),

but the other equations are omitted.
Let Ag = (L1(c), L2(c), L3(c))T. Then. the left-hand side of the above expression
is

aoF' (S
(2S04 S2y=h). (~a0S' ) cos )+ 0 [ TUS()+a(y-h) coss.
CTO
where y = ro(cos 6, sin )7
First, we calculate
aoF(SQ)/
— (s So(y —h Ods. 38
F/(SO) Cry ( (y) + 2(y )) cosvas ( )
: 1 —aly—h| 1 —ah ,—ar cos(0—7)

Since Sa(y —h) ~ ﬁe Y=y ~ —e e Yy for e; = cosy, we

y—

substitute this expression into (35) to obtain

aoF'(S0)
T(So) (/Co F(S(y))cos9d3+/c

~ aoF(Sp) / Sa(y — h) cos fds
Cro

I"(S(y))S2(y — h) cos 9d8>

70

1 27
~ agF(Sy) —— e byroe; @70 ¢080 (05 0dh.
Vh 0
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Here, f ~ g denotes f = (14 o(1))g as h — oo. Thus,

21

T(Q) N S —h Ads ~ ——e= ¢ F(S, arg cos 0d6
I (Sh) CTO( (y) + Sa2(y )) cosvas \/Ee apF( 0)7‘061 ; e cos
(39)
holds.

Next, we compute
(L1(S(y) + Sa2(y — h)), (—apS" + ¢o) cosb) 2.
Since

L1(S(y) + S2(y —h))
~ {F'(S(r) = F'(0)H{H(ro —7) + H(ra — ly — hl)}%e_“hem"s(e_”bz,

we see that

(L£1(S(y) + S2(y —h)), (—aoS" + ¢o) cosO) .2

b2 27

et [T (S() — 0} 0o () + 6n(r) [ e cos(9+ )b

Vh
b2 —ah /TDG ( )/27T arcos@coseded
=—¢ €1 o\”r € T,
Vh 0 0
where Go(r) := r{F'(S(r)) — F'(0)}(—aoS’(r) + ¢o(r)). Thus, based on the above
considerations, and taking (36) into account, this lemma is proven. O

Remark 5. For a simple example of F such as F'(¢) = Fy—dyc for positive constants
Fy and do, Go(r) = G1(r) = 0 holds, and the coefficients My, My can be simply
calculated to be positive.

If two camphor discs are identical, that is, 1y = ro =: 19 and B3 = 31 =: 8* + 17
n (32), then by (34) and Lemmad4.1, the movement of two interacting discs is
essentially described as follows:

. Mg
Pl = Cl - T}OLG—}LQ,
G = VW — —Ze e,
. Vh (40)
Pyo= G+ %eﬂhe
\/E 9
. MrF
= VW 4 —Le e,
G2 ¢ Th
where e = (61 62)T = l(1:)2 — Pl) M = —#boMo
.2 7 - h A (S',b0) 2 7
m = —71)0%, and bo = bl = b2.

(SI7 ¢0)L2

Moreover, if two discs are mirror-symmetric with respect to the y-axis in R?, then
for Py = (p,q)" and (2 = (¢, €)T, Py and (; are, respectively, given by P; = (—p, q)T
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and (1 = (—¢,€)7T, which makes (37) simpler as

*

_ Mg 20
-t
3 _ "

= (M4 €2) + My} + 5 2ap

0
, Ve
¢ = —{M(C+&) + Man}é.

Figure 3 shows a numerical simulation of (38). Thus, the reflection behavior ob-
served in the experiment (Figurel) is theoretically confirmed by the reduced equa-
tion (38).

N 3.
I

t=0 t=15 t=30 t=45

FIGURE 3. Interaction of two moving spots of (38), which are mir-
ror symmetric in R2. Numerical simulation of (38) with n = 0.06,
My = —My= M =M = 1.

5. Concluding remarks. Several types of model equations describing camphor
movements have been proposed (e.g., see [1], [5]). If a camphor scrap is disc shaped,
numerical simulations show that such model equations have similar bifurcation di-
agrams with respect to certain parameters, which is a pitchfork bifurcation of trav-
eling spots. It is shown that the model equation in the present paper also has a
similar pitchfork bifurcation diagram. We emphasize here that the bifurcation dia-
gram is shown theoretically together with eigenfunctions. The equation describing
the motion of two interacting spots is also derived theoretically. This reveals that
the interaction is repulsive. Therefore, the model equation introduced in the present
paper is important and will be useful in the precise analysis of camphor motions.

As an application of the reduced ODE (37), we considered the problem of a
moving camphor disc in a rectangular domain. This problem is presented as a new
type of billiard problem ([4]). In [4], it was reported that a camphor disc follows a
complicated orbit in the domain, which is quite different from the usual orbits in
billiard problems.
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