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Abstract. We derive an existence result for solutions of a differential system
which characterizes the equilibria of a particular model in granular matter
theory, the so-called partially open table problem for growing sandpiles. Such
result generalizes a recent theorem of [6] established for the totally open table
problem. Here, due to the presence of walls at the boundary, the surface flow
density at the equilibrium may result no more continuous nor bounded, and its
explicit mathematical characterization is obtained by domain decomposition
techniques. At the same time we show how these solutions can be numerically
computed as stationary solutions of a dynamical two-layer model for growing
sandpiles and we present the results of some simulations.

1. Introduction. In the last years an increasing attention has been devoted to-
wards the study of differential models in granular matter theory (see, e.g., [2] for
an overview of different theoretical approaches and models). This field of research,
which is of course of strong relevance in the applications, has also been the source
of many new and challenging problems in the theory of partial differential equations
(see, e.g., [3, 6, 11, 17]).

In this paper we deal with the rather simple phenomenon of the evolution of a
sandpile created by pouring dry matter on a flat bounded table. In such a model
the table is represented by a bounded domain Ω ⊂ R

2, and the time-independent
vertical matter source by a nonnegative function f ∈ L1(Ω). Recently, Hadeler and
Kuttler [16] proposed a new model, extending the ones studied in [4] and [5], where
the description of the heap evolution is based on the observation that granular
matter forms heaps and slopes (the so-called standing layer), while small amounts
of matter move down along the slopes, forming the so-called rolling layer. We also
mention [17], where Prigozhin has studied, both from the theoretical and numerical
points of view, a degenerate parabolic problem and its equivalent formulation as a
variational inequality, and [3], where a similar approach has been used for growing
sandpiles on the whole plane. It is worth to remark that the two different dynamical
models of [16] and [17] (see for example [18] for a comparison between them) have
theoretically the same set of admissible equilibria.

Let us denote by u(t, x) and v(t, x), t ≥ 0, x ∈ Ω, respectively the heights of the
standing and rolling layers. Neglecting wind effects, the local dynamics depends on
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the local slope |Du| and on the local density of rolling matter v (that we shall call
transport density). For stability reasons, at any equilibrium configuration the local
slope |Du| cannot exceed a fixed constant (the critical slope), that we normalize to
the value 1, and it must be maximal where transport occurs (that is, where v > 0).
Moreover, we assume that the matter falls down the table when the base of the
heap touches a portion Γ of the boundary of Ω. From the model point of view we
are thus assuming that on ∂Ω\Γ we have a (arbitrarily high) vertical wall, while on
Γ the table is “open”. In the following, we shall refer to the open table problem in
the case Γ = ∂Ω, whereas in the partially open table problem, Γ will be a nonempty
closed subset of ∂Ω.

The dynamical model proposed in [16] deals with the open table problem, but it
can be extended to the partially open table problem in the following way:






∂tv = div(v Du) − (1 − |Du|)v + f in [0,∞) × Ω
∂tu = (1 − |Du|)v in [0,∞) × Ω
u(0, ·) = v(0, ·) = 0 in Ω

u = 0 on Γ , v
∂u

∂ν
= 0 on ∂Ω\Γ ,

(1)

where ∂u
∂ν

denotes the normal derivative of u. The nonlinear term which appears in
the previous equations with opposite signs represents the exchange term between
the two layers during the growth process. Before the equilibrium has been reached,
a partial surface flow is allowed also at sub-critical slopes. As far as we know,
a rigorous theory for this model is not known, and its equilibrium configurations
have not been characterized in the general case. For the open table case, a finite
difference scheme has been proposed in [13], which offers at the same time a tool
for the numerical description of stationary solutions.

From the physical considerations above, an equilibrium configuration (u, v) for
(1), with u, v nonnegative functions in Ω, must satisfy






− div(v Du) = f in Ω,

|Du| ≤ 1 a.e. in Ω,

|Du| = 1 in {v > 0},

u = 0 on Γ, v
∂u

∂ν
= 0 on ∂Ω \ Γ.

(2)

In the case of the open table problem (i.e., Γ = ∂Ω), solutions of (2) have been
completely characterized by Cannarsa and Cardaliaguet [6] (see also [7] for an ex-
tension to higher dimensions). More precisely, denoting by d∂Ω : Ω → R the distance
function from the boundary of Ω, they proved that there exists a nonnegative con-
tinuous function vf (with an explicit integral representation) such that (d∂Ω, vf ) is
a solution of (2), and any other solution (u, v) satisfies v = vf in Ω and u = d∂Ω in
{vf > 0}.

Aim of this paper is to extend these results to the case of the partially open table
problem. As we shall see in the sequel, the presence of vertical walls has a relevant
influence on the regularity of stationary solutions. Namely, we cannot expect the
transport density v to be a continuous function as in the case of the open table
problem. This fact has several consequences.

First of all, we cannot give a pointwise meaning to the boundary conditions in
(2). Our choice here is to set v in L1(Ω), and to consider a weak formulation of
the problem (see (9) below). Another possible choice, which we do not pursue
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here, could be to set v in the class of functions with bounded variation, so that the
trace of v on ∂Ω is well defined. Our main result (see Theorem 2.1 below) states
that there exists a nonnegative function vf ∈ L1(Ω), of which we give an explicit
integral representation, such that (dΓ, vf ) is a solution to the weak formulation of
the problem, where dΓ denotes the distance function from Γ (see (5) for its precise
definition).

The second major consequence of the lack of continuity of v concerns the unique-
ness of solutions. Namely, the uniqueness of the transport density v for the open
table problem was proved in [6] using a blow-up argument, first introduced in [11] for
the analysis of mass transport problems in the framework of the Monge-Kantorovich
theory, that relies on the continuity of v. In our opinion this argument cannot be
adapted to the case v ∈ L1. Nevertheless, it could be possible to prove a uniqueness
result in a restricted class of more regular functions F ⊂ L1(Ω), provided that one
can show that vf ∈ F .

A precise formulation of the existence result mentioned above requires some
notation. The table Ω ⊂ R

2 will be a Lipschitz domain, i.e. an open bounded
connected set with Lipschitz boundary, and the open boundary Γ ⊂ ∂Ω will be a
nonempty closed subset of ∂Ω. Let d : Ω × Ω → [0,∞) denote the path distance in
Ω, defined by

d(x, y) = inf{length(γ); γ : [0, 1] → Ω Lipschitz path joining x to y} , (3)

and let

Lip1(Ω) = {u : Ω → R; u Lipschitz, u(x) − u(y) ≤ d(x, y) ∀x, y ∈ Ω} (4)

be the set of 1-Lipschitz functions in Ω with respect to the path-metric d. Let us
denote by dΓ : Ω → [0,∞) the path distance function from Γ, defined by

dΓ(x) = inf
y∈Γ

d(x, y), x ∈ Ω . (5)

It is easily seen that, if Γ = ∂Ω, then dΓ is the Euclidean distance from the boundary
of Ω. Moreover, dΓ belongs to the space of functions

Lip1
Γ(Ω) = {u ∈ Lip1(Ω); u = 0 on Γ} . (6)

It is also known that dΓ is the maximal function among all functions in Lip1
Γ(Ω).

Thus dΓ is the maximal size of the standing layer.
Given a nonnegative function f ∈ L1(Ω), let uf : Ω → [0,∞) denote the function

defined by
uf(x) = max{Gz(x); z ∈ supp(f)} x ∈ Ω , (7)

where, for every x, z ∈ Ω,

Gz(x) =

{
dΓ(z) − d(z, x), if d(z, x) ≤ dΓ(z),

0, otherwise ,
(8)

and supp(f) denotes the (essential) support of f , that is, the complement in Ω of
the union of all relatively open subsets A ⊆ Ω such that f = 0 a.e. in A.

It is readily seen that the graph of the positive part of Gz is, in the path metric,
the maximal cone of unitary slope, with apex in z, whose base is contained in Ω
and touches Γ at some point. It is clear that 0 ≤ uf ≤ dΓ, and that uf ∈ Lip1(Ω).
Moreover, since uf is the sup-envelope of all the cones Gz with z ∈ supp(f), it is
plain that uf represents the minimal standing layer for an equilibrium configuration
with respect to the given support of the source.
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We can now state the weak formulation of problem (2): Find nonnegative func-
tions u, v : Ω → [0, +∞) such that





u ∈ Lip1
Γ(Ω), v ∈ L1(Ω), u, v ≥ 0,∫

Ω

vDu · Dφ =

∫

Ω

f φ ∀φ ∈ C∞
c (R2 \ Γ) ,

|Du| = 1 a.e. in {v > 0},

(9)

where C∞
c (R2 \ Γ) denotes the space of C∞ functions φ : R

2 → R with compact
support in R

2 \Γ. In this weak formulation the boundary conditions on u and v are
embedded in the choice of the test functions space C∞

c (R2 \Γ) and in the condition
u ∈ Lip1

Γ(Ω). It is readily seen that, if u and v are smooth enough, then problem
(9) is equivalent to (2).

The plan of the paper is the following. In Section 2 we state the main existence
result, constructing explicitly a transport density vf (see formula (16) below) and

showing that a pair (u, vf ) is a solution to problem (9) for every u ∈ Lip1
Γ(Ω)

satisfying uf ≤ u ≤ dΓ. Moreover, we show that no other function u ∈ Lip1
Γ(Ω) can

be the standing layer for the problem. Section 3 contains the proofs of these results,
that are mainly based on a Change of Variables formula of some independent interest
(see Theorem 3.3 below). In Section 4 we compute the explicit solution in a simple
case, which will be compared in Section 5 to the numerical equilibrium solution of
the dynamical model (1) obtained via some finite difference schemes. Indeed, in this
last section the specific difficulties of such a numerical approximation are discussed
in details.

2. Existence of a solution. Throughout this paper, Ω ⊂ R
2 and Γ ⊂ ∂Ω satisfy

the following assumptions.

(H1) Ω ⊂ R
2 is a Lipschitz domain, i.e. a nonempty open bounded connected set

with Lipschitz boundary.

(H2) Γ =
⋃N

i=1 Γi is a nonempty closed subset of ∂Ω, with Γ1, . . . , ΓN connected
arcs of ∂Ω, pairwise disjoint (up to the endpoints) and of class C2. We denote
by Ai, Bi the endpoints of the arc Γi, i = 1, . . . , N , and by Γe the collection
of all these endpoints.

(H3) For every x ∈ Ω there exists y ∈ Γ such that dΓ(x) = |x − y|.

Remark 1. Observe that (H2) does not prevent the intersection of two arcs at the
endpoints. This is the case, for example, if Ω is a square and Γi, i = 1, . . . , 4, its
sides. Nevertheless, in order to simplify the proofs, in the following we assume that
the arcs Γi do not intersect at the endpoints. The general case can be treated with
minor modifications.

Condition (H3) says that, for every x ∈ Ω, there is a point y ∈ Γ such that the
closed segment [[x, y]] with endpoints x and y is a path of minimal length joining
x to Γ. This means that the transport rays are segments, so that they cannot
bend around a portion of ∂Ω \ Γ. An analysis that takes into account this bending
phenomenon can be found, for example, in [14], where the author considers the
evolution of a sandpile around a convex obstacle. Without requesting (H3) our
subsequent analysis is no more valid; in particular, the representation formula (16)
does not hold.

Although (H3) is a strong geometrical assumptions there are at least three rele-
vant cases where (H1)–(H3) are satisfied:
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Figure 1. Open boundary Γ (dotted), extended ridge R (bold)
and transport rays

(a) Γ = ∂Ω, and Ω is a domain of class C2.
(b) Γ = ∂Ω, and Ω is a domain with piecewise C2 boundary.
(c) Ω is a non-empty open bounded convex set, and Γ satisfies condition (H2)

above.

Case (a) and (b) refer to the open table problem. They were considered respec-
tively in [6] (see also [7] for an extension to Ω ⊂ R

n) and [15] in the case of piecewise
C2,1 boundary with outer (i.e. “convex”) corners.

Let Γ∗ = Γ \Γe. For every y ∈ Γ∗ let ν(y) denote the inward unit normal vector
of ∂Ω, and let κ(y) denote the curvature of ∂Ω at y.

For every x ∈ Ω we denote by

ΠΓ(x) = {y ∈ Γ; dΓ(x) = d(x, y)}

the set of all projections of x on Γ. By (H3) it is clear that

ΠΓ(x) = {y ∈ Γ; dΓ(x) = |x − y|} .

For every x ∈ Ω and every y ∈ ΠΓ(x), let us define

l(x) = dΓ(x) · sup{t > 0; y + t(x − y) ∈ Ω and y ∈ ΠΓ(y + t(x − y))}, (10)

m(x) = y + l(x)
x − y

|x − y|
, (11)

Rx = ]]y, m(x)[[ , (12)

where ]]x, y[[ denotes the segment joining x to y without the endpoints. The set Rx

is called a distance ray (or transport ray) through x and, in general, it depends on
the projection point y. On the other hand, it is not difficult to prove that m(x) and
l(x) do not depend on the choice of y ∈ ΠΓ(x). It is readily seen that l(x) is the
length of the transport ray Rx. The set

R = {x ∈ Ω; dΓ(x) = l(x)} (13)

will be called the extended ridge of Ω (see Fig. 1). It coincides with the usual
definition of ridge when Γ = ∂Ω (see [12]). Finally let τ : Ω → [0,∞) denote the
normal distance to the ridge, defined by

τ(x) = l(x) − dΓ(x), x ∈ Ω . (14)

This function is clearly bounded from above by max{dΓ(x); x ∈ Ω}.
Let Ω∗ ⊂ Ω be the set of regular points of dΓ, that is the set of all x ∈ Ω such

that the projection ΠΓ(x) is a singleton. It is well-known that L2(Ω \ Ω∗) = 0.
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Figure 2. An example of domain decomposition

Let x ∈ Ω∗, let ΠΓ(x) = {y}, and define for every t ∈ [0, τ(x)]

Mx(t) =





dΓ(x) + t

dΓ(x)
, if y ∈ Γe,

1 − (dΓ(x) + t)κ(y)

1 − dΓ(x)κ(y)
, if y ∈ Γ∗ .

(15)

Let us define the function

vf (x) =






∫ τ(x)

0

f(x + t DdΓ(x))Mx(t) dt , if x ∈ Ω∗,

0, if x ∈ Ω \ Ω∗ .

(16)

We remark that, if ]]y, z[[ is a transport ray, then z ∈ R, and

lim
x→z, x∈]]y,z[[

vf (x) = 0 .

In other words, the transport density vf vanishes at the end of each transport ray.
The main theoretical contribution of this paper is the following existence result.

Theorem 2.1 (Existence). Let Ω and Γ satisfy (H1)-(H3). Then the pair (u, vf )

is a solution of (9) for every u ∈ Lip1
Γ(Ω) satisfying uf ≤ u ≤ dΓ. Furthermore, if

(u, v) is any solution of (9), then uf ≤ u ≤ dΓ.

It is apparent that the result above characterizes all the possible standing layers
as the functions u ∈ Lip1

Γ(Ω) satisfying uf ≤ u ≤ dΓ. On the other hand, the
uniqueness of the transport density vf remains an open problem.

3. Proof of Theorem 2.1. In what follows we shall always use the following
decomposition of the set Ω∗ of regular points of dΓ. For every i = 1, . . . , N , let us
define the sets Γ∗

i = Γi \ {Ai, Bi}, and

Ω∗
i = {x ∈ Ω∗; ΠΓ(x) ∈ Γ∗

i },

ΩA
i = {x ∈ Ω∗; ΠΓ(x) = {Ai}}, ΩB

i = {x ∈ Ω∗; ΠΓ(x) = {Bi}} .
(17)

Then (see Fig. 2 for an example)

Ω∗ =

N⋃

i=1

(
Ω∗

i ∪ ΩA
i ∪ ΩB

i

)
.
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Figure 3. The set Ωǫ

Next, we need an approximation of this decomposition in terms of sets that can
be easily parameterized (see Theorem 3.2 below). For every ǫ > 0 let us define the
sets

Gǫ
i =

{
x ∈ R

2; min
y∈Γi

|x − y| < ǫ

}
, Γǫ

i = ∂Gǫ
i , i = 1, . . . , N. (18)

From Remark 1 and (H3), there exists r > 0 with the following property: for every
ǫ ∈ (0, r], the sets Gǫ

i are pairwise disjoint and of class C1,1. Given ǫ ∈ (0, r] and
i = 1, . . . , N , for every y ∈ Γǫ

i let νǫ(y) denote the outer (with respect to Gǫ
i) unit

normal vector to Γǫ
i at y. In the following, ǫ will always denote a number in (0, r].

Let us define the maps

Φǫ
i : Γǫ

i×R → R
2, Φǫ

i(y, t) = y+(t−ǫ) νǫ(y), y ∈ Γǫ
i , t ∈ R, i = 1, . . . , N. (19)

The following lemma states that Ω can be parameterized using the maps Φǫ
i .

Moreover, this parametrization is independent of the choice of ǫ. Let us define

Γ̃ǫ
i = Γǫ

i ∩ Ω, i = 1, . . . , N, Γǫ =

N⋃

i=1

Γǫ
i , Γ̃ǫ =

N⋃

i=1

Γ̃ǫ
i ,

and denote by Πǫ = ΠΓǫ the projection operator on Γǫ.

Lemma 3.1. Let x ∈ Ω and let y ∈ ΠΓ(x). If y ∈ Γi, then for every ǫ ∈ (0, r)
there exists a unique yǫ ∈ Γǫ

i such that yǫ ∈ Πǫ(x) and x = Φǫ
i(yǫ, dΓ(x)). Moreover,

x ∈ ]]y, yǫ[[, if dΓ(x) < ǫ, and yǫ ∈ ]]y, x[[, yǫ ∈ Γ̃ǫ
i , if dΓ(x) > ǫ.

Proof. Let yǫ be the intersection of Γǫ
i with the ray starting from y and passing

through x. From the definition of Γǫ
i it is straightforward to check that yǫ satisfies

all the stated properties.

Let yǫ ∈ Γ̃ǫ, and let y ∈ Γ be the unique projection of yǫ on Γ. Let us define

κǫ(yǫ) =

{
−1/ǫ, if y ∈ Γe,

κ(y)/(1 − ǫ κ(y)), if y ∈ Γ∗ .
(20)

It can be checked that κǫ(yǫ) is the curvature of Γǫ at every point yǫ where the
curvature is defined. We remark that, for every i = 1, . . . , N , κǫ is defined at all

but four points of Γ̃ǫ
i . Let x ∈ Ω∗, let Πǫ(x) = {yǫ}, and define

M ǫ
x(t) =

1 − (dΓ(x) + t − ǫ)κǫ(yǫ)

1 − (dΓ(x) − ǫ)κǫ(yǫ)
, t ∈ [0, τ(x)] . (21)
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It is easy to check that, if ΠΓ(x) = {y}, then

M ǫ
x(t) = Mx(t), ∀t ∈ [0, τ(x)]. (22)

The main tool needed for the proof of Theorem 2.1 is a Change of Variables for-
mula (see Theorem 3.3 below). As a first step, we need the following approximation
result (see Fig. 3).

Theorem 3.2. For every ǫ ∈ (0, r] and i = 1, . . . , N , let

Ωǫ
i = {Φǫ

i(y, t); y ∈ Γ̃ǫ, 0 < t < l(y)}, Ωǫ =

N⋃

i=1

Ωǫ
i .

Then Ωǫ ⊂ Ω, and limǫ→0 L2(Ω \ Ωǫ) = 0.

Proof. It is not difficult to see that the set

Oǫ :=
N⋃

i=1

{Φǫ
i(y, t); y ∈ Γ̃ǫ, 0 < t ≤ l(y)}

covers Ω up to a set of Lebesgue measure Nπǫ2, i.e. L2(Ω \Oǫ) < Nπǫ2. Moreover,
from Lemma 3.1 it is clear that Ωǫ ⊂ Oǫ ⊂ Ω. The conclusion now follows observing
that

Oǫ \ Ωǫ ⊆ D :=

N⋃

i=1

{Φǫ
i(y, l(y)); y ∈ Γ̃ǫ

i} ⊆ R ,

and that D has vanishing Lebesgue measure (see [9], Corollary 6.8).

Let us define the map Φǫ : Γ̃ǫ × R → R
2 by setting Φǫ(y, t) = Φǫ

i(y, t) if y ∈ Γ̃ǫ
i .

Theorem 3.3 (Change of Variables). For every h ∈ L1(Ω) we have

∫

Ω

h(x) dx = lim
ǫ→0

∫

Γ̃ǫ

[∫ l(y)

0

h(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y)

= lim
ǫ→0

∫

Γ̃ǫ

[∫ l(y)−ǫ

−ǫ

h(y + tνǫ(y)) [1 − tκǫ(y)] dt

]
dH1(y) .

(23)

Proof. From Theorem 3.2 we have that

∫

Ω

h(x) dx = lim
ǫ→0

∫

Ωǫ

h(x) dx = lim
ǫ→0

N∑

i=1

∫

Ωǫ
i

h(x) dx .

For every i = 1, . . . , N we have the decomposition

Ωǫ
i = Ωǫ,∗

i ∪ Ωǫ,A
i ∪ Ωǫ,B

i ,

defined as in (17) replacing Ω∗ with Ωǫ.
Observe that each regular region Ωǫ,∗

i can be parameterized by rays starting from

Γ̃ǫ
i∩Ωǫ,∗

i , so that we can use the Change of Variables formula proved in [9, Thm. 7.1],
obtaining

∫

Ωǫ,∗
i

h(x) dx =

∫

Γ̃ǫ
i
∩Ωǫ,∗

i

[∫ l(y)

0

h(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y) . (24)
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We shall now prove that
∫

Ωǫ,A
i

h(x) dx =

∫

Γ̃ǫ
i
∩Ωǫ,A

i

[∫ l(y)

0

h(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y) . (25)

Let us define the region

Aǫ = {Φǫ(y, t); y ∈ Γ̃ǫ
i ∩ Ωǫ,A

i , 0 < t < l(y)} .

It is clear that Aǫ ⊂ Ωǫ,A
i . Hence, it is enough to prove that

∫

Aǫ

h(x) dx =

∫

Γ̃ǫ
i
∩Ωǫ,A

i

[∫ l(y)

0

h(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y) . (26)

Observe that, by the very definition of κǫ, we have that κǫ(y) = −1/ǫ for every

y ∈ Γ̃ǫ
i ∩ ΩA

i . Then, the integral in brackets becomes
∫ l(y)

0

h(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt =

∫ l(y)

0

h(Φǫ(y, t))
t

ǫ
dt .

On the other hand, the integral over Aǫ can be computed using polar coordinates

(ρ, θ). We remark that Γ̃ǫ
i ∩ Ωǫ,A

i is an arc of circumference of radius ǫ, so that
dH1(y) = ǫ dθ, hence formula (26) follows.

It is clear that (25) holds if Ωǫ,A
i is replaced by Ωǫ,B

i . The identity (23) then
follows from (24) and (25).

Lemma 3.4. The function uf defined in (7) satisfies uf = dΓ in the set {vf > 0}.
Moreover, if u ∈ Lip1(Ω) is a function satisfying uf ≤ u ≤ dΓ in Ω, then Du = DdΓ

in {vf > 0}.

Proof. From the very definition of uf it is plain that uf(x) ≥ dΓ(x) for every
x ∈ supp(f). On the other hand, by the maximality of dΓ among all functions of
Lip1(Ω) vanishing on Γ, we conclude that

uf = dΓ in supp(f). (27)

Now let x ∈ {vf > 0} and let us prove that uf (x) = dΓ(x). From the definition of vf

we have that x ∈ Ω∗, that is, ΠΓ(x) is a singleton {y}, with y ∈ Γ. Let [[y, z]] be the
transport ray through x. Since vf (x) > 0, we have that ]]x, z[[∩supp(f) 6= ∅. Let x0

be a point belonging to this intersection. From (27) we have that uf (x0) = dΓ(x0),
which in turn implies that uf = dΓ along the segment [[y, x0]]. Since x ∈ [[y, x0]], we
conclude that uf(x) = dΓ(x), and the first part of the lemma is proved.

The second part follows from [1, Prop. 4.2] (see also [8, Lemma 7.3] and [10,
Lemma 4.3]) upon observing that u = dΓ in {vf > 0}.

Lemma 3.5. Let (u, v) be a solution of (9). Then
∫

Ω

f u = max

{∫

Ω

f w ; w ∈ Lip1
Γ(Ω)

}
. (28)

Proof. By a standard approximation argument we have that∫

Ω

v Du · Dφ =

∫

Ω

f φ ∀φ : Ω → R Lipschitz, φ = 0 on Γ. (29)

Let w ∈ Lip1
Γ(Ω). Since v ≥ 0, |Dw| ≤ 1, |Du| ≤ 1, and |Du| = 1 a.e. in {v > 0},

we have that ∫

Ω

v Du · (Dw − Du) ≤ 0 .
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Hence we infer that∫

Ω

f u −

∫

Ω

f w ≥

∫

Ω

v Du · (Dw − Du) − f(w − u) = 0,

where the last equality follows from (29) with φ = w−u. Since this inequality holds
for every w ∈ Lip1

Γ(Ω), (28) follows.

Proof of Theorem 2.1. We divide the proof into three steps. In the first one we shall
prove that (dΓ, vf ) is a solution to (9). Then, in the second step, we shall prove

that also (u, vf ) is a solution for every u ∈ Lip1(Ω) satisfying uf ≤ u ≤ dΓ. Finally,

in the last step we shall prove that if u ∈ Lip1
Γ(Ω) is a nonnegative function with

{u < uf} 6= ∅, then for every nonnegative function v ∈ L1(Ω) the pair (u, v) is not
a solution of (9).

Step 1. We give only a sketch of the proof, since it follows the lines of the proof of
Theorem 7.2 in [9].

Given φ ∈ C∞
c (R2 \ Γ), we have to prove that (9) holds with u = dΓ. Using the

Change of Variables formula (23) we have that
∫

Ω

fφ = lim
ǫ→0

∫

Γ̃ǫ

[∫ l(y)

0

φ(Φǫ(y, t)) f(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y) . (30)

For every fixed y ∈ Γ̃ǫ, let us integrate by parts the term in brackets. Recalling
that Φǫ(y, 0) = y − ǫνǫ(y) ∈ Γ, we have that φ(Φǫ(y, 0)) = 0, hence the integration
by parts gives

I(y) :=

∫ l(y)

0

φ(Φǫ(y, t)) f(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

=

∫ l(y)

0

Dφ(Φǫ(y, t)) · νǫ(y)

∫ l(y)

t

f(Φǫ(y, s)) [1 − (s − ǫ)κǫ(y)] ds dt .

From the definition (16) of vf and (22) we deduce that

vf (Φǫ(y, t)) =

∫ l(y)

t

f(Φǫ(y, s))
1 − (s − ǫ)κǫ(y)

1 − (t − ǫ)κǫ(y)
ds ,

so that

I(y) =

∫ l(y)

0

Dφ(Φǫ(y, t)) · νǫ(y) vf (Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt .

Observe now that DdΓ(Φǫ(y, t)) = νǫ(y) for every y ∈ Γ̃ǫ and every t ∈ (0, l(y)).
Substituting the last expression for I(y) in (30) and using again the Change of
Variables formula (23) we finally get

∫

Ω

fφ = lim
ǫ→0

∫

Γ̃ǫ

[∫ l(y)

0

(vf Dφ · DdΓ)(Φǫ(y, t)) [1 − (t − ǫ)κǫ(y)] dt

]
dH1(y)

=

∫

Ω

vf Dφ · DdΓ .

By the way, choosing φ = dΓ (see (29)) we have that
∫

Ω

vf =

∫

Ω

fdΓ < +∞,

hence the nonnegative function vf belongs to L1(Ω).
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Figure 4. The domain Ω of the example: P is a singular boundary
point, the solution v results discontinuous along the line PQ

Step 2. Let u ∈ Lip1(Ω) satisfy uf ≤ u ≤ dΓ. From Lemma 3.4 we have that
u = dΓ and Du = DdΓ in the set {vf > 0}, hence

∫

Ω

vf Du · Dφ =

∫

Ω

vf DdΓ · Dφ =

∫

Ω

f φ ∀φ ∈ C∞
c (R2 \ Γ),

where the last equality follows from Step 1.

Step 3. Let u ∈ Lip1
Γ(Ω) be a nonnegative function with {u < uf} 6= ∅. From [10],

Proposition 4.4(iii), we deduce that also the set {x ∈ supp(f); u(x) < dΓ(x)} is not
empty and, in particular, u < dΓ on a set of positive measure where f > 0. Since
u ≤ dΓ and f ≥ 0, we infer that

∫

Ω

f u <

∫

Ω

f dΓ . (31)

On the other hand (u, v) is a solution to (9), so that (28) holds, in contradiction
with (31).

4. A test example. In this section we describe a simple example which illustrates
very well how the presence of vertical walls on the boundary can influence the
regularity of solutions (u, v) of (9). Let Ω = (0, 1)2 be the unit square of R

2, and
Γ = {(x, y) ∈ R

2 : 0 ≤ x ≤ 0.5 ; y = 0} the only open part of its boundary.
Assume f ≡ 1 in all of Ω. From the picture in Fig. 4 we see that the sand transport
rays behave differently in the two half sides of the table: in the left-hand side they
lay parallel in the direction of Γ, whereas in the right-hand side they converge all
together into the extremal point P = (0.5, 0), creating a singularity.

Since f = 1 in Ω, we have that uf = dΓ so that the only possible standing layer
is u = dΓ. The explicit computation for the solution (dΓ, vf ) of Theorem 2.1 can

be done by decomposition of the domain Ω along the segment PQ. Using polar
coordinates (r, θ) centered in P (with θ ∈ [0, π

2 ]) in the right hand side, from (15)
and (16) we get in particular

vf (x, y) =





1 − y, if x ≤ 0.5,

∫ l(θ)

r
ρ
r

dρ , if x > 0.5,

(32)



826 GRAZIANO CRASTA AND STEFANO FINZI VITA

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

u
*
: level lines

 Y

 X

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

v
*
: level lines

 Y

 X

Figure 5. Exact solution (dΓ, vf ) of the test example with level lines

where l(θ) denotes the length of the transport ray from P to the ridge on the wall
boundary along the θ direction (see (10)). It results that vf ∈ L1(Ω) is unbounded

near P , it is discontinuous along the segment PQ, and its gradient is discontinuous
along the segment PS. The graph of the functions dΓ, vf and their level lines are
shown in Fig. 5.

5. Numerical detection of stationary solutions. In [13] the numerical approx-
imation of the two-layer model of [16] was studied to simulate growing sandpiles on
an open flat table. Here we have considered the natural generalization (1) of such a
model in the case of the partially open table problem, in order to get solutions of (9)
as equilibrium solutions of a system of two evolutive partial differential equations.
The extension of the finite difference scheme introduced in [13] to such a system is
enough straightforward. For a given discretization step h = ∆x, we introduce in the
domain Ω (for simplicity, a rectangle) a uniform grid of nodes xi,j , and we denote
as usual by (un

i,j , v
n
i,j) the components of the discrete solutions at time tn = n∆t.

Then our fully explicit finite difference scheme can be written as

vn+1
i,j = vn

i,j + ∆t
[
vn

i,jD
2un

i,j + Dvn
i,j · Dun

i,j − (1 − |Dun
i,j |)v

n
i,j + fi,j

]
, (33)

un+1
i,j = un

i,j + ∆t(1 − |Dun
i,j |)v

n
i,j , (34)

u0
i,j = v0

i,j = 0 ∀i, j, (35)

un
i,j = 0 if xi,j ∈ Γ, ∀n, (36)

vn
i,j(Dun

i,j · νi,j) = 0 if xi,j ∈ Ω \ Γ, ∀n, (37)
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Figure 6. Numerical stationary solutions u and v of system (1)
in the test example and their level lines

where the discrete gradient vectors Dun and Dvn are computed respectively, compo-
nent by component, through the maxmod and the upwind finite difference operators,
and D2u denotes the standard five-points discretization of the Laplace operator on
the grid (see [13] for the details). What is new in this scheme is the wall bound-
ary condition (37), whose implementation requires some comments. The standard
way is the following: after (33) and (34) have been applied, we look for the sign
of (Dun+1 · ν) at the wall nodes. If it is strictly positive (as it happens for nodes
which are in the extended ridge R, that is which are starting points of a transport
ray to Γ) then vn+1

i,j is set to zero. If this is not the case, one should modify un+1
i,j

on the boundary in order to fulfill (37). This is not the best strategy. In fact
this situation corresponds to the pathological case of nodes belonging to boundary
transport rays, that is when there exist straight portions of the wall boundary, as
in the test example of Section 4. Referring to Fig. 4, on the west side of the square
the sand flow is parallel to the boundary (and also to the mesh in this particular
case) and there is no need to impose any boundary condition: the discrete solution
un naturally satisfies a no flux condition at those points. Also the south portion of
the wall in the example coincides with a transport ray, but in that case the normal
derivative of u is naturally negative in the boundary nodes, and it becomes zero
only asymptotically in time (at the equilibrium). Then, by continuity arguments,
the best choice seems to us simply to impose a no flux boundary condition for v at
those points.
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Figure 7. Numerical stationary solutions u and v of system (1)
in the test example and their level lines: solution by decomposition

Figure 8. Numerical stationary solutions u and v (view from
above) of system (1) in the modified test example

The direct application of scheme (33)-(37) is anyway not so efficient, due to the
numerical difficulty of handling unbounded discontinuous solutions. In Fig. 6, the
computed stationary solutions for (1) and their level lines are shown in the test
example of Section 4 (compare with Fig. 5).
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Despite the fact that the real sand flow is completely separated in the left and
the right subregions of Ω, at the numerical level the flow travels through the grid
points and then it can cross the separation line. More precisely, the transport
path for sand from a point X in the right hand side should be the segment XP in
Fig. 4; on the contrary, the algorithm splits this flow along vertical and horizontal
segments connecting nodes and then part of this sand reaches the segment PQ even
far from P (and from there eventually the left-hand side of the table). That is why
the simple use at the discrete level of the same decomposition strategy adopted to
characterize the stationary solutions is not able to reduce this phenomenon. As a
test we applied in fact on the same uniform grid the scheme (33)-(37) separately in
the two subregions of Ω, with suitable wall boundary conditions on the cut (the PQ
segment). The results (see Fig. 7) show an evident improvement of the solutions
only in the left (that is the regular) subregion.

Better results can be expected by coupling decomposition with suitable grid
strategies. Keeping the uniform grid, the use of semi-lagrangian type schemes along
characteristics should give a better trace of the correct transport directions. On the
other hand, a different idea could be to employ unstructured grids (and mesh refine-
ments near the singularity regions) in order to improve the accuracy. The discussion
of these approaches will be the goal of a forthcoming paper. The main difficulty is,
anyway, that a sharp domain decomposition requires the a priori knowledge of the
ridge set, which is not in general an easy task. For example, if we slightly modify
the table in Fig. 4 by simply opening a symmetric portion of the boundary on its
northern side ({(x, y) : y = 1, 0.5 ≤ x ≤ 1}), the situation becomes completely
different: a curved internal ridge appears, and with the help of the normal direc-
tions to the singular boundary points it subdivides the table into four distinct flow
regions (see Fig. 8, where the v surface is now seen from above, showing, in white,
the ridge set profile).
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