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Abstract. In this paper, we consider a set of HTTP flows using TCP over a
common drop-tail link to download files. After each download, a flow waits for
a random think time before requesting the download of another file, whose size
is also random. When a flow is active its throughput is increasing with time
according to the additive increase rule, but if it suffers losses created when the
total transmission rate of the flows exceeds the link rate, its transmission rate
is decreased. The throughput obtained by a flow, and the consecutive time to
download one file are then given as the consequence of the interaction of all
the flows through their total transmission rate and the link’s behavior.

We study the mean-field model obtained by letting the number of flows
go to infinity. This mean-field limit may have two stable regimes: one with-
out congestion in the link, in which the density of transmission rate can be
explicitly described, the other one with periodic congestion epochs, where the
inter-congestion time can be characterized as the solution of a fixed point equa-
tion, that we compute numerically, leading to a density of transmission rate
given by as the solution of a Fredholm equation. It is shown that for certain
values of the parameters (more precisely when the link capacity per user is not
significantly larger than the load per user), each of these two stable regimes
can be reached depending on the initial condition. This phenomenon can be
seen as an analogue of turbulence in fluid dynamics: for some initial conditions,
the transfers progress in a fluid and interaction-less way; for others, the con-
nections interact and slow down because of the resulting fluctuations, which in
turn perpetuates interaction forever, in spite of the fact that the load per user
is less than the capacity per user. We prove that this phenomenon is present
in the Tahoe case and both the numerical method that we develop and sim-
ulations suggest that it is also be present in the Reno case. It translates into
a bi-stability phenomenon for the finite population model within this range of
parameters.

1. Introduction. Recall that a TCP (Transport Control Protocol) connection
maintains a window size specifying how many packets from this connection are
in flight inside the network. A packet is in flight until the packet is received and an
acknowledgement sent by the receiver returns to the source. The time for a packet
to reach the receiver plus the time for the acknowledgement to return to the source
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is called a round trip time. Since one window size of packets is sent every round trip
time it follows that the transmission rate is the window size divided by the round
trip time (RTT). The window size increases by one every RTT (additive increase)
so the transmission rate increases at a rate of 1/RTT 2.

There are two kinds of TCP in use. Under TCP Reno the window size is cut
in half when a loss is detected (multiplicative decrease) while under TCP Tahoe
the window size is cut to one. There is in addition a fast recovery mechanism
to rapidly restart a connection by increasing the window size from 1 up to the
threshold of congestion (SSthresh), established before the transfer was interrupted.
This mechanism, curiously called slow start, increases the window size by one for
each packet arrival. Slow start is used to recover after a loss under Tahoe. Moreover,
certain anomalous conditions can cause a connection to fall into timeout where the
connection is idle for several seconds. After a timeout the connection restarts using
slow start.

HTTP (Hypertext Transfer Protocol) runs over a TCP connection. The protocol
consists of requests from the client (generated by clicking on a link) to a server for
a specified document. The server response is a message in the hypertext mark-up
language (HTML). This file is downloaded using TCP. After that there is an off or
think period while the user reads the file. Then the user clicks on another link and
the process repeats. In current versions of HTTP the connection remains alive even
over off periods so that no time is wasted reestablishing and restarting a connection
to the same server. For more on TCP and HTTP see e.g. [19] and [20].

Consider the following toy model: two users with the same round trip time R
share a buffer-less link of capacity C. Each user alternates between OFF periods and
download periods. As an example, if C = ∞, each user has the following behavior:
it remains silent during an OFF period that is of duration β−1 and then downloads
a file of µ−1 packets, alternating between such OFF and download periods in a
periodic way forever. Assume that the file transfers of these users are controlled by
a protocol like TCP-Reno (additive increase and multiplicative decrease - AIMD).
To make the problem as simple as possible, disregard slow start and time out.

• In case the link capacity C is infinite, the additive increase rule of the con-
gestion avoidance mechanism of TCP implies that each download takes t =
R

√
2/µ, so that each user has a periodic behavior of period β−1 + t in which

it downloads files at a long term average rate of ρ = (µ(β−1 + R
√

2/µ))−1

packets per second.
• If C > 2

√
2/(µR2) (which is the sum of the peak rates of the two flows), then

the two users never fill in the link capacity and TCP never lets them interact
either.

• If C < 2
√

2/(µR2), then two things may happen depending on the initial
phases of the two flows.

– Assume first that the two flows are in phase, namely both simultaneously
start a download at time 0. Then the capacity of the link is exceeded
before the end of the two simultaneous transfers and (assuming full syn-
chronization of the losses) both flows then experience a loss at some time
t′ < t which results in a window being divided by two that we consider
to be instantaneous at time t′. For certain values of the parameters (see
Figure 1), the two flows then complete their download simultaneously at
some epoch t′′ > t before the capacity of the link is again exceeded, so
that the two flows actually reach a periodic regime of period t′′ + β−1
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Figure 1. Flow 1 is the solid line and flow 2 the dotted line. Top
figure: two out of phase flows with capacity above the peak rate
of one flow; no interaction. Middle figure: two in phase flows with
capacity larger than twice the peak rate of one flow: no interaction.
Bottom figure: two in phase flows with capacity between the peak
rate and twice the peak rate; the interaction regime is reached and
this slows down the file transfers.

in which they download a long term average of ρ′ = (µ(β−1 + t′′)−1 < ρ
packets per second.

– Assume now that the two flows are out of phase, in such a way that, for
instance, when one is downloading, then the other one is OFF (which is
possible if β−1 > t). Then the situation seen by each flow is exactly as
that in the case with C = ∞, so that the long term average download
rate is ρ

• If C <
√

2/(µR2), then the two flows experience losses in any case.

The main conclusion from this toy example is that the average rate obtained by the
flows depends on their relative phase.

The main question addressed in this paper is that of the possible persistence of
this phase dependence phenomenon in a more realistic model where the number of
users is large and where both the file sizes and the OFF periods are independent
random variables, with given distribution functions on the positive real line. It
could be expected that in contrast with the last deterministic model, the ”mixing”
operated by the randomness of the file sizes and the OFF periods leads to some form
of dephasing of the various flows and hence to a throughput that is independent of
the initial phase condition.

We will consider two cases: the Reno case based on the additive increase mul-
tiplicative decrease (AIMD) rule for of the transmission rate and the Tahoe case.
The Reno case will be the default assumption throughout the paper.

Informed readers may be concerned that our model for interacting HTTP flows
sharing a common link is oversimplified. It is well known that within the context
of the Internet, it is appropriate to assume that the distribution of file sizes and
OFF periods have heavy tails (e.g. Pareto file sizes and Weibull or lognormal OFF
periods, as for example in [10]). However, in most of the mathematical derivations of
the present paper, we will not assume heavy tails because we are unable to solve the
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associated mathematics at this stage (nor can the rest of the scientific community
to the best of our knowledge). We will instead concentrate on the version of the
problem where both file sizes and OFF periods are exponential random variables
and where all files and OFF times are mutually independent.

Why study a model based on statistical assumptions that are clearly inappropri-
ate? The rationale is as follows: the exponential case is tractable and allows one to
identify and prove the presence of phenomena that are also observed by simulation
in the heavy tailed case. So the mathematical study based on the exponential case
will be an important step in the direction of the understanding of the interaction
of HTTP flows with the more realistic statistics.

In the mathematical analysis, we assume the existence of a stationary determin-
istic mean-field limit when the number of flows goes to infinity. In this deterministic
limit there are two possible stable regimes. If the file sizes are small enough the
link is able to carry all the traffic without congestion. The average transmission
rate stabilizes at a value calculated below giving an overall utilization of the link
which is less than one. In the other stable regime there is a series of congestion
epochs where the buffer overflows and the active flows experience losses and cut
their transmission rate in two. The main aim of this paper is to investigate these
two regimes, and in particular the conditions under which they appear and the
stationary distributions they lead to.

Section 3 gives a necessary condition for the existence of stationary regimes
with congestion epochs. This necessary condition is based on the rate conservation
principle which allows one to pose a fixed point problem for the rate of conges-
tion epochs. The numerical aspects associated with this fixed point equation are
discussed in detail in this section: the functions that are used in this fixed point
equation are obtained as the solutions of Fredholm integral equations of the second
kind, which are derived from a regenerative analysis of the rate of a tagged flow.
This leads to an efficient way of calculating the possible values of the period of the
mean-field model.

Section 4 focuses on a necessary and sufficient condition for the existence of
stationary regimes with congestion epochs. For this, we first study the interaction-
less regime, for which we establish a partial differential equation. We give both
an explicit solution of this PDE and an efficient numerical way to solve it via
yet another Fredholm equation of the second type, which has a natural regenerative
interpretation. We then establish an invariant equation describing, for a given inter-
congestion period of the mean-field process, the stationary distribution of rates
at a congestion epoch. The existence of a probability measure solution of this
invariant measure equation that satisfies certain conditions described in the paper
is a necessary and sufficient condition for the existence of such a periodic congestion
regime. The associated integral equation is again a Fredholm integral equation of
the second kind.

One of the key observations is made in Section 4 : within this setting, it is possible
to have multiple stationary mean-field regimes depending on the initial conditions:
for certain values of the parameters, there exist both a ”fluid regime” where flows
do not interact at all and a ”turbulent regime” where the fact that flows interact
once implies a slow down of the whole system that propagates interaction forever.

Section 5 extends the approach to a model with a simple representation of slow
start. Section 6 focuses on the comparison of our results with those of earlier
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models of the literature. In particular, we compare this model to the processor
sharing Engset model.

In networks there are of course only a finite number of connections. The above
mean field regimes are no longer stable but in fact appear as resonances. We may
expect the turbulent regime to persist for an exponential length of time but subject
to a random perturbation the system may tunnel over into the fluid regime. The
system may stay in this fluid regime for an exponential time before once again
tunnelling back to the turbulent regime.

Section 7 presents simulation results on the above bi-stability or metastability
phenomenon and on the case with heavy tailed file sizes and OFF-times. We show
by simulation and analysis that the phenomena that are identified in the exponential
model are also present in the heavy tailed case. Section 8 shows some packet level
simulations based on ns2 [1] which confirm the presence of the bi-stability predicted
by the mathematical models. We anticipate that this phenomenon is present in real
networks in the form of transient resonances when the network is running fairly
close to capacity.

2. Related Work. Modeling TCP through the fairness it achieves (or equivalently
the utility functions that it optimizes) has been a very active area of research since
the work of Kelly in [15]. A general extension of this framework to dynamic traf-
fic with a large number of flows is described in [10]. In [18] this framework is
used to study the performance of networks with dynamic traffic (in [18] files to be
transmitted arrive according to a Poisson process), with several types of fairness
assumptions. In [12] the results proven in this previous paper are extended to a
Poisson arrival process of sessions, each associated with a file download having a
general distribution. [12] contains a proof that if the network can be modeled by
a processor sharing queue - or equivalently if instantaneous fair sharing can be as-
sumed in the network - then the mean throughput only depends on the average
requested size per session. Comparison with simulations is provided but as the au-
thors themselves remarked, this result might be challenged in real networks either
for very small flows, that do not last long enough to benefit from their possible fair
share in the network capacity, or for close to critical load where the discrimination
between flows and the unequal sharing due to TCP are more frequent.

At the same time, a few papers focused on TCP bandwidth sharing for dynamic
traffic when taking into account the AIMD rule. In [14], one of the first models de-
veloped on dynamic traffic, a version of the Engset model is proposed and shown to
be insensitive w.r.t the file size distribution. TCP is modeled as a constant transfer
rate calculated from the study of TCP sharing for a fixed number of persistent flows
that are exactly in phase (increasing their window and decreasing it by the same
amount at the same time). This model is extended by Kherani and Kumar under
exponential assumptions in [16] where the inter-congestion period and the increase
of the total rate is now dynamically changing with the traffic. In this model the
flows contributing to the traffic are all in phase (they all react together at the same
time and in the same way) ; the analytical result cannot be explicitly given in the
general case but only in the low load, large file case where TCP bandwidth can be
approximated by a completely fair allocation.

Our work extends these two papers; we are not assuming that the flows are in
phase or that they share the bandwidth equally. We study the asymptotics of a
model with N ON/OFF flows sharing a link according to an AIMD rules, when
N tends to infinity. Our goal is to provide - in the exponential case that we can
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entirely characterized via fixed point equation - observations on the efficiency of the
TCP sharing, with no assumption of the fairness achieved, and for any load on the
network.

3. A Necessary Condition for the Existence of a Regime with Periodic
Congestion.

3.1. Model. We suppose N HTTP flows share a link which has no buffer or rather
a small buffer that cushions collisions. The link rate is CN packets per second so
the link drops packets at random when the transmission rates of the flows exceed
the link rate. We assume each HTTP flow is silent for an exponential time with a
mean 1/β. After the silence period the flow transmits a file where the distribution
of file sizes is exponential with a mean 1/µ. The default option is that each flow
implements TCP Reno so the transmission rate increases at rate 1/R2 during the
transmission of a file where R is the round trip time of packets. When the file has
been transmitted the transmission rate is reset to zero.

The interaction between flows is via the sum of their rates. As long as this sum,
which we refer to as the aggregate rate, is less than NC, then there is no interaction
between the flows. When the aggregate rate reaches the link capacity CN , an event
that we call a congestion epoch occurs. For the sake of tractability, we assume
that all losses taking place before the flows react take place instantaneously. This
reaction consists in the fact that Reno may cut the rate given to each of the N flows
independently with a probability p. The parameter p, which is the proportion of
flows that experience a loss at such a congestion epoch, is called the synchronization
rate of the model (this parameter is evaluated from queueing theory by Baccelli
and Hong in [6]). After this reaction, the aggregate rate is again less than C and
a new interaction-less phase starts. In the TCP-Tahoe case, the rate of flows that
experienced a loss is reset to 0.

3.2. Rate Conservation. Define X(t) to be the transmission rate of a tagged
flow participating in the steady state. Assume that there exists a stationary regime
for X(t), namely that it is a stationary stochastic process defined on a probability
space {Ω,F , P}. The distribution of X(t) is therefore the distribution of all the
transmission rates in the steady state. X(t) increases linearly at rate 1/R2 when
it is active; i.e. with mean rate P(X(0) > 0)/R2. This increase is counteracted by
negative jumps when a file finishes and the transmission rate drops to zero. It is
also counteracted by a reduction by one half when a packet is lost at a congestion
epoch.

The following point processes will be useful:
• T , the point process of congestion epochs, with inter-arrival times τ , with

Palm expectation Eτ
0 ; let τ̄ denote the expectation of the inter-congestion

times w.r.t. Pτ
0 ;

• D, the point process of file completions of the tagged flow, with intensity λδ

and with Palm expectation Eδ
0.

When a file is completely downloaded, the throughput is reset to zero. Hence,
with the introduced notation, the rate of decrease of the transmission rate due to
file completions is λδEδ

0(X(0−)). In addition to that, the mean rate at which the
tagged flow suffers a packet loss is p/τ̄ , and the tagged flow divides its transmission
rate by 2 for each loss. Consequently the rate of decrease of the transmission rate
due to packet loss is p

τ̄ E
τ
0 [X(0−)/2]. Since the utilization is exactly one when the
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congestion epoch begins it follows that Eτ
0 [X(0−)] = C so the rate of decrease of

the transmission rate due to packet loss is pC/(2τ̄).
By the rate conservation principle (RCP, see e.g. [5], Chapter 1), the mean rate

of increase equals the mean rate of decrease. So

P(X(0) > 0)
R2

=
pC

2τ̄
+ λδEδ

0[X(0−)]. (1)

On the left hand side the unknown quantity is the steady state probability that
a flow is active while on the right hand side we have λδ, the rate at which file
completions occur and Eτ

0 [X(0−)], the mean transmission rate observed when the
file is completely downloaded.

In the Tahoe case, where the throughput is reset to zero after a packet loss, the
RCP equation reads

P(X(0) > 0)
R2

=
pC

τ̄
+ λδEδ

0[X(0−)]. (2)

In what follows, the RCP will be used as a way to determine the possible values of
τ . As we shall see in §3.3 below the expressions that show up in the RCP equation,
namely P(X(0) > 0) and Eδ

0[X(0−)] can be computed as a function of τ , so that
this equation can be seen as a fixed point equation for τ .

3.3. The Fredholm Equations. In this section and in the rest of the paper, we
let the parameter N tend to ∞ and we assume the existence of a stationary mean-
field limit as N → ∞ in the same spirit as in [7], [10] or [6]. In such a mean-field
regime the inter-congestion times become deterministic and we have propagation of
chaos; i.e. each flow becomes independent. We will concentrate on the case where
the stationary regime of the mean-field limit has inter-congestion times are all equal
some constant τ .

We will see below that when assuming τ known, all quantities in Equation (1)
can be computed as the solutions of certain Fredholm integral equations, and that
(1) can be used as fixed point for determining τ .

In this section, we assume τ to be given. We define a cycle to start at a congestion
epoch where the tagged flow is idle. The cycle ends at the first congestion epoch
when the flow is idle again. We use the following notation :

• Σ is the point process of congestion epochs where the tagged flow is idle, with
inter-arrival times σ and with Palm expectation Eσ

0 .
The rationale for defining such cycles is that the sequence of successive cycles

associated with the tagged flow is i.i.d. or in other words that the beginning of
cycles are regeneration times for the tagged flow.

3.3.1. Expected number of files in a cycle. Define f(t) to be the expected number of
files that will be transmitted by the end of the current cycle given that the tagged
flow is inactive at the current time t (where 0 ≤ t < τ). Also define g(z) to be the
expected number of files that will be transmitted by the end of the current cycle
given that the current transmission rate of the tagged flow is z packets per second
and that the current time is immediately after a congestion epoch.

Our goal is to evaluate f(0) but we find f(t) for all t ∈ [0, τ [. Since the silence
period has an exponential distribution we can condition on the time when the flow
has a new file to transmit. There are two possibilities. Either the file arrives before
the next congestion epoch at some time r where t ≤ r ≤ τ or it does not. If it
hasn’t arrived, the current cycle ends and f(t) = 0.
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If it does, for a time r where t ≤ r ≤ τ , we condition on the size y of the arriving
file. There are again two cases. Either the transmission of this file is completed
before the next congestion or there is some remaining data to be transmitted after
the next congestion epochs. We are in the first case if we can transmit y packets in
τ − r time units given that the flow starts out with transmission rate zero. Since
the transmission rate increases at rate 1/R2 it will take t′ time units to transmit
y packets if y = (t′/2)(t′/R2), ; i.e. if t′ = R

√
2y. Consequently y packets can be

transmitted before the next congestion epoch only if y ≤ (τ − r)2/(2R2). In this
case we add one to the number of files transmitted during the current cycle plus a
renewal term. We can summarize this first case by

∫ τ

t

βe−β(r−t)




∫ (τ−r)2

2R2

0

µe−µydy(1 + f(r + R
√

2y)


 dr.

In the second case the y packets cannot be transmitted before the next congestion
epoch. In this case, which occurs with probability exp(−µ(τ − r)2/(2R2)), we do
not add one to the number of files transmitted, but only the expected number of
files transmitted after the next congestion epochs. It depends on the throughput
seen after congestion : by the congestion epoch the transmission rate of the tagged
flow is (τ − r)/R2. There is probability p that the tagged flow suffers a packet loss
which reduces the transmission rate to (τ − r)/(2R2).

We can summarize the expected number of files that will be transmitted by the
end of the current cycle given we are in this second case as

∫ τ

t
βe−β(r−t)e−µ

(τ−r)2

2R2
(
pg( τ−r

2R2 ) + (1− p)g( τ−r
R2 )

)
dr.

We conclude that f(t) is given by :

∫ τ

t

βe−β(r−t)

{ ∫ (τ−r)2

2R2

0

µe−µy(1 + f(r + R
√

2y))dy

+e−µ
(τ−r)2

2R2

(
pg(

τ − r

2R2
) + (1− p)g(

τ − r

R2
)
) }

dr. (3)

We now turn to g(z). The residual number of packets to transmit from the
current file Y has an exponential distribution. Again there are two cases. Either
the current file can be transmitted before the next congestion epoch or it can’t.

In the first case Y is exponentially distributed between 0 and zτ +τ2/(2R2) since
this is the maximum amount that can be transmitted in τ time units. After Y units
are transmitted we add one to the total number of files transmitted in the current
cycle plus a renewal term representing the expected number of files we will transmit
in the remaining time of the current cycle. The time t when the first transmission
was completed satisfies y = tz + t2/(2R2); i.e. t = R

√
R2z2 + 2y − R2z. At this

time, the tagged flow is becoming idle. Consequently this first case contributes to
the value of g(z) by :

∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√

R2z2 + 2y −R2z))dy.

The second case occurs if Y > zτ + (τ2/(2R2)), and thus with a probability
equal to exp(−µ(zτ + τ2/(2R2))). When the next congestion epoch begins the
tagged flows has the remaining of the file (exponentially distributed) to transmit,
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and a transmission rate of z + τ/R2. With a probability p the tagged flow suffers a
packet loss in this congestion epochs ; in this case, its transmission rate is reduced
to (z + τ/R2)/2. We summarize this case as follows:

e−µ(zτ+ τ2

2R2 )

(
pg(

z + τ
R2

2
) + (1− p)g(z +

τ

R2
)
)

.

As a conclusion, g(z) can be written :
∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√

R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
pg(

z + τ
R2

2
) + (1− p)g(z +

τ

R2
)
)

. (4)

Equations (3) and (4) constitute an integral equation of the Fredholm type for the
pair (f, g).

3.3.2. Expected ”on” period during a cycle. Let h(t) denote the expected cumulative
time that the flow is active in the remaining time of the current cycle given that
the tagged flow is inactive at the current time t with 0 ≤ t < τ . Let i(z) be the
expected cumulative time that the flow is active in the remaining time of the current
cycle given that the current time is immediately after a congestion epoch, and that
the tagged flow is active with a current transmission rate of z. With the notation
defined above, we have Eσ

0 [
∫ σ

0
1X(t)>0dt] = h(0). Arguments similar to those given

above lead to the following Fredholm equations for the (h, i) pair that are given in
(5).

3.3.3. Expected duration of a cycle. Let j(t) denote the expected residual time be-
fore the end of the current cycle given that the tagged flow is inactive at the current
time t with 0 ≤ t < τ . Let k(z) be the expected residual time before the end of the
current cycle given that the current time is immediately after a congestion epoch,
and that the tagged flow is active with a current transmission rate of z.

We have Eσ
0 [σ] = j(0) and again (j, k) can be seen as the solution of a Fredholm

equation (see (6)).

3.3.4. Expected jumps down due to completions of files during a cycle. Finally, let
l(t) denote the expected cumulative throughput reductions due to file completions
from now to the end of the cycle given that the tagged flow is inactive at the current
time t with 0 ≤ t < τ .

And let m(z) be the expected cumulative jumps down due to file completions
from now to the end of the cycle given that the current time is immediately after
a congestion epoch, and that the tagged flow is active with a current transmission
rate of z.

We have Eσ
0 [

∫ σ

0
X(t−)D(dt)] = l(0), where D, already introduced, denotes the

point process of file completions.
As well as the other functions introduced, (l,m) are linked by a Fredholm Equa-

tion that is described on (7).

3.3.5. Expression of the three unknowns of the fixed point equation. For given τ ,
from the numerical solution of the set of Fredholm equations, one can efficiently
determine

• Eσ
0 [KB ] := f(0), the mean number of births during a cycle (which is also the

mean number of file completions during a cycle;



10 BACCELLI, CHAINTREAU, DE VLEESCHAUWER AND MCDONALD

h(t) =
∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy(R
√

2y + h(r + R
√

2y)) dy

+e−µ
(τ−r)2

2R2

(
τ − r + pi(

τ − r

2R2
) + (1− p)i(

τ − r

R2
)
)}

i(z) =
∫ zτ+ τ2

2R2
0 µe−µy(R

√
R2z2 + 2y −R2z + h(R

√
R2z2 + 2y −R2z)) dy

+e−µ(zτ+ τ2

2R2 )

(
τ + pi(

z + τ
R2

2
) + (1− p)i(z +

τ

R2
)
)

. (5)

j(t) =
∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy((r − t) + R
√

2y + j(r + R
√

2y)) dy

+e−µ
(τ−r)2

2R2

(
τ − t + pk(

τ − r

2R2
) + (1− p)k(

τ − r

R2
)
)}

+ (τ − t)e−β(τ−t).

k(z) =
∫ zτ+ τ2

2R2

0

µe−µy(R
√

R2z2 + 2y −R2z + j(R
√

R2z2 + 2y −R2z)) dy

+e−µ(zτ+ τ2

2R2 )

(
τ + pk(

z + τ
R2

2
) + (1− p)k(z +

τ

R2
)
)

. (6)

l(t) =
∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy(
√

2y

R
+ l(r + R

√
2y)) dy

+ e−µ
(τ−r)2

2R2

(
pm(

τ − r

2R2
) + (1− p)m(

τ − r

R2
)
)}

.

m(z) =
∫ zτ+ τ2

2R2

0

µe−µy(z +
R

√
R2z2 + 2y −R2z

R2
+ l(R

√
R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
pm(

z + τ
R2

2
) + (1− p)m(z +

τ

R2
)
)

. (7)

• Eσ
0 [

∫ σ

0
1X(t)>0dt] = h(0), the mean cumulative ON time over a cycle;

• Eσ
0 [σ] = j(0), the mean duration of a cycle and

• Eσ
0 [

∫ σ

0
X(t−)D(dt)] = l(0), the mean cumulative throughput reductions due

to file completions over a cycle.
From this we can deduce the following representations for the 3 unknowns of (1):

λδ = Eσ
0 [KB ]
Eσ
0 [σ] = f(0)

j(0)

Eδ
0[X(0−)] = Eσ

0 [
R σ
0 X(t−)D(dt)]

Eσ
0 [KB ] = l(0)

f(0)

P(X(0) > 0) = Eσ
0 [
R σ
0 1X(t)>0dt]

Eσ
0 [σ] = h(0)

j(0) .

Notice that the product λδEδ
0[X(0−)] which is used in (1) is equal to l(0)

j(0) so that
the (f, g) pair is actually not required for solving this fixed point equation.

3.4. The Tahoe Case. Given τ , the rate of the tagged flow is again a regenerative
process with the same cycle structure as in the Reno case, namely starting with a
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congestion period when the rate of the tagged flow is 0 and ending at the next
congestion is again 0. Using the same notation as in the Reno case, we now get

f(t) =
∫ τ

t

βe−β(r−t) ·
{ ∫ (τ−r)2

2R2

0

µe−µy(1 + f(r + R
√

2y)dy

+e−µ
(τ−r)2

2R2

(
pg(0) + (1− p)g(

(τ − r)
(R2)

)
) }

dr (8)

and

g(z)=
∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√

R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )
(
pg(0) + (1− p)g(z +

τ

R2
)
)

. (9)

The other equations can easily be derived by similar arguments and are omitted.

3.5. Numerical Evaluation of the Fixed Point. In this section we present the
method that we developed to numerically study the fixed point equation satisfied
by τ . The main result is a common linear equation describing the integral equations
for the pairs (f, g), (h, i), (j, k), (l,m).

Each of the pairs of functions (f, g), (h, i), (j, k), (l, m) satisfies a Fredholm equa-
tion of the second type where all equations share some common terms. It is shown
in Appendix A.5 that the general form of these equations is as follows: we look for
a functions A, defined on [0; τ ] and a function B defined on [0;+∞[ such that they
verify Equation (10) where κ = µ/(R2) and where the functions U and V are given
in the following table for all 4 cases:

A(t) =
∫ τ

t

βe−β(r−t)

(
U(r) +

∫ τ

r

κ(s− r)e−κ
(s−r)2

2 A(s)ds

+ e−κ
(τ−r)2

2

(
pB(

τ − r

2
) + (1− p)B(τ − r)

))
dr .

B(r) = V (r) +
∫ τ

0

κ(r + s)e−κ s2+2sr
2 A(s)ds

+e−κ τ2+2τr
2

(
pB(

τ + r

2
) + (1− p)B(τ + r)

)
. (10)

A(t) B(r) U(r) V (r)
f(t) g

(
r

R2

)− 1 1 0
h(t) i

(
r

R2

)
aτ (r) bτ (r)

j(t) k
(

r
R2

)
aτ (r) 1

β + bτ (r)

l(t) m
(

r
R2

)− r
R2

aτ (r)+ p
2 cτ (r)

R2
bτ (r)+ p

2 dτ (r)

R2

with the functions aτ , bτ , cτ , dτ defined as:

aτ (r) =
∫ τ

r

e−κ
(s−r)2

2 ds ; bτ (r) =
∫ τ

0

e−κ s2+2sr
2 ds ;

cτ (r) = (τ − r)e−κ
(τ−r)2

2 ; dτ (r) = (r + τ)e−κ τ2+2τr
2 .

Let (Γ(t), Γ̃(r)) be the solution (A,B) of Equation (10) for (U, V ) = (1, 0), let
(Θ(t), Θ̃(r)) denote the solution for (U, V ) = (aτ , bτ ), and let (∆(t), ∆̃(r)) be the
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solution of this equation for (U, V ) = (cτ , dτ ). According to the last table, we have :

Γ(t) = f(t) ; Θ(t) = h(t) and, as Equation (10) is linear,

1
β

Γ(t) + Θ(t) = j(t) and
Θ(t)− p

2∆(t)
R2

= l(t).

We numerically solve Equation (10) in the following way. First, we set B(r) = 0
for x > Kτ . This is motivated by the fact that for physical reasons B(r) has to
decrease as r increases, a fact that can be proved mathematically, but we omit
the proof here. Second, we discretize the functions A(t) and B(r) uniformly with a
density of M samples per interval of length τ . So, the function A(t) is approximated
by a vector of M samples and B(r) by a vector of KM samples. We stack both
vectors and hence obtain a vector of dimension (K + 1)M . Approximating the
integrals in (10) by weighted sums of the samples of the functions, Equation (10)
reduces to a matrix equation. Solving this matrix equation involves the inversion
of a (K + 1)M × (K + 1)M matrix.

The numerical error introduced in this procedure can be controlled by the choice
of the parameters K and M . In each of the examples shown in this paper we
made sure that K and M were large enough for the numerical errors to be small
enough. With the parameters (β and κ) used in this paper and for ranges of τ -
values considered in this paper K=8 and M=40 turned out to give accurate enough
values for the fixed points. A detailed study of how the numerical error decreases
as the parameters K and M increase is beyond the scope of this paper.

3.6. Determination of τ . As shown above, τ satisfies the following equation :

pC

2τ
+

l(0)
j(0)

=
1

R2

h(0)
j(0)

(11)

or equivalently

pC

2τ
+

1
R2 (Θ(0)− p

2∆(0))
1
β Γ(0) + Θ(0)

=
1

R2

Θ(0)
1
β Γ(0) + Θ(0)

.

The most convenient form of this fixed point equation is the following one:

C =

(
∆(0)

1
β Γ(0) + Θ(0)

)
τ

R2
. (12)

This form is valid both for the Reno and the Tahoe cases, for appropriate definitions
of Θ and Γ. In Figure 2, we have computed the right-hand side of Equation (12),
which does not depend on C, as a function of τ for a fixed setting of the parameters
1/β = 2s, 1/µ = 2000 Pkts, R = 100ms, p = 0.8 On this plot we can see that if the
link capacity is large enough there is no value of τ making this function vanish (here
for C = 290 Pkts/s.). In this case, the only possible stable regime is congestion-
less. For smaller values of the capacity, we observe either two fixed points (e.g. for
C=270 Pkts/s.) or one (e.g. for C=250 Pkts/s.). In the case with two solutions,
we have several candidates for a stable regime, with different periods. In the next
section we will present a method helping to distinguish between solutions that may
be the inter-congestion time of a stable regime and other solutions. From Figure 2
we can conclude more:

• for all C-values above 273.4 Pkts/s. (283.3 in the Tahoe case), there are no
intersections;
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Figure 2. The RHS of (12) as a function of τ ; the fixed points
are the intersections of this RHS with the horizontal line C, in the
Reno and the Tahoe cases.

• for 263 < C < 273.5 Pkts/s. (263 < C < 283.3 in the Tahoe case), there are
two intersections and

• for C < 263 Pkts/s., there is only one intersection.

4. A Necessary and Sufficient Condition for the Existence of a Congestion
Periodic Regime with a Given Period. We start with a detailed study of the
interaction-less regime (this is the free regime, i.e. the regime when C = ∞), which
will be an essential ingredient of the analysis of the congestion regime which may
occur when C < ∞ as we shall see in §4.2 below.

4.1. The Free Regime.

4.1.1. The free regime regenerative rate process. In the case without congestion,
each flow increases its transmission rate linearly at rate 1/R2 and can transmit a
file of size y packets in time t where y = t2/(2R2); i.e. in time t = R

√
2y. The

density of the transmission time of a file is

µ
t

R2
e−

µt2

2R2

(as easily seen by the change of variable t → v = t2/2R2) and the mean file trans-
mission time is therefore

TON = R

∫ ∞

0

µ exp(−µy)
√

2ydy = R

√
π

2µ
. (13)

A tagged flow alternates between periods composed of a silence period of exponential
duration with parameter β and a active period of mean duration TON, distributed
according to the above density.

The rate X(t) of the tagged flow at time t is a regenerative process that stays
equal to 0 during OFF periods and increases linearly with time during activity
periods. This stochastic process regenerates after the completion of one OFF and



14 BACCELLI, CHAINTREAU, DE VLEESCHAUWER AND MCDONALD

one ON period. The point process of regeneration epochs of a tagged flow will be
denoted by S.

During each ON period a flow transmits on average 1/µ packets. Consequently
the average transmission rate per flow is

ρ = (1/µ)/(1/β + TON)). (14)

The proportion ν of flows which are idle is (1/β)/(1/β + TON)). Notice that the
transmission rate equals νβ/µ. This is intuitively obvious since νβ is the rate at
which new flows come on-line and each new flow must transmit on average 1/µ
packets.

Hence when the regime without congestion occurs, the average transmission rate
per flow ρ is less than C; i.e. νβ/µ < C and

ρ =
νβ

µ
=

(
µ

(
1/β + R

√
π

2µ

))−1

< C. (15)

4.1.2. The free regime PDE. Let ν(t) be the proportion of idle flows at time t. Let
s(z, t) be the density of the transmission rates of active flows in the mean-field
regime (we consider first the case with a density for the sake of clear exposition).
Consequently,

∫ ∞

0

s(z, t)dz = 1− ν(t). (16)

From the partial differential evolution equation introduced by Baccelli et al. in [7]
we can see that the density function verifies the PDE:

∂s

∂t
(z, t) +

1
R2

∂s

∂z
(z, t) = −µzs(z, t). (17)

Multiplied by dz, the second term on the left hand side represents the rate of change
of the proportion of transmission rates in [z, z +dz] due to the linear increase in the
transmission rate. The right hand side represents the rate at which files complete
transmission since s(z, t)dz is the proportion of flows with transmission rates in
the interval [z, z + dz] and flows with transmission rates in this interval complete
transmission at a rate µz.

The rate at which flows become active is βν(t) hence in time dt the area βν(t)dt
is added under the graph of s(z, t) between 0 and dt/R2 because this area is cleared
out by the additive increase in the transmission rates. The area under the graph of
s(z, t) between 0 and dt/R2 is s(0, t)dt/R2 to first order. Hence,

s(0, t)/R2 = βν(t). (18)

4.1.3. The Fredholm equation for solving the free regime PDE. We define the Laplace
transforms

ŝz(u) =
∫ ∞

0

e−uts(z, t)dt, (19)

ν̂(u) =
∫ ∞

0

e−utν(t)dt. (20)

Taking the Laplace of (17) w.r.t. t, we get

uŝz(u)− s(z, 0) +
1

R2

∂

∂z
ŝz(u) = −µzŝz(u)
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or equivalently

∂

∂z
ŝz(u) = −R2(u + µz)ŝz(u) + R2s(z, 0).

The solution of this ordinary differential equation is

ŝz(u) = e−R2(uz+µz2/2)
(
ŝ0(u) + R2

∫ z

0

eR2(ux+µx2/2)s(x, 0)dx
)

= R2

∫ z

0

e−R2u(z−x)e−R2µ( z2
2 − x2

2 )s(x, 0)dx + R2e−R2(uz+µz2/2)βν̂(u), (21)

where we used the fact that ŝ0(u) = βR2ν̂(u), which follows from (18).
We now remark that

R2

(
z2

2
− x2

2

)
= zR2(z − x)− (R2(z − x))2

2R2
,

and we introduce t = R2(z−x), so that x = z− t
R2 . The previous equation becomes :

ŝz(u) = R2

∫ z

0

e−R2u(z−x)e−µ(zR2(z−x)− (R2(z−x))2

2R2 )s(x, 0)dx

+ R2e−R2(uz+µz2/2)βν̂(u),

=
∫ ∞

0

e−ute−µ(zt− t2

2R2 )s(z − t

R2
, 0)dt + R2βe−R2µ z2

2 ν̂(u)e−uzR2
. (22)

By immediate Laplace inversion, we can then write :

s(z, t) = s(z − t

R2
, 0) e

−µ
�

tz− t2

2R2

�
+ R2β e−µR2 z2

2 ν(t− zR2).

Using now (16), one finally gets the following Fredholm equation for s(z, t):

s(z, t) = s(z − t

R2
, 0) e

−µ
�

tz− t2

2R2

�
(23)

+ e−µR2 z2
2 R2β

(
1−

∫ ∞

0

s(x, t− zR2)dx

)

which turns out to be quite handy for numerical exploitation as we shall see below.
Equation (23) is easy to interpret when considering the two cases: for the rate

to be z at time t, either the transfer of the file transmitted at time 0 is not yet
completed at time t, which requires that the rate was z − t/R2 ≥ 0 at time 0, or
it is completed, which requires that the flow was inactive at time t− zR2 > 0 and
there was a transition from inactive to active at that time. In fact it is clear that
(23) can be generalized to describe the evaluation of a measure S(dz, t) representing
the distribution of transmission rates at time t starting from an arbitrary measure
S(dz, 0):

S(dz, t) = R2β

(
1−

∫ ∞

x=0

S(dx, t− zR2)
)

e−µR2 z2
2 dz

+ S(dz − t

R2
, 0) e−µ(zt− t2

2R2 ).

(24)
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4.1.4. Further properties of the solution of the PDE. Let

α(t) =
∫ ∞

0

zs(z, t)dz. (25)

The function α(t) represents the aggregate rate (sum of the transmission rates at
time t where the sum is over all flows). Let

α̂(u) =
∫ ∞

0

e−utα(t)dt. (26)

The two following lemmas are proved in Appendix A.

Lemma 1. The solution of the free regime PDE is such that

α̂(u) =
ν(0) β

β+u Î(u) + Ĵ(u)

1− µ β
β+u Î(u)

, (27)

where

Î(u) = R2

∫ ∞

0

xe−R2ux−R2µx2/2dx (28)

and Ĵ(u) is given by

R2

∫ ∞

z=0

eR2uz+ R2µz2

2 s(z, 0)
∫ ∞

x=z

xe−R2ux−R2µx2

2 dxdz. (29)

The limiting behavior of the solution of the free regime PDE is given by the
following expressions:

Lemma 2. The stationary distribution of the rates is:

ν(∞) =
1
β

1
β + R

√
π
2µ

(30)

s(z,∞) =
R2e−R2µz2/2

1
β + R

√
π
2µ

. (31)

The stationary aggregate rate is:

α(∞) =
1
µ

1
1
β + R

√
π
2µ

= ρ. (32)

As we shall see in Figure 9, for certain initial conditions, the aggregate rate
function α(t) may have a ”bump”, namely a maximal value that is significantly
larger that ρ (see also Figure 19 for the same phenomenon under other statistical
assumptions).

In Appendix A, we also give an interpretation of the transforms of Lemma 1 in
terms of renewal theory (§A.3) and a closed form expression for the solution of the
PDE in the time domain (§A.4).

4.2. The Interaction Regime(s).
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4.2.1. The invariant measure equation. Assume there exists a periodic regime of
period τ . Then τ should be a solution of (1). In addition the couple (ν0, S0(dz))
that gives the proportion of OFF sources and the distribution of rates just after
congestion epochs should be invariant w.r.t. the shift that moves from a congestion
epoch to the next.

First τ and (ν0, S0(dz)) should be such that the aggregate rate function α0 ob-
tained when taking S(dz, 0) = S0(dz) is such that α0(τ) = C and α0(t) < C for all
0 < t < τ .

In addition, given that at congestion epochs, a proportion p of the windows are
halved, the (ν0, S0(dz)) should satisfy the integral equation (which will be referred
to as the invariant measure equation)

S0(dz) = (1− p)S(dz, τ) + pS(d2z, τ), (33)

where S(dz, t) is the solution of (24) with the initial condition S(dz, 0) taken equal
to S0(dz).

When using the integral representation of α0(.) given in (49) one gets that the
last integral equation for S0(.) can also be seen as a Fredholm type integral equation
of the second kind.

In the Tahoe case the transmission rates of active sources has a measure which
must have a point mass at zero at congestion epochs; the invariant measure equation
then reads

S0(dz) = (1− p)S(dz, τ) + pδ0(dz)
∫ ∞

0

S(dv, τ). (34)

A few remarks are in order before addressing numerical issues:
• The existence of a couple (ν0, S0(dz))) solution of (33) and such that the

α0(τ) = C and α0(t) < C for all t < τ is necessary and sufficient for the
existence of a congestion periodic regime of period τ . Using this, it is easy for
instance to check that in the region where the RCP equation has two fixed
points, the rightmost fixed point is spurious. This immediately follows from
the fact that the condition α0(t) < C for all t < τ is not satisfied for this
other fixed point (see Figure 4).

• The more general problem of finding all possible periodic regimes can be stated
as follows: find all pairs made of a real number 0 < τ < ∞ and of a couple
(ν0, S0(dz))) such that (33) (or (34) in the Tahoe case) holds and such that
α0(τ) = C and α0(t) < C for all t < τ .

• Of course, other stationary regimes are possible like e.g. periodic regimes
where the aggregate rate has a period that consists of k > 1 congestions, or
even non periodic regimes (although we did not find such regimes by simula-
tion).

• Injecting the couple (ν0, S0(dz))) as an initial condition into Equation (23)
determines the proportion of active flows and the throughput distribution of
active flows S(dz, t) for all 0 ≤ t < τ . The mean stationary throughput
obtained from this function averaged over continuous time is given by the
following cycle mean:

1
τ

∫ τ

t=0

∫ ∞

z=0

zS(dz, t)dt. (35)

4.2.2. Numerical solution. We have chosen a numerical procedure to find an approx-
imation for s(z, t) based on Equations (23) and (33). The alternative that consists
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Figure 3. Evolution of the aggregate rate with time: non spurious case.

in using the explicit expressions obtained in the appendix for the s(z, t) (Equation
(47) combined with the expression for α given by (49)), would involve the numerical
inversion of certain Laplace transforms (like ξ̂ and η̂ defined there) and this is not
practical. Therefore we opted for the following method. We discretize the function
s(z, t) with L + 1 samples over its time domain (an interval of length τ) and with
a density of L samples per interval of length τ

R2 over its space domain (i.e. the z
variable). We use L + 1 samples in the time domain as there is a crucial difference
between the time instant just before a congestion epoch (the L-th sample) and the
time instant just after (the 0-th sample). We truncate the s(z, t) function in the z
direction by putting s(z, t) = 0 for z > K τ

R2 . This truncation is motivated by the
solution of the interaction-less system where this function decays like the tail of a
Gaussian distribution.

The discretized version of Equations (23) and (33) define a matrix equation.
Notice that in this case (in contrast to the case of solving for A(t) and B(r) in
§3.5) there are L2K unknowns and the matrices involved may become very large.
Therefore, we used Equation (23) and (33) as a recursive rule to calculate an ap-
proximation for s(z, t). The larger L and K are chosen the better the approximation
(but more computations are needed). For the examples considered in this paper
K=5 and L=200 turned out to be adequate values.

4.2.3. The multiple stationary regime region. In this section, we give both numerical
and simulation evidence showing that the condition that the load factor

ρ = (1/µ)/(1/β + TON))
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Figure 4. Evolution of the aggregate rate with time: case with a
spurious solution to the RCP Equation

is less than C (namely the capacity per user is more than the mean load per user)
is not sufficient for having an interaction-less mean-field regime for all initial condi-
tions. The numerical part is based on the solution of the set of Fredholm equations
of the last subsections. The simulation is based on the N2N code [3], a discrete
event simulator which computes the AIMD sharing for a finite number of ON/OFF
flows, interacting through the sum of their rates, as described in Section 3.1.

We also show that there exist values of the parameters such that depending on
the initial condition describing the rates of the various flows, one may enter either
into an interaction-less stationary regime or into a stationary congestion regime.

In the case considered here 1/µ = 2000 Pkts, 1/β = 2 s., p = 0.8 and R = 0.1 s.
The load factor ρ is then around 263 Pkts/s. We take C = 270 Pkts/s.

• When the initial condition is chosen according to the stationary law given in
(30)–(31), then α(t) = ρ for all t and no congestions occur at all since ρ < C.

• As already shown in Section 3.6, the rate conservation principle gives two
values of τ solution of the fixed point equation (1), the smallest of which is
τ ∼ 3.7s. Using the solution of the invariant measure equation of Section
4.2.1, we find that for this value of τ , there exists a probability measure
satisfying the integral equation (33) and satisfying the key condition that the
associated α function first reaches C at time τ (see Figure 3). The p.d.f of
this distribution as obtained numerically is depicted in Figure 5 for Reno.

The existence of such a regime is confirmed by the N2N [3] simulation of
1 Million HTTP users with the above characteristics and sharing a link of
capacity 270 Pkts/sec (see Figure 7). Moreover, the steady state distributions
found by simulation match quite precisely those obtained numerically.
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Figure 5. Numerical solution of the invariant measure equation.
Distributions obtained for Reno. 1/µ = 2000 Pkts, 1/β = 2 s.,
p = 0.8 and R = 0.1 s. and C = 270 Pkts/s. In red, steady state
probability distribution function of the rate just after a congestion
epoch; in green, continuous time stationary rate distribution.
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Figure 6. N2N simulation of 1 Million HTTP flows. Distribu-
tions obtained for Reno in the same case as in Figure 5.

In other words, depending on the initial phases of the flows, one either enters into
a congestion-less regime or into a periodic regime with infinitely many congestions.
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Figure 7. Evolution of aggregate rate when all flows are initially
active and with null rate for C = 270 Pkts/s.

The first case occurs when the initial conditions are chosen independently for all
flows, and each flow is in the stationary regime it would reach if there were no
interaction at all. The second case occurs if the flows are more in phase: here all
start inactive at time 0.

Here are a few remarks of interest:
• The same period and periodic regime are reached when the initial condition

is that with all flows initially active and with null rate;
• The largest value of C for which we observe these two possible stationary

regimes is approximately 273.5 Pkts/sec as shown independently by the N2N
simulator and the fixed point method;

• the second solution of the RCP happens to be spurious. There exists a proba-
bility solution of (33) but as easily seen on Figure 4, the associated α function
crosses the C level before this value of τ .

• Similar results hold for Tahoe. The associated distributions are plotted in
Figure 8.

4.2.4. Dependence of bi-stability region w.r.t. the parameters. Let CT be the maxi-
mum C for which there is an interaction regime, ρ be given as in (14) and define the
over-provisioning ratio (for guaranteeing the absence of interaction) to be ω = CT /ρ.
Here are a few data on this ratio in the exponential case with p = 0.8 and 1

µ = 2000
Pkts.

• 1/β = 2 s., R = 0.1 s.: ω = 1.04;
• 1/β = 4 s., R = 0.1 s.: ω = 1.06;
• 1/β = 8 s., R = 0.1 s.: ω = 1.09;
• 1/β = 2 s., R = 0.05 s.: ω = 1.06;
• 1/β = 8 s., R = 0.05 s.: ω = 1.12;
• 1/β = 2 s., R = 0.025 s.: ω = 1.09;
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Figure 8. Example of distributions obtained numerically for
Tahoe in log scale. C=270 Pkts/s., R=0.1 s., 1/µ=2000 Pkts,
1/β=2 s., p=0.8. The RCP fixed point for Tahoe is τ=4.222s.
Notice the Dirac-impulses at multiples of τ

R2 =422.2 Pkts/s. They
stem from sources that experience a loss at some congestion epoch
and are put to a rate of 0 there. After one congestion epoch such
a source has a rate of τ

R2 .

• 1/β = 8 s., R = 0.025 s.: ω = 1.15.
The region is larger for small RTTs and for short think times.

4.2.5. Proof of the existence of congestion regimes with load less than capacity.
Let us consider the Tahoe case with an initial condition consisting of all sources
active and with 0 rate. The functions α(t) (the aggregate rate defined in (25)) and
γ(t) = 1−ν(t) (the proportion of active flows) associated with this initial condition
play a key role in the construction of this section. They are depicted in Figure 9 in
the case 1/µ = 2000, 1/β = 2 and R = 0.1.

Let
• M denote the maximum of α(t) over all t > 0;
• θ denote argmax of α(t);
• m denote the minimum of α(t) over all t > τ ;
• γ denote the minimum of γ(t) over all t > 0.

In the particular case of Figure 9, we have M = 301.8, θ = 5.5, m = 258.1 and
γ = 0.723.

Let
C̃ = pγM + (1− pγ)m. (36)
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Figure 9. The α function with its bump (top) and the γ function (bottom).

Lemma 3. For the above initial condition, if C̃ > ρ, then the Tahoe version of the
model experiences an infinite number of congestion epochs for all C in the interval
ρ ≤ C ≤ C̃.

Proof Assume that k ≥ 0 congestion epochs (we include time 0 in the set of
congestion epochs) took place at T0 = 0, T1, . . . , Tk. At time Tk, flows can be
partitioned into classes according to the index of their last congestion time (this is
a partition of flows because we consider a flow that never experienced congestion
on the (0, Tk] interval as being in class 0). Let pk

i be the proportion of flows that
are of class i at time Tk.

Assume that there is no congestion after time Tk. Then for all t ≥ 0, the aggregate
rate of the Tahoe model at time Tk + t is given by the following expression:

a(t) = pk
kα(t) + pk

k−1α(Tk − Tk−1 + t) + . . . + pk
0α(Tk − T0 + t).

Similarly, if k > 0, the proportion of active flows at time T−k is

g(Tk) = pk−1
k−1γ(Tk − Tk−1) + . . . + pk−1

0 γ(Tk − T0),

so that
g(Tk) ≥ pk−1

k−1γ + . . . + pk−1
0 γ = γ.

This in turn implies that pk
k ≥ g(Tk)p ≥ pγ for all k ≥ 0.
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When evaluating a at θ, we get:

a(θ) = pk
kα(θ) + pk

k−1α(Tk − Tk−1 + θ) + . . .

+pk
0α(Tk − T0 + θ)

≥ pk
kM + (pk

k−1 + . . . + pk
0)m

= pk
kM + (1− pk

k)m

≥ pγM + (1− pγ)m = C̃ > C

which contradicts the fact that the continuous function a(t) remains smaller than
C for all t. Hence, there is at least one more congestion period.

So in our example, when p = 0.8, we are sure that Tahoe exhibits infinitely
many congestions as soon as C ≤ C̃ = 283.38. Notice that this is only a sufficient
condition for congestion, namely C̃ > CT in general.

From our numerical and simulation estimates, it seems that the bi-stability region
for Tahoe is larger than for Reno (see Figure 2).

Of course, under the assumption of the last lemma, if the initial condition for
the flows is that of the steady state of the interaction-less regime, then one remains
in this regime forever.

We have no analogue of Lemma 3 in the Reno case at this stage. The fact that
Reno could have a turbulent regime when the load per user is less than the capacity
per user is hence only backed by simulation and numerical evidence at this stage.

4.3. Properties of the Stationary Rate. We first study the stationary con-
tinuous time mean throughput obtained by one flow. Figure 10 plots this mean
throughput in function of the mean file size µ−1 in the Reno case and when C = 270
Pkts/sec, R = 0.1 s., p = 0.8 and β−1 = 2 s.

We observe that a sharp decrease of the mean performance of about 15% takes
place at a value of the mean file size that is significantly smaller than that obtained
by a mean load analysis. This sharp decrease is due to the jump from the congestion-
less to the congestion stationary regimes described above.

We now study more detailed properties of the stationary throughput. Figure
11 gives the stationary rate pdfs obtained by simulation and numerically in the
case C=250 Pkts/sec, p=.4, 1/µ=2200 Pkts, 1/β=2 s., R=.1 s. The fractal and
intricate structure of the pdf of the rate at congestion epochs should not come as a
surprise (similar shapes were obtained for long lived sessions by Chaintreau and De
Vleeschauwer in [9]). Compared to the case of Figure 5 the irregularities of the pdf
are enhanced by the smaller value of p. This irregular structure is not a simulation
artifact: the same structure is clearly observed via the numerical method too as
shown by Figure 13.

The continuous time has a somewhat more regular rate pdf.

5. Extension of the Approach to the Slow Start.

5.1. Mathematical Analysis. A thorough analytical or simulation treatment of
slow start for dynamic flows is beyond the scope of this paper. We limit ourselves
to a discussion of the simplest way to represent slow start within this framework;
i.e. an instantaneous jump of some random size at the birth of a flow. The rationale
for this is that the associated exponential growth phase is quite quick compared to
the congestion avoidance phase and that it can hence in a first approximation be
seen as a jump from 0 to some random value H that may be either obtained from
measurements or estimated as e.g. a proportion of the max window size.
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Figure 10. Average throughput as a function of the mean burst
size 1/µ
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Figure 11. N2N Simulation: in red, steady state probability dis-
tribution function of the rate just after a congestion epoch. In
green, continuous time stationary rate distribution. Both are ob-
tained by simulation. Reno case, C=250 Pkts/s., p=.4, 1/µ=2200
Pkts, 1/β=2 s.

The RCP equation of Section 3.2 then becomes

pC

2τ
+ λδEδ(X(0−)) =

P (X(0) > 0)
R2

+ λδEB(H). (37)
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Figure 12. N2N simulation of the same case as in Figure 11 but
with C=270 Pkts/s.

Figure 13. The same case as in Figure 11 obtained by the nu-
merical method.

It is also easy to extend the integral equations of Section 3.3 from knowledge of
the distribution η(z) of H. The regenerative cycles admit the very same definition as
in the case without slow start, whereas the integral equation giving the expression of
f(t) (3) should be rewritten as indicated in (38). We limit ourselves to the expression
for f as the others are obtained in the same way; in particular the equations for g,
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i, k and m are unchanged.

f(t) =
∫ τ

t

βe−β(r−t)dr
{ ∫ ∞

0

η(w)dw

∫ w(τ−r)+
(τ−r)2

2R2

0

µe−µydy

· (1 + f(r + R
√

R2w2 + 2y −R2w) + e−µ(w(τ−r)+
(τ−r)2

2R2 )

(
pg(w/2 +

τ − r

2R2
) + (1− p)g(w +

τ − r

R2
)
)}

.

(38)

So the fixed point equation based on the RCP can be extended almost directly to
the case with this simplified representation of slow start.

Finally, the partial differential equation of Section 4.1 for the interaction-less
process should be replaced by

∂s

∂t
(z, t) +

1
R2

∂s

∂z
(z, t) = ν(t)βη(z)− µzs(z, t). (39)

It the density η(z) converges weakly to a Dirac measure at zero then the slow-start
case reduces to the congestion avoidance case studied in Section 4.1. In particular
for any z > 0, the solution sSS(z, t) to (39) converges pointwise to sFR(z, t), the
solution of (17) and (18). To see this, suppose η(z) has support on [0, h/R2]. Equa-
tion (39) on (z, t) ∈ [h/R2,∞]× [0,∞] is then the same as (17) on the same interval.
The solution to (17) is determined by the boundary values sSS(h/R2, t), t ≥ 0 and
s(z, 0), z ≥ h/R2. Now integrate (39) over z ∈ [0, h/R2]. To first order it follows
that sSS(h/R2, t) = ν(t)βR2 = sFR(0, t). By the continuity of sFR(z, t) it follows
the solution to (39) is arbitrarily close, as h → 0, to the solution of (17) and (18)
on (z, t) ∈ [h/R2,∞]× [0,∞].

The stationary aggregate rate associated with the solution of (39) is:

α(∞) =
1
µ

1
1
β +

∫∞
z=0

∫∞
u=0

η(z)µe−µu
(√

z2R4 + 2uR2 − zR2
)
dudz

= ρ. (40)

By arguments similar to the ones of §4.1 one gets that the solution of (39) satisfies
the Fredholm integral equation

s(z, t) = R2β

∫ z

v=0

(
1−

∫ ∞

x=0

s(x, t−R2(z − v))dx

)
e
−µR2

�
z2
2 − v2

2

�
η(v)dv

+ s(z − t

R2
, 0) e

−µ
�

tz− t2

2R2

�
.

(41)

The invariant measure equation keeps the same form as (33) but with s0(., .) now
obtained from the last equation rather than from (23). The same machinery can
then be used, in particular for the necessary and sufficient condition for the existence
of a periodic regime of period τ , which is the direct analogue of what was done above
in the case without slow start.

The numerical methods used for solving the RCP and the invariant measure
equation and the simulation methodology are direct extensions of those used in the
case without slow start.

Consider the case where H is deterministic and equal to C/2 (see §5.2 below).
Consider, for instance, the case where the parameters are still C = 270 Pkts,

1/β = 2 s., p=0.8, R=0.1 s. and 1/µ=2000 Pkts. Both the N2N simulator and
the RCP equation (37) give and a period of τ = 1.89 s. The numerical solution
of (41) leads to an aggregate rate function α(.) that satisfies the required property
of first hitting C = 270 Pkts at τ = 1.89 sec, so that this solution of the RCP is
non-spurious.
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5.2. HTTP 1.1 Example. We propose to focus on HTTP 1.1 where the files
successively downloaded by a flow use the same TCP connection. This assumes of
course that the successive downloads of this user are made from the same server
and that the Keepalive Timer (usually 15 s.) does not expire (for the last point,
see [2]).

We then refer to IETF RFC 2581 [4] to state the following concerning TCP:
• When the TCP connection is idle for more than one retransmission timeout

(RTO, roughly a few RTTs), CWND is reduced to IW (initial window), which
we will assume to correspond to decreasing the rate to 0.

• SSTHRESH is however kept to save information on the previous value of the
congestion window. We propose here to take SSTHRESH= C/(2(1 − ν)),
where ν denotes the stationary probability that a flow is idle at a congestion
epoch. The rationale for this is as follows: when the last loss occurred (a loss
always occurs for each flow in the finite population model), the proportion of
active flows was 1− ν and the average rate was per flow was C; hence due to
symmetry, each active flow had an average of C/(1 − ν); so it indeed makes
sense to take SSTHRESH= C/(2(1− ν)).

Hence in our slow start model, the rate of a flow jumps to C/(2(1 − ν)) at
the beginning of each file transfer, and a congestion avoidance phase then starts
until file completion. This is one model among many other possibilities, which has
engineering meaning under the above assumptions (all flows access the same server,
HTTP 1.1 is used, and the Keepalive Timer is large) and provided CWNDMAX is
large and the exponential phase of the slow start is fast enough to be neglected.

Of course ν is unknown. To cope with this, in a first step, we solve the model
of §5.1 with H = C/2. This determines τ1 and ν1. In a second step, we solve the
model again with H = C/2(1 − ν1) and so on until convergence. When applying
this procedure to the example of the last section, τ1=1.89 s. and ν1=0.226 at the
first step and τn=1.73 s. and νn=0.225 for all n ≥ 2. The regime associated with
the last values is such that the α function first reaches C = 270 Pkts at τ=1.73 s.
The joint trajectories of two flows (among thousands) controlled by these dynamics
as obtained by simulation are plotted for illustration in Figure 14.

The stationary distribution of the rate is exemplified in Figure 15.
The basic observation is the same as in the case without slow start: in cases

where the load per user is less than the capacity per user, one can get a turbulent
mean-field limit with infinitely many congestions for appropriate initial conditions.
Here is an example of such a turbulent regime: C=364 Pkts/s., p=.8, 1/µ=2000
Pkts, 1/β=2 s. One gets a period of τ=5.568 s. and a load per user of 356.618
Pkts/s. Here, the load per user is defined using the same ideas as above: when the
transfer of a file starts, the rate jumps from 0 to H = C/(2(1−ν)) and then evolves
according to the congestion avoidance AIMD rules. In this last expression, ν is
the continuous time probability that a flow is active in the interaction-less regime.
Notice that determining ν requires the solution of a fixed point equation (as this
probability depends on H which itself depends on ν).

6. Comparisons.

6.1. Comparison to the Long Lived Flow AIMD Model. The issue addressed
here is that of the limiting behavior of the ON-OFF model considered in this paper
when the size of the files tends to infinity and the comparison to the results of [6]
and [9] on the long lived (or persistent) flow case. We recall that in the long lived
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Figure 14. Two HTTP 1.1 flows with slow start C=270 Pkts/s.,
p=.8, 1/µ=2000 Pkts, 1/β=2 s.

Figure 15. Stationary pdf of the rate of one flow with slow start;
C=270 Pkts/s., p=.8, 1/µ=2000 Pkts, 1/β=2 s.

flow case [6], the inter-congestion time is τLL = R2Cp/2 and the mean throughput
of a flow is C(1 − p/4). In Figure 16, we plot (together with another curve) the
mean throughput obtained by one flow in function of the mean file size 1/µ. The
rightmost part of the AIMD curve has an horizontal asymptote of app. C(1− p/4)
which suggests that the limiting behavior in question is indeed that of the long lived
flow case.
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Consider the fixed point equation (11). Multiplying by R2 we get:

R2Cp

2τ
+ R2l(0)/j(0) = h(0)/j(0),

where the second term in the LHS can be interpreted as the jumps down at the end
of the downloads and the RHS as the fraction of flows that are ”on”. We see that
when letting 1/µ go to infinity, we have the following consistent limits: τ tends to
τLL, the contribution of the second term in the LHS (the jumps down) tends to 0
and the RHS tends to 1 from below.

The s(z, 0) function that we obtain is also consistent with what was found in the
case of long lived flows: s(z, 0) has spikes at q = (p/2)C and all the other values
predicted in [9] on long lived flows.

6.2. Comparison to the Processor Sharing Engset Model. Another interest-
ing issue concerning non persistent flows is the comparison of the bandwidth sharing
that results from the AIMD induced dynamics of the present paper to that of the
processor sharing (PS) approximations proposed in the literature (see Section 2).
The closest large population PS model would be the Engset model with N users,
where N is large. In this model the active sessions generate 1/µ packets which are
queued at a single server processor sharing node serviced with rate CN packets
per second. Once served, these sessions move to an infinite server think time node
where they stay for a duration of 1/β seconds. In steady state these sources are
independent and the proportion in the think state will be θ. The rate at which new
sessions are created is therefore θNβ. This must be matched by the rate at which
sessions finish. This rate would be the same if we served the sessions in a FIFO
manner and the rate for this is 1/((1/µ)/NC)(1−πN (0)) = µNC(1−πN (0)), where
πN (0) denotes the steady state probability that the PS queue is empty. It is easy
to check from the product form of the finite population Engset model that when N
tends to infinity, there are two basic regimes:

• If β < µC, then πN (0) tends to 1 when N tends to infinity, so that the PS
queue is always empty in the large population asymptotic model. So in this
case, the mean rate obtained by each flow is x = β/µ;

• If β > µC, then πN (0) tends to 0 and consequently θ = µC/β. In this case,
the intensity of the arrival point process in the PS queue grows to infinity
like NµC whereas the steady state queue size grows to infinity like N(1− θ).
Hence Little’s law allows us to determine the mean waiting time W of a tagged
file transfer in the PS queue via the formula

W = (1− θ)
1

µC
.

Consequently, the mean rate obtained by each flow is

x =
1
µ

1
1/β + W

= C.

Our conclusion is that the rate in the large population Engset PS model is given by
the formula:

x = β min
(

1
µ

,
C

β

)
. (42)

Figure 16 below compares this to the expressions obtained from our AIMD model,
with and without slow start. In the case without slow start, the rate in the increasing
part of the curve of the AIMD model (i.e. the part where no congestion occurs) is
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obtained from (14). As one can check, the match is not so good unless the load is
small. Notice that there is actually no reason for these models to be close because
in the processor sharing formula there is no dependence on the RTT.

Figure 16. The average rate as predicted by the PS and the
AIMD models.

The rightmost part of the PS curve postulates full bandwidth sharing whereas the
AIMD dynamics does not. The rightmost part of the AIMD curve has an horizontal
asymptote of app. C(1− p/4) (that is here .8× C) as predicted.

The qualitative properties found in the present study have no analogues in these
processor sharing models: there are no multiple stationary regimes depending on
the initial condition: above, we looked at the steady state of the Engset model and
then let N (population) go to infinity. That is we let first time go to infinity (to get
steady state) and we then let N to to infinity. Had we started the Engest model
in some transient state (e.g. all users thinking, rather than in steady state), the
steady state obtained when letting first N go to infinity and then letting time go to
infinity is the same as the one obtained above as is easily seen by a direct analysis
of the transient mean-field Engset model.

Notice that these multiple regimes appear in the vicinity of critical load, which
is precisely a region where processor sharing is not expected to provide an accurate
model for TCP bandwidth sharing anyway.

7. Simulation. The simulation results of this section are based on the N2N sim-
ulation tool [3].
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7.1. Meta-stability. The fact that the mean-field limit has two stationary regimes
for some values of the parameters translates into the existence of two meta-stable
regimes for any finite stochastic system with the same mean parameters, with rare
oscillations from one stable regime to the other. This phenomenon (see e.g. [13]
for another example pertaining to protocols) is depicted in Figures 17 and 17 which
feature both the Tahoe case with 1/µ = 2000 Pkts, 1/β = 2 s. and R = 0.1 s.

In Figure 17, the number of sources is rather small (1000) and the capacity is
approximately the critical value above which the mean-field system has only one
uncongested mode. The two modes are clearly visible in the trajectories. The
fluctuations are high enough to make the system move frequently enough from one
mode to the other.
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Figure 17. Bi-stability: 1000 Tahoe flows with C = 282, p = .8.

In Figure 18, the number of sources is larger (10000) so that fluctuations are
more limited which implies more difficult transitions from one mode to the other.
In this case, we let the system start with all sources active and with 0 rate. We
chose C = 278, a region where both modes are possible in the limit. As one can
check, the rare event that allows the system to move from the congested to the
uncongested mode only happens after appr. 5400 s.

7.2. Heavy Tailed Case. The setting is the same as that of the previous sections
with lognormal distribution functions for the file size and the OFF-time. The sce-
nario is the following: TCP Reno, with RTT R = 30 ms. and with synchronization
rate p = 0.8; the file size and the OFF-period follow lognormal distributions: the
file size has mean value 2000 Pkts and standard deviation 8669 Pkts, and the OFF-
period has a mean value of 2 sec and a standard deviation of 8.7 s. Variance is
much higher than in the exponential case.

Simulations (or direct calculations) show that the mean load per source is appr.
ρ = 620 Pkts/s. Figure 19 gives the aggregate rate when C = ∞ for the initial
condition with all sources active and with null rate. We observe the same phenom-
enon as in the exponential case, with a first maximum at 717 Pkts/sec, significantly



HTTP TURBULENCE 33

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

4800 5000 5200 5400 5600 5800 6000

 

Figure 18. Bi-stability: 10000 Tahoe flows with C =278, p = .8.

larger than the horizontal asymptote at ρ, though with a shape that is different
from that in the exponential case.
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Figure 19. The mean-field aggregate rate of Reno when C = ∞
and all flows are initially active and with 0 rate.

Our simulation suggests that as in the exponential case, congestion regimes show
up for values of C larger than ρ. Here, such regimes are possible for all C between
a threshold that seems to be located between 670 and 680.

8. Packet Level Simulation.

8.1. The Bump. Figure 20 gives an ns2 simulation [1] of the bump for the (free)
aggregated throughput of ON-OFF flows. The number of flows is 200; each flow
is throttled to a maximum rate of 30 Mb/s. Their common RTT is 30ms. The
capacity of the shared link is large (4 Gb/s) to put the network in its free regime.
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The shared buffer is 300 packets. The ON and OFF periods are exponentially
distributed with mean 2 s. and 2000 pkts respectively.
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Figure 20. ns2 aggregated traffic when all flows start active at
time 0

8.2. The Fluid and Turbulent Regimes. The setting of Figure 21 is the follow-
ing: RTT is 61 ms. There are 400 HTTP flows with an access link capacity of 20
Mb/s. The capacity of the shared link is 1.39 Gb/s. The slow start was switched
off to be in conditions close to those of the mathematical model. We observe that
the ns2 simulation traces alternates between the turbulent and the fluid regimes in
the same manner as in Figure 17.
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Figure 21. ns2 aggregated traffic: alternance between the two regimes.
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9. Conclusion. The main achievement of the present paper is an interaction model
for TCP controlled dynamic flows that is based on the AIMD dynamics of TCP
rather than on the frequently made assumption that TCP bandwidth sharing is
well described by the processor sharing discipline. Thanks to a mathematical model
based on the mean-field limit, some unexpected qualitative results are found. In
particular the system may enter into a congestion regime for loads that are sig-
nificantly smaller than the link capacity. Also multiple stationary regimes may be
reached depending on the initial phases of the ON-OFF flows. This property that
can be seen as an analogue of turbulence. These phenomena, which translate into a
bi-stability property for systems with finite population, are absent in the PS model.

Another interesting property is the fractal nature of the p.d.f of the station-
ary rates as already observed in the long-lived flow case by Chaintreau and De
Vleeschauwer in [9]: the randomness and the mixing of the ON-OFF structure
seems to be compatible with a complex self-similar structure for the rates. Even
for the (rather unrealistic) exponential model analyzed here, several important the-
oretical questions have to be solved to complete the present study. These include
the proof of the mean-field limit (which should be feasible along the lines of what
was already done for the long lived flow case) and the mathematical confirmation
of the numerical findings presented in Section 4 in the Reno case.

The main step after that is of course to extend the approach to non exponential
file sizes and particularly to heavy tailed distributions. Other interesting exten-
sions along the lines of what is already known for the long lived flow case would
address the multiple link case and the non-linear dynamics induced by a large tail-
drop buffer. Finally, it should be possible to mix this HTTP traffic model with the
model for long lived flows to give a single interactive dynamical system.

Acknowledgements. The authors thank Dohy Hong for his valuable contributions
to this paper. The analogy of the phenomena described in this paper with turbulence
was brought to our attention by Bruce Hajek.

Appendix A. Proofs.

A.1. Proof of Lemma 1. By arguments similar to those in the proof of (18),

d

dt
ν(t) = −βν(t) + µα(t), (43)

so that

ν̂(u) =
1

β + u
(ν(0) + µα̂(u)) . (44)

This and (18) give

ŝ0(u) =
βR2

β + u
(ν(0) + µα̂(u)) .

When using the last expression in (21), we get

ŝz(u) = e−R2(uz+µz2/2)
(

βR2

β+u (ν(0) + µα̂(u))

+R2
∫ z

0
e−R2u(z−x)e−R2µ( z2

2 − x2
2 )s(x, 0)dx

)
.

(45)
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When multiplying both sides of (45) by z and integrating w.r.t. z, we get

α̂(u) =
β

β + u
Î(u) (ν(0) + µα̂(u)) + Ĵ(u), (46)

where Î(u) and Ĵ(u) are the integrals defined in §4.1.3. The expression in (27)
follows immediately.

A.2. Proof of Lemma 2. Tauberian theorems (see e.g. [11]) applied to the expres-
sions obtained above for ν̂(u) and ŝz(u) and α̂(u) lead to the stationary distribution
(30) and (31) for the rates (note that this is a truncated Gaussian) and to (32) for
the aggregate rate.

A.3. Regenerative Interpretation for the Results of Lemma 1. We now
give the interpretation of the expressions in Lemma 1 in terms of the regenerative
process X(t).

• The function µÎ(u) is the Laplace transform of the function

µI(t) = µ
t

R2
e−

µt2

2R2 ,

which is the density of the random duration of an ON period (a file transfer);
• The function µÎ(u) β

β+u is the Laplace transform of the random variable equal
to the sum of one OFF and one ON period, namely the duration of a regen-
eration cycle;

• The function

ξ̂(u) =
1

1− µ β
β+u Î(u)

is the Laplace transform of the density ξ(t) of the renewal measure (see [11],
Vol 2, pp. 184 and following) of the renewal point process S associated with
the regenerative process X(t); ξ(t) can be interpreted as the density with
respect to the Lebesgue measure of the expected number of points in the
(0, t] interval of the Palm version of the renewal process, or intuitively as the
probability density that the Palm version of the renewal point process hits t;

• The function Î(u) is the Laplace transform of the product of t/R2 and of the
probability that a flow that starts active and with 0 rate at time 0 and is

continuously active until time t: I(t) = t
R2 e−

µt2

2R2 . From this and a simple
renewal theory argument, one sees that the function

ψ̂(u) =
β

β+u Î(u)

1− µ β
β+u Î(u)

is simply the Laplace transform of the function ψ(t) that gives the expected
value of X(t) when the tagged flow starts inactive at time 0 and has an
arbitrary number of OFF and on periods in between;

• The function Ĵ(u) is the Laplace transform of the function

J(t) =
∫ ∞

0

s(z, 0)
(

z +
t

R2

)
e
−µ
�

zt+ t2

2R2

�
dz,

in which we recognize the expected value of X(t) when the tagged flow starts
active and with rate sampled according to s(., 0) at time 0 and remains con-
tinuously active between time 0 and t; also notice that an integral of the
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form
∫ ∞

z=0

s(z, 0)dz

∫ t

v=0

(
z +

v

R2

)
e
−µ
�

vz+ v2

2R2

�
dv

∫ t−v

u=0

µβe−β(t−v−u)e−µ
(t−v)2

2R2
t− v

R2
du

can also be seen as
∫ ∞

z=0

s(z, 0)dz

∫ t

v=0

µ
(
z +

v

R2

)
e
−µ
�

vz+ v2

2R2

�
dv

∫ t−v

u=0

βe−β(t−v−u)e−µ
(t−v)2

2R2
t− v

R2
du,

where µ
(
z + v

R2

)
e
−µ
�

vz+ v2

2R2

�
is the density of the random duration of an ON

period that starts with initial rate z. So this integral is the expected value of
X(t) on the event that the initial ON period ends and there is then one OFF
period and one uninterrupted ON period until time t; so, a renewal argument
allows us to conclude that the term

ζ̂(u) =
Ĵ(u)

1− µ β
β+u Î(u)

is the Laplace transform of the function ζ(t) that gives the expected valued
of X(t) when the tagged flow starts active at time 0 with a rate sampled
according to s(., 0) and has an arbitrary number of OFF and ON periods in
between.

A.4. Explicit Solution of the Solution of the PDE. By direct Laplace inver-
sion of (21), one gets the following expressions for ν(t) and s(z, t):

s(z, t) = ν(0)βR2φ(z, t) + µβR2

∫ t

0

α(u)φ(z, t− u)du + e
−µ
�

tz− t2

2R2

�
s(z − t

R2
, 0)

(47)

ν(t) = ν(0)e−βt + µ

∫ t

0

e−β(t−u)α(u)du, (48)

where

φ(z, t) = e−
R2µz2

2 e−β(t−R2z)

is the inverse Laplace transform of the function

φ̂z(u) =
1

β + u
e−R2zu−R2µz2/2.

Similarly α(t) can be expressed as follows:

α(t) = ν(0)R2ψ(t)+R2

∫ t

0

e−µv2/(2R2)ξ(t−v)
∫ ∞

0

e−µzv(z +
v2

R2
)s(z, 0)dz dv (49)

with ψ and ξ defined in §A.3.
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A.5. A Common Linear Equation for (f, g), (h, i), (j, k), (l, m). We start from
the equation given for (f, g) and described for other functions in (5)-(7). They can
be put in the following general form (where the γ and ζ functions have no connection
to those defined in the earlier sections of the paper) :

γ(t) = η0(t) +
∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µydy(η1(t, r, y) + γ(r + R
√

2y)

+e−µ
(τ−r)2

2R2

(
η2(t, r) + pζ(

τ − r

2R2
) + (1− p)ζ(

τ − r

R2
)
)}

. (50)

ζ(z) =
∫ zτ+ τ2

2R2

0

µe−µy(η3(z, y) + γ(R
√

R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
η4(z) + pζ(

z + τ/R2

2
) + (1− p)ζ(z + τ/R2)

)
. (51)

for the following values:

γ(t) ζ(r) η0(t) η1(t, r, y) η2(t, r) η3(z, y) η4(z)
f(t) g(z) 0 1 0 1 0
h(t) i(z) 0 R

√
(y) τ − r R

√
R2z2 + 2y −R2z τ

j(t) k(z) (t− τ)eβ(t−τ) r − t + R
√

2y τ − t R
√

R2z2 + 2y −R2z τ

l(t) m(z) 0 1
R

√
2y 0 1

R

√
R2z + 2y 0

For the first equation defining γ, we introduce the following change of variable :
• For the integral in y, corresponding to the case where a file download is started

and completed before τ , let s be the time of completion of this file:

s = r + R
√

2y such that y =
(s− r)2

2R2
and hence dy =

s− r

R2
ds.

For the second equation, defining ζ, we introduce the change of variable :
• First we study ζ as a function of r = R2z, which corresponds to the time to

obtain a rate equal to z, if the flow start from rate zero, in the case it had no
congestion.

• For the integral in y, corresponding to the case where the remaining file down-
load is completed before τ , let s be the time of completion of this file:

s = R
√

R2z2 + 2y −R2z =
√

r2 + 2R2y − r such that

y =
s2 + 2sr

2R2
and hence dy =

s + r

R2
ds.

Doing so, we obtain the following version of the general equation:

γ(t) = η0(t) +
∫ τ

t

βe−β(r−t)dr

{∫ τ

r

µ
s− r

R2
e−µ

(s−r)2

2R2 (η1(t, r, s) + γ(s))ds

+e−µ
(τ−r)2

2R2

(
η2(t, r) + pζ(

τ − r

2
) + (1− p)ζ(τ − r)

)}
. (52)

ζ(r) =
∫ τ

0

µ
s + r

R2
e−µ s2+2sr

2R2 (η3(r, s) + γ(s))ds

+e−µ( 2rτ+τ2

2R2 )

(
η4(r) + pζ(

r + τ

2
) + (1− p)ζ(r + τ)

)
. (53)
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with
γ(t) ζ(r) η0(t) η1(t, r, s) η2(t, r) η3(r, s) η4(r)
f(t) g(z) 0 1 0 1 0
h(t) i(z) 0 s− r τ − r s τ
j(t) k(z) (t− τ)eβ(t−τ) s− t τ − t s τ
l(t) m(z) 0 1

R2 (s− r) 0 r + 1
R2 s 0

To save space, we now denote µ
R2 by κ. An integration by parts to simplify the

integrals associated with η1 and η4 gives:∫ τ

r

κ(s− r)e−κ
(s−r)2

2 dsη1(t, r, s)

= η1(t, r, r)− e−κ
(τ−r)2

2 η1(t, r, τ)
∫ τ

r

e−κ
(s−r)2

2
∂η1(t, r, s)

∂s
ds

and∫ τ

0

κ(s + r)e−κ s2+2sr
2 η3(r, s)ds = −e−κ τ2+2τr

2R2 η3(r, τ) +
∫ τ

0

e−κ s2+2sr
2

∂η3(r, s)
∂s

ds

So we can write :

γ(t) = η0(t) +
∫ τ

t

βe−β(r−t)dr

{
η̃1(t, r) +

∫ τ

r

κ(s− r)e−κ
(s−r)2

2 γ(s)ds

+e−κ
(τ−r)2

2

(
η̃2(t, r) + pζ(

τ − r

2
) + (1− p)ζ(τ − r)

)}
. (54)

ζ(r) = η̃3(r) +
∫ τ

0

κ(s + r)e−κ s2+2sr
2 γ(s)ds

+e−κ( τ2+2rτ
2 )

(
η̃4(r) + pζ(

r + τ

2
) + (1− p)ζ(r + τ)

)
. (55)

where the coefficient are :

η̃1(t, r) = η1(t, r, r) +
∫ τ

r

e−κ
(s−r)2

2
∂η1(t, r, s)

∂s
ds ; η̃2(t, r) = η2(t, r)− η1(t, r, τ)

η̃3(t, r) = η3(r, 0) +
∫ τ

0

e−κ s2+2rs
2

∂η3(t, r, s)
∂s

ds ; η̃4(t, r) = η4(r)− η3(r, τ)

γ(t) ζ(r) η0(t) η̃1(t, r) η̃2(t, r) η̃3(r, s) η̃4(r)
f(t) g(r/R2) 0 1 −1 1 −1
h(t) i(r/R2) 0 aτ (r) 0 bτ (r) 0
j(t) k(r/R2) (t− τ)eβ(t−τ) r − t + aτ (r) 0 bτ (r) 0
l(t) m(r/R2) 0 1

R2 aτ (r) − τ−r
R2

r+bτ (r)
R2 − r+τ

R2

with

aτ (r) =
∫ τ

r

e−κ
(s−r)2

2 ds and bτ (r) =
∫ τ

0

e−κ s2−2rs
2 ds

Equation (10) can easily be deduced from this for functions (f, g), (h, i) and (l, m).
For the functions (j, k), we should perform another integration by part :

∫ τ

r

βe−β(r−t)(t− τ)dr = −(t− τ)e−β(t−τ) +
∫ τ

r

e−β(r−t)dr.

The first term in the RHS compensates exactly η0(t) for this function, while the
second term of the RHS can be seen as 1/β to add inside the integral w.r.t. the
variable r.
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