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1. Introduction 

In most problems solved in the field of measuring technology, radar, astronomy, optical 
communication, positioning, navigation, television automation and many other broad areas of 
science and technology, one of the fundamental problems is finding the best way to recognize a 
signal in the presence of interference. The ideal reception of signals under the influence of noise and 
interference is based on simple yet deep ideas, set out in the most consistent and understandable form 
by Woodward (Woodward, 1955). Following this idea, the task of an ideal device, whose input 
receives a mixture of signal with noise, is the complete removal of unnecessary information 
contained in this mixture, and the preservation of useful information about those signal parameters 
that are of interest to the system user.  

The task of calculating composite indicators characterizing the quality of a system can also be 
attributed to the problems of signal isolation against a background of interference. Comparison of the 
considered objects’ integral indicators and ratings generated by their composite indices, makes it 
possible to judge the degree of achievement of the management objective. Although the scientific 
community has not come to a common opinion, if it is possible in principle to characterize a 
multifaceted phenomenon as a single scalar. International organizations, think tanks and social 
sciences at the turn of the millennium significantly increased the number of integrated indicators 
used to measure various latent characteristics of social and economic systems: social capital, human 
development, quality of life, quality of management, etc. 

According to the UN, by 2011 there were 290 indices developed for the ranking or integrated 
assessment of countries. A review of the phenomenal growth in the number of complex indexes used 
by countries for integrated assessment performed by Bandura (Bandura, 2006, 2008, 2011) showed 
that only 26 of them (9%) were formed before 1991, 132 (46%) from 1991 to 2006, and 130 
consolidated indices were formed in the period 2007–2011. A huge number of methods used to 
assess the latent characteristics of social systems highlight the dissatisfaction with the results and the 
need for further research in this area. 

The rapid increase in the number of complex indexes is a clear sign of their importance in politics 
and the economy. All major international organizations, such as the Organization for Economic 
Cooperation and Development (OECD), the European Union, the World Economic Forum or the 
International Monetary Fund, are constructing composite indicators in various fields (Bandura, 2011; 
Nardo et al., 2005). The overall goal of most of these indicators is the ranking of objects (countries) 
and their comparative analysis for some aggregate measure (Bandura, 2011; Foa and Tanner, 2012; 
Saltelli et al., 2006; Sharpe, 2004). The use of a single indicator characterizing poorly formalized 
processes of social systems (quality of life, demographic situation, etc.) is the only possible solution to 
this problem. Therefore, improving the quality of composite indicators is relevant both from a 
theoretical and from a practical point of view. A discussion of the pros and cons of composite 
indicators is given in (Nardo et al., 2005; Foa and Tanner, 2012). 

Despite the huge number of used composite indicators, unresolved methodological problems in 
their design lead to the fact that very often they raise more questions than they give answers. The 
huge number of applied methods for assessing the latent characteristics of social systems indicates 
the dissatisfaction of researchers with the results and the need for further research in this area. 

The Organization for Economic Cooperation and Development (OECD) is constantly working 
to improve the methods for constructing complex indexes (Nardo et al., 2005; Saltelli et al., 2006; 
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Nicoletti et al., 2000; Saltelli, 2007). In 2008, the OECD, together with the Joint Research Center of 
the European Commission, prepared a (Handbook, 2008), which was the result of years of research 
in this field (Nardo et al., 2005; Saltelli et al., 2006; Nicoletti et al., 2000, Saltelli, 2007; Tarantola et 
al., 2002). The Handbook sets out a set of technical principles for the formation of composite indices. 
The authors choose a linear convolution of indicators for the primary method of the data’s 
aggregation, while the main tool for constructing composite indicators is factor analysis. 

So, to build a qualitative integral indicator, it is required: first, a thorough theoretical study of 
the measured phenomena’s theoretical aspects, since “that which is not well defined is likely to be 
poorly measured” (Nardo et al., 2005), secondly, the choice of data quality, because the quality of 
the composite indicators largely depends on the quality of the main indicators and, thirdly, an 
adequate tool for working with multidimensional data. 

Such a tool for working with multidimensional data is multidimensional statistical data analysis, 
namely, factor analysis and principal component analysis (PCA). Factor analysis was first used to 
combine a multitude of indicators into a single index in the development of the Health Index by 
(Hightower, 1978).  

When calculating Socio-Economic Status Indices (SES), the principal component analysis was 
adopted as a standard for the construction method, and the calculated index was determined with a 
projection onto the first principal component (McKenzie, 2005; Vyas S and Kumaranayake, 2006). 
The same methodology was used by Lindman and Selin in creating the Environmental Sustainability 
Index (Lindman and Selin, 2011). Somarriba and Penna used PCA in measuring the quality of life in 
Europe (Somarriba and Pena, 2009). Mention should also be made of (Ajvazjan, 2003) on the 
definition of a population’s quality of life index using the first principal component. 

However, the first principal component approximates the simulated situation well if the maximum 
eigenvalue of the covariance matrix contributes at least 70% to the sum of all eigenvalues. This 
relationship is satisfied if a small number of features are considered (no more than five), and one of the 
properties of the system clearly dominates over the others. When describing socio-economic systems, 
the number of variables significantly exceeds five, and the structure of the system does not allow 
simple approximation. As a way out of this situation, according to (Ajvazjan, 2003), the information 
threshold is reduced to 55%, and the system is divided into subsystems described with a smaller 
number of variables. In the studies discussed above (Hightower, 1978; McKenzie, 2005; Vyas and 
Kumaranayake, 2006; Somarriba and Pena, 2009), the contribution of the largest eigenvalue ranged 
from 13% to 38%, with the exception of (Somarriba and Pena, 2009), in which an example of a model 
was considered, where this figure was 56%.   

The authors followed the recommendations (Somarriba and Pena, 2009), which stated that the 
first principal component gives satisfactory weight coefficients when calculating the integral index 
even in cases where the largest eigenvalue makes a small contribution to the sum of all eigenvalues. 
However, such a statement cannot be called indisputable. In the study (Mazziotta and Pareto, 2016) 
the contribution of the largest eigenvalue of 74% the authors consider insufficient. 

For a fixed t an integrated assessment is often recorded for each of the object numbered i in the 
form of additive data convolution with some weights. Researchers at the Organization for Economic 
Cooperation and Development hold a different point of view. For the formation of a composite index, 
factor analysis is used, where the analysis of the first principal components is used exclusively for 
extracting factors, so that the number of factors extracted explains more than 50% of the total 
variance. The value of the composite index in this case is determined only with significant loads of 
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the selected main factors after rotation. De facto, this method becomes the standard for calculating 
complex indexes (Nardo et al., 2005; Nicoletti et al., 2000; Tarantola et al., 2002). Although the 
authors of (Nardo et al., 2005) pay attention to the fact that different methods of extracting the 
principle components and different methods of rotation imply different significant variables and, 
therefore, different weights of variables when calculating the composite index, hence different values 
of the calculated integral indicator. In addition, factor analysis assumes there is sufficient correlation 
between the initial variables, which to some extent contradicts the idea of a complete description of 
the phenomenon under study by a set of independent variables. 

Another circumstance should also be noted. Methods for determining weight coefficients using 
factor analysis cannot be used to compare the characteristics of objects described in dynamics. For 
different observations, the structure of factors is different, even for fixed methods of extracting factors 
and the rotation process. This makes intertemporal comparison meaningless (Zhgun, 2013). The reason 
for the different structure of the main factors may be the insufficient quality of the data used, namely 
the presence of errors in the data. Nevertheless, it is the statistical data containing fatal errors that 
currently represent the best estimates of the available real values in social systems (Nardo et al., 2005).  

It is impossible to obtain exact characteristics of an object based on a single measurement, 
which inevitably contains an unknown error. However, based on a series of such measurements, it is 
possible to calculate the unknown characteristic. In particular, astrophotometry successfully solves 
this problem. It determines the basic numerical parameters of astronomical objects not on a single 
observation (image), but on a series of noisy images. Using the basic ideas underlying 
astrophotometry, we consider the construction of the complex indices changes in the quality of a 
complex system as a solution to the problem selection of the useful signal on a series of observations 
containing a description of the unknown parameter (in a multidimensional dataset with noise) with a 
priori uncertainty of the desired signals’ properties based on a specified signal-to-noise ratio. 

The goal of this manuscript is to construct a composite system quality index as a solution to the 
problem of extracting a signal against a background of noise. For this it is suggested to take linear 
convolution weights as the characteristics of a system’s structure. While in order to determine the 
structure of the system according to a series of observations a modification of the PCA for a noisy 
signal is proposed. Further the stability and reliability of the composite index obtained is investigated.  

2. Calculation of the integrated system indicator for a series of observations 

To solve the control problem, it is required to give a motivated estimate of each observed object 
on the entire observation interval, i.e. to calculate in dynamics the integral characteristic of system 
quality according to the results of available measurements. Let’s consider the construction of an 
integral estimation of a system of m objects for which tables of n descriptions of those objects for a 
series of observations are known. For each moment t the vector of integral indicators is written as 

ttt wAq            (1) 

For a fixed t an integrated assessment is often recorded for each of the object numbered i in the 
form of additive data convolution with some weights 
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mj – minimum value of the j-th index for the whole sample (global minimum), Mj – maximum value 
of j-th index for the whole sample (global maximum). In case where there is another optimal (not 
minimum or maximum) index value, the following formula is used: 
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To build an integral indicator of the systems’ quality, it is required to find weights wt for each time 
point. The method of expert assessments for determining weights is widely used due to the ease of 
obtaining information. However, not every complex system has a sufficient number of qualified 
experts. In addition, expert services are a commodity, so they are not cheap and cannot be objective. It 
is preferred to use formal methods that do not use human preferences (Nardo et al., 2005; Nicoletti et 
al., 2000; Ajvazjan, 2003). On the other hand, the extent of the importance (weights) of the variables 
calculated using formal methods often does not coincide with the intentions of the developers. 
Therefore, the weights are carefully investigated. (Becker et al., 2017a, 2017b; Paruolo et al., 2013). 

The Principal Components Analysis (PCA) is perhaps the most-used method to obtain weights 
intrinsically. However, the application of this technique gives unexpected results. For example, in a 
study (Molchanova et al., 2014), the quality of life is determined by PCA (Ajvazjan, 2003). 
Obviously, geographically close regions should have comparable quality of life ratings. For example, 
Novgorod and Pskov are neighboring constitute entities and close in all parameters. However, the 
rating of the Novgorod province is 29, while the rating of the Pskov province is 54 (out of 83 
positions). It is also obvious that the quality of life near a megapolis is higher than in Siberia and the 
Far East. Nevertheless, the rating of the Leningrad province is 63, lower than the ratings of 
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Novgorod and Pskov provinces, almost as low as the rating of Sakhalin 64. Complex indices, that 
give such ratings, cannot be called reliable. 

If technique PCA is applied to a series of observations made at different times, then, in the condition 
of a stable situation, the ratings have strong fluctuations (Gajdamak and Hohlov, 2009). In this case as 
well, the complex indices, that determine such ratings, cannot be called reliable. The numerical 
evaluation of such changes for (Gajdamak and Hohlov, 2009) is given further in paragraph 3. 

In the paper (Mazziotta and Pareto, 2016) the authors consider that PCA is a blindly empiricist 
method based on the observed correlations and it ignores the polarity of the individual indicators. 
Therefore, if the normalized indicators are not all positively intercorrelated, the results are not correct. 
It should be noted that the amount of variance accounted for, and the weights computed by PCA 
change over time, so the results of different PCAs are not easily comparable. Consequently, they 
believe the use of PCA for the construction of composite indices for assessing multidimensional 
phenomena is at all improper. It should be noted that this conclusion was made when constructing a 
composite index for a single observation. 

However, any measurement, including statistical, is determined by the accuracy of the 
measuring device, therefore the measurement result always contains an unavoidable error. The 
construction of system’s integral characteristic can be considered as the task of isolating a useful 
signal against a noisy background. This problem is analogous to the problem of restoring digital 
images distorted by Gaussian noise. The principal component analysis makes it possible to isolate 
the structure in a noisy array of data and it is successfully used to reduce noise in image restoration.  

The quantitative characteristics of a particular system, related to its structural features, depend on the 
signal-to-noise ratio. SNR—signal-to-noise ratio (SNR) is the ratio of the signal (more precisely, the sum 
of the signal and noise) to noise. The value is calculated either as a dimensionless ratio of the signal 
amplitude to the noise amplitude SNR = As / An, or, in decibels, SNR (dB) = 20 log 10 (As / An). 

This ratio most fully describes the quality of the signal in technical systems: television, in 
means of control and diagnostics, in mobile communication systems, in astrophotometry, etc. This 
ratio most fully describes the signal quality in technical systems: television, in control and diagnostic 
tools, in mobile communication systems, in astrophotometry, etc. The choice of the SNR threshold 
value, which makes it possible to distinguish a signal against noise is justified (Zhgun, 2014). 

Moving to another point in time means a change in the data, which is caused by both a change 
in the situation and random errors. The analysis of the principal components based on different 
values (for consecutive moments) of eigenvectors and eigenvalues describes the invariable structure 
of the system. Therefore, the undistorted values of the eigenvalues and eigenvectors will be a signal 
that must be extracted from the noisy data. For eigenvalues, such a signal is the average. Averaging 
works on the assumption that the noise is absolutely random. Such averaging of the values is used in 
astrophotography for noise suppression. The assumption that there is a general trend in the variation 
of input data is illustrated in Figure 1, where the values of the covariance matrices ordered in 
descending eigenvalues for different observations are presented. In the mean, a tendency (signal) and 
a deviation from it (noise) are clearly visible. 
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Figure 1. The eigenvalues of the covariance matrix of the variables for different 
observation times. Right yellow color is the mean of the eigenvalues. The variables 
considered are from the first block of Table 2. Source: Rosstat // http://www.gks.ru. 

The eigenvectors in the PCA are determined up to the direction, in contrast to the eigenvalues, 
which are uniquely determined. The mean value of variables’ factor loadings depends on the chosen 
direction and cannot unambiguously characterize the signal.  

 

Figure 2. Coordination of eigenvectors directions for the first principal component. Left 
—the original directions of the eigenvectors, on the right—the choice of the direction of 
the eigenvectors, which ensures the maximization of the signal level. The variables 
considered are from the first block of Table 2. Source: Rosstat // http://www.gks.ru. 

Based on the eigenvectors calculated for various observations (ordered in decreasing order of 
eigenvalues), it is necessary to recognize the random and nonrandom components of these vectors.  

We assume that the nonrandom (significant) contribution of a variable to the structure of the 
main component is not a large value of the factor load after rotation, but an invariance of the factor 
load with data disturbances. A sign a variable’s invariance is the signal-to-noise ratio, which is 
calculated from the values of this variable’s factor loads. The signal amplitude is the absolute value 
of the mean of the load factors, the noise amplitude is the standard deviation of the load factors. 

http://www.gks.ru/
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Table 1. Definition of the empirical principal component. 

Approval of directions for the first variable 
Years Variables 
  1 2 3 4 5 6 7 8 9 
2007 −0.07 −0.1 0.26 0.38 0.08 −0.21 0.67 −0.28 −0.44 
2008 −0.05 0.19 0.04 −0.14 −0.33 −0.18 −0.41 0.2 0.77 
2009 −0.16 0.22 0.19 −0.06 −0.49 −0.2 −0.24 0.04 0.74 
2010 −0.17 0.22 0.24 −0.06 −0.37 −0.25 −0.14 0.16 0.79 
2011 −0.24 0.18 0.31 0.07 −0.23 −0.2 0 0.21 0.82 
2012 −0.25 0.18 0.28 0.07 −0.4 −0.23 −0.03 0.17 0.76 
2013 −0.2 0.17 0.2 0.01 −0.47 −0.17 −0.03 0.12 0.79 
2014 −0.3 0.14 0.18 0 −0.38 −0.22 0.04 0.18 0.79 
Mean value, m −0.18 0.15 0.21 0.03 −0.32 −0.21 −0.02 0.1 0.63 
Standard deviation, s 0.09 0.1 0.08 0.16 0.18 0.03 0.32 0.16 0.43 
Signal/noise  Ratio, SNR 2.1 1.47 2.51 0.22 1.76 7.94 0.06 0.61 1.45 
Sum of SNRs for the line 18.13 
Sum of significant SNRs 10.54 

Approval of directions for the second variable 
Years Variables 
  1 2 3 4 5 6 7 8 9 
2007 0.07 0.1 −0.26 −0.38 −0.08 0.21 −0.67 0.28 0.44 
2008 −0.05 0.19 0.04 −0.14 −0.33 −0.18 −0.41 0.2 0.77 
2009 −0.16 0.22 0.19 −0.06 −0.49 −0.2 −0.24 0.04 0.74 
2010 −0.17 0.22 0.24 −0.06 −0.37 −0.25 −0.14 0.16 0.79 
2011 −0.24 0.18 0.31 0.07 −0.23 −0.2 0 0.21 0.82 
2012 −0.25 0.18 0.28 0.07 −0.4 −0.23 −0.03 0.17 0.76 
2013 −0.2 0.17 0.2 0.01 −0.47 −0.17 −0.03 0.12 0.79 
2014 −0.3 0.14 0.18 0 −0.38 −0.22 0.04 0.18 0.79 
Mean value, m −0.16 0.18 0.15 −0.06 −0.35 −0.15 −0.19 0.17 0.74 
Standard deviation, s 0.12 0.04 0.18 0.15 0.13 0.15 0.25 0.07 0.12 
Signal/noise  Ratio, SNR 1.36 4.33 0.79 0.41 2.6 1.03 0.75 2.44 6 
Sum of SNRs for the line 19.7 
Sum of significant SNRs 15.37 
Note: The variables considered are from the first block of Table 2. Source: Rosstat//http://www.gks.ru/. 

If the signal-to-noise ratio is above the threshold value, then such a variable is considered 
nonrandom. Otherwise, the variable characterizes the noise component of the signal and does not 
participate in further consideration. In Figure 2 the choice of the direction of the eigenvectors for the 
first principal component is shown. 

The criterion for choosing the direction of the eigenvectors will be the maximization of the signal 
level—the sum of the calculated SNR values for significant variables. The principal component thus 
obtained will be called the empirical principal component (EPC), the significant variables, as in factor 
analysis, will participate in further consideration, and the insignificant variables are ignored. Table 1 
gives an example of the determination of an EPC from eight observations. The second, fifth, eighth and 
ninth variables turned out to be significant (the calculated SNR is above the 2.2 threshold) and the load 
values for these variables will be non-zero loads in this EPC. 
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In the algorithms for computing the integral characteristic from the PCA method (Sharpe, 2004; 
Nicoletti et al., 2000; Saltelli, 2007; Handbook, 2008), the concept of informativeness, which is 
traditional for the PCA, is used, which determines the number of principal components l used to 
calculate the integral characteristic. 



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However, the dimensionality of the feature space in the problems of computing the integral 
quality characteristic of a complex system is not too large, and there are no computational problems 
in determining the eigenvalues and vectors. A qualitative description of the structure of the system 
requires either all the principal components or a sufficiently large number of them. It may turn out 
that information valuable for a particular task is contained solely in last principal components. For 
example, when creating a digital terrain model that is based on digitized images, the desired contour 
is given with the eighth and ninth principal components, and the principal components 12 and 13 in 
the method “caterpillar” estify to the availability of periodicals with a fractional period in the 
analyzed data (Golyandina et al., 2008) 

Approaches to estimating the number of principal components with respect to the required fraction 
of the explained variance are formally applicable, but implicitly they assume that there is no separation 
into “signal” and “noise”, and any predetermined accuracy makes sense. When the data is divided into 
useful signal and noise, the specified accuracy becomes meaningless and it is required to redefine the 
notion of informativeness. Analogously to the variance of information according to (2), it is possible to 
determine SNR- informativeness for a selected number of empirical principal components N: 
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22221

11211
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...
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 ,                                                  (7) 

where S1k—is the sum of the SNR values of the operating variables of the k-th EPC, S2k—is the sum of 
the SNRs of all the variables of the k-th EPC. This value will be a posteriori estimate (from above) of 
SNR-informativeness. Unlike dispersion information, SNR-informativeness cannot reach 100% 
according to the logic of construction. The informativeness of the chosen system of attributes is 
determined by the variance and SNR-informativeness: 

   SNR                                                                  (8) 

The number of selectable EPCs involved in calculating the composite index maximizes the total 
informative value of the solution, determined both by the traditional cumulative dispersive 
information content and the accumulated SNR-informativeness characterizing the level of the EPC 
signal relative to the background level. Variance informativeness increases with increasing number 
of EPCs used, and SNR-informativeness decreases, since the younger components carry more noise. 
SNR - the informativeness of the EPC, defined in Table 1, is 15.37 / 19.7 = 0.78. The algorithm that 
realizes the foregoing is given (Zhgun, 2017a) 

Figure 3 shows the definition of the number of empirical principal components for calculating 
the complex index of the system, described by 85 statistical indicators. The maximum information 
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content of the system  = 60.52% is achieved, if nine EPCs are used for calculating the complex 
index of the system. If we use more EPCs to calculate the complex index, then the information 
content and the reliability of the computed characteristics is reduced. 

 

Figure 3. Determination of the number of empirical principal components for calculating 
the complex index of the system. 

3. Investigation of the quality of integrated indicators 

According to the proposed algorithm, the complex indexes of quality of life for 
constituent entities for 2007–2016 are calculated. It is worth noting that the determined weighting 
factors characterize the structure of the system. Over the observed time interval, the structure should 
be constant. In Russia, there are changes in different areas, so a longer period should not be 
considered. Data for 2016 was the latest available at the time of this writing. 

Variables from (Isakin, 2006) were used for the study (Table 2). All values of the variables are 
taken from the open directories of Rosstat. Among the listed variables, variables 1, 2, 5, 7, 9, 10, 12, 
21, 22, 23 are related to the calculated characteristic by the monotonic increasing dependence, when 
the optimal j-th value is maximum. The remaining indicators, except for variable 27, the optimal 
index value is minimal. For variable 27 “net migration” xj

opt value equals sample mean.  
To obtain the weights of the second block, ten empirical EPСs were used. Used indicators  and 

the resulting weight vectors for these blocks are presented in Table 2. 
The number of EPCs for calculating the composite index should maximize the informational 

value of the obtained solution, defined by (7)—Table 3. 
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Table 2. Weights of the variables of the first, second and third blocks. 

Variable number Variable Name Variable weight 
  Block 1: Population’s welfare   

1 Per capita GDP–living wage ratio, units 0.070 
2 Per capita income purchasing power relative to living wage, % 0.780 
3 Share of people with incomes below living wage, % 0.850 
4 The ratio of average income of the richest 20% to the poorest 20% (R\P 20) −0.430 
5 Number of cars per 1 000 people 1.730 
6 Share of families on waiting lists for housing, % 1.000 
7 Total area of housing resources per resident (m2/10 people) 1.330 
8 Share of dilapidated housing, % 0.420 
9 Public road density (km/10,000 km2) 0.530 

 Block 2: Population quality   
10 Life expectancy at birth, years 1.402 
11 Mortality rate, infant (per 1,000 live births) 0.166 
12 Population growth rate, per 1,000 people 0.667 
13 Deaths caused by communicable, parasitic diseases and TB per 100,000 people 1.675 
14 Deaths caused by neoplasms per 100,000 people 0.485 
15 Deaths caused by cardiovascular diseases per 100,000 people 0.474 
16 Deaths caused by respiratory diseases per 100,000 people 1.097 
17 Deaths caused by digestive system diseases per 100,000 people 0.842 
18 Incidence of injuries, intoxication and other external causes per 100,000 people 1.240 
19 Number of disabled people per 1,000 people 0.000 
20 Incidence of congenital anomalies per 1,000 people 0.381 
21 Specialists with higher education employed in economy, % 1.344 

22 Labor force productivity (GRP per average annual number of employed in n 
economy, thousand rubles/person) 

−0.406 

23 Graduates from higher and vocational educational institutions per 1,000 people 0.048 
 Block 3: Social quality   

24 Unemployment, % 0.189 
25 Employers engaged in harmful and hazardous working conditions in the 

average annual number of employed in economy, % 
0.467 

26 Number of employees injured at work resulting in death or loss of earning 
capacity for 1 or more days per 1,000employees 

1.030 

27 Net migration per 10,000 people 0.136 
28 Intentional homicides per 100,000 people 0.980 
29 Incidence of intentional infliction of grievous bodily harm per 100,000 

people 
0.933 

30 Incidence of rape per 100,000 people 0.955 
31 Incidence of robbery and theft per 100,000 people 0.833 
32 Incidence of larceny or embezzlement per 100,000 people 0.486 
33 Number of registered with drug and substance abuse per 100,000 people 0.761 
34 Number of registered with alcohol abuse per 100,000 people 0.811 
35 Number of infected with TB per 100,000 people 0.806 
36 Mortality from external causes per 100,000 people 0.000 
37 Number of people with mental disorders per 100,000 people 0.861 
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Table 3. Determination of informativeness value of the complex index of Blok 2: Population quality. 

  Number of EPCs 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

SNR 
informativeness 

0.98 0.95 0.33 0.33 0.23 0.37 0.38 0.27 0.20 0.26 0.25 0.38 0.28 0.16 

Variance  
informativeness 

0.32 0.53 0.63 0.71 0.78 0.84 0.88 0.92 0.95 0.97 0.98 0.99 1.00 1.00 

Total 
informativeness 

0.31 0.51 0.58 0.63 0.67 0.70 0.72 0.728 0.729 0.730 0.726 0.72 0.70 0.69 

Once the three intermediate composite indices had been constructed, they were aggregated by 
allocating a weight to each one of them equal to the proportion to the SNR-informativeness (to the 
signal level). The block weights are defined in Table 4. 

Table 4. Block weights, determined by the SNR-informativeness. 

Block 1 2 3 
Sum of significant SNRs 172.2 348.1 251.7 

Block’s weight 0.243 0.464 0.294 

The results are shown in Table 5. The values of the complex indexes obtained vary from 1 to 100 
(in 2007). The Republic of Tyva has the minimum unit value; Ingushetia has the maximum value of 100. 

The change in the quality of life for some of Russia’s  constituent entities is shown in Figure 4. It 
is interesting to trace the reflection of recent political events on the values of the computed 
composite index. The impact of the events of 2014 most affected the quality of life in the maritime 
regions—Kaliningrad and Murmansk—and the financial capitals of Moscow and St. Petersburg. In 
other regions, the quality of life index is less subject to fluctuations when the political situation 
changes. Nevertheless, the gap in the quality of life with the leaders is almost not reduced. 
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Table 5. The complex indexes of quality of life and ratings for Russia’s constituent 
entities for 2007–2016. 

Region of the RF Complex index 
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Belgorod reg. 73.6 76.8 80.8 83.2 85.1 85.8 87.3 87.3 90.4 91.6 
Bryansk reg. 46.0 47.7 53.0 55.3 59.6 62.2 63.5 65.2 68.0 71.1 
Vladimir reg.. 44.9 51.2 55.8 59.0 61.3 64.2 65.7 63.6 65.7 69.2 
Voronezh reg. 61.3 62.1 64.2 67.3 72.8 77.2 78.3 80.9 83.8 85.7 
Ivanovo reg. 37.2 43.1 46.4 47.0 52.8 55.8 59.3 60.8 69.9 72.9 
Kaluga reg. 52.2 55.3 59.2 62.0 68.0 70.3 71.8 74.2 75.0 78.5 
Kostroma reg. 50.0 51.7 55.7 58.5 60.6 67.1 70.4 72.2 73.0 74.8 
Kursk reg. 50.5 54.3 59.2 64.1 65.7 70.5 73.9 74.2 79.5 81.2 
Lipetsk reg. 62.0 60.5 65.7 69.5 74.2 75.1 78.5 82.5 82.3 85.4 
Moscow reg. 61.6 67.4 72.9 77.4 82.2 84.8 86.9 89.1 93.8 96.0 
Oryol reg. 53.8 59.0 61.6 62.8 69.2 70.5 73.0 73.4 75.5 77.9 
Ryazan reg. 53.7 59.2 63.7 66.2 71.3 73.4 77.3 76.8 79.3 78.0 
Smolensk reg. 39.1 44.4 46.9 51.7 58.9 61.9 66.8 69.3 70.7 73.7 
Tambov reg. 54.4 58.0 61.6 64.3 67.8 69.2 74.4 73.3 78.0 81.5 
Tver reg. 34.6 38.0 42.9 45.9 53.2 58.8 63.5 63.6 63.6 66.5 
Tula reg. 38.7 44.2 51.3 56.7 63.0 64.5 64.4 67.8 69.4 72.9 
Yaroslavl reg. 49.5 55.3 60.3 62.5 67.5 68.1 70.0 76.8 75.2 79.4 
Moscow 94.6 94.7 98.4 100.9 104.3 104.7 106.9 102.9 105.5 104.7 
Rep. of Karelia 44.0 48.0 52.5 53.5 60.6 63.7 68.9 67.6 67.4 71.7 
Rep. of Komi 48.0 50.9 53.5 55.9 61.5 64.8 68.9 70.0 70.4 69.7 
Arkhangelsk reg. 50.9 54.5 59.7 61.2 65.0 70.0 70.9 72.9 71.3 74.6 
Nenets Aut. Okrug 40.0 49.2 52.8 53.2 60.0 66.7 63.1 73.9 73.7 80.4 
Vologda reg. 49.2 50.2 52.4 52.8 59.5 64.5 68.8 73.0 74.6 76.7 
Kaliningrad reg. 52.5 53.0 58.5 65.1 72.4 77.3 77.9 75.7 79.0 83.6 
Leningrad reg.. 41.0 46.5 54.3 58.9 64.4 68.0 68.9 69.9 72.3 75.1 
Murmansk reg. 68.0 68.7 73.7 77.2 78.6 81.4 86.2 82.9 84.0 86.9 
Novgorod reg. 30.8 32.0 38.6 41.4 47.8 54.4 56.0 58.3 58.0 61.7 
Pskov reg. 40.8 39.1 43.8 46.4 53.6 57.0 62.9 68.1 66.8 69.7 
Saint Petersburg 70.4 73.2 78.8 83.9 87.8 91.1 93.9 91.4 92.0 94.3 
Rep. of Adygeya 57.9 60.9 66.2 69.8 72.3 76.7 79.4 81.1 79.9 82.2 
Rep. of Kalmykia 58.7 64.0 69.0 64.9 72.2 75.4 78.0 79.8 79.8 83.0 
Crimea - - - - - - - 33.4 34.1 33.8 
Krasnodar reg. 65.3 69.0 77.9 75.3 76.4 80.5 85.3 85.5 87.9 91.9 
Astrakhan reg. 50.1 53.9 59.2 59.7 65.2 68.7 73.9 75.4 77.9 82.3 
Volgograd reg. 58.3 59.9 62.3 64.3 66.9 68.4 71.6 75.7 79.9 85.0 
Rostov reg. 60.1 63.0 68.8 69.9 72.0 76.9 79.9 81.2 82.3 83.5 
Sevastopol - - - - - - - 49.8 48.9 48.8 

Continued on next page 



55 

National Accounting Review              Volume 1, Issue 1, 42–61. 

Region of the RF Complex index 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Rep. of Dagestan 82.9 85.0 85.6 88.4 89.4 89.9 91.0 94.2 92.6 98.2 
Rep. of Ingushetia 100.0 104.9 99.9 97.6 96.5 96.9 98.1 92.3 94.8 94.6 
Kabardino-Balkar Rep. 76.4 82.8 80.6 80.8 82.4 85.4 87.5 86.1 87.9 89.5 
Karachay-Cherkessia  69.6 73.2 76.1 79.3 80.6 82.8 86.9 90.2 91.1 96.1 
Rep. of North Ossetia 84.9 82.6 82.0 88.5 91.3 93.5 93.4 95.9 94.6 96.2 
 Chechen Rep. 87.7 93.0 94.2 94.3 93.0 89.5 94.3 94.0 96.2 98.1 
Stavropol reg. 69.3 71.5 73.6 79.3 81.8 85.6 89.9 88.6 93.6 94.6 
Rep. of Bashkortostan 63.2 66.4 69.0 69.2 72.7 74.2 76.4 74.1 74.3 77.9 
Rep. Mary El 38.6 40.0 46.8 48.8 52.1 56.2 60.2 65.7 66.2 71.2 
Rep. Of Mordovia 58.5 62.3 65.3 67.3 69.5 72.2 73.9 76.9 79.8 83.1 
Rep. of Tatarstan 67.1 69.4 72.9 75.1 77.7 82.0 84.3 83.7 86.4 90.8 
Udmurt Rep. 43.1 47.0 52.0 55.3 59.1 64.9 67.9 63.5 68.5 72.0 
 Chuvash Rep.. 43.8 46.9 50.9 52.4 57.8 61.3 63.1 65.4 67.1 71.2 
Perm reg. 35.5 39.3 42.5 45.2 50.0 54.7 59.6 61.5 62.2 64.6 
Kirov reg. 44.8 47.6 51.8 54.9 60.0 63.5 66.6 70.8 70.9 74.8 
Nizhny Novgorod reg. 46.0 50.6 55.9 59.1 65.4 68.8 72.3 74.2 77.4 82.8 
Orenburg reg. 48.1 49.9 54.8 58.1 60.2 62.1 64.2 64.3 68.1 73.9 
Penza reg. 61.0 62.8 67.3 70.0 75.2 79.5 79.7 77.8 81.5 83.0 
Samara reg. 56.9 56.9 59.1 60.3 64.0 67.4 66.5 72.8 74.2 77.0 
Saratov reg. 57.8 61.1 63.6 65.6 68.2 72.0 74.9 77.0 77.9 80.9 
Ulyanovsk reg. 53.1 57.5 60.8 60.7 64.6 70.3 69.1 69.3 69.2 71.4 
Kurgan reg. 40.6 40.8 45.3 46.5 51.4 53.0 55.4 57.2 55.5 59.4 
Sverdlovsk reg.. 51.5 53.5 56.4 59.6 61.7 64.5 68.7 70.8 69.7 71.8 
Tyumen reg. 59.1 62.6 65.9 68.4 74.0 78.7 69.8 70.1 74.5 78.6 
Khanty-Mansiysk. A.O. 71.4 73.5 74.6 75.2 80.7 85.9 87.5 87.7 92.0 96.0 
Yamalo-Nenets A.O. 75.6 78.7 83.0 82.1 83.6 86.5 92.2 94.4 93.0 94.3 
Chelyabinsk reg. 50.2 52.6 56.9 57.7 60.4 62.5 65.9 64.8 67.5 70.1 
Rep. of Altai 39.6 38.6 39.9 43.9 49.9 54.1 53.1 54.9 58.4 67.9 
Rep. of Buryatia 38.6 38.5 43.0 47.1 50.1 54.4 61.7 59.4 65.4 70.0 
Resp. Tuva 1.0 5.1 8.2 12.0 20.6 20.5 25.6 31.4 29.2 29.2 
Resp.Khakassia 45.0 46.4 43.5 50.9 51.9 52.4 58.2 59.0 59.7 63.8 
Altai reg. 40.3 44.4 47.6 48.0 50.9 53.1 57.8 57.2 62.4 65.7 
Transbaikal reg. 36.2 37.6 41.0 42.9 49.4 52.0 53.8 59.7 56.1 60.9 
Krasnoyarsk reg. 48.4 50.4 52.5 54.9 58.8 62.1 63.6 64.5 65.5 68.0 
Irkutsk reg. 32.2 33.5 34.0 35.2 38.6 43.0 44.7 46.3 48.8 52.5 
Kemerovo reg.. 28.0 32.4 34.7 35.7 41.3 45.6 51.2 52.6 50.7 52.2 
Novosibirsk reg. 46.0 51.0 56.7 59.6 64.3 66.5 68.7 69.7 70.8 73.1 
Omsk reg. 46.8 52.2 55.9 59.7 65.6 66.8 64.8 64.6 64.1 70.1 
Tomsk reg. 59.1 58.8 60.1 63.4 68.2 71.8 74.0 72.8 74.6 75.3 
Yakutia 62.3 58.2 60.4 62.0 65.5 70.5 75.3 79.1 78.4 80.2 

Continued on next page 



56 

National Accounting Review              Volume 1, Issue 1, 42–61. 

Region of the RF Complex index 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Kamchatka Krai 57.1 61.0 64.7 64.1 66.0 71.2 75.6 76.1 78.0 77.6 
Primorsky Krai 34.6 39.0 45.3 48.4 50.5 56.4 59.8 63.4 64.0 68.6 
Khabarovsk reg. 37.3 40.3 46.6 50.3 53.4 60.1 64.2 63.4 66.6 69.2 
Amur reg. 34.5 32.2 33.8 36.8 39.3 46.9 55.5 60.6 60.1 63.0 
Magadan reg. 35.7 32.6 44.3 49.1 57.4 57.9 65.6 66.4 70.6 72.8 
Sakhalin reg. 34.7 36.4 38.2 42.3 46.6 50.1 56.6 59.5 57.6 61.3 
Jewish Authon. reg. 16.6 20.9 24.9 23.9 25.7 33.1 37.6 37.5 36.3 37.8 
Chukchi Aut.county 29.9 34.5 30.4 30.9 44.1 45.7 43.0 48.1 52.1 49.6 

 

Figure 4. The change in the quality of life for some of Russia’s constituent entities for 2007–2016. 

Consistently, the highest complex indices of quality of life for the entire observation period are 
shown by the constituent entities of the North Caucasus Federal District. Of the 37 indicators, when 
calculating the complex indices of quality of life, 20 reflect the human physiological well-being and 
explain (along with the characteristics of national statistics) high indicators for the national republics 
of the North Caucasus (North Ossetia, Ingushetia, Chechnya, Dagestan, etc.). In these constituent 
entities of the Russian Federation, it is less likely to get sick, die and undergo criminal violence. The 
population of these entities is not excessively involved in industry. Life expectancy in Ingushetia is 
the highest in Russia and exceeds the Novgorod region by 10 years. 

4. Estimating the stability of a composite index 

Researchers from Russia who compute integrated indicators for different observations complete 
their research at the stage of calculating and analyzing the ratings obtained, without analyzing the 
quality problems of the results, in particular robustness and sensitivity (Ajvazjan, 2003; Ajvazjan et 
al., 2009; Gajdamak and Hohlov, 2009) 

The main area of application of composite indexes is the rating of objects. It is the position of the 
object relative to other objects that is the basis for attracting public attention, and for making political 
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decisions. If small changes in the input data (values of scores or weights) when calculating the 
composite index fundamentally change the ranking of objects made on the basis of the calculated 
complex indices, then such an integral indicator cannot be considered reliable. A necessary attribute of 
the reliability of a composite index is stability relative to perturbations of the original data. In particular, 
the consequence of this is a slight (on average) change in the rating of objects for different times. 

The researchers, who calculate the complex indices for various observations, complete their 
research at the stage of calculating and analyzing the obtained ratings without analyzing the 
problems of the quality of the results, in particular, robustness and sensitivity. 

It should be noted that the ranks of the 25 member countries of the European Union for 2009–2011, 
based on the values of the HDI (when calculating the value of the HDI by linear convolution with equal 
weights) give an average change in the rating for the year of 7.7% (Human Development Reports, 
1990–2014). The change in the ratings of more than 15% makes up 14% of cases; more than 30% is 2% 
of cases. In other words, values are typical in the case of linear convolution with constant weights.   

In a study that determines complex indexes of quality of life for the Russian Federation 
according to the methodology proposed by (Ajvazjan, 2003), ratings for constituent entities were 
exhibited according to two methods: the weights of the indicators for each year in the linear 
convolution were determined in one case by experts, in the other by the method proposed by the 
author. Cases when the rating change amounted to more than 15% are the following: 18 in the case 
of expert weights, one in the case of calculated weights. The average change in the rating for the first 
method is 3.6%, for the second method it is 1.6%. Hence, the proposed methodology showed a 
brilliant quality of the constructed composite index. 

However, with careful application of this technique by other authors, the results turn out to be 
quite different. For example, in the paper (Gajdamak and Hohlov, 2009) the complex indices of the 
quality of life for municipal formations of the Tyumen region (2005–2008) were calculated. In this 
case, a change in the rating of more than 15% of the maximum is 48.9% of the total number of cases. 
In 17.9% of cases, this value exceeds 30%. The average rating change is 16.9%. In the paper 
(Ajvazjan et al., 2009) values of ratings for municipal formations of the Samara area, calculated by 
the same method, are given. 45% of objects significantly changed their position in the rating (by 15% 
or more from the maximum possible rating change). In 21.6% of cases the rating change exceeds 
30%. The average rating change is 16.9%.  

If small changes in input data while calculating the composite index dramatically change the 
ranking of objects, then such a composite index cannot be considered reliable. A necessary attribute 
to the reliability of a composite index is stability relative to perturbations of the original data. In 
particular, the consequence of this is a slight (on average) change in the rating of objects for different 
measurements. Schemes for determining weights using factor analysis or the principal component 
analysis do not have this property. 

Let Rt  = (rt1,rt2,…,rtm)—the ratings of m objects for the moment t. Known values of the rating 
sets Rt, Rt+1, ..., RT  for the moments t, t + 1, ..., T. Rt—can be considered as a random value 
uniformly distributed on the interval [1, m]. Numerical characteristics Rt correspond to the numerical 
characteristics of uniform distribution.  

Values of ratings for object i at successive instants of time rti, rt+1,i, rt+2,i  represent a numerical 
implementation of a complex functional dependence, a formal description of which is not possible. 
Changes in ratings over time are dictated mainly by this dependence and to a lesser extent by random 
factors. The degree of linear connection between the sets of Rt, Rt+1 ratings is high, the Pearson and 
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Spearman correlation coefficients are close to one and do not allow the making of unambiguous 
conclusions about the quality of the ratings. We propose a method for estimating the stability of a 
composite index. 

If the random variables Rt, Rt+1 are independent, then the variance of the difference of 
independent random variables is equal to the sum of the variances 

.)()()()( 11 ttttt RDRDRRDD     
Because X is even distribution on [a,b], then the variance D(X) = (b-a)2/12. Therefore, 

D(Rt)=D(Rt+1) = (m-1)2/12 and 

6
)1()()()()(

2

11


 

mRDRDRRDD ttttt        (9) 

It is possible to estimate the stability of the complex indexes by estimating the randomness of 
the difference in the exposed ratings of Rt. Such an estimate of randomness is the fraction of the 
variance of the realization of the quantity Rt with respect to the variance (9), which reaches a 
maximum if the ratings Rt, Rt+1 for two consecutive moments of time are absolutely independent of 
each other and are completely random. Since randomness is not the main reason for rating change, 
this share should be small. 

Table 6. Comparison of quality indicators of complex indexes. 

Complex index Source Period Weights, 
source 

Number Evaluation 
Variables, 
 n 

Objects, 
m 

HDI of the EU 
countries 

Human Development Reports, 
1990–2014 

2009–
2011 

expert 5 25 6.9 

Quality of life of the 
Russian Federation 

Ajvazjan, 2003 1997, 
1999 

expert 9 79 6.3 

Quality of life of the 
Russian Federation 

Ajvazjan, 2003 1997, 
2000 

expert 9 79 1.2 

Quality of life in the 
Samara Region 

Ajvazjan et al., 2009 2002–
2004 

PCA 11 37 31.5 

Quality of Life of 
the Tyumen Region 

Gajdamak and Hohlov, 2009 2005–
2008 

PCA 17 26 22.7 

Quality of life of the 
Russian Federation 

Zhgun, 2017a 
 

2007–
2014 

PCA 37 83 1.7 

Quality of life of the 
Russian Federation 

(*) 2007–
2016 

PCA 37 85 1.6 

SSI. Human 
Wellbeing 

http://www.ssfindex.com/data-
all-countries/ 

2006–
2016 

expert 9 154 1 

SSI. Environmental 
Wellbeing 

http://www.ssfindex.com/data-
all-countries/ 

2006–
2016 

expert 8 154 3.5 

SSI. Economic 
Wellbeing 

http://www.ssfindex.com/data-
all-countries/ 

2006–
2016 

expert 5 154 4.5 

Note: Integral indicators (*) are calculated by the author’s method in this paper. 
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Table 6 shows the results of assessing the quality of different complex indexes. As a conditional 
unit of sustainability, we can consider an estimate of the integral index of the HDI, which is about  
7% of the possible randomness.  

The magnitude of the estimate, comparable to this value, will indicate a relatively good stability 
of the integral indicator with respect to the input data. Values that significantly exceed this value 
characterize the instability of the complex indexes and, consequently, it’s of poor quality. In the table 
below, these are studies Gajdamak and Hohlov (2009) and (Ajvazjan et al., 2009), where the method 
Ajvazjan (2003) is implemented. The author’s method shows good stability. 

5. Conclusion 

In this paper we consider a solution to the problem of constructing latent complex indexes for 
the change of a systems quality on the basis of registered measurements for a number of observations 
in the absence of training. An analysis of the stability of such a solution is provided.  

The construction of a system’s complex indexes can be considered as a task of extracting the 
useful signal from a background noise. The signal in this case is the weights of the linear convolution 
of the indicators. Determined weights should reflect the structure of the system being evaluated. 
Successful application of the PCA to describe the structure of various system types suggests that the 
method will also give adequate results for describing social systems. However, the principal 
component method and factor analysis (even with fixed methods for extracting factors and the 
method of rotation) determine the structure of the principal components and the main factors for 
different observations differently. Hence, the method of determining weights using multidimensional 
analysis cannot be used to compare the characteristics of objects in dynamics. 

The reason for this may be the presence of irremovable errors in the data used. Even a small 
perturbation in the source data can cause a significant change in the weights when using 
multidimensional analysis methods. As a way out of this situation, a modification of the principal 
component method is proposed, taking into account the presence of errors in the data used. The 
algorithm uses a new approach to choosing the number of principal components, to determine the 
significant loads of the principal components describing the structure of the system, to determining 
the weights of the considered subsystems, and to determining the informativeness of the selected 
principal components based on the signal-to-noise ratio parameter. 

The solution of the problem requires a detailed understanding of the influence of the errors in 
the data used on the calculated characteristics. The consequence of stability is on average a slight 
change (increment) of the ratings of objects for different measurements. This increment can be a 
posteriori estimated by a sequence of observations using the proposed dispersion criterion. Estimates 
of different complex indexes’ stability by the variance criterion are given. Complex indexes 
calculated using the proposed modification of the principal component method, which takes into 
account the presence of errors in the data used, show good resistance to changes in input data. 
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