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Abstract:

In this article, a model of a diseased prey-predator with fractional order has been studied. The model has been used

as a functional response of Holling type II in a non-delayed model. The eigenvalues of a model are used to test its stability using
critical points. Furthermore, the boundedness, uniqueness, existence, and positivity of the solutions have been studied. The locally
asymptotically stable model has been analyzed using the critical points, and the globally asymptotically stable model has been examined
using the Lyapunov function. The occurrence of Hopf bifurcation for fractional order has been examined. Finally, numerical simulations

are presented to confirm the analytical solutions.
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1. Introduction

The predator-prey models, developed by Lotka [1]
and Volterra [2], are considered early developments in
contemporary mathematical ecology in coupled systems
of non-linear differential equations. Eco-epidemiological
models are used to investigate the relationship between
predator and prey infection in infected and diseased prey
populations. Eco-epidemiology is a field that studies the
transmission of diseases among interacting organisms with
a significant environmental impact [3, 4]. Since Kermack-
Mckendrick’s pioneering work on SIRS, epidemiological
models have attracted much interest, as functional response
is among the most important factors in the prey-predator
population [5, 6]. Mathematical models are crucial for

understanding, studying, and investigating the spread and

management of infectious diseases [7, 8].  Fractional
calculus is a generalization of the classical differentiation
and integration of arbitrary orders. Many researchers are
interested in scientific and engineering fields, including
biology, fluid dynamics, and medicine [9, 10]. Due to
its numerous applications, fractional-order calculus has
attracted the interest of researchers throughout the last two
decades [11, 12]. Fractional-order biological models have
recently attracted the interest of many authors [13, 14]. The
main reason lies in the fact that memory-based systems,
which exist in a large number of biological systems, are
The

fractional-order derivative has the benefit that it allows you

easily relatable to fractional-order models [15, 16].

to remember the concept of numerical derivative calculation
as well as important information about derivative values.

Javidi studied the biological behaviors of a prey-predator
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model with fractional order [17, 18]. This article includes an
investigation of the stability of a derivative of a fractional-
order model of the mutualistic interaction between two
species with infection. Alidousti studied how the capture
of predators and scavengers was affected by a prey-predator
[20]
studied the existence, uniqueness, and boundedness of

model with fractional order [19]. Mukherjee et al.

solutions to a fractional-order prey-predator system in
restricted space. Recently, fractional calculations have
developed rapidly and displayed a wide range of possible
applications [21, 22]. However, due to memory effects,
fractional-order derivatives in the biological model are more
sensible than integer-order derivatives. To change ordinary
calculus to fractional calculus, it is important to use the
Riemann-Liouville and Caputo fractional derivatives. One
of the most important processes in any natural ecosystem is
the predator-prey model. Caputo introduced the Caputo-type
derivative at 1967 [23]. A system of fractional order with
a Holling type-II functional response was investigated [24].
Routh-Hurwitz criteria is the condition for stability of a
system in fractional order. A system with non-linear
fractional order stability with the use of the Routh-Hurwitz
criterion was investigated by Ahmed et al [25]. Garrappa
studied how to solve fractional-order nonlinear differential
equations [26]. In a prey-predator model with fractional
order, Javidi and Nyamoradi investigated the effects of
harvesting [27, 28].

fractional order can be used to solve real-world problems.

Several mathematical models in

The proceeding discussion gives the motivation to learn
about the dynamic behavior on the fractional prey-predator
model. The unique aspect of this work is to examine the
prior history of the prey-predator model.

The novelty of this work is to investigate the stability
analysis of the prey-predator model through fractional-
order derivatives. The analysis demonstrates that fractional
calculus is well suited to explain the memory and inherited
features of several techniques and materials that are not
taken into consideration by classical integer models.

The paper is organized as follows: A mathematical
model is developed in Section 2. Section 3 examines the
fractional-order dynamical system’s preliminary dynamics.
The proposed model’s uniqueness and boundedness solution
have been examined in Section 4. The stability analysis
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of the suggested model has been investigated in Section 5.
The Hopf bifurcation of the system is studied in Section 6.
Section 7 examines numerical simulations of the proposed
model.  Finally, the conclusion of the paper and the
biological implications of our mathematical results are

found in Section 8.

2. Mathematical model formation

The model has basically two types of population:

(i) Prey population and (ii) Predator population.

Melese [29] studied and discussed refuge and harvesting
in the prey-predator model with the Holling type II
functional response. Then the proposed model,

d—S:RS(l——S+I)—/lIS— nSP

dT K a1+S

dI b IP

L MP-DI- , 2.1
dT Y 21
P IP P

d_ — _DyP+ chy ca1 S ’

dT a+1 a+S

subject to initial conditions S (0) > 0, /(0) > 0 and P(0) > 0.
An example in real life: rabbit populations are afflicted with
myxomatosis, a condition carried on by the myxoma virus.
This disease may have an impact on the interactions between
foxes and other predators in a region where rabbits are a
major source of food for them. The predator-prey dynamic is
disrupted because infected rabbits are more easily captured
by predators.

To reduce the number of system parameters, one needs to
non-dimensionalize the above model (2.1) by s = f—(, i= é,
and p = g, and to take into account the dimension time

t = AKT. Now, we apply the following transformations:

D,
Ak

R (0] aq
r:—’a:—a:E,

Ak AK’

D, by
= — 9 = — =
TR TAL
The Eq (2.1) can be rewritten in the following non-

dimensional form using the above transformations.

ds asp
Gl s— i) —is— ’

o rs( s—1i)—1is -

di i

& s ai-22 2.2)
dt a+i

dp clip  casp

— =—dyp+ .

dt 2P a+i a+s
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In the system (2.2), we have taken the Caputo fractional-
order derivative § to model, and then the model (2.2) is taken
into the following form:

s

- :rs(l—s—i)—is—fips,

dPi Oip

—  =is—dyi— , (2.3)
di? BT

dp chip  casp

— =—-dp+—+ —,

diB P i T ars

subject to the initial conditions s(0) > 0, i(0) > 0, p(0) >
0. Table 1 shows the biological representation system (2.1)

parameters [29].

Table 1. Biological representation of system (2.1)

parameters.
Parameters Environmental representation
S Susceptible prey
1 Infected prey
P Predator
r Prey growth rate
Environmental carrying capacity
a) Constant of Half-saturation
a Predation rate of Susceptible prey
by Predation rate of Infected prey
c Conversion rate of prey and predator
d; Infected prey death rate
dy Predator death rate
A Infection rate

3. Preliminaries

In this section, we provide basic definitions, significant

results, and characteristics of fractional differential

equations that are useful in the proof of theorems.
Definition 3.1. The Caputo fractional derivative of order 3
is defined as

1 d ,
_ﬁ
ra-p) ﬁ(t 7S s

wheret > 0, f € C"([0, +0),R) and T is a Gamma function.

°Dlfu) =

Lemma 3.1. [30] Consider a system of fractional-order

Caputo derivatives
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CDfx(t) = f(t, x(2)),t > 0,x(0) > 0,5 € (0, 1],

where f : (0,00) x Q — R". If f(t, x(¢)) satisfies the locally
Lipschitz condition with respect to x, then the equation on

(0, 00) X Q has a unique solution.

Theorem 3.1. [31] Consider the N-dimensional fractional

differential equation system

dP(x) _ . _
prale F(x); x(0) = xo,

where A is the arbitrary constant N X N is the matrix and
B (0,1).
(i) The solution x = 0 is asymptotically stable if and only if

all eigenvalues A;;, j = 1,2,3,..N of A satisfy larg(4;)| >
pr

(ii) The solution x = 0 is stable if and only if all the
eigenvalues with larg(4;)| = ﬁ?ﬂ have the same geometric

multiplicity and algebraic multiplicity.

Theorem 3.2. [27] Consider the fractional order system

df(x) B
7l f(x), x(0) = xo

with x € R" and 8 € (0, 1). The above system’s equilibrium

points are the solutions to the equation f(x) = 0. If all of

the eigenvalues of the Jacobian matrix J = o evaluated

pr *

at equilibrium satisfy larg(4;)| > > then the equilibrium

point is considered to be locally asymptotically stable.
Lemma 3.2. [6] Let x(t) € C([0, +00)).If x(t) satisfies
€D} x(1) + Ax(t) < pt, x(0) = xo,

where 8 € (0,11, (A, 1) € R?, and X # 0, then x(t) < (xg —
0 U
“)Eg[-AP] + =
/l) sl 1+ h

4. Existence and uniqueness of the solutions

In this section, boundedness of solution of the

system (2.3) has been examined. The fractional-order

system is as follows:

#X()
df

Theorem 4.1. For the non-negative initial conditions, there

= f(t,X(®), Be(0,1]

is only one solution to the fractional-order system (2.3).

Volume 5, Issue 3, 292-304.
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Proof. A sufficient condition for the solutions of
system (2.3) in the region y % (0, T'].
Where,

x = {(s.i.p) € R® - max(|s]. lil. Ip)) < n).

Now, let us define a mapping V(X) = (Vi(X), V2(X), V3(X)).
Where

ViX) = rs(l — s — i) — is — P
a+s
oi
Va(X) = is — dyi — —L-,
a+i
o
Va(X) = —dop + 22 4 CLP
a+i a+s
IVX) - VXl
=[Vi(X) = Vi(X)| + [V2(X) = Va(X)| + [V3(X) = V3(X)|
=I"S(1—S—i)—is_ﬂ_r§(1_§_;)+;§+ asi
a+s
9' _ B 9—._
+lis —dvi - =2 —5i+ dyi+ —2
a+i a+i
i|odops SO O s 0D casp
ati ats a+i a+s

<{r+2m+ 7+ aan(l + ) + @+ Dnlfs -
x{rn+2n+d1 +san(l +a)+ O +n(r+2+6)
+ Gan(1 + a)}|i —?| +{(1 + e)aan + (1 + ¢)6an
+cn(9+a+d2)}|p—ﬁ‘.

Where,

H =max{r+ 2m+n+aan(l +c) +nla+ 1), rp+ 27

+di +0an(l +a) +0n+n(r+2+06)+0an(l + a),
a(l +c¢) N 61 +¢)
a

+dy + a(l = o+ 6(1 - o}
Hence, the solution of the system (2.3) exists and is unique.

O
Boundedness of the solutions

Theorem 4.2. Each and every one of the system (2.3)

solutions are non-negative and uniformly bounded.

Proof. Construct a function

V(i)=s+i+p.

Mathematical Modelling and Control

Then, for each > 0, we obtain

.
CDf+nV(z)=(rs—is— asP)+(is—d1i— ’p.)
a+s a+1i
.
wn(-dp+ =L LYy s ingp)
a—+1i a+s

1N
:(r+§)s—rs2—rsi+69({——)—lp,
cla+i

cas
| casp

1
(5— E) +((—d))i+ L —d)p.

a+s
. . .1

By choosing ¢ < min{d;,d,} and { < min<{ — ;, we have
c

DP V< (r+0)s—rs

B 2 r+/¢ 2 r+/¢ 2
o[ (5
PG
-4

Applying lemma 2, which gives,

(r+27? (r+27?
V() < (V(O) - Y )Eﬁ[—{tﬁ] + 7
2
Here, we know that V(¢) is convergent to r Z o fort — co.

Therefore, all the solutions of the system (2.3) with non-
negative initial conditions are confined in the region Q.
Where,

2
Q= {(s, i,p) €R} V(1) < r Z;) +€e> 0}.

5. Equilibrium points and stability analysis

In this section, the system (2.3) has the following possible
equilibrium points:
(1) Eo(0,0,0) is the trivial equilibirum point.
(i) E(1,0,0)
equilibrium point.

is the infected-free and predator-free

(iil) E»(5,0, p) is the infected prey-free equilibrium point.
_ dra _ac((ca — do)r — ardy)
Where 5 = ,and p =
dr — ca (ca — dy)?
(iv) E5(8,1,0) is the predator free equilibrium point, where
r(l1 —dy)

$§=d,andi= 1
(v) The interior equilibrium point E*(s*,i*, p*).
Where,
« _ alady + (dy — ca)s™)
(cas* + (c0 — dy)(a + s*)’

Volume 5, Issue 3, 292-304.
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Pt = ac(s” — di)(a + %) Theorem 5.2. The infected free and predator free
(cas* + (8 — dy)(a + s%))

equilibrium point E|(1,0,0) is unstable.

and s* is the only positive root of the equation for a quadratic ey . . . ..
yP q 9 Proof. At an equilibrium point E;, the Jacobian matrix is

function.

given by
As® +Bs+C =0. (5.1) —r —(r+1) ¢
a+s
J(E) = 0 1-d; 0
Where 0 0 d+ ca
a+1
A= +cl—d), . 2]
r(ca +c ») The eigenvalues are 4; = —r,Ap = 1 —d;| - P and A3 =
B = (¢ — dy)(—r + ar) — rac + a(dy + (d; — ca)r), L. atl
—dy + .
C = —a((r)(c — dy) + (ca(d)) — ad>(1 + r)). a+1 Br Br
Thus, |arg(1))] = 0 < > larg()| = 7 > > and
5.1. Stability analysis larg(A3)| = m > ﬁ?ﬂ

Now, we want to calculate the Jacobian matrix for local Due to numerical simulation table values, 1 — d; is

stability analysis around different equilibrium points. The POSItive.

Jacobian matrix at an arbitrary point (I, m, n) is given by The equilibrium point E1(1,0, 0) is unstable. o

ny np o N Theorem 5.3. The infected-free equilibrium point

J,mn) =| ny nyn nx E» (5,0, p) is locally asymptotically stable if P, R, PQ — R
Ny Ny N are positive.
Where, Proof. At an equilibrium point E,, the Jacobian matrix is
given by
. aap
nyp=r(l=-28)—i(r+1)— ——,npp=—-s(r+ 1),
(a+s)? S fiz fis
L Y Lp.’nm = i JE)=| fa fo S
a (a +i)? a+i
. B o f3
acap actp b+ cOi N acs
N3 = ———,03 = ———,N33 = — - .
3 (a+ s)? 32 (a+i)? 33 2T Ut a+s Where,
Theorem 5.1. The trivial equilibrium point Ey(0,0,0), fu=r 2ard,  (ca —db)*p fp = a(l + r)yd,
1n=r- - yJo=————,
which is a saddle. ca — s aac? c—ds
d ad
fis=——=fu =0, fn=—di + —2d’f23 =0,
Proof. At an equilibrium point Ey, the Jacobian matrix is ¢ @ —ap
: —d))*p 7
given by f1 = Uea =) p) p),f32 = g,fy =0.
aca a
r 0 0 .. . .
Here, the characteristic equation of the above Jacobian
J(E)=]10 -d 0 o .
matrix is provided by
0 0 -4
3 2
The eigenvalues are 1, = r, 1, = —d; and A3 = —d> . A+ P17+ 01+R=0. (5.2)
Thus, |arg(/11';| =0 < %T larg()| = © > %T and Where,
T
larg(A3)] = > >
Hence, the trivial equilibrium point Ey(0, 0, 0) is unstable. P=—fi1— fn,
o 0 = —fa/i3 + fafirs

Mathematical Modelling and Control Volume 5, Issue 3, 292-304.
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R = fizfiafs1-

The Routh—Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if P, R, and PQ — R are all positive.

Now,

PO —R = —fiifo(fit + f2) + fit o f33.

Now the sufficient condition for f}; and f>; to be negative.
The infected-free equilibrium point E»((5,0, p) is locally
asymptotically stable. O

Theorem 5.4. The predator-free equilibrium point

E3(5,1,0) is locally asymptotically stable if d» > c(a + 6).

Proof. At an equilibrium point E3, the Jacobian matrix is

given by
ay apx ass
JE3) =| an an ax
asy asy ass
Where,
_ —a
ayy = —dr,app = (=1 -r)s,a;3 = ,
a+s
. 0i
ax =i,a» =0,a3 = —,
a+i
cas c6i
az1 = 0,a3 =0,a33 = - — 8¢ + -
a+i

Here, the characteristic equation of the above Jacobian

matrix is provided by

P+X2+Y1+Z=0. (5.3)

Where,

X = —ay — as,
Y = —ayia1y + azzaqy,

Z = apayazs.

The Routh—Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if X, Z, and XY — Z are all positive.

Now, XY — Z = —ay(—apaz + azz +apy).

Now, the sufficient conditions for ass to be negative is
dy > c(a +0).

Hence,the equilibrium point E3 is locally asymptotically
stable. O

Mathematical Modelling and Control

Theorem 5.5. The interior equilibrium point E*(s*,i", p*)

is locally asymptotically stable.

Proof. Here, the characteristic equation of the above

Jacobian matrix is provided by

g1 812 813
JE*)=| g 82 8»
831 832 833
Where,
—s*(=r+ar+ (1 +r)i*+2rs*)
g1 = - )
a+s
. —as”
gr=-s(r+1),83= -,
a+s
. afp*i* or*
= l b = —.’ J = _.,
821 822 @+ 823 T
acap® aclp*
g3 = ,833 = 0.

A+ 28T ar iy

Here, the characteristic equation of the above Jacobian
matrix is provided by

LB +EX+FA1+G=0. (5.4)

Where

E=-gi1 — g3,
F = g21812 + 822811 — 813831 + 823832
G = g13(—822831 + 821832) + 823(812831 — &11832)-

The Routh—Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if E, G and EF — G are all positive.

Therefore, E* is locally asymptotically stable. O

5.2. Global stability analysis

Theorem 5.6. The interior equilibrium point E* is globally
asymptotically stable.

Proof. Consider a Lyapunov function
V(s,i,p) = [s — s = s*ln%] + e [i - - i*lné] + e [p -p"- p*lnﬂ*].
K i p

Applying the Caputo fractional derivative, we obtain

Volume 5, Issue 3, 292-304.
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S[S_S ] Ds(1) + ey
s

i] Cp%i(r)
l

+ ey

PP |che
—]CD p@)
p

S(S_S)[rs(l—s—i)—is— a/sp]
s a+s
- oi
+€1(l ,l )[is—dli— lp.]
i a+i
— p* 0i
e p—p —d2p+c zp' casp
p a+i (a+s)

S—(s=5)[r{(s+D)—-("+i)+ ({0 —-i"}

*

p s
a+s a+s*

+a

e i) [(< R P_)

a+i

[ (ia+ i) —ita+i)

_62(p_p)[cg( (@+i)a+i) )
(a+s*)s—(a+ s)s*}

+ ca

(a+ s)(a+s*)

Obviously, D?V (s, i, p) < 0.
We conclude that E* is globally asymptotically stable. O

6. Hopf-Bifurcation analysis

In this section, we discuss the Hopf-bifurcation analysis
of system (2.3).
Define a function, with respect to 8 by
m(pB) =

Theorem 6.1. The fractional-order system (2.3) experiences

Br .
>~ min larg(A;).

a Hopf bifurcation at the endemic equilibrium point E*
when bifurcation parameter a passes through the critical
value o* € (0, 1), provided that the following conditions are
satisfied.:

(i) The corresponding characteristic Eq (5.4) of system (2.3)
has a pair of complex conjugates A1, = y+iw (where y > 0)

and one negative real root 3.

(i) m(g = 2~ min larg ()1 = 0.
. dm(B) N
(iii) ’Z[(f lg=p- # O.

Here, we give the conditions under which a Hopf
bifurcation would exist as the derivative’s order approaches

a critical value at the interior equilibrium point E*.

Mathematical Modelling and Control

Proof. The following theorem, which takes the fear
parameter as a variable, shows the existence of Hopf
bifurcation.

The characteristic equation must be of the form
2P +EX+FA1+G=0.

The Hopf-bifurcation occurs at @ = «, as demonstrated
by the transversality condition for the roots of the above
equations =i VF and —E.

d
o {Re(A(f)} la=a # 0.
a

For all f, the roots are generally in the form

lla) = r(a)+is(a),
D) = r(a)-is(a),
/13 (a) = -FE.

Now, we check the condition,

d .
— {Re(A /(@) la=or #0,j=1.2.

Let A, = r(a) + is(@) in equation, we obtain
A(a) + iB(a) =0,
where

A(@) = (@) + r(@)E - 3r(@)s*(@) — s*(@)E + r(@)F + EF,
B(@) = 3r%ks(a) + 2r(@)s(@)E — s> (@) + s(a)F.

In order to solve the problem, A(a) = 0 and B(«@) = 0 must
also be correct. After differentiating A and B with respect to

@, we obtain

A , ,

L = 1@ @)~ )5 @) + (@),
o

dB , ,

T b ()r (@) + ¢1(a)s (@) + ga),

where,
é1(@) =3r%a + 2r(@)E - 35%(a) + F,
d(a) =[6r(a)s(a) + 2s(a)]E,
#3(@) =P (@E (@) - s*(@)E (@) + r(@)F (@) + EF + FE ,
¢s(@) =2r(@)s(@)E () + s(@)F (k).

Volume 5, Issue 3, 292-304.



299

On multiplying by ¢;(@) and ¢, (@), respectively, and then

summing two equations, we have

—¢1(@)¢3(@) + $2(a)Pa(@) _

S R
Substituting r(@) = 0 and s(@) = VB(a) at @ = (") on

$1,02.¢3,¢4, we obtain

¢1(a’) = =2B(a").¢2(a”) = 2VB(a")A(@"),
¢3(@”) = =B(@)A (") + C'(a").pa(@") = yB(a")B ().

The equation implies

Fa) = ¢'(a*) - [A(@")B (@) + B(@")A (a")]
- 2[B(a*) + A%(a")]

If ¢’ (a*) — [A(e*)B (a*) + B(a*)A' (a*)] # 0, which implies
that

4 (Re(A3(@)) = (k) #0,j = 1,2,
da
and
A3(@") = —A(a@") # 0.

Consequently, ¢ () — [A(@*)B (a*) + Bl@*)A (a")] # 0
holds.

Since it is guaranteed that the transversality requirement
is satisfied, the model has entered Hopf-bifurcation at @ =

5

a’. ]
7. Numerical analysis

In this section, we present some numerical simulation
results for Caputo-sense fractional-order eco-epidemic
models. To accomplish this, we use Diethelm et al.’s [32],
predictor-corrector approach to solve the defined model.

Predictor-Corrector approach:

Dy = ft,y(0)),0<t<T.m—-1<B<m,
y(0) =y5u=0,1,2,3,...,z— 1, where m = [B],

..... s

which is the same as the equation of Volterra integral

Yo = S f (i = (s, y(s))ds.

T

Mathematical Modelling and Control

The fractional-order system (2.3) can be described in the
way that follows using the predictor-corrector approach and

ty=qh,n=0,1,2,..,NXZ".
Corrector formula:

the setting h = —,
N

/’lﬁ l:;—v»l w ~w W w
Sg+1 =S80 + F(ﬁ+ 2) r5q+1 1- 7 ﬁlq+1 g+1 ﬁllq+qu+l
q
F(B+ Zlamﬂ [rs/( ,8) Bsjij = ﬁls.il’j] ’
. . h'B woow W w W
lg+1 =lo + T@+2) [ﬁsq+llq+] = Baiy1 Py _/Jl’q+1]

g1 [BSjij = Baijpj — puijl,

hﬁ q
+F(ﬁ+2);

w
ﬁ] q+1pq+l + 6ﬂ21q+1pq+1 lu2pq+l]

I
Pg+1 = r(ﬁ+2) [

ajq+11€B1d;p; + €B2yi;p; — pap;l.

+l"(ﬁ+2);

Predictor formula:
Where,

Iy =0+ 1"_ ij,q+l [ﬁsjij = Baijpj —/Jlij],
B =
1 q
Py = Po+ ) D bignleBis;p;+ efaijp; = top)).
=0

The simulations are executed with the following assumed

parameter values:

r=07,aa=02a=03,d =04,
0=04,d,=0.1,c=0.5.

(i) When 8 = 1, the equilibrium point E»(0.7,0.01,0.5)
becomes unstable, as shown in Figures 1 and 2.
(i) When B8 = 0.94, the equilibrium point £,(0.7,0.01,0.5)
becomes locally asymptotically stable is shown in Figures 3
and 4.

Next, the parameter values are chosen as r =
0.15,a=0.2,d; =0.1,6§ =0.4,d, = 0.1,c = 0.5.
i) When g = 1,
E4(0.7,0.04,0.3) becomes unstable is shown in Figures 5
and 6.
(i) When 8 = 0.92,0.84,0.76, 0.64, the interior equilibrium
point E4(0.7,0.04,0.3) becomes locally asymptotically

0.5, =

the interior equilibrium point
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stable and shows the effectiveness of the fractional-order 8
is shown in Figures 7-9.

In this instance, we see that the density of the susceptible
prey-predator species and the infected prey species start to
oscillate; however, this high-amplitude species oscillation
results in an extremely low population density, which may
lead to the instability of the multispecies community and
increase the probability that some species will become
extinct. From Figures 7-9, we can conclude that the
fractional-order derivative values decreased from 1 to
0.92,0.84,0.76,0.64 the equilibrium point is transformed
into unstable to a stable state.

We have also plotted a bifurcation diagram of
system (2.3), choosing predation rate o as a bifurcation
parameter in Figures 10-12, while keeping all the parameter
values the same as in Figures 7-9. We have seen that system
(2.3) exhibits a local stable coexistence equilibrium for
B € (0, 1), but while @ crosses the critical value a* = 0.41,
the system loses its stability and becomes stable. Hence,
we conclude that the fractional-order model is more stable
than the integer order model. From these Figures 10-12, we

observed that 8 has a great impact on each population.

Population

Susceptible prey
Infected prey
02 Predator 4

I
0 500 1000 1500
time t

Figure 1. Time series solution for the equilibrium
point E; of system (2.3) with 8 = 1.
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036

034
012

065
06
002" 055 Susceptible prey

Figure 2. Phase portrait for the equilibrium point
E, of system (2.3) with 8 = 1.

>
>

<
<

0 500 1000 1500
timet

Figure 3. Time series solution for the equilibrium
point E, of system (2.3) with 8 = 0.94.

Infected prey

06
002" 055 Suscepible prey

Figure 4. Phase portrait for the equilibrium point
E, of system (2.3) with 8 = 0.94.
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Population
Infected prey

1
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Figure 5. Time series solution for the equilibrium Figure 8. Effectiveness of fractional-order 8 on
point E4 of system (2.3) with § = 1. infected prey population for the equilibrium point

E,4 of system (2.3).

.
g 038 %
time t
Figure 6. Phase portrait for the equilibrium point Figure 9. Effectiveness of fractional-order 8 on
E4 of system (2.3) with 8 = 1. predator population for the equilibrium point Ey4
of system (2.3).
07
075 06
T L |
07 05
02
055D 500 1000 1500 oA
. . . ol N “0507 ........ i ‘
Figure 7. Effectiveness of fractional-order S on «
susceptible prey population for the equilibrium Figure 10. Bifurcation diagram for susceptible
point E4 of system (2.3). prey population of system (2.3) when 8 = 0.92.
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Infected prey

Figure 11. Bifurcation diagram for infected prey
population of system (2.3) when 8 = 0.92.

Predator

(]
03 04 05 06 07 08 09 1
o«

Figure 12. Bifurcation diagram for predator

population of system (2.3) when 8 = 0.92.

8. Conclusions
In this study, we examined a three-species food
web model based on fractional-order derivatives. In
our proposed fractional-order system, the local stability
of each equilibrium point has also been investigated.A
number of biological systems that are highly dependent
on historical events have been described using fractional-
order mathematical models. These findings suggest that
the mathematical model of fractional-order can be useful in
explaining system dynamics with useful memory. It can be
seen that the unstable system with integer-order 8 = 1 turns
into a stable system for different values of 8 in the range
0 < B < 1. As a result, the fractional-order derivative 8
provides in-depth detail of the dynamical behaviour of the

Mathematical Modelling and Control

proposed model. We observed that the model shows integer
order system is unstable behavior and while changing into
We

also have seen that the solution of our considered model

fractional-order the model shows stable behavior.

is unstable in the integer order system but stable in the
fractional order system.Thus, one can conclude that due to
memory effect the fractional -order derivative can stabilize
the system. The future work will extend the three-species
food web eco-epidemiological model to a four-species eco-
epidemiological model, which consists of two prey and two
predators, which are susceptible and infected by both prey

and predator populations.
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