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Abstract: In this article, a model of a diseased prey-predator with fractional order has been studied. The model has been used
as a functional response of Holling type II in a non-delayed model. The eigenvalues of a model are used to test its stability using
critical points. Furthermore, the boundedness, uniqueness, existence, and positivity of the solutions have been studied. The locally
asymptotically stable model has been analyzed using the critical points, and the globally asymptotically stable model has been examined
using the Lyapunov function. The occurrence of Hopf bifurcation for fractional order has been examined. Finally, numerical simulations
are presented to confirm the analytical solutions.
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1. Introduction

The predator-prey models, developed by Lotka [1]
and Volterra [2], are considered early developments in
contemporary mathematical ecology in coupled systems
of non-linear differential equations. Eco-epidemiological
models are used to investigate the relationship between
predator and prey infection in infected and diseased prey
populations. Eco-epidemiology is a field that studies the
transmission of diseases among interacting organisms with
a significant environmental impact [3, 4]. Since Kermack-
Mckendrick’s pioneering work on SIRS, epidemiological
models have attracted much interest, as functional response
is among the most important factors in the prey-predator
population [5, 6]. Mathematical models are crucial for
understanding, studying, and investigating the spread and

management of infectious diseases [7, 8]. Fractional
calculus is a generalization of the classical differentiation
and integration of arbitrary orders. Many researchers are
interested in scientific and engineering fields, including
biology, fluid dynamics, and medicine [9, 10]. Due to
its numerous applications, fractional-order calculus has
attracted the interest of researchers throughout the last two
decades [11, 12]. Fractional-order biological models have
recently attracted the interest of many authors [13, 14]. The
main reason lies in the fact that memory-based systems,
which exist in a large number of biological systems, are
easily relatable to fractional-order models [15, 16]. The
fractional-order derivative has the benefit that it allows you
to remember the concept of numerical derivative calculation
as well as important information about derivative values.
Javidi studied the biological behaviors of a prey-predator
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model with fractional order [17, 18]. This article includes an
investigation of the stability of a derivative of a fractional-
order model of the mutualistic interaction between two
species with infection. Alidousti studied how the capture
of predators and scavengers was affected by a prey-predator
model with fractional order [19]. Mukherjee et al. [20]
studied the existence, uniqueness, and boundedness of
solutions to a fractional-order prey-predator system in
restricted space. Recently, fractional calculations have
developed rapidly and displayed a wide range of possible
applications [21, 22]. However, due to memory effects,
fractional-order derivatives in the biological model are more
sensible than integer-order derivatives. To change ordinary
calculus to fractional calculus, it is important to use the
Riemann-Liouville and Caputo fractional derivatives. One
of the most important processes in any natural ecosystem is
the predator-prey model. Caputo introduced the Caputo-type
derivative at 1967 [23]. A system of fractional order with
a Holling type-II functional response was investigated [24].
Routh-Hurwitz criteria is the condition for stability of a
system in fractional order. A system with non-linear
fractional order stability with the use of the Routh-Hurwitz
criterion was investigated by Ahmed et al [25]. Garrappa
studied how to solve fractional-order nonlinear differential
equations [26]. In a prey-predator model with fractional
order, Javidi and Nyamoradi investigated the effects of
harvesting [27, 28]. Several mathematical models in
fractional order can be used to solve real-world problems.
The proceeding discussion gives the motivation to learn
about the dynamic behavior on the fractional prey-predator
model. The unique aspect of this work is to examine the
prior history of the prey-predator model.

The novelty of this work is to investigate the stability
analysis of the prey-predator model through fractional-
order derivatives. The analysis demonstrates that fractional
calculus is well suited to explain the memory and inherited
features of several techniques and materials that are not
taken into consideration by classical integer models.

The paper is organized as follows: A mathematical
model is developed in Section 2. Section 3 examines the
fractional-order dynamical system’s preliminary dynamics.
The proposed model’s uniqueness and boundedness solution
have been examined in Section 4. The stability analysis

of the suggested model has been investigated in Section 5.
The Hopf bifurcation of the system is studied in Section 6.
Section 7 examines numerical simulations of the proposed
model. Finally, the conclusion of the paper and the
biological implications of our mathematical results are
found in Section 8.

2. Mathematical model formation

The model has basically two types of population:

(i) Prey population and (ii) Predator population.

Melese [29] studied and discussed refuge and harvesting
in the prey-predator model with the Holling type II
functional response. Then the proposed model,

dS
dT
= RS

(
1 −

S + I
K

)
− λIS −

α1S P
a1 + S

,

dI
dT
= λIP − D1I −

b1IP
a1 + I

,

dP
dT
= −D2P +

cb1IP
a1 + I

+
cα1S P
a1 + S

,


(2.1)

subject to initial conditions S (0) ≥ 0, I(0) ≥ 0 and P(0) ≥ 0.
An example in real life: rabbit populations are afflicted with
myxomatosis, a condition carried on by the myxoma virus.
This disease may have an impact on the interactions between
foxes and other predators in a region where rabbits are a
major source of food for them. The predator-prey dynamic is
disrupted because infected rabbits are more easily captured
by predators.

To reduce the number of system parameters, one needs to

non-dimensionalize the above model (2.1) by s =
S
K

, i =
I
K

,

and p =
P
K

, and to take into account the dimension time
t = λKT . Now, we apply the following transformations:

r =
R
λk
, α =

α1

λK
, a =

a1

K
, d1 =

D1

λK
, θ =

b1

λk
, d2 =

D2

λk
.

The Eq (2.1) can be rewritten in the following non-
dimensional form using the above transformations.

ds
dt

= rs(1 − s − i) − is −
αsp
a + s

,

di
dt

= is − d1i −
θip

a + i
,

dp
dt

= −d2 p +
cθip
a + i

+
cαsp
a + s

.


(2.2)
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In the system (2.2), we have taken the Caputo fractional-
order derivative β to model, and then the model (2.2) is taken
into the following form:

dβs
dtβ

= rs(1 − s − i) − is −
αsp
a + s

,

dβi
dtβ

= is − d1i −
θip

a + i
,

dβp
dtβ

= −d2 p +
cθip
a + i

+
cαsp
a + s

,


(2.3)

subject to the initial conditions s(0) ≥ 0, i(0) ≥ 0, p(0) ≥
0. Table 1 shows the biological representation system (2.1)
parameters [29].

Table 1. Biological representation of system (2.1)
parameters.

Parameters Environmental representation
S Susceptible prey
I Infected prey
P Predator
r Prey growth rate
K Environmental carrying capacity
a1 Constant of Half-saturation
α1 Predation rate of Susceptible prey
b1 Predation rate of Infected prey
c Conversion rate of prey and predator
d1 Infected prey death rate
d2 Predator death rate
λ Infection rate

3. Preliminaries

In this section, we provide basic definitions, significant
results, and characteristics of fractional differential
equations that are useful in the proof of theorems.

Definition 3.1. The Caputo fractional derivative of order β

is defined as

C Dβt f (t) =
1

Γ(1 − β)

∫ t

0
(t − s)−β f

′

(s)ds

where t ≥ 0, f ∈ Cn([0,+∞),R) and Γ is a Gamma function.

Lemma 3.1. [30] Consider a system of fractional-order

Caputo derivatives

C Dβt x(t) = f (t, x(t)), t > 0, x(0) > 0, β ∈ (0, 1],

where f : (0,∞) × Ω → Rn. If f (t, x(t)) satisfies the locally

Lipschitz condition with respect to x, then the equation on

(0,∞) ×Ω has a unique solution.

Theorem 3.1. [31] Consider the N-dimensional fractional

differential equation system

dβ(x)
dt
= f (x); x(0) = x0,

where A is the arbitrary constant N × N is the matrix and

β ∈ (0, 1).
(i) The solution x = 0 is asymptotically stable if and only if

all eigenvalues λi j, j = 1, 2, 3, ...N of A satisfy |arg(λ j)| >
βπ

2
.

(ii) The solution x = 0 is stable if and only if all the

eigenvalues with |arg(λ j)| =
βπ

2
have the same geometric

multiplicity and algebraic multiplicity.

Theorem 3.2. [27] Consider the fractional order system

dβ(x)
dt
= f (x), x(0) = x0

with x ∈ Rn and β ∈ (0, 1). The above system’s equilibrium

points are the solutions to the equation f (x) = 0. If all of

the eigenvalues of the Jacobian matrix J =
d f
dx

evaluated

at equilibrium satisfy |arg(λ j)| ≥
βπ

2
, then the equilibrium

point is considered to be locally asymptotically stable.

Lemma 3.2. [6] Let x(t) ∈ C([0,+∞)).If x(t) satisfies

C Dβt x(t) + λx(t) ≤ µ, x(0) = x0,

where β ∈ (0, 1], (λ, µ) ∈ R2, and λ , 0, then x(t) ≤ (x0 −
µ

λ
)Eβ[−λtβ] +

µ

λ
.

4. Existence and uniqueness of the solutions

In this section, boundedness of solution of the
system (2.3) has been examined. The fractional-order
system is as follows:

dβX(t)
dtβ

= f (t, X(t)), β ∈ (0, 1].

Theorem 4.1. For the non-negative initial conditions, there

is only one solution to the fractional-order system (2.3).
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Proof. A sufficient condition for the solutions of
system (2.3) in the region χ × (0,T ].

Where,

χ =
{
(s, i, p) ∈ R3 : max(|s|, |i|, |p|) ≤ η

}
.

Now, let us define a mapping V(X) = (V1(X),V2(X),V3(X)).

Where

V1(X) = rs(1 − s − i) − is −
αsp
a + s

,

V2(X) = is − d1i −
θip

a + i
,

V3(X) = −d2 p +
cθip
a + i

+
cαsp
a + s

.

||V(X) − V(X̄)||

=|V1(X) − V1(X̄)| + |V2(X) − V2(X̄)| + |V3(X) − V3(X̄)|

=

∣∣∣∣∣∣rs(1 − s − i) − is −
αsp
a + s

− rs̄(1 − s̄ − ī) + ī s̄ +
αs̄ī

a + s̄

∣∣∣∣∣∣
+

∣∣∣∣∣∣is − d1i −
θip

a + i
− s̄ī + d1 ī +

θī p̄
a + ī

∣∣∣∣∣∣
+

∣∣∣∣∣∣ − d2 p +
cθip
a + i

+
cαsp
a + s

+ d2 p̄ −
cθī p̄
a + ī

−
cαs̄ p̄
a + s̄

∣∣∣∣∣∣
≤
{
r + 2rη + η + αaη(1 + c) + η(α + 1)η

}∣∣∣∣s − s̄
∣∣∣∣

×
{
rη + 2η + d1 + sθaη(1 + a) + θη + η(r + 2 + θ)

+ θaη(1 + a)
}∣∣∣∣i − ī

∣∣∣∣ + {
(1 + c)αaη + (1 + c)θaη

+ cη(θ + α + d2)
}∣∣∣∣p − p̄

∣∣∣∣.
Where,

H =max
{
r + 2rη + η + αaη(1 + c) + η(α + 1), rη + 2η

+ d1 + θaη(1 + a) + θη + η(r + 2 + θ) + θaη(1 + a),

α(1 + c)
a

+
θ(1 + c)

a
+ d2 + α(1 − c)η + θ(1 − c)η

}
.

Hence, the solution of the system (2.3) exists and is unique.
□

Boundedness of the solutions

Theorem 4.2. Each and every one of the system (2.3)

solutions are non-negative and uniformly bounded.

Proof. Construct a function

V(t) = s + i + ζp.

Then, for each η > 0, we obtain

C Dβt + ηV(t) =
(
rs − is −

αsp
a + s

)
+

(
is − d1i −

θip
a + i

)
+ η

(
−d2 p +

cθip
a + i

+
cαsp
a + s

)
+ ζ (s + i + ζp)

= (r + ζ)s − rs2 − rsi + cθ
(
ζ −

1
c

)
ip

a + i

+
cαsp
a + s

(
ζ −

1
c

)
+ (ζ − d1)i + ζ(ζ − d2)p.

By choosing ζ < min {d1, d2} and ζ < min
{

1
c

}
, we have

C Dβt + ζV(t) ≤ (r + ζ) s − rs2

= (r + ζ)s − rs2 −

( r + ζ
2

)2

+

( r + ζ
2

)2

≤
(r + ζ)2

4
.

Applying lemma 2, which gives,

V(t) ≤
(
V(0) −

(r + ζ)2

4ζ

)
Eβ[−ζtβ] +

(r + ζ)2

4ζ
.

Here, we know that V(t) is convergent to
(r + ζ)2

4ζ
for t → ∞.

Therefore, all the solutions of the system (2.3) with non-
negative initial conditions are confined in the region Ω.

Where,

Ω =

{
(s, i, p) ∈ R3

+ : V(t) ≤
(r + ζ)2

4ζ
+ ∈, ∈> 0

}
.

□

5. Equilibrium points and stability analysis

In this section, the system (2.3) has the following possible
equilibrium points:
(i) E0(0, 0, 0) is the trivial equilibirum point.
(ii) E1(1, 0, 0) is the infected-free and predator-free
equilibrium point.
(iii) E2(s̄, 0, p̄) is the infected prey-free equilibrium point.

Where s̄ =
d2a

d2 − cα
, and p̄ =

ac((cα − d2)r − ard2)
(cα − d2)2 .

(iv) E3(ŝ, î, 0) is the predator free equilibrium point, where

ŝ = d1 and î =
r(1 − d1)

r + 1
.

(v) The interior equilibrium point E∗(s∗, i∗, p∗).

Where,

i∗ =
a(ad2 + (d2 − cα)s∗)

(cαs∗ + (cθ − d2)(a + s∗)
,
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p∗ =
ac(s∗ − d1)(a + s∗)

(cαs∗ + (cθ − d1)(a + s∗))

and s∗ is the only positive root of the equation for a quadratic
function.

As2 + Bs +C = 0. (5.1)

Where

A = r(cα + cθ − d2),

B = (cθ − d2)(−r + ar) − rαc + a(d1 + (d1 − cα)r),

C = −a((r)(cθ − d2) + (cα(d1) − ad2(1 + r)).

5.1. Stability analysis

Now, we want to calculate the Jacobian matrix for local
stability analysis around different equilibrium points. The
Jacobian matrix at an arbitrary point (l,m, n) is given by

J(l,m, n) =


n11 n12 n13

n21 n22 n23

n31 n32 n33

.
Where,

n11 = r(1 − 2s) − i(r + 1) −
αap

(a + s)2 , n12 = −s(r + 1),

n13 = −
αs

a + s
, n21 = i, n22 = s − d1 −

aθp
(a + i)2 , n23 =

θi
a + i
,

n31 =
acαp

(a + s)2 , n32 =
acθp

(a + i)2 , n33 = −d2 +
cθi

a + i
+
αcs

a + s
.

Theorem 5.1. The trivial equilibrium point E0(0, 0, 0),
which is a saddle.

Proof. At an equilibrium point E0, the Jacobian matrix is
given by

J(E0) =


r 0 0
0 −d1 0
0 0 −d2

.
The eigenvalues are λ1 = r, λ2 = −d1 and λ3 = −d2 .

Thus, |arg(λ1)| = 0 <
βπ

2
, |arg(λ2)| = π >

βπ

2
and

|arg(λ3)| = π >
βπ

2
.

Hence, the trivial equilibrium point E0(0, 0, 0) is unstable.
□

Theorem 5.2. The infected free and predator free

equilibrium point E1(1, 0, 0) is unstable.

Proof. At an equilibrium point E1, the Jacobian matrix is
given by

J(E1) =


−r −(r + 1)

−α

a + s
0 1 − d1 0

0 0 −d2 +
cα

a + 1

.
The eigenvalues are λ1 = −r,λ2 = 1 − d1 −

θp
a + 1

and λ3 =

−d2 +
cα

a + 1
.

Thus, |arg(λ1)| = 0 <
βπ

2
, |arg(λ2)| = π >

βπ

2
and

|arg(λ3)| = π >
βπ

2
.

Due to numerical simulation table values, 1 − d1 is
positive.

The equilibrium point E1(1, 0, 0) is unstable. □

Theorem 5.3. The infected-free equilibrium point

E2(s̄, 0, p̄) is locally asymptotically stable if P, R, PQ − R

are positive.

Proof. At an equilibrium point E2, the Jacobian matrix is
given by

J(E2) =


f11 f12 f13

f21 f22 f23

f31 f32 f33

.
Where,

f11 = r −
2ard2

cα − s2
−

(cα − d2)2 p̄
aαc2 , f12 = −

a(1 + r)d2

c − d2
,

f13 = −
d2

c
, f21 = 0, f22 = −d1 +

ad2

cα − d2
, f23 = 0,

f31 =
((cα − d2)2 p̄)

acα
, f32 =

cθ p̄
a
, f33 = 0.

Here, the characteristic equation of the above Jacobian
matrix is provided by

λ3 + Pλ2 + Qλ + R = 0. (5.2)

Where,

P = − f11 − f22,

Q = − f31 f13 + f22 f11,
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R = f13 f12 f31.

The Routh–Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if P, R, and PQ − R are all positive.

Now,

PQ − R = − f11 f22( f11 + f22) + f11 f22 f33.

Now the sufficient condition for f11 and f22 to be negative.

The infected-free equilibrium point E2((s̄, 0, p̄) is locally
asymptotically stable. □

Theorem 5.4. The predator-free equilibrium point

E3(ŝ, î, 0) is locally asymptotically stable if d2 > c(α + θ).

Proof. At an equilibrium point E3, the Jacobian matrix is
given by

J(E3) =


a11 a12 a13

a21 a22 a23

a31 a32 a33

.
Where,

a11 = −d1r, a12 = (−1 − r)s̄, a13 =
−α

a + s
,

a21 = i, a22 = 0, a23 =
θī

a + ī
,

a31 = 0, a32 = 0, a33 =
cαs̄

a + s̄
− s6 +

cθī
a + i
.

Here, the characteristic equation of the above Jacobian
matrix is provided by

λ3 + Xλ2 + Yλ + Z = 0. (5.3)

Where,

X = −a11 − a33,

Y = −a21a12 + a33a11,

Z = a12a21a33.

The Routh–Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if X, Z, and XY − Z are all positive.

Now, XY − Z = −a11(−a12a21 + a33 + a11).

Now, the sufficient conditions for a33 to be negative is
d2 > c(α + θ).

Hence,the equilibrium point E3 is locally asymptotically
stable. □

Theorem 5.5. The interior equilibrium point E∗(s∗, i∗, p∗)
is locally asymptotically stable.

Proof. Here, the characteristic equation of the above
Jacobian matrix is provided by

J(E∗) =


g11 g12 g13

g21 g22 g23

g31 g32 g33

.
Where,

g11 =
−s∗(−r + ar + (1 + r)i∗ + 2rs∗)

a + s∗
,

g12 = −s∗(r + 1), g13 =
−αs∗

a + s∗
,

g21 = i∗, g22 =
aθp∗i∗

(a + i∗)2)
, g23 =

θi∗

a + i∗
,

g31 = ∗
acαp∗

(a + s∗)2 , g32 =
acθp∗

(a + i∗)2)
, g33 = 0.

Here, the characteristic equation of the above Jacobian
matrix is provided by

λ3 + Eλ2 + Fλ +G = 0. (5.4)

Where

E = −g11 − g33,

F = g21g12 + g22g11 − g13g31 + g23g32,

G = g13(−g22g31 + g21g32) + g23(g12g31 − g11g32).

The Routh–Hurwitz criteria state that all of the roots in the
equations mentioned above have negative real parts if and
only if E, G and EF −G are all positive.

Therefore, E∗ is locally asymptotically stable. □

5.2. Global stability analysis

Theorem 5.6. The interior equilibrium point E∗ is globally

asymptotically stable.

Proof. Consider a Lyapunov function

V(s, i, p) =
[
s − s∗ − s∗ln

s
s∗

]
+ e1

[
i − i∗ − i∗ln

i
i∗

]
+ e2

[
p − p∗ − p∗ln

p
p∗

]
.

Applying the Caputo fractional derivative, we obtain
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≤

[
s − s∗

s

]
C Dαs(t) + e1

[
i − i∗

i

]
C Dαi(t)

+ e2

[
p − p∗

p

]
C Dαp(t)

≤

(
s − s∗

s

) [
rs(1 − s − i) − is −

αsp
a + s

]
+ e1

(
i − i∗

i

) [
is − d1i −

θip
a + i

]
+ e2

(
p − p∗

p

) [
−d2 p +

cθip
a + i

+
cαsp

(a + s)

]
≤ −(s − s∗)

[
r {(s + i) − (s∗ + i∗) + (i − i∗)}

]
+ α

[
p

a + s
−

s∗

a + s∗

]
− e1(i − i∗)

[(
(s − s∗) −

p
a + i

−
p∗

a + i∗

)]
− e2(p − p∗)

[
cθ

(
i(a + i∗) − i∗(a + i)

(a + i)(a + i∗)

)]
+ cα

[
(a + s∗)s − (a + s)s∗

(a + s)(a + s∗)

]
.

Obviously, C DβV(s, i, p) ≤ 0.

We conclude that E∗ is globally asymptotically stable. □

6. Hopf-Bifurcation analysis

In this section, we discuss the Hopf-bifurcation analysis
of system (2.3).

Define a function, with respect to β by

m(β) =
βπ

2
− min

1≤i≤3
|arg(λi)|.

Theorem 6.1. The fractional-order system (2.3) experiences

a Hopf bifurcation at the endemic equilibrium point E∗

when bifurcation parameter α passes through the critical

value α∗ ∈ (0, 1), provided that the following conditions are

satisfied:

(i) The corresponding characteristic Eq (5.4) of system (2.3)

has a pair of complex conjugates λ1,2 = χ+iω (where χ > 0)

and one negative real root λ3.

(ii) m(β∗) =
β∗π

2
− min

1≤i≤3
|arg(λi)| = 0.

(iii)
dm(β)

dβ
|β=β∗ , 0.

Here, we give the conditions under which a Hopf

bifurcation would exist as the derivative’s order approaches

a critical value at the interior equilibrium point E∗.

Proof. The following theorem, which takes the fear
parameter as a variable, shows the existence of Hopf
bifurcation.

The characteristic equation must be of the form

λ3 + Eλ2 + Fλ +G = 0.

The Hopf-bifurcation occurs at α∗ = α, as demonstrated
by the transversality condition for the roots of the above
equations ±i

√
F and −E.

d
dα
{Re(λ( f ))} |α=α∗ , 0.

For all f , the roots are generally in the form

λ1(α) = r(α) + is(α),

λ2(α) = r(α) − is(α),

λ3(α) = −E.

Now, we check the condition,

d
dα

{
Re(λ j(α))

}
|α=α∗ , 0, j = 1, 2.

Let λ1α = r(α) + is(α) in equation, we obtain

A(α) + iB(α) = 0,

where

A(α) = r3(α) + r2(α)E − 3r(α)s2(α) − s2(α)E + r(α)F + EF,

B(α) = 3r2ks(α) + 2r(α)s(α)E − s3(α) + s(α)F.

In order to solve the problem, A(α) = 0 and B(α) = 0 must
also be correct. After differentiating A and B with respect to
α, we obtain

dA
dα
= ϕ1(α)r

′

(α) − ϕ2(α)s
′

(α) + ϕ3(α),

dB
dα
= ϕ2(α)r

′

(α) + ϕ1(α)s
′

(α) + ϕ4(α),

where,

ϕ1(α) =3r2α + 2r(α)E − 3s2(α) + F,

ϕ2(α) =[6r(α)s(α) + 2s(α)]E,

ϕ3(α) =r2(α)E
′

(α) − s2(α)E
′

(α) + r(α)F
′

(α) + EF
′

+ FE
′

,

ϕ4(α) =2r(α)s(α)E
′

(α) + s(α)F
′

(k).
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On multiplying by ϕ1(α) and ϕ2(α), respectively, and then
summing two equations, we have

r
′

(α) =
−ϕ1(α)ϕ3(α) + ϕ2(α)ϕ4(α)

ϕ2
1(α) + ϕ2

2(α)
.

Substituting r(α) = 0 and s(α) =
√

B(α) at α = (α∗) on
ϕ1,ϕ2,ϕ3,ϕ4, we obtain

ϕ1(α∗) = −2B(α∗),ϕ2(α∗) = 2
√

B(α∗)A(α∗),
ϕ3(α∗) = −B(α∗)A

′

(α∗) +C
′

(α∗),ϕ4(α∗) =
√

B(α∗)B′ (α∗).

The equation implies

r
′

(α) =
c
′

(α∗) − [A(α∗)B
′

(α∗) + B(α∗)A
′

(α∗)]
2[B(α∗) + A2(α∗)]

.

If c
′

(α∗) − [A(α∗)B
′

(α∗) + B(α∗)A
′

(α∗)] , 0, which implies
that

d
dα

(Re(λ3(α)) = r
′

(k) , 0, j = 1, 2,

and

λ3(α∗) = −A(α∗) , 0.

Consequently, c
′

(α∗) − [A(α∗)B
′

(α∗) + B(α∗)A
′

(α∗)] , 0
holds.

Since it is guaranteed that the transversality requirement
is satisfied, the model has entered Hopf-bifurcation at α =
α∗. □

7. Numerical analysis

In this section, we present some numerical simulation
results for Caputo-sense fractional-order eco-epidemic
models. To accomplish this, we use Diethelm et al.’s [32],
predictor-corrector approach to solve the defined model.
Predictor-Corrector approach:

Dβt y(t) = f (t, y(t)), 0 ≤ t ≤ T,m − 1 < β < m,
yu(0) = yu

0, u = 0, 1, 2, 3, ....., z − 1, where m = [β],

which is the same as the equation of Volterra integral

y(t) =
∑z−1

u=0 yu
0

tu

u!
+

1
Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds.

The fractional-order system (2.3) can be described in the
way that follows using the predictor-corrector approach and

the setting h =
T
N

, tq = qh, n = 0, 1, 2, ....,N × Z+.
Corrector formula:

sq+1 =s0 +
hβ

Γ(β + 2)

[
rsw

q+1

(
1 −

lw
q+1

β

)
− βlw

q+1iw
q+1 − β1lw

q+1qw
q+1

]
+

hβ

Γ(β + 2)

q∑
j=1

a j,q+1

[
rs j

(
1 −

s j

β

)
− βs ji j − β1 s j p j

]
,

iq+1 =i0 +
hβ

Γ(β + 2)

[
βsw

q+1iw
q+1 − β2iw

q+1 pw
q+1 − µ1iw

q+1

]
+

hβ

Γ(β + 2)

q∑
j=1

a j,q+1[βs ji j − β2i j p j − µ1i j],

pq+1 =p0 +
hβ

Γ(β + 2)

[
ϵβ1 sw

q+1 pw
q+1 + ϵβ2iw

q+1 pw
q+1 − µ2 pw

q+1

]
+

hβ

Γ(β + 2)

q∑
j=1

a j,q+1[ϵβ1d j p j + ϵβ2yi j p j − µ2 p j].

Predictor formula:
Where,

sw
q+1 = s0 +

1
Γ(β)

q∑
j=0

b j,q+1

[
rs j

(
1 −

x j

β

)
− βs ji j − β1s j p j

]
,

iwq+1 = i0 +
1
Γ(β)

q∑
j=0

b j,q+1

[
βs ji j − β2i j p j − µ1i j

]
,

pw
q+1 = p0 +

1
Γ(β)

q∑
j=0

b j,q+1[ϵβ1s j p j + ϵβ2i j p j − µ2 p j].

The simulations are executed with the following assumed
parameter values:

r = 0.7, α = 0.2, a = 0.3, d1 = 0.4,
θ = 0.4, d2 = 0.1, c = 0.5.

(i) When β = 1, the equilibrium point E2(0.7, 0.01, 0.5)
becomes unstable, as shown in Figures 1 and 2.
(ii) When β = 0.94, the equilibrium point E2(0.7, 0.01, 0.5)
becomes locally asymptotically stable is shown in Figures 3
and 4.

Next, the parameter values are chosen as r = 0.5,α =
0.15,a = 0.2,d1 = 0.1,θ = 0.4,d2 = 0.1,c = 0.5.
(i) When β = 1, the interior equilibrium point
E4(0.7, 0.04, 0.3) becomes unstable is shown in Figures 5
and 6.
(ii) When β = 0.92, 0.84, 0.76, 0.64, the interior equilibrium
point E4(0.7, 0.04, 0.3) becomes locally asymptotically
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stable and shows the effectiveness of the fractional-order β
is shown in Figures 7–9.

In this instance, we see that the density of the susceptible
prey-predator species and the infected prey species start to
oscillate; however, this high-amplitude species oscillation
results in an extremely low population density, which may
lead to the instability of the multispecies community and
increase the probability that some species will become
extinct. From Figures 7–9, we can conclude that the
fractional-order derivative values decreased from 1 to
0.92, 0.84, 0.76, 0.64 the equilibrium point is transformed
into unstable to a stable state.

We have also plotted a bifurcation diagram of
system (2.3), choosing predation rate α as a bifurcation
parameter in Figures 10–12, while keeping all the parameter
values the same as in Figures 7–9. We have seen that system
(2.3) exhibits a local stable coexistence equilibrium for
β ∈ (0, 1), but while α crosses the critical value α∗ = 0.41,
the system loses its stability and becomes stable. Hence,
we conclude that the fractional-order model is more stable
than the integer order model. From these Figures 10–12, we
observed that β has a great impact on each population.

Figure 1. Time series solution for the equilibrium
point E2 of system (2.3) with β = 1.

Figure 2. Phase portrait for the equilibrium point
E2 of system (2.3) with β = 1.

Figure 3. Time series solution for the equilibrium
point E2 of system (2.3) with β = 0.94.

Figure 4. Phase portrait for the equilibrium point
E2 of system (2.3) with β = 0.94.
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Figure 5. Time series solution for the equilibrium
point E4 of system (2.3) with β = 1.

Figure 6. Phase portrait for the equilibrium point
E4 of system (2.3) with β = 1.

Figure 7. Effectiveness of fractional-order β on
susceptible prey population for the equilibrium
point E4 of system (2.3).

Figure 8. Effectiveness of fractional-order β on
infected prey population for the equilibrium point
E4 of system (2.3).

Figure 9. Effectiveness of fractional-order β on
predator population for the equilibrium point E4

of system (2.3).

Figure 10. Bifurcation diagram for susceptible
prey population of system (2.3) when β = 0.92.
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Figure 11. Bifurcation diagram for infected prey
population of system (2.3) when β = 0.92.

Figure 12. Bifurcation diagram for predator
population of system (2.3) when β = 0.92.

8. Conclusions

In this study, we examined a three-species food
web model based on fractional-order derivatives. In
our proposed fractional-order system, the local stability
of each equilibrium point has also been investigated.A
number of biological systems that are highly dependent
on historical events have been described using fractional-
order mathematical models. These findings suggest that
the mathematical model of fractional-order can be useful in
explaining system dynamics with useful memory. It can be
seen that the unstable system with integer-order β = 1 turns
into a stable system for different values of β in the range
0 < β < 1. As a result, the fractional-order derivative β
provides in-depth detail of the dynamical behaviour of the

proposed model. We observed that the model shows integer
order system is unstable behavior and while changing into
fractional-order the model shows stable behavior. We
also have seen that the solution of our considered model
is unstable in the integer order system but stable in the
fractional order system.Thus, one can conclude that due to
memory effect the fractional -order derivative can stabilize
the system. The future work will extend the three-species
food web eco-epidemiological model to a four-species eco-
epidemiological model, which consists of two prey and two
predators, which are susceptible and infected by both prey
and predator populations.
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