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Abstract: In this paper, we proposed a mathematical model for the study of tuberculosis treatment with latent treatment, taking into
account the 3HP and 1HP. The model is constructed using a fractional order derivative in the Caputo sense to take advantage of the
memory effect. The aim is to compare the impact on tuberculosis, whether we keep the therapies that are applied to latent tuberculosis,
use of once-weekly isoniazid-rifapentine for 12 weeks (3HP), or use of isoniazid and rifapentine once a day for 28 days (1HP). We
presented the basic properties of the model and found the basic reproduction number. We performed computational simulations with
different fractional orders to study the behavior of the model. We studied the variation of parameters associated with new latent therapies
and different treatments for active tuberculosis in the basic reproduction number. We found that the implementations have a positive
impact, as the basic reproduction number remains less than unity. We showed that both implementations enable positive results because
they reduce active tuberculosis in the population. The 1HP results were better and showed that the duration of treatment positively
influences adherence to therapy.
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1. Introduction

Tuberculosis (TB) has a significant impact on public
health worldwide. It is estimated that in 2019,
approximately ten million people worldwide developed TB
and 1.2 million died from the disease. As for treatment
outcomes, in 2018, the percentage of treatment success
was 85% for new cases [1].

Monotherapy with isoniazid for 6–9 months has been used
for decades, and its efficacy in preventing progression to
active TB is approximately 90%. But this overall efficacy
has been affected by low adherence and completion rates due
to its prolonged duration and risks of hepatoxicity [2, 3].

Treatment of TB infection is called TB preventive therapy
and helps prevent the development of the disease. If
the infection is not treated, it can develop into an active
infection, causing the person to become ill and transmit TB.

Rifapentine is in the class of drugs called rifamycins,

which form the basis of the new short-acting TB preventive
therapy drugs. When rifapentine is combined with isoniazid,
which is another anti-TB drug, two possible uses are
obtained: the 3HP regimen (given once a week for 12
weeks) and the 1HP regimen (given once a day for one
month). The 3HP and 1HP regimens are shorter alternatives
compared to the older standard of care called isoniazid
preventive therapy, in which people need to take isoniazid
daily for 6 up to 36 months [2–4]. Any therapy applied to
cases with latent TB other than 3HP and 1HP for our work
are called classical treatment.

Short-duration treatment regimens, such as 1HP and 3HP,
are effective and safe and have higher completion rates than
isoniazid monotherapy classical therapy. Short regimens
with rifamycin use have a lower risk of hepatoxicity [2–4].

Models for TB treatment have been increasing over the
last decade. For example, Delgado et al. [5] present a
mathematical model with ordinary differential equations
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for the efficacy of TB treatment, taking into account the
influence of HIV and diabetes, and a version of this study
using fractional order derivatives can be found in [6]. Chong
et al. presented a mathematical model to assess the impact
of treatment of latent TB infection in the elderly and the use
of current TB control strategies [7]. Sulayman et al. [8]
extended a mathematical model that studies the impact of
a vaccine with a limited partial effect and other exogenous
factors, such as re-infection between treated individuals, and
proved that vaccination can be effective for TB control in a
population. Odibat et al. [9] proposed a mathematical model
of TB transmission dynamics incorporating first and second-
line treatment.

Treatment of latent TB is essential to prevent future active
cases that may spread the disease in society. Current latent
TB therapies can have a high degree of toxicity and poor
adherence, so 3HP and 1HP therapies would have a positive
effect. This work aims to present a mathematical model
for TB taking into account the impact of latent TB on
disease transmission. For that, we take into account the
cases that have latent TB and eliminate the bacteria naturally,
the effect of classical therapy, and also the use of 3HP
and 1HP therapies. By using fractional derivatives in the
Caputo sense, we exploit the advantages of such a modeling
technique concerning the memory effect [10], comparing
the influence of the 3HP and 1HP latent treatments on a
population with respect to the classical treatment applied
therapies.

This paper is organized as follows: In Section 2, we
present the theoretical background with the basic definitions
used in the paper. In Section 3, we introduce the model
and its basic properties, and we study the basic reproduction
number. Section 4 is dedicated to numerical simulations.
Section 5 closes the paper with conclusions.

2. Theoretical background

For the sake of completeness, in this section, we present
the mathematical definitions used in the paper [11–13]. In
what follows, we assume that α ∈ R+, b > 0, f ∈ ACn[a, b],
and n = [α] (ACn is the set of functions with order derivative
n − 1 absolutely continuous, and [α] is the integer part of α
(the integer part of α is the greatest relative integer less than

or equal to α)).

Definition 2.1. We define the left-sided and right-sided

fractional integral Riemann-Louville for f : R+ −→ R and

α > 0 as:

aI
α
t f (t) :=

1
Γ(α)

∫ t

a

f (s)ds
(t − s)1−α (left), (2.1)

tI
α
b f (t) :=

1
Γ(α)

∫ b

t

f (s)ds
(s − t)1−α (right), (2.2)

where Γ(·) is the Gamma function.

Remark 2.1. Let us define

Iαt f (t) = 0I
α
t f (t).

Definition 2.2. The left-sided and right-sided Riemann-

Liouville fractional derivatives are defined as:

aDα
t f (t) =

dn

dtn

( 1
Γ(n − α)

∫ t

a
(t − s)n−α−1 f (s)ds

)
(left),

(2.3)

tDα
b f (t) =

dn

dtn

( (−1)n

Γ(n − α)

∫ b

t
(s − t)n−α−1 f (s)ds

)
(right).

(2.4)

Remark 2.2. Let us denote

Dα
t f (t) = 0Dα

t f (t).

Definition 2.3. The left-sided and right-sided fractional

derivatives proposed by Caputo are given by:

c
aD

α
t f (t) =

1
Γ(n − α)

∫ t

a
(t − s)n−1−α f n(s)ds (left), (2.5)

c
tD

α
b f (t) =

(−1)n

Γ(n − α)

∫ b

t
(s − t)n−1−α f n(s)ds (right). (2.6)

Remark 2.3. Let us define

cDαt f (t) = c
0D

α
t f (t).

In the order-fractional derivatives, we find the memory
effect, which is an important factor in epidemic modeling
(see [10, 14–17]).
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3. Mathematical modeling

The model is defined in terms of 6 compartments:
susceptible S , exposed E, latent L, latent diagnosed, selected
latent to use new treatments LT , drug-sensitive D, and drug-
resistant R. The latent compartment L contains diagnosed
and undiagnosed cases that use classical therapy elements.
In order to need to enter treatment for latent TB, they need
to be diagnosed and selected for treatment. LT represents the
cases that are diagnosed and enter treatment.

The parameter M represents the recruitment rate at which
new susceptibles are entering into the dynamic, and µ is the
natural death rate. The TB transmission rate is defined as:

λT =
β(D + ϵ1R)

N
, (3.1)

where β is the effective transmission rate, ϵ1 represents the
modification parameter associated with the infectivity of the
resistants, and N is the total population

N = D + E + L + LT + D + R.

People are infected from the latent state with the
transmission rate of λT with ϵ2, which is the modification
parameter related to infection in the latent state. The
modification parameters ϵ1 and ϵ2 adapt the infectivity of
the resistant ones, which is higher than in the drug-sensitive
ones, and the latent ones can become infected compared to
the susceptible ones. These parameters, by definition, take
values greater than unity and can be obtained by performing
a statistical study in the respective subpopulations. The
parameter v is the rate at which bacteria are acquired and
lead patients to the active or latent stage. The rate rL

represents patients with latent TB who are selected to use
the 3HP and 1HP therapies. The expressions (1 − pR)αR

and (1 − pE)(1 − θ)ψD represent cases where the treatment
was not effective and the patient becomes latent. The
expression (1−ϕ)v represents the exposed cases that acquire
the bacteria, but the bacteria are in a non-active state.
Moreover, the expression (1 − pL)σL represents the cases
where 3HP or 1HP were not successful, causing a return to
the latent state. The parameter σ represents the cases that
do not develop active TB and become susceptible naturally
(i.e., their immune system responds without treatment) and
those who use treatment and achieve treatment success. The

parameter ω represents the activation cycle of the bacteria.
The parameter pL is associated with the latents that eliminate
the bacteria.

The exposed that continue the bacterial cycle in a drug-
sensitive manner are represented by the expression (1 −
pE)ϕvE, and those that do so in a drug-resistant manner are
expressed as pEϕvE. Latents that activate the bacteria as
sensitive to TB drugs are represented by the expression (1 −
pE)ωL, and those that make them resistant by pEωL.
Those that enter the drug-sensitive compartment and develop
resistance are expressed as (1 − θ)pEψD. The modification
parameter th adapts TB deaths to resistant cases. Patients
entering treatment in drug-sensitive and drug-resistant are
represented by the ψ and αR parameters, respectively.

Figure 1 illustrates its flow diagram, and Tables 1 and 2
present the description of the variables and parameters of
the model. The fractional derivative operator cDαt has time
dimension α, then the parameters have power dimension α,
except for the modification parameters.

Figure 1. Diagram of models (3.2)–(3.7).

Table 1. Description of variables of models (3.2)–
(3.7).

Variable Description

S TB susceptible
E TB exposed
L Latent (with non-active TB)
LT Latent selected for new therapies (3HP or 1HP)
D Treatment-sensitive TB
R TB resistant
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Table 2. Description of parameters models (3.2)–
(3.7).

Parameter Description

M Recruitment rates
β Effective contact rates
ϵ1, ϵ2 Modification parameters associated with

bacterial transmission of resistant cases
and infection in the latent state.

dT TB death rate
µ Natural death rate
σ Rate of latent who does not develop active

TB
pL Rate of latents that, with new therapies,

eliminated the bacterium
σL Success rate of new therapies in latents
θ Rate of drug sensitivity that, with therapy,

eliminated the bacterium
ψ Success rate in drug-sensitive therapy
pR Rate of resistance that with therapy eliminated

the bacterium
αR Success rate in resistant therapy
v Rate of exposed individuals who acquired the
ϕ TB progression rate

bacteria and start the cycle
pE Rate for resistance cases from any state
ω Progression rates of latent to active

TB
rL Latent rate selected for new treatment

This dimensional consistency can also be found in the
works [16, 17]. We assume that the modification parameters
do not change dimension. The following model describes
the transmission dynamics of TB, taking into account the use
of 3HP and 1HP using fractional derivatives in the Caputo
sense:

cDαt S = Mα + σαL + pαLσ
α
LLt + θ

αψαD + pαRα
α
RR

− (µα + λT )S , (3.2)
cDαt E = λT (S + ϵ2L) − (µα + vα)E, (3.3)
cDαt L = (1 − ϕα)vαE + (1 − pαR)ααRR

+ (1 − pαE)(1 − θα)ψαD + (1 − pαL)σαLLT

− (µα + σα + ωα + ϵ2λT + rαL)L, (3.4)
cDαt LT = rαL L − (µα + σαL)LT , (3.5)

cDαt D = (1 − pαE)(ϕαvαE + ωαL) − (µα + dαT + ψ
α)D,

(3.6)
cDαt R = pαE(ωαL + ϕαvαE) + (1 − θα)pαEψ

αD

− (µα + thdαT + α
α
R)R. (3.7)

The initial conditions are:

S (0) > 0, E(0) > 0, L(0) > 0,

LT (0) ≥ 0,D(0) > 0,R(0) > 0. (3.8)

3.1. Stability analysis

Now, let us prove the existence and positivity of
the solution of systems (3.2)–(3.7), and let’s find the
biologically feasible region.

3.1.1. Existence and non-negativity of solutions

Let us denote

Ω = {x =(S , E, L, LT ,D,R); S , E, L, LT ,D,R ≥ 0}.

The following lemma and corollary are used in the proof
of Theorem 3.1 and can be found in [18, 19].

Lemma 3.1. (Generalized mean value theorem) Suppose

that f ∈ C[a, b] and cDαt f ∈ C[a, b], for α ∈ (0, 1]. Then,

∀t ∈ (a, b], with a ≤ ϵ ≤ t, we have

f (t) = f (a) +
1
Γ(α)

( cDαt f )(ϵ)(t − a)α.

Corollary 3.1. Consider that f ∈ C[a, b] and cDαt f ∈

C[a, b], for α ∈ (0, 1]. Then if

• cDαt f (t) ≥ 0, ∀t ∈ (a, b), then f (t) is non-decreasing

for each t ∈ [a, b],
• cDαt f (t) ≤ 0, ∀t ∈ (a, b), then f (t) is non-increasing

for each t ∈ [a, b].

Theorem 3.1. There is a unique solution

x(t) = (S , E, L, LT ,D,R)T

of models (3.2)–(3.7) for t ≥ 0 and the solution remains in

Ω.

Proof. Using Theorem 3.1 and Remark 3.2 of [20], we
obtain the solution of the initial value problems (3.2)–(3.7)
exists and is unique at (0,∞).

Now, we prove the positivity of the solution of the
systems (3.2)–(3.7). We obtain the positivity of the
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solution if we show that for each hyperplane bounding the
nonnegative orthonormal, the vector field points to Ω. From
the models (3.2)–(3.7), we have:

cDαt S
∣∣∣
S=0 = Mα + σαL + pαLσ

α
LLT + θ

αψαD + pαRα
α
RR

> 0,
cDαt E

∣∣∣
E=0 = λT (S + ϵ2L) ≥ 0,

cDαt L
∣∣∣
L=0 = (1 − ϕα)vαE + (1 − pαR)ααRR

+ (1 − pαE)(1 − θα)ψαD + (1 − pαL)σαLLT ≥ 0,
cDαt LT

∣∣∣
LT=0 = rαL L ≥ 0,

cDαt D
∣∣∣
D=0 = (1 − pαE)(ϕαvαE + ωαL) ≥ 0,

cDαt R
∣∣∣
R=0 = pαE(ωαL + ϕαvαE) + (1 − θα)pαEψ

αD ≥ 0.
(3.9)

Using the Corollary 3.1, we conclude that the solution
remains in Ω. □

3.1.2. Biologically feasible region

Our next step is that we need to find the region where
our models (3.2)–(3.7) make biological sense, which we
call the biologically feasible region (Ωα). In this case, we
are working with compartments of humans, so our variables
have to be positive or zero.

Lemma 3.2. The closed set

Ωα =

{
(S , E, L, LT ,D,R) ∈ R+; N(t) ≤

Mα

µα

}
is positively invariant with respect to models (3.2)–(3.7).

Proof. For our total population, the fractional derivative in
the Caputo sense is defined as:

cDαt N(t) = cDαt S (t) + cDαt E(t) + cDαt L(t) + cDαt LT (t)

+ cDαt D(t) + cDαt R(t)

= Mα − µαN(t) − dαT (D + thR),

and we have

cDαt N(t) + µαN(t) ≤ Mα. (3.10)

The following definitions contribute to the demonstration of
the result:

Definition 3.1. The Laplace transform of the Caputo

fractional derivatives of the function ϕ(t) with order α > 0
is defined as

L
[ cDαt ϕ(t)

]
= sαϕ(s) −

n−1∑
v=0

ϕv(0)sα−v−1. (3.11)

Definition 3.2. The Laplace transform of the function

tα1−1Eα,α1 (±λtα) is defined as

L
[
tα1−1Eα,α1 (±λtα)

]
=

sα−α1

sα ∓ λ
, (3.12)

where Eα,α1 is the two-parameters Mittag-Leffler function

α, α1 > 0. Furthermore, the Mittag-Leffler function satisfies

the following equation:

Eα,α1 ( f ) = fEα,α+1( f ) +
1
Γ(α1)

. (3.13)

Applying the Laplace transform to (3.10), we have

sαϕ(N) − sα−1ϕ(0) ≤
Mα

s
− µαϕ(N), (3.14)

which further gives

N(t) ≤
Mα

s(sα + µ)
+

sα−1

sα + µα
N(0). (3.15)

Using the Eqs (3.11)–(3.13) and we assumed that
(S (0), E(0), L(0), LT (0),D(0),R(0)) ∈ R6

+, then

N(t) ≤ (Mα)tαEα,α+1(−µαtα) + N(0)Eα,1(−µtα). (3.16)

Using the asymptotic behavior of the Mittag-Leffler
function, we can observe that

N(t)→
Mα

µα

as t → ∞.
The Ωα region is well established, and all solutions with

initial values that belong to Ωα remain in Ωα for each time
t > 0. □

3.2. Basic reproduction number

In a population composed only of susceptible individuals,
the average number of infections caused by an infected
individual is defined as ℜ0. This section aims to present
the calculation of the basic reproduction number (ℜ0).
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The relevance of the basic reproduction number provides
key information on the future behavior of an epidemic,
which can contribute to decision making for epidemic
control and eradication strategies. If 0 < ℜ0 < 1, the
infection dies out in the long run, and if ℜ0 > 1, the
infection is able to spread within a population [21, 22].
To find the basic reproduction number, we use the new
generation matrix method presented in [21, 22].

Due to the used methodology, we need an infection-
free equilibrium point. Here we are interested in which
conditions centered on ℜ0 and on the structure of the
models (3.2)–(3.7) imply that this equilibrium point is
globally asymptotically stable.

The infection-free equilibrium point of models (3.2)–(3.7)
is

ϵ0 =

(Mα

µα
, 0, 0, 0, 0, 0

)
.

To compute the basic reproduction number, we use the next-
generation matrix method presented in [21, 22]. Using the
notation in [21, 22] on systems (3.2)–(3.7), matrices for the
new infection terms, F, and the other terms, V , are given by:

F =



0 0 0
Mαβα

µαN
ϵ1

Mαβα

µαN
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and

V =

k11 0 0 0 0
(1 − ϕα)να k12 −P1 −(1 − pαE)P2 −P3

0 −rαL k13 0 0
−(1 − pαE)ϕανα −(1 − pαE)ωα 0 k14 0
−pαEϕ

ανα −pαEω
α 0 −pαE P2 k15


,

where

P1 = (1 − pαL)σαL, P2 = (1 − θα)ψα, P3 = (1 − pαR)ααR,

k11 = µ
α + vα, k12 = µ

α + σα + ωα + rαL , k13 = µ
α + σαL,

k14 = µ
α + dαT + ψ

α, k15 = µ
α + thdαT + α

α
R.

Then, the basic reproduction number is

ℜ0 = ρ(FV−1) =
A1

A2
, (3.17)

where

A1 = (β)αMα
(
k15(pαE − 1) − ϵ1 pαE(k14 + P1)vα(ϕα(k12k13 + P2)

+ k3ω
α(1 − ϕα))

)
and

A2 = Nµαk11

(
k12k13k14k15 + k14k15P2 + k13wα(k15P1(pαE − 1))

+ P3(k14 + P1)
)
.

The stability of ϵ0 can be determined using the following
theorem:

Theorem 3.2. ([23, Theorem 2]) Let

α =
p
q
,

where p, q ∈ Z+ and

gdc(p, q) = 1.

Define

M = q (p = Mα),

then the disease-free equilibrium point ϵ0 of the

models (3.2)–(3.7) is asymptotically stable if

[arg(λ)] >
π

2M

for all roots λ of the following equation

det(diag[λpλpλpλpλpλp] − M1) = 0, (3.18)

where M1 is the matrix of the linearization of the

models (3.2)–(3.7) at ϵ0.

This theorem can be demonstrated with analogous ideas
in [19, 24, 25]. From Theorem 2 of [19, 22], we have the
following lemma characterizing the instability with theℜ0:

Lemma 3.3. The disease-free equilibrium point ϵ0 of the

models (3.2)–(3.7) is unstable ifℜ0 > 1.

Now, we prove the global stability of the infection-free
equilibrium point using the methodology presented in [26].
We can rewrite the models (3.2)–(3.7) as

cDαt S = F(S , I), cDαt I = G(S , I), G(S , 0) = 0,
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where S ∈ R+ is the vector with susceptible individuals and
I ∈ R5

+ have the other compartment of models (3.2)–(3.7).
The disease-free equilibrium is now denoted by

Eα
0 = (S 0, 0R5 ),

where
S 0 =

Mα

µα
.

The conditions (Hα
1 ) and (Hα

2 ) below must be satisfied to
guarantee the global asymptotic stability of Eα

0 ,

(Hα
1 ): For cDαt S = F(S , 0), S 0 is globally asymptotically

stable;

(Hα
2 ): G(S , I) = AI −G∗(S , I), G∗(S , I) ≥ 0, for (S , I) ∈ Ωα,

where A is the Jacobian of G at (S 0, 0R5 ) and is an M-matrix
(the off-diagonal elements of A are non-negative) and Ωα
is the biologically feasible region. The following theorem
allows us to characterize the global stability of the infection-
free equilibrium point based on the behavior ofℜ0.

Theorem 3.3. The fixed point Eα
0 is a globally

asymptotically stable equilibrium of models (3.2)–(3.7)

provided thatℜ0 < 1 and that the conditions (Hα
1 ) and (Hα

2 )
are satisfied.

Proof. Let

F(S , 0) = Mα − µαS .

We have the global stability of S 0 because F(S , 0) is a linear
equation. Let’s

A =

−k11 0 0 (β)α ϵ1(β)α

(1 − ϕα)vα −k12 P1 (1 − pαE)P2 P3

0 rαL −k13 0 0
(1 − pαE)ϕαvα (1 − pαE)ωα 0 −k14 0

pαEϕ
αvα pαEω

α 0 pαE P2 −k15


and

I =
(

E, L, LT , D, R
)
,

G∗(S , I) =



G∗1(S , I)
G∗2(S , I)
G∗3(S , I)
G∗4(S , I)
G∗5(S , I)


=



(β)α(D + ϵ1R)
(
1 −

S
N

)
0
0
0
0


.

Since S is always less than or equal to N,

S
N
≤ 1.

Thus,
G∗(S , I) ≥ 0

for all (S , I) ∈ Ωα. The Eα
0 is globally asymptotically stable.

□

3.3. Incidence and mortality

Before including incidence and mortality in our model,
we briefly present these epidemiologically important
concepts. Incidence proportion (or attack rate or risk) is
the number of new cases of disease during a specific time
interval divided by the population at the start of the time
interval. Mortality is related to the number of deaths caused
by the epidemic [27, 28].

In our study dedicated to TB, active cases are defined
as active TB cases, including exposed cases entering the
drug-sensitive and resistant compartments and latent cases
entering an active state of the bacterium.

The following differential equations define the number of
infected cases and the number of cases that die from the
disease:

cDαt I = ϕαvαE + wαL, (3.19)
cDαt MT = dαT (D + thR). (3.20)

Equations (3.19) and (3.20) are incorporated into the
systems (3.2)–(3.7), they define the active cases and deaths
at time t. Then, incidence and mortality are defined as:

I∗(t) = I(t) − I(t − 1), (3.21)

M∗T (t) = MT (t) − MT (t − 1), (3.22)

with t as the current moment of time and t−1 as the previous
moment of time.

In the sequel, we study how the implementation of 3HP
and 1HP therapies in latents influences the incidence and
mortality of TB.

4. Numerical simulations

In this section, we perform computational illustrations of
our model. We study the behavior of the ℜ0 and active TB
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compartments for different fractional orders

α = 0.5, 0.7, 0.9, 1.0.

The objective is to study the basic reproduction number
when implementing new treatments for latent TB and
the impact of these implementations in the compartments
compared to the maintenance of classical treatment schemes
and to quantify this impact. For the computational
simulations, we use the following values for the initial
conditions and parameters:

S (0) = 941.4, E(0) = 15.5, L(0) = 36.6, LT (0) = 0,

D(0) = 0.7, R(0) = 0.2, M = 667.685, β = 5,

dT = 0.025, µ = 0.05, σ = 0.25, θ = 0.88,

ψ = 0.35, pR = 0.73, αR = 0.84, v = 2.2,

pE = 0.09, w = 0.05, ϵ1 = 1.02,

ϵ2 = 1.01, th = 1.02, ψ = 0.01.

The difference between the 3HP and 1HP is in the change of
the value of the parameters pT and σT . For 3HP

σL = 0.89, pL = 0.85,

and 1HP

σL = 0.95, pL = 0.90 and rL = 0.30.

We start with
LT (0) = 0

to simulate the implementations of the onset of its activation
in the population.

The numerical results of the Caputo derivative are
obtained by the predictor-corrector PECE method of
the Adams-Bashforth-Moulton type and implemented in
MATLAB2021B. The methodology and theoretical results
of the method can be found in [29, 30], its application to
HIV models in [19,25], to a TB model in [6], and to a model
for the study of obesity in [31]. We use 15 years as the time
horizon.

The value of the basic reproduction number for the
scenario under study without the implementation of the 3HP
and 1HP is approximately 1.5101, which is greater than
unity, and it means that TB will spread in the population.

Now, we study the behavior of ℜ0 when we implement
the 3HP and 1HP concerning the selection rate for the
application of these implementations and the success of
this treatment. Then, the parameters rL ∈ [0.10, 0.50] and
pL ∈ [0.80, 0.95]. We can observe that when introducing
these new therapies in latents, the basic reproduction number
is less than unity. The higher the α-value under study
the higher the basic reproduction number but for any α-
value under study it is less than unity. This shows that the
implementation of effective therapies in latents will reduce
the impact of TB transmission since latents can develop
active TB and be elements of transmission; see Figures 2–5.

Figure 2. Basic reproduction number, ℜ0,
varying the parameters, rL and pL, to observe the
impact of the implementations on the latents for
α = 0.5.

Figure 3. Basic reproduction number, ℜ0,
varying the parameters, rL and pL, to observe the
impact of the implementations on the latents for
α = 0.7.
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Figure 4. Basic reproduction number, ℜ0,
varying the parameters, rL and pL, to observe the
impact of the implementations on the latents for
α = 0.9.

Figure 5. Basic reproduction number, ℜ0,
varying the parameters, rL and pL, to observe the
impact of the implementations on the latents for
α = 1.0.

We studied the impact of drug-sensitive and drug-resistant
therapies on the basic reproduction number. For the
parameters associated with the treatment event in drug-
sensitive θ ∈ (0.65, 0.95) and ψ ∈ (0.30, 0.98), we observed
that the ℜ0 increases when we increase the α-value, and in
particular for α =0.9 and α =1 we found ℜ0 greater and
less than unity. This is evidence that only the treatment of
drug-sensitive individuals will not reduce the impact of TB
in the population and that it is necessary to apply strategies
in other compartments; see Figures 6–9.

Figure 6. Basic reproduction number, ℜ0,
varying the parameters, θ and ψ, to observe the
impact of the drug-sensitive treatment for α = 0.5.

Figure 7. Basic reproduction number, ℜ0,
varying the parameters, θ and ψ, to observe the
impact of the drug-sensitive treatment for α = 0.7.

Figure 8. Basic reproduction number, ℜ0,
varying the parameters, θ and ψ, to observe the
impact of the drug-sensitive treatment for α = 0.9.
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Figure 9. Basic reproduction number, ℜ0,
varying the parameters, θ and ψ, to observe the
impact of the drug-sensitive treatment for α = 1.0.

For the parameters associated with the success of the
treatment in the resistant pR ∈ (0.4, 0.95) and αR ∈

(0.55, 0.92), we find that as α increases, ℜ0 increases, but
not significantly. For the variations of these parameters and
the different α-values, ℜ0 is always less than unity. Thus,
the variation of the parameters associated with the treatment
of the resistors has a positive effect; see Figures 10–13.

Figure 10. Basic reproduction number, ℜ0,
varying the parameters, pR and αR, to observe the
impact of the resistant treatment for α = 0.5.

Figure 11. Basic reproduction number, ℜ0,
varying the parameters, pR and αR, to observe the
impact of the resistant treatment for α = 0.7.

Figure 12. Basic reproduction number, ℜ0,
varying the parameters, pR and αR, to observe the
impact of the resistant treatment for α = 0.9.

Figure 13. Basic reproduction number, ℜ0,
varying the parameters, pR and αR, to observe the
impact of the resistant treatment for α = 1.0.
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In cases with drug-sensitive TB with only the classical
treatment, the number of reported cases increases
significantly over time, and the higher the α-values,
the higher the number reported; see Figures 14–17.
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Figure 14. Study of the implementations in the
drug-sensitive cases for α = 0.5.
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Figure 15. Study of the implementations in the
drug-sensitive cases for α = 0.7.
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Figure 16. Study of the implementations in the
drug-sensitive cases for α = 0.9.
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Figure 17. Study of the implementations in the
drug-sensitive cases for α = 1.0.

The implementation of the 3HP and 1HP significantly
reduces the number of reported cases of drug-sensitive
TB compared to the application of the classical therapy
alone. The higher the α-values, the greater the reduction.
Table 3 shows the difference between classical therapy
and the implementation of the 3HP and 1HP. The 1HP
reported better results than the 3HP in the reduction of drug
sensitivity, and in Table 3, we can observe the difference
between the numbers reported between 3HP and 1HP.
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Table 3. Difference in the number of cases
reported drug-sensitive and resistant at the
end of the study by classical treatment (CT),
implementation of 3HP and 1HP (x 1000).

Drug-sensitive Resistant
α CT-3HP CT-1HP 3HP-1HP CT-3HP CT-1HP 3HP-1HP

0.5 5.2924 5.6266 0.3345 0.2034 0.2141 0.0106
0.7 26.0369 26.6 0.5729 1.0490 1.0657 0.0167
0.9 129.8634 131.2384 1.3755 5.1724 5.2163 0.0439
1.0 237.0073 239.4322 2.4249 8.7165 8.8003 0.0837

In resistant cases for α = 0.5 with only the classical
treatment, there is an increase at the beginning, followed
by a decrease, and then an increase again until the end of
the study. This shows that with the implementations, we
avoid this volatile behavior; see Figure 18. For the other
α-values under study, we have an analogous behavior; see
Figures 19–21. At the end of the study, the number of
cases reported concerning the initial one when we apply
only the classical therapy is significantly exceeded, but
with the implementations, the opposite situation occurs.
Table 3 shows that 1HP reaches better results in the sense
of reducing the number of cases.
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Figure 18. Study of the implementations in the
resistant cases for α = 0.5.
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Figure 19. Study of the implementations in the
resistant cases for α = 0.7.
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Figure 20. Study of the implementations in the
resistant cases for α = 0.9.
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Figure 21. Study of the implementations in the
resistant cases for α = 1.0.
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When the α-values increase, the number of new
active cases of TB increases, and the 3HP and 1HP
implementations significantly reduce the number of active
cases that transmit the bacteria; see Figures 22–25. The
study without the implementations in this scenario shows
the need to apply control strategies due to the growth of
the number of active cases and the value of the basic
reproduction number over 7.5 time.
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Figure 22. Cases of active TB over time for the
different α = 0.5.
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Figure 23. Cases of active TB over time for the
different α = 0.7.
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Figure 24. Cases of active TB over time for the
different α = 0.9.
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Figure 25. Cases of active TB over time for the
different α = 1.0.

The implementation of the 1HP therapy showed better
results for the reduction of active cases in comparison
with 3HP. Using Eqs (3.21) and (3.22). Table 4 shows the
incidence of TB and we can observe that the higher the
α-value, the higher the incidence of TB and how the 3HP
and 1HP implementations reduce the impact of TB on the
population.

For deaths associated with TB, we see that all the different
α-values grow over time, and in particular when we do
not apply implementations on latents; see Figures 26–29.
The implementations manage to reduce the number of TB-
associated deaths over time, where the best results are
reported by the 1HP. Table 4 shows TB mortality using
Eq (3.22), and we see the impact it has when we do not
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implement new therapies and how new therapies reduce
mortality.

Table 4. Incidence and mortality of TB at the end
of the study period, taking into account that the
highest values are reached at the end of the study
(x 1000).

Mortality Incidence
α CT 3HP 1HP CT 3HP 1HP

0.5 0.4827 0.0039 0.0021 1.4861 0.0728 0.0300
0.7 0.4091 0.0119 0.0050 13.8631 0.2564 0.0829
0.9 2.6540 0.0387 0.0115 87.392 0.9765 0.3067
1.0 5.4433 0.0722 0.0174 164.608 1.9841 0.357
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Figure 26. TB-associated deaths over time for the
different α = 0.5.
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Figure 27. TB-associated deaths over time for the
different α = 0.7.
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Figure 28. TB-associated deaths over time for the
different α = 0.9.
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Figure 29. TB-associated deaths over time for the
different α = 1.0.

Both incidence and mortality are reduced with the
implementation of new therapies. Table 5 shows the
difference in incidence and mortality between the scenario
with only the classical therapy and with the 3HP and 1HP.
This information is the number of cases avoided and deaths
avoided with these therapies, and we can see that both
implementations reduce the impact of TB concerning the
number of cases avoided, and deaths avoided and the 1HP
showed better results.
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Table 5. Number of TB deaths and cases
of contagion prevented by the implementations
concerning the use of the classical treatment only
(x 1000).

Death Cases
α 3HP 1HP 3HP 1HP

0.5 0.0443 0.0461 1.4133 1.4560
0.7 0.3972 0.4041 13.6066 13.7801
0.9 2.6153 2.6425 86.4154 87.0853
1.0 5.3710 5.4291 162.6239 164.251

It is important to mention that by applying the 3HP
and 1HP implementations, the impact on the population is
significantly reduced, but with them only in the scenario
under study, we did not manage to eliminate TB in 15 years,
so it is necessary to make use of other implementations and
control strategies.

5. Conclusions

In this paper, we present a mathematical model for the
study of TB treatment, taking into account the treatment of
latent TB and the new implementations of the 3HP and 1HP.
The objective is to test the impact of 3HP and 1HP on
the dynamics and to compare these implementations for
the reduction of active TB cases. We use fractional order
derivatives in the Caputo sense to take advantage of the
benefits of this technique, mainly in the memory effect.

We performed computational simulations to validate our
model for different fractional orders. We can conclude that
in the studied scenario, the 3HP and 1HP implementations
reduce the number of cases of active TB (drug-sensitive and
drug-resistant) and TB mortality significantly. However,
the 1HP showed better results. In the study of the basic
reproduction number concerning the selection rate for the
new implementations, 3HP and 1HP, and their success, we
found that all values of the fractional derivative are less than
unity, so these implementations reduce the impact of TB in
the population.

We conclude that although these implementations reduce
the impact of TB to eradicate TB in society, other strategies
are needed.

This work can contribute to decision-making regarding

the implementation of these therapies in a population by
the validation of the model in the conditions of the studied
setting.
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