Existence theory of fractional order three-dimensional differential system at resonance

M. Sathish Kumar¹, M. Deepa², J Kavitha³ and V. Sadhasivam⁴

¹ Department of Mathematics, Paavai Engineering College (Autonomous), Namakkal - 637 018, Tamil Nadu, India
² Department of Mathematics, Paavai Arts and Science College for Women, Namakkal - 637 401, Tamil Nadu, India
³ Department of Mathematics, Sona College of Technology (Autonomous), Salem - 636 005, Tamil Nadu, India
⁴ Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, Rasipuram - 637 401, Namakkal, Tamil Nadu, India

* Correspondence: Email: msksjv@gmail.com.

Abstract: This paper deals with three-dimensional differential system of nonlinear fractional order problem

\[D_{0}^{\alpha} u(q) = f(q, \omega(q), \omega'(q), \omega''(q), ..., \omega^{(n-1)}(q)), \quad q \in (0, 1), \]
\[D_{0}^{\beta} v(q) = g(q, u(q), u'(q), u''(q), ..., u^{(n-1)}(q)), \quad q \in (0, 1), \]
\[D_{0}^{\gamma} \omega(q) = h(q, v(q), v'(q), v''(q), ..., v^{(n-1)}(q)), \quad q \in (0, 1), \]

with the boundary conditions,

\[u(0) = u'(0) = ... = u^{(n-2)}(0) = 0, \quad u^{(n-1)}(0) = u^{(n-1)}(1), \]
\[v(0) = v'(0) = ... = v^{(n-2)}(0) = 0, \quad v^{(n-1)}(0) = v^{(n-1)}(1), \]
\[\omega(0) = \omega'(0) = ... = \omega^{(n-2)}(0) = 0, \quad \omega^{(n-1)}(0) = \omega^{(n-1)}(1), \]

where \(D_{0}^{\alpha}, D_{0}^{\beta}, D_{0}^{\gamma} \) are the standard Caputo fractional derivative, \(n - 1 < \alpha, \beta, \gamma \leq n, \ n \geq 2 \) and we derive sufficient conditions for the existence of solutions to the fractional order three-dimensional differential system with boundary value problems via Mawhin’s coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.

Keywords: fractional differential equation; coincidence degree theory; resonance

1. Introduction

In the recent years, the glorious developments have been envisaged in the field of fractional differential equations due to their applications being used in various fields such as blood flow phenomena, electro Chemistry of corrosion, industrial robotics, probability and Statistics and so on, refer [1–7]. In particular, the fractional derivative has been used in lot of physical applications such as propagation of fractional diffusive waves in viscoelastic solids [8], charge transmit-time dispersion amorphous semi-conductor [9] and a non-Markovian diffusion process with memory [10].

Although fixed point theorems like the Banach contraction principle and the Schauder fixed point theorem are used to establish the existence of solutions, stronger conditions on the nonlinear functions involved limit their application to a limited number of problems. We employ Mawhin’s topological degree theory method to include
additional types of boundary value problems (BVP’s) and apply fewer restricted conditions.

In the field of fractional systems, many results have been obtained through assured extensions of existing results given only to integer systems. Despite the enormous amount of published work on fractional differential systems, there are still many difficult open problems. Indeed, the theory and applications of these systems are still very active areas of research.

Recently, two-point BVP’s for fractional differential equations have been studied in some papers (see [11, 12]). The existence of solutions to coupled systems of fractional differential equations has been given in papers [13–16]. Moreover, some authors discussed the existence of solutions for nonlinear fractional multi-point BVP’s; for instance, refer [17–21], and the references cited therein. There are few papers which deals with the BVP’s for fractional differential equations at nonresonance. Meanwhile, fractional BVP’s at resonance have been intensively explored, as shown by references to several recent works on the subject [22–27].

Hu and Zhang [28] investigated the existence, uniqueness of solutions to integer higher-order nonlinear coupled fractional differential equations at resonance by the coincidence degree theory. Hu [29] discussed the solution of a higher-order coupled system of nonlinear fractional differential equations with infinite-point boundary conditions by coincidence degree theory.

Motivated by the results mentioned above, the two point BVP’s of system of higher-order fractional differential equations have been studied by some authors, to the best of our knowledge, no work has been done on the BVP of system involving three-dimensional differential system higher-order fractional differential equations with Caputo fractional derivative. Inspired by the aforementioned studies, in this manuscript, we establish sufficient conditions for the existence of solutions to the nonlinear fractional order three-dimensional differential system with BVP’s of the form.

\[D_{\alpha}^{\nu} v(t) = f(t, v(t), v'(t), v''(t), \ldots, v^{(\nu-1)}(t)), \quad 0 < \nu < 1, \quad 0 < t < 1, \]
\[D_{\beta}^{\gamma} v(t) = g(t, v(t), v'(t), v''(t), \ldots, v^{(\gamma-1)}(t)), \quad 0 < \gamma < 1, \quad 0 < t < 1, \]
\[D_{0}^{\delta} \omega(t) = h(t, v(t), v'(t), v''(t), \ldots, v^{(\delta-1)}(t)), \quad 0 < \delta < 1, \quad 0 < t < 1, \]
\[\varrho \in (0, 1), \text{ with the boundary conditions}, \]
\[u(0) = u'(0) = \cdots = u^{(n-1)}(0) = 0, \quad u^{(n)}(0) = u^{(n+1)}(0), \] (1.4)
\[v(0) = v'(0) = \cdots = v^{(n-1)}(0) = 0, \quad v^{(n)}(0) = v^{(n+1)}(0), \] (1.5)
\[\omega(0) = \omega'(0) = \cdots = \omega^{(n-1)}(0) = 0, \quad \omega^{(n)}(0) = \omega^{(n+1)}(0), \] (1.6)

where \(D_{\alpha}^{\nu}, D_{\beta}^{\gamma} \) and \(D_{0}^{\delta} \) denote the standard Caputo fractional derivative, \(n-1 < \alpha, \beta, \gamma < n, \) \(n \geq 2. \) Boundary value problems being at resonance means that the associated linear homogeneous equation \(D_{\alpha}^{\nu} v(t) = 0 \) has a nontrivial solution \(v(t) = ct^{n-1}, \) where \(0 < \varrho < 1, c \in \mathbb{R}. \)

Our main aim of this paper is to establish some new criteria for the existence of solutions of (1.1) and (1.4). By using Mawhin’s coincidence degree theory, some new existence results are obtained. This paper presents a new existence result which is a generalization of some known results in the existing literature.

This paper is organized in the following fashion: In Section 2, we shall present some notations, definitions and some properties of the fractional calculus. In Section 3, we investigate the existence of solutions of equation (1.1) and (1.4) by the Mawhin’s coincidence degree theory [30]. In Section 4, we illustrate the main result further by providing an example.

2. Preliminaries

This section starts with a quick review of the fractional calculus concepts that will be used in this work. So let’s start with the Riemann–Liouville fractional integrals and derivatives definitions.

Definition 2.1. [15] The Riemann-Liouville fractional integral of order \(\alpha > 0 \) of a function \(f : \mathbb{R} \to \mathbb{R} \) on the half-axis \(\mathbb{R}_{+} \) is given by

\[\left(I_{0+}^{\alpha} f \right)(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - \sigma)^{\alpha-1} f(\sigma)d\sigma, \quad \text{for } \varrho > 0 \]

provided the right hand side is pointwise defined on \(\mathbb{R}_{+}. \)

Definition 2.2. [15] The Riemann-Liouville fractional derivative of order \(\alpha > 0 \) on continuous function \(f : \mathbb{R}_{+} \to \mathbb{R} \)
is given by

$$(D^\alpha_0 f)(q) := \frac{1}{\Gamma(n-\alpha)} \int_0^\infty (q - v)^{n-\alpha-1} f^n(v) dv \quad \text{for} \quad \alpha > 0,$$

(2.1)

where \(n - 1 < \alpha \leq n\) and \(\Gamma\) is the gamma function, such that the integral is pointwise defined on \(\mathbb{R}_+\).

Definition 2.3. [12] Assume that \(f\) is \((n - 1)\)-times absolutely continuous function, the Caputo fractional derivative of order \(\alpha > 0\) of \(f\) is given by

$$(D^\alpha_0 f)(q) := \frac{d^n}{dq^n} \int_0^q (q - v)^{n-\alpha-1} f^n(v) dv \quad \text{for} \quad \alpha > 0,$$

(2.2)

where \(n\) is the smallest integer greater than or equal to \(\alpha\), provided that the right side integral is pointwise defined on \((0, +\infty)\).

Lemma 2.4. [12] Assume that \(n - 1 < \alpha \leq n\), \(\bar{x} \in C(0, 1) \cap L^1(0, 1)\), then

$$I^\alpha_0 D^\alpha_0 \bar{x}(q) := \bar{x}(q) + c_0 + c_1 q + c_2 q^2 + \ldots + c_{n-1} q^{n-1}$$

where \(c_i = -\frac{\bar{x}^{(i)}(0)}{i!} \in \mathbb{R}, (i = 0, 1, 2, \ldots, n - 1)\) and \(n \geq \alpha\), \(n\) is the smallest integer.

Lemma 2.5. [12] Let \(\beta > 0\), \(\alpha + \beta > 0\), then

$$I^\alpha_0 I^\beta_0 f(\bar{x}) := I^{\alpha + \beta}_0 f(\bar{x})$$

is satisfied for continuous function \(f\).

Lemma 2.6. [20] Let \(L : domL \subset X \rightarrow Z\) be a Fredholm operator with index zero and \(N\) be \(L\)-compact on \(\overline{\Omega}\). Assume that the following relations hold.

1. \(Lx \neq \lambda Nx\) for every \((\bar{x}, \lambda) \in ([domL \setminus KerL] \cap \partial\Omega) \times (0, 1);
2. \(Nx \notin ImL\) for every \(\bar{x} \in KerL \cap \partial\Omega;
3. For some isomorphism \(J : ImQ \rightarrow KerL\), we have \(deg(JQN|_{KerL}, KerL \cap \Omega, 0) \neq 0\), where \(Q : Z \rightarrow Z\) is a continuous projection such that \(ImL = KerQ\). Then the operator equation \(Lx = Nx\) has at least one solution in \(domL \cap \overline{\Omega}\).

3. Main results

Our main result is as follows.

Let \(X = C^{n-1}[0, 1]\) with the norm \(\|X\|_X = \max \{\|X\|_{\infty}, \|X^1\|_{\infty}, \ldots, \|X^{n-1}\|_{\infty}\}\) and \(Z = C[0, 1]\) with the norm \(\|\|v\|_{L^1}, \|\|v\|_{L^2}, \|\|v\|_{L^3}\|\) and \(\overline{X} = Z \times \overline{X} \times \overline{Z}\) with the norm \(\|v, x, \omega\|_{\overline{X}} = \max \{\|v\|_{L^1}, \|x\|_{L^2}, \|\omega\|_{L^3}\}\). Obviously, \(\overline{X}\) and \(\overline{Z}\) are Banach spaces.

Define \(L_i : domL \subset X \rightarrow Z, (i = 1, 2, 3)\) by

$$L_1v = D^\alpha_0 v, L_2v = D^\beta_0 v \quad \text{and} \quad L_3\omega = D^\gamma_0 \omega,$$

where

$$domL_1 = \{v \in X | D^\alpha_0 v(q) \in Z, v^{(j)}(0) = 0, j = 0, 1, \ldots, n - 2\},$$
$$domL_2 = \{v \in X | D^\beta_0 v(q) \in Z, v^{(j)}(0) = 0, j = 0, 1, \ldots, n - 2\},$$
$$domL_3 = \{\omega \in X | D^\gamma_0 \omega(q) \in Z, \omega^{(j)}(0) = 0, j = 0, 1, \ldots, n - 2\}.$$

Define \(L : domL \subset X \rightarrow Z\) as

$$L(v, x, \omega) = (L_1v, L_2v, L_3\omega),$$

(3.1)

where

$$domL = \{(v, x, \omega) \in \overline{X} | v \in domL_1, v \in domL_2, \omega \in domL_3\}.$$

Define the operator (Nemytskii) \(N : \overline{X} \rightarrow \overline{Z}\) as

$$N(v, x, \omega) = (N_1\omega, N_2v, N_3\omega),$$

where

$$N_i : X \rightarrow Z, (i = 1, 2, 3)\) as follows:

$$N_1\omega(q) = f(q, \omega(q), \omega'(q), \ldots, \omega^{(n-1)}(q)),$$
$$N_2v(q) = g(q, v(q), v'(q), \ldots, v^{(n-1)}(q)),$$
$$N_3\omega(q) = h(q, v(q), v'(q), \ldots, v^{(n-1)}(q)).$$

The operator equation is then equivalent to the BVP’s (1.1) and (1.4).

$$L(v, x, \omega) = N(v, x, \omega), \quad (v, x, \omega) \in domL.$$
Lemma 3.1. Let the operator L be defined by (3.1). Then

$$\text{ker}L = (\text{Ker}L_1, \text{Ker}L_2, \text{Ker}L_3) = \{(v, \nu, \omega) \in \mathbb{R}(v, \nu, \omega) \mid (m_1g^{n-1}, m_2g^{n-1}, m_3g^{n-1}), m_1, m_2, m_3 \in \mathbb{R}\}.$$

(3.2)

and

$$\text{Im}L = (\text{Im}L_1, \text{Im}L_2, \text{Im}L_3) = \{(x, y, \bar{z}) \in \mathbb{R} \mid \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0, \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0 \}. \tag{3.3}$$

Proof. By Lemma 2.1, $L_1v = D_0^n\nu (\nu(\nu)) = 0$ has the solution

$$\nu(\nu) = c_0 + c_1\nu + \ldots + c_{n-1}\nu^{n-1}.$$

Using the boundary condition, we have

$$\text{ker}L_1 = \{v \in \mathcal{X}|v = m_1g^{n-1}, m_1 \in \mathbb{R}\}.$$

For $(\bar{x}, \bar{y}, \bar{z}) \in \text{Im}L$, there exists $(v, \nu, \omega) \in \text{dom}L$ such that $(\bar{x}, \bar{y}, \bar{z}) = L(v, \nu, \omega)$. Again, by Lemma 2.1, we get

$$\nu(\nu) = d_0 + d_1\nu + \ldots + d_{n-1}\nu^{n-1}.$$

By definition of $\text{dom}L$, we have $a_j = b_j = c_j = 0, j = 0, 1, 2, \ldots, n - 2$. We can get

$$\nu(\nu) = d_0 + d_1\nu + \ldots + d_{n-1}\nu^{n-1}.$$

From Lemma 2.2, we have

$$\nu^{(n-1)}(\nu) = d_0^{n-1}\nu^{(n-1)} + d_{n-1}(n - 1)!,$$

$$\nu^{(n-1)}(\nu) = d_0^{n-1}\nu^{(n-1)} + d_{n-1}(n - 1)!,$$

$$\omega^{(n-1)}(\omega) = c_1 + c_1\omega + \ldots + c_{n-1}\omega^{n-1}.$$

By using the boundary conditions, we obtain

$$\int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0,$$

$$\int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0,$$

Further, suppose $(\bar{x}, \bar{y}, \bar{z}) \in Z$ and satisfies above conditions.

Let $\nu(\nu) = D_0^n\nu (\nu(\nu)) = 0$ then $(v, \nu, \omega) \in \text{dom}L_1$ and $D_0^n\nu (\nu(\nu)) = \bar{y}(\nu), D_0^n\omega (\nu) = \bar{z}(\nu)$. Hence, $(\bar{x}, \bar{y}, \bar{z}) \in \text{Im}L$. Then we get

$$\text{Im}L_1 = \{\bar{x} \in Z \mid \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0 \}.$$

Similarly, we get that

$\text{ker}L_2 = \{v \in X|v = m_2g^{n-1}, m_2 \in \mathbb{R}\}$,

$\text{Im}L_2 = \{\bar{y} \in Z \mid \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0 \}$,

$\text{ker}L_3 = \{\omega \in X|\omega = m_3g^{n-1}, m_3 \in \mathbb{R}\}$,

$\text{Im}L_3 = \{\bar{z} \in Z \mid \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0 \}$.

\square

Lemma 3.2. Let L be defined by $L(v, \nu, \omega) = (L_1v, L_2\nu, L_3\omega)$. Then L is a Fredholm operator of index zero, the linear continuous projector operators $P: X \rightarrow X$ and $Q: Z \rightarrow Z$ can be defined as

$$P(v, \nu, \omega) = (P_1v, P_2\nu, P_3\omega),$$

where

$$P_1v = \frac{\nu^{(n-1)}(0)}{(n - 1)!}g^{n-1},$$

$$P_2\nu = \frac{\nu^{(n-1)}(0)}{(n - 1)!}g^{n-1},$$

$$P_3\omega = \frac{\omega^{(n-1)}(0)}{(n - 1)!}g^{n-1}, \tag{3.4}$$

and

$$Q(\bar{x}, \bar{y}, \bar{z}) = (Q_1\bar{x}, Q_2\bar{y}, Q_3\bar{z}),$$

where

$$Q_1\bar{x}(\nu) = (a - n + 1) \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0,$$

$$Q_2\bar{y}(\nu) = (b - n + 1) \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0,$$

$$Q_3\bar{z}(\nu) = (c - n + 1) \int_0^1 (1 - k)^{r-\alpha}(\bar{z}(k)\omega - \bar{z}(k)\nu)\omega = 0.$$

(3.5)
Furthermore, the operator $K_P : \text{Im}L \to \text{dom}L \cap \text{Ker}P$ can be written by $K_P(\overline{x}, \overline{y}, \overline{z}) = (I_P^0, I_P^0, I_P^0, I_P^0, I_P^0, I_P^0)$, that is, $K_P = (L|_{\text{dom}L \cap \text{Ker}P})^{-1}$.

Proof. Define $P_i : X \to X$, $(i = 1, 2, 3)$ and $P : (u, v, \omega) \to (P_1 v, P_2 v, P_3 \omega)$, from (3.4) we get

$$P_i^2 v(\overline{q}) = \frac{(P_1 v)^{(n-1)}(0)}{(n-1)!} d^{n-1} q^{(n-1)} \bigg|_{q=0} = 0$$

Thus

$$\dim \text{Ker}L = \dim \text{Im}Q = \text{codim} \text{Im}L.$$
bounded. On the other hand, there exist constants \(r_i > 0, i = 1, 2, 3 \), such that for all \((u, v, \omega) \in \overline{\Xi}, \varrho \in [0, 1]\), then

\[
|I - (Q_1)\eta_1| \leq r_1, \quad |I - (Q_2)\eta_2| \leq r_2, \quad |I - (Q_3)\eta_3| \leq r_3.
\]

Next, denote \(K_{PQ} = K_P(I - Q)\eta \) and for \(0 \leq \varrho_1 < \varrho_2 \leq 1\), we get

\[
K_{P, Q}(u, v, \omega)(\varrho_2) = K_P(I - Q)(N_1\omega(\varrho_2), N_2\nu(\varrho_2), N_3\nu(\varrho_2))
\]

\[
= K_P(I - Q)(N_1\omega(\varrho_2), N_2\nu(\varrho_2) - P_0(\varrho_2), N_3\nu(\varrho_2) - P_0(\varrho_2)).
\]

Here,

\[
\left| P_{\nu}^0(\varrho_2)(I - Q_1)\eta_1\omega(\varrho_2) - P_{\nu}^0(I - Q_1)\eta_1\omega(\varrho_2) \right|
\]

\[
\leq \left| \frac{r_1}{\Gamma(\alpha + 1)} \left(\eta_2^0 - \eta_1^0 \right) \right|
\]

Furthermore, we have

\[
\left| P_{\nu}^0(I - Q_1)\eta_1\omega(\varrho_2) - P_{\nu}^0(I - Q_1)\eta_1\omega(\varrho_2) \right|
\]

\[
\leq \left| \frac{r_2}{\Gamma(\beta + 1)} \left(\eta^2_2 - \eta^2_1 \right) \right|
\]

Since \(\eta^0, \eta^{\alpha - 1}, \eta^\gamma, \eta^{\alpha - 1}, \eta^\gamma \) and \(\eta^\gamma \) are uniformly continuous on \([0, 1] \), we can get that \(K_{P, Q}(\overline{\Xi}) \subset C[0, 1] \), \(K_{P, Q}^{(j)}(\overline{\Xi}) \subset C[0, 1] \), \(j = 1, 2, \ldots, n - 1 \) are equiconvergent. By the Arzela-Ascoli theorem, we can obtain \(K_{P, Q}(I - Q)\eta \) is completely continuous. Hence \(N \) is L-compact on \(\overline{\Xi} \).

\[\square\]

Theorem 3.4. Let \(f, g, h : [0, 1] \times \mathbb{R}^{n-1} \rightarrow \mathbb{R} \) be continuous. Assume that

\((B_1) \) There exist positive constants \(\delta_i, \rho_i, \tau_i \) \(\in [0, 1] \), \(i = 1, 2, \ldots, n \), such that for all \((\overline{\gamma}_1, \overline{\gamma}_2, \ldots, \overline{\gamma}_n) \in \mathbb{R}^n \) and \(\varrho \in [0, 1] \),

\[
|f(\varrho, \overline{\gamma}_1, \overline{\gamma}_2, \ldots, \overline{\gamma}_n) | \leq \rho_0 + \rho_1 \overline{\gamma}_1 + \rho_2 \overline{\gamma}_2 + \cdots + \rho_n \overline{\gamma}_n,
\]

\[
|g(\varrho, \overline{\gamma}_1, \overline{\gamma}_2, \ldots, \overline{\gamma}_n) | \leq \delta_0 + \delta_1 \overline{\gamma}_1 + \delta_2 \overline{\gamma}_2 + \cdots + \delta_n \overline{\gamma}_n,
\]

\[
|h(\varrho, \overline{\gamma}_1, \overline{\gamma}_2, \ldots, \overline{\gamma}_n) | \leq \tau_0 + \tau_1 \overline{\gamma}_1 + \tau_2 \overline{\gamma}_2 + \cdots + \tau_n \overline{\gamma}_n.
\]

\((B_2) \) There exists a positive constant \(D \) such that for any \(m_1, m_2, m_3 \in \mathbb{R} \), if \(\min \{|m_1|, |m_2|, |m_3|\} > D \), one has either

\[
m_1 N_1(m_2 \eta^{n-1}) > 0, \quad m_2 N_2(m_3 \eta^{n-1}) > 0, \quad m_3 N_3(m_1 \eta^{n-1}) > 0
\]

or

\[
m_1 N_1(m_2 \eta^{n-1}) < 0, \quad m_2 N_2(m_3 \eta^{n-1}) < 0, \quad m_3 N_3(m_1 \eta^{n-1}) < 0.
\]

(\(B_3 \)) max \(\left\{ 2d_1 \sum_{j=1}^{n} \rho_j, 2d_2 \sum_{j=1}^{n} \delta_j, 2d_3 \sum_{j=1}^{n} \tau_j, d_1 \sum_{j=1}^{n} \rho_j + d_2 \sum_{j=1}^{n} \delta_j, d_3 \sum_{j=1}^{n} \tau_j, d_1 \sum_{j=1}^{n} \rho_j + d_2 \sum_{j=1}^{n} \delta_j + d_3 \sum_{j=1}^{n} \tau_j \right\} < 1. \)

Then the system (1.1) and (1.4) has at least one solution.

Lemma 3.5. Assume that \((B_1) \) and \((B_2) \) hold, then the set

\[
\Omega_1 = \{(u, v, \omega) \in \text{dom} L \setminus \text{Ker} L | L(u, v, \omega) = \lambda N(u, v, \omega), \lambda \in (0, 1)\}
\]

is bounded.
Proof. For \((u, v, \omega) \in \Omega_1, \lambda \neq 0\), then \(L(u, v, \omega) = \lambda N(u, v, \omega) = \lambda M = \text{Ker} Q\), that is, \(Q N(u, v, \omega) = 0\). By (3.3), we have

\[
\lambda(\alpha - n + 1) \int_0^1 (1 - \kappa)^{\alpha-n} f(\kappa, v(\kappa), \omega(\kappa), \ldots, \omega^{(n-1)}(\kappa)) d\kappa = 0,
\]

\[
\lambda(\beta - n + 1) \int_0^1 (1 - \kappa)^{\beta-n} g(\kappa, v(\kappa), v'(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa = 0,
\]

\[
\lambda(\gamma - n + 1) \int_0^1 (1 - \kappa)^{\gamma-n} h(\kappa, v(\kappa), v'(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa = 0.
\]

Applying integral mean value theorem, there exist constants \(q_0, q_1, q_2 \in [0, 1]\) such that

\[
f(q_0, \omega(q_0), v'(q_0), \ldots, v^{(n-1)}(q_0)) = 0,
\]

\[
g(q_2, v(q_2), v'(q_2), \ldots, v^{(n-1)}(q_2)) = 0.
\]

From (B2), we can get \(|v^{(n-1)}(q_2)| \leq K, |v^{(n-1)}(q_1)| \leq K\) and \(|\omega^{(n-1)}(q_0)| \leq K\).

By \(L_2 = \lambda N_2 u\), we have

\[
n(q) = \frac{1}{\Gamma(\beta)} \int_0^q (q - \kappa)^{\beta-1} g(\kappa, v(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa
\]

\[
- n(0) - n'(0) - \cdots - \frac{v^{(n-1)}(0)}{(n-1)!} \theta^{n-1}.
\]

Furthermore, we have that,

\[
v^{(n-1)}(q) = \frac{1}{\Gamma(\beta - n + 1)} \int_0^q (q - \kappa)^{\beta-n} g(\kappa, v(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa
\]

\[
- v^{(n-1)}(0).
\]

Substituting \(q = q_2\) in the above equation, we can get

\[
v^{(n-1)}(q_2) = \frac{1}{\Gamma(\beta - n + 1)} \int_0^{q_2} (q_2 - \kappa)^{\beta-n} g(\kappa, v(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa
\]

\[
- v^{(n-1)}(0).
\]

Together with \(|v^{(n-1)}(q_2)| \leq K, we have

\[
|v^{(n-1)}(0)| \leq \frac{1}{\Gamma(\beta - n + 1)} \int_0^{q_2} (q_2 - \kappa)^{\beta-n} g(\kappa, v(\kappa), \ldots, v^{(n-1)}(\kappa)) d\kappa
\]

\[
+ |v^{(n-1)}(q_2)|
\]

\[
\leq K \frac{1}{\Gamma(\beta - n + 1)} \int_0^{q_2} (q_2 - \kappa)^{\beta-n} d\kappa
\]

\[
\leq K + \frac{1}{\Gamma(\beta - n + 1)} \int_0^{q_2} (q_2 - \kappa)^{\beta-n} \|g(\kappa, v(\kappa), \ldots, v^{(n-1)}(\kappa))\|_1
\]

\[
\leq K + \frac{1}{\Gamma(\beta - n + 1)} \int_0^{q_2} (q_2 - \kappa)^{\beta-n} \delta_0 + \sum_{j=1}^n \delta_j \|v_j\|_\infty
\]

\[
\times \int_0^{q_2} (q_2 - \kappa)^{\beta-n} d\kappa
\]

\[
\leq K + d_2 \delta_0 + d_1 \sum_{j=1}^n \delta_j \|v_j\|_\infty.
\]

Using similar argument, we get

\[
|v^{(n-1)}(0)| \leq K + d_1 \rho_0 + d_1 \sum_{j=1}^n \rho_j \|\omega_j\|_\infty,
\]

\[
|\omega^{(n-1)}(0)| \leq K + d_3 \tau_0 + d_3 \sum_{j=1}^n \tau_j \|v_j\|_\infty.
\]

For every \((u, v, \omega) \in \bar{\Omega}\),

\[
\|P(u, v, \omega)\|_\infty = \|P_1 u, P_2 v, P_3 \omega\|_\infty
\]

\[
= \max \{\|P_1 u\|_\infty, \|P_2 v\|_\infty, \|P_3 \omega\|_\infty\}
\]

\[
= \max \left\{ \frac{|v^{(n-1)}(0)|}{(n-1)!} \|v^{(n-1)}(0)\|_\infty, \frac{|v^{(n-1)}(0)|}{(n-1)!} \|v^{(n-1)}(0)\|_\infty \right\}
\]

\[
\leq \max \{\|v^{(n-1)}(0)\|_\infty, |v^{(n-1)}(0)|, |\omega^{(n-1)}(0)|\}.
\]

(3.12)

Again, for \((u, v, \omega) \in \Omega_1, (u, v, \omega) \in domL \setminus Ker L\), then

\((I - P)(u, v, \omega) \in domL \cap Ker P \text{ and } LP(u, v, \omega) = (0, 0, 0)\).

Thus, from (3.5), we have

\[
\|LP(u, v, \omega)\|_\infty = \|K_P L(I - P)(u, v, \omega)\|_\infty
\]

\[
= \|K_P (L_1 u, L_2 v, L_3 \omega)\|_\infty
\]

\[
\leq \max \{d_1 \|\eta_1\|_\infty, d_2 \|\eta_2\|_\infty, d_3 \|\eta_3\|_\infty\}.
\]

(3.13)

From (3.12) and (3.13), we get

\[
\|LP(u, v, \omega)\|_\infty = \|P(u, v, \omega) + (I - P)(u, v, \omega)\|_\infty
\]

\[
\leq \|P(u, v, \omega)\|_\infty + \|(I - P)(u, v, \omega)\|_\infty
\]

\[
\leq \max \{\|v^{(n-1)}(0)\|_\infty, |v^{(n-1)}(0)|, |\omega^{(n-1)}(0)|\}
\]

Mathematical Modelling and Control

Volume 3, Issue 2, 127–138
\[+ \max \{ |d_1| |N_2v|_\infty ; |d_2| |N_2v|_\infty ; |d_3| |N_2v|_\infty \} \]

Case 5. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_1 \| N_1 \omega \|_\infty \). The proof is similar to Case 1, hence the details are omitted.

Case 6. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_1 \| N_1 \omega \|_\infty \). By (3.9), and (B1), we have

\[
\| (v, \nu, \omega) \|_\mathcal{X} \leq K + d_2 \rho_0 + d_2 \sum_{j=1}^n \rho_j \| \omega \|_\infty + d_3 \tau_0 + d_3 \sum_{j=1}^n \tau_j \| \nu \|_\infty .
\] (13.14)

The proof is divided into three cases as follows.

Case 1. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_1 \| N_1 \omega \|_\infty \). By (3.10), and (B1), we have

\[
\| (v, \nu, \omega) \|_\mathcal{X} \leq K + d_2 \rho_0 + d_1 \sum_{j=1}^n \rho_j \| \omega \|_\infty + d_1 \rho_0 + d_1 \sum_{j=1}^n \rho_j \| \omega \|_\infty \leq K + 2d_1 \rho_0 + 2d_1 \sum_{j=1}^n \rho_j \| \omega \|_\infty .
\] (13.15)

According to (B3) and the definition of \(\| (v, \nu, \omega) \|_\mathcal{X} \), we can get \(\| \omega \|_\mathcal{X} \) are bounded. Therefore \(\Omega_1 \) is bounded.

Case 2. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_2 \| N_2v \|_\infty \). By (3.10), and (B1), we have

\[
\| (v, \nu, \omega) \|_\mathcal{X} \leq K + d_2 \rho_0 + d_1 \sum_{j=1}^n \rho_j \| \nu \|_\infty + d_2 \delta_0 + d_2 \sum_{j=1}^n \delta_j \| \nu \|_\infty
\] (13.16)

By (B3), \(\| (v, \nu, \omega) \|_\mathcal{X} \) is bounded. Therefore \(\Omega_2 \) is bounded.

Case 3. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_3 \| N_2 \omega \|_\infty \). By (3.11), and (B1), we have

\[
\| (v, \nu, \omega) \|_\mathcal{X} \leq K + d_3 \rho_0 + d_3 \sum_{j=1}^n \rho_j \| \nu \|_\infty + d_3 \tau_0 + d_3 \sum_{j=1}^n \tau_j \| \nu \|_\infty
\] (13.17)

By (B3), \(\| (v, \nu, \omega) \|_\mathcal{X} \) is bounded. Therefore \(\Omega_1 \) is bounded.

Case 4. \(\| (v, \nu, \omega) \|_\mathcal{X} \leq |v^{(n-1)}(0)| + d_1 \| N_1 \omega \|_\infty \). The proof is similar to that of Case 2, hence the details are omitted.

By (B3) imply that \(|m_1|, |m_2|, |m_3| \leq \frac{D}{(n-1)!} \). Therefore \(\Omega_2 \) is bounded. □
Lemma 3.7.

\[
\Omega_3 = \{ (v, \nu, \omega) \in \text{Ker} L \ |
\lambda (v, \nu, \omega) + (1 - \lambda) Q N(v, \nu, \omega) = (0, 0, 0), \lambda \in (0, 1) \}
\]
is bounded.

Proof. For \((v, \nu, \omega) \in \Omega_3\), so we have

\[
(v, \nu, \omega) = (m_1 \psi^{-1}, m_2 \psi^{-1}, m_3 \psi^{-1}),
\]

\(m_1, m_2, m_3 \in R\) and

\[
\lambda m_1 \psi^{-1} + (1 - \lambda)(\alpha - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\alpha-n} f(q, m_3 \psi^{-1}, ..., m_3(n-1)!)dt = 0,
\]

(3.19)

\[
\lambda m_2 \psi^{-1} + (1 - \lambda)(\beta - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\beta-n} g(q, m_1 \psi^{-1}, ..., m_1(n-1)!)dt = 0,
\]

(3.20)

\[
\lambda m_3 \psi^{-1} + (1 - \lambda)(\gamma - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\gamma-n} h(q, m_2 \psi^{-1}, ..., m_2(n-1)!)dt = 0
\]

(3.21)

If \(\lambda = 0\), then by (B2), we get \(|m_1|, |m_2|, |m_3| \leq \frac{D}{(n-1)!}\). For \(\lambda \in (0, 1]\), we obtain \(|m_1|, |m_2|, |m_3| \leq \frac{D}{(n-1)!}\). Otherwise, if \(|m_i| > \frac{D}{(n-1)!}, i = 1, 2, 3\), from (B2), one has

\[
\lambda m_i \psi^{-1} + (1 - \lambda)(\alpha - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\alpha-n} m_i f(q, m_3 \psi^{-1}, ..., m_3(n-1)!)dt > 0,
\]

\[
\lambda m_2 \psi^{-1} + (1 - \lambda)(\beta - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\beta-n} m_2 g(q, m_1 \psi^{-1}, ..., m_1(n-1)!)dt > 0,
\]

\[
\lambda m_3 \psi^{-1} + (1 - \lambda)(\gamma - n + 1)
\]

\[
\times \int_0^1 (1 - \kappa)^{\gamma-n} m_3 h(q, m_2 \psi^{-1}, ..., m_2(n-1)!)dt > 0
\]

which contradict to (3.19) or (3.20) or (3.21). Hence, \(\Omega_3\) is bounded.

Remark 3.8. Suppose the second part of (H3) holds, then the set

\[
\Omega_3 = \{ (v, \nu, \omega) \in \text{Ker} L | - \lambda (v, \nu, \omega) + (1 - \lambda) Q N(v, \nu, \omega) = (0, 0, 0), \lambda \in (0, 1) \}
\]
is bounded.

Proof of Theorem 3.1: Suppose \(\cup^\lambda_{i=1} \Omega_i \subset \Omega\) be a bounded open subset of \(X\). From the Lemma 3.2 and Lemma 3.3, we get \(L\) is a Fredholm operator of index zero and \(N\) is \(L\)-compact on \(\Omega\). By Lemma 3.4 and Lemma 3.5, we get

(1) \(L(v, \nu, \omega) \neq \lambda N(v, \nu, \omega)\) for every \((v, \nu, \omega), \lambda \in \text{dom}\ L \cap \text{Ker} L \cap \partial \Omega \times (0, 1); \)

(2) \(N v \notin \text{Im} L\) for every \((v, \nu, \omega) \in \text{Ker} L \cap \partial \Omega\.

Choose

\[
H((v, \nu, \omega), \lambda) = \pm \lambda (v, \nu, \omega) + (1 - \lambda) Q N(v, \nu, \omega).
\]

By Lemma 3.6 (or Remark 3.1), we get \(H((v, \nu, \omega), \lambda) \neq 0\) for \((v, \nu, \omega) \in \text{Ker} L \cap \partial \Omega\). By the homotopic property of degree, we have

\[
\text{deg}(Q N|_{\text{Ker} L \cap \Omega}, 0) = \text{deg}(H(., 0), \text{Ker} L \cap \Omega, 0)
\]

\[
= \text{deg}(H(., 1), \text{Ker} L \cap \Omega, 0)
\]

\[
= \text{deg}(L, \text{Ker} L \cap \Omega, 0) \neq 0.
\]

Thus, the condition (3) of Lemma 3.3 is satisfied. By Lemma 3.3, we obtain \(L(v, \nu, \omega) = N(v, \nu, \omega)\) as has at least one solution in \(\text{dom} L \cap \Omega\). Hence BVP (1.1) and (1.4) has at least one solution. This completes the proof.

4. **Example**

Consider the BVP of fractional differential equation of the form

\[
\begin{aligned}
D^{2.25}_0 v(q) &= \frac{v(q)}{x} + \frac{v''(q)}{2} \cos(\omega(q)) + \frac{1}{2} (1 + v'(q))^{-\frac{1}{2}} \\
D^{2.25}_0 v(q) &= \frac{v(q)}{x} + \frac{v''(q)}{2} \cos(\omega(q)) + \frac{1}{2} \arctan(v'(q), q \in (0, 1), \\
D^{2.25}_0 \omega(q) &= \frac{v'(q)}{x} + \frac{v''(q)}{2} \cos(\omega(q)) + \frac{1}{2} \arctan(v'(q), q \in (0, 1)
\end{aligned}
\]

and

\[
\begin{aligned}
v(0) &= v'(0) = 0, v''(0) = \omega'(1), \\
v(0) &= v'(0) = 0, v''(0) = \omega'(1), \\
\omega(0) &= \omega'(0) = 0, \omega''(0) = \omega'(1)
\end{aligned}
\]
Here \(\alpha = 2.25, \beta = 2.5, \gamma = 2.75, n = 3 \). Moreover,

\[
f(q, \omega(q), \omega'(q)) = \frac{\delta}{8} + \frac{\alpha^3}{4} e^{\imath \omega(q)} + \frac{1}{4} \left(1 + \omega'(q)\right)^{-\frac{1}{4}} + \rho^2 \sec(\omega(q)),
\]

\[
g(q, \nu(q), \nu'(q)) = \frac{\rho}{5} + \frac{\nu^3}{5} e^{\imath \nu(q)} + \frac{\rho^2}{10} \log(1 + \nu'(q)) + \frac{1}{10} \arctan(\nu'(q)),
\]

\[
h(q, \nu(q), \nu'(q)) = \frac{\rho^2}{7} + \rho\cos(\nu(q)) + \frac{\rho^2}{7} e^{-|\nu'(q)|} + \frac{1}{14} (1 + \nu'(q))^2.
\]

Now let us compute \(\rho_0, \rho_1, \rho_2, \rho_3 \) from \(f(q, \omega(q), \omega'(q)) \).

\[
f(q, \omega(q), \omega'(q)) = \frac{\delta}{8} + \frac{\alpha^3}{4} \left(1 + \omega(q) + \frac{\omega^2(q)}{2} - \ldots\right) + \frac{1}{4} \left(1 - \frac{\omega^2(q)}{3} + \frac{4}{18} \omega^3(q) - \ldots\right) + \rho^2 (1 + \frac{\omega^2(q)}{2} + \ldots) + \frac{\rho^2}{10} \log(1 + \nu'(q)) + \frac{1}{10} \arctan(\nu'(q))
\]

\[
|f(q, \omega(q), \omega'(q))| \leq \frac{13 \delta}{8} + \frac{1}{4} |\omega(q)| + \frac{1}{10} |\omega'(q)|
\]

From the above inequality, we get \(\rho_0 = \frac{13 \delta}{8}, \rho_1 = \frac{1}{2}, \rho_2 = \frac{1}{5}, \rho_3 = 0 \). Also,

\[
g(q, \nu(q), \nu'(q)) = \frac{\rho}{5} + \frac{\nu^3}{5} \left(1 + \nu(q) - \frac{\nu^2(q)}{3} + \ldots\right) + \frac{\rho^2}{10} (1 - \frac{\nu^2(q)}{2} + \ldots) + \frac{1}{10} (1 - \nu(q) - \frac{\nu^3(q)}{3} + \ldots)
\]

\[
|g(q, \nu(q), \nu'(q))| \leq \frac{2 \rho}{5} + \frac{1}{5} |\nu(q)| + \frac{1}{10} |\nu'(q)| + \frac{1}{10} |\nu''(q)|
\]

Here, \(\delta_0 = \frac{\delta}{2}, \delta_1 = \frac{\delta}{2}, \delta_2 = \frac{\delta}{2}, \delta_3 = \frac{\delta}{2} \). Similarly,

\[
h(q, \nu(q), \nu'(q)) = \frac{\rho^2}{7} + \rho^3 \left(1 - \frac{\nu^2(q)}{2!} + \ldots\right) + \frac{\rho^2}{7} \left(1 - |\nu'(q)| + \frac{|\nu'(q)|^3}{2!} - \ldots\right) + \frac{1}{14} \left(1 - 2\nu''(q) + 3\nu^2(q) - \ldots\right)
\]

\[
|h(q, \nu(q), \nu'(q))| \leq \frac{19 \rho}{14} + \frac{1}{7} |\nu'(q)| + \frac{2}{14} |\nu''(q)|.
\]

Here, \(\tau_0 = \frac{\rho}{14}, \tau_1 = 0, \tau_2 = \frac{\rho}{14}, \tau_3 = \frac{\rho}{14} \).

We get, \(d_1 = \frac{1}{\Gamma(\gamma+n+2)} \approx 1.1033, \ d_2 = \frac{1}{\Gamma(\gamma+n+2)} \approx 1.1284, \ d_3 = \frac{1}{\Gamma(\gamma+n+2)} \approx 1.0881 \). Also, to compute \(\sum_{j=1}^{3} \delta_j = \frac{1}{3}, \sum_{j=1}^{3} \tau_j = \frac{2}{7} \).

\[
\begin{align*}
&\text{max} \left\{ d_1 \sum_{j=1}^{n} \rho_j, d_2 \sum_{j=1}^{n} \rho_j, d_3 \sum_{j=1}^{n} \rho_j, d_1 \sum_{j=1}^{n} \rho_j + d_2 \sum_{j=1}^{n} \rho_j, d_2 \sum_{j=1}^{n} \rho_j + d_3 \sum_{j=1}^{n} \rho_j + d_3 \sum_{j=1}^{n} \tau_j \right\} \\
&\approx \text{max} \left\{ 0.7355, 0.9027, 0.6218, 0.8191, 0.7622, 0.6786 \right\} < 1.
\end{align*}
\]

Hence all the conditions of Theorem 3.1 are satisfied. Therefore, BVP’s (4.1), (4.2) has at least one solution.

5. Conclusions

To provide sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems in order to ensure that the existence of solutions for the BVP’s of fractional differential equation of the form (1.1) and (1.4). By using Mawhin’s coincidence degree method we proved that the problem has at least one solution. This paper provides an example to further illustrate the main result.

Conflict of interest

The authors declare that there is no conflicts of interest in this paper.

References

