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Abstract: In this article, we study the Pareto optimal H2 /H∞ filter design problem for a generalization of discrete-time stochastic
systems. By constructing the estimation equation of the given systems with the estimated signal, a filter error estimation system is
obtained. The aim is to obtain a gain matrix K? that optimizes both performance indicators we set. To deal with this problem, two
different upper bounds for two performance indicators are given respectively. The optimal problem therefore is transformed into a
Pareto optimal problem with linear matrix inequalities (LMIs) which can be addressed through the LMI toolbox in MAT LAB.
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1. Introduction

How to design a filter is a synthesis problem of high
concern. It has developed from classical filters to the
present various filters which can be designed according
to different characteristics. Therefore, the filtering design
plays a great role in dealing with engineering [1–5]. For
example, designing a suitable filter for a certain system can
reduce the damage of external disturbances to the observed
signals. However, in practice, it is hard to design an optimal
filter in order to optimize the system, which requires strong
theoretical and tool support.

In recent years, the designs of H∞ filter and H2/H∞ filter
have become hot research issues and attracted extensive
attention [6–11]. H∞ filter design is a single-objective filter
design problem under the restricted condition of a prescribed
H∞ performance index. The vast majority of studies now
still focus on the H∞ filter. As for the advantage of the
H∞ filter, [12] explained that one does not need to know
explicitly the statistical nature of the external interference,
and it is only needed to assume that the external disturbance
has bounded energy. In this paper, we consider Pareto
optimal filter design with H2/H∞ constraints. It requires the

filter reaches the given H2 and H∞ performance indices at
the same time. Significantly, this simultaneous optimization
is optimal not in the usual sense, but in the sense of Pareto
optimality. It can be seen as a kind of ideal state of resource
allocation. In particular, if a group of people and natural
resources are allocated, it should make a person better, at
least not make anyone to get worse when a distribution state
changes from one to another. In fact, it can be thought of a
cooperative game.

Since the concept of Pareto optimality was put forward,
many scholars have explored this hot issue [13–18].
Generally speaking, three methods are mainly adopted to
solve Pareto Optimization problem: variational method,
Pontryagin maximum principle and Bellman dynamic
programming method. For continuous or discrete stochastic
systems, necessary and sufficient conditions of the existence
of Pareto optimal strategy have been studied deeply, and the
optimal problem under the LQ performance index in a finite
and an infinite time domain have also been dealt with, which
provide some basic theoretical support for the subsequent
discussions of related problems [19,20]. Pareto optimization
filter design has received a lot of attention in recent years
[21–23]. To design a multi-objective H2/H∞ filter for
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nonlinear systems, [24] developed an evolutionary algorithm
based on LMIs to derive the Pareto optimal solution.

In this paper, we attempt to construct an estimation
equation for a general linear system with perturbations.
Through a series of constraints, we will get that the filtering
error estimation system meets the H2 and H∞ performance
indices in the sense of Pareto optimality. We just convert
the inequality constrained problem into a Pareto optimal
problem with LMIs and find out the optimal gain matrix
K∗. To this end, by analyzing the linear quadratic objective
function and the robustness, a sufficient condition by means
of a constraint optimization is derived in the first place.

For convenience, the notation is given as follows: Rn is
the space of all real n-dimensional vectors; x(k), x̂(k) and
x̃(k) represent the state vector, the state estimation and the
estimation error, respectively; Tr(A) denotes the trace of a
matrix A; min(α∗, β∗) is the simultaneous minimization of α
and β.

2. Problem formulation and preliminary

Consider the following discrete-time linear stochastic
system with perturbations and multiplicative noises:

x(k + 1) = Ax(k) + Bv(k) + [Cx(k) + Dv(k)]ω(k),
y(k) = Lx(k) + Gv(k),
z(k) = Mx(k),

(2.1)

where x(k) ∈ Rn, y(k) ∈ Rq and z(k) ∈ Rm are the system
state, the measurement output and the state combination
to be estimated, respectively. A, B, C, D, L, G and
M are constant matrices of appropriate dimensions. Let
{ω(k), k = 1, 2, · · · } be a sequence of real random variables
defined on the filtered probability space (Ω, F, P, Fk) with
Fk = σ{ω(s), s = 1, 2, · · · , k}, satisfying E(ω(s)) =

0 and E(ω(s1)ω(s2))=δs1 s2 , where δs1 s2 is the Kronecker
operator. v ∈ l2(R+; Rnv ) := {vk is Fk-measurable,
and E(

∑∞
k=0 ‖v(k)‖2)

1
2 < ∞} is the exogenous disturbance.

Moreover, assume that v(k) andω(k) are independent of each
other.

Construct the estimated equation for z(k) as follows:{
x̂(k + 1) = Ax̂(k) + Cx̂(k)ω(k) + K[y(k) − Lx̂(k)],
ẑ(k) = Mx̂(k). (2.2)

Subtracting (2.2) from (2.1),we can obtain the filtering error

estimation equation:{
x̃(k + 1) = (A − KL)x̃(k) + (B − KG)v(k) + [Cx̃(k) + Dv(k)]ω(k),
z̃(k) = Mx̃(k),

(2.3)

where x̃(k) = x(k)− x̂(k) stands for the state estimation error
and z̃(k) = z(k) − ẑ(k) stands for the signal estimation error.

We express H∞ and H2 performance indices of system
(2.1) in the following form:

J1(K) = sup
v∈l2(R+;Rnv ),v,0,x(0)=0

E
{∑∞

k=0 x̃T(k)MTR1Mx̃(k)
}

E
{∑∞

k=0 v(k)Tv(k)
} ,

J2(K) = Tr
(
E

{
z̃(k + 1)R2z̃T(k + 1)

})
,

where R1 and R2 are given weighted matrices with R2 ≥

0. The problem of multi-objective filter design can be
represented as follows:

minK(J1(K), J2(K)) . (2.4)

Remark 2.1. The traditional H2/H∞ filter design focuses

on minimizing the H2 filter performance index J2(K) 6 β

with a given expected H∞ performance, which is usually

viewed as a single-objective problem with the limit of H∞
index. For the multi-objective H2/H∞ filter problem in (2.4),
the filtering performance indices J1(K) and J2(K) need to be

minimized at the same time. This is the difference between

the multi-objective H2/H∞ filter design problem and the

traditional one.

With the above analysis, the design of the multi-objective
filter including at least two objectives in (2.4), we utilize
an indirect method to solve this meaningful question. To
this end, we consider the following upper bound for each
indicator:

J1(K) 6 α, (2.5)

J2(K) 6 β, (2.6)

where α and β are positive scalars.
On the basis of (2.5) and (2.6), the multi-objective

optimization problem (2.4) can be converted to a solvable
form:

min
K

(α, β)

s.t. J1(K) 6 α,

J2(K) 6 β.

(2.7)
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The definitions and lemma that will be shown are essential
to the later discussions.

Definition 2.1 ( [16]). (Pareto optimality) Let U be the

admissible set of all gain matrices. If there is no K ∈ U

satisfying Ji(K) 6 Ji(K∗), i = 1, 2 and an inequality

is strictly true, then K∗ ∈ U is called Pareto efficient.

The corresponding point Ji(K∗) is called a Pareto solution.

The set of all Pareto efficient solutions is called the Pareto

frontier.

Definition 2.2 ( [16]). (Pareto dominance) For two solutions

(α1, β1) and (α2, β2), if at least one inequality in α1 6 α2 and

β1 6 β2 is strictly true, then we call that (α1, β1) is dominate

solutions.

Lemma 2.1. In the sense of Pareto optimality, the multi-

objective optimization problem in (2.4) is the same as the

one in (2.7).

Proof. Just state that the two inequality constraints in (2.7)
are of the form of Pareto optimal solution. Assume
that the 3-element optimal solution of the multi-objective
optimization problem in (2.7) is (K∗, α∗, β∗), and the
inequality in (2.7) is treated as a strict inequality in the sense
of Pareto solutions. If we set J1(K∗) < α∗, then there is
an α1 such that α1 < α∗ and J1(K∗) = α1 are satisfied
for the same K∗, and then (α1, β∗) dominates the optimal
solution (α∗, β∗), which contradicts the hypothesis. So, the
conclusion is correct. �

Definition 2.3 ( [7]). (asymptotically mean square stability)

Let v = 0 in (2.1). Stochastic system (2.1) is said to be

asymptotically stable in the sense of mean square for any

initial state x(0) = x0 ∈ Rn, if

limk→∞E[x(k)xT(k)] = 0.

The fundamental purpose of this article is to get a filter
gain matrix K so that the two conditions which will be shown
are satisfied:

(i) The equilibrium point x̃ ≡ 0 of the filtering error
estimation system with v = 0 is globally mean square
asymptotically stable;

(ii)J1(K) 6 α, J2(K) 6 β hold for the given disturbance
attenuation level α and β, namely, the upper bounds of the
performance indices.

From (2.5), it can be obtained that:

E

 ∞∑
k=0

x̃T(k)MTR1Mx̃(k)

 6 αE

 ∞∑
k=0

v(k)Tv(k)

 . (2.8)

Because of the impact of initial conditions x̃(0) on the
performance indices of H∞, the above should be corrected
as follows:

E

 ∞∑
k=0

x̃T(k)MTR1Mx̃(k)


6Ex̃T(0)Px̃(0) + αE

 ∞∑
k=0

v(k)Tv(k)

 ,
(2.9)

where P is some positive definite matrix.
Meanwhile, (2.8) can be denoted by

J2(K) = Tr
(
E

{
z̃(k + 1)R2z̃T(k + 1)

})
6 β. (2.10)

3. Main results

Through the introductory analysis, the H2/H∞ filter
design problem treated with in the sense of Pareto optimality
has been fully presented. In this section, we will describe our
main results.

Theorem 3.1. The H2/H∞ filter design issue in (2.6) can be

transformed into the following multi-objective optimization

problem:

min
P>0,K

(α, β), (3.1)

s.t. (3.2),(3.3),(3.4) (These three inequalities are detailed at

the upward side of the page down.), and in (3.4) m is the

dimension of M.

Before proving Theorem 3.1, we recall the following
useful lemma.

Lemma 3.1 ( [24]). (Schur complement) The LMI R1(x) S (x)
S T(x) R2(x)

 > 0 (3.5)

is equivalent to R2(x) > 0, R1(x) − S (x)R−1
2 (x)S T (x) > 0,

where R1(x) = RT
1 (x) and R2(x) = RT

2 (x).

Proof. Considering (2.7) and remembering the performance
indicator (2.9) in mind, we have

E{
T∑

k=0

x̃T(k)MTR1Mx̃(k)}
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P − MTR1M 0 0 0 (A − KL)TP

0 αI 0 0 (B − KG)TP

0 0 I 0 CT

0 0 0 I DT

P(A − KL) P(B − KG) C D P


> 0, (3.2)



P P(B − KG)
√

R2 PD
√

R2 PC
√

R2 P(A − KL)
√

R2

0 I 0 0 0
0 0 I 0 0
0 0 0 P 0(

P(B − KG)
√

R2

)T (
PD
√

R2

)T (
PC
√

R2

)T (
P(A − KL)

√
R2

)T
P


> 0, (3.3)

 βI
√

mM
√

mMT P

 > 0, (3.4)

= E{x̃T(0)Px̃(0)} − E{x̃T(T + 1)Px̃(T + 1)}

+E{
T∑

k=0

(x̃T(k)MTR1Mx̃(k) + x̃T(k + 1)P

·x̃(k + 1) − x̃T(k)Px̃(k))}

≤ E{x̃T(0)Px̃(0) + α

T∑
k=0

[v(k)Tv(k)]}

+E{
T∑

k=0

x̃T(k)MTR1Mx̃(k) − x̃T(k)Px̃(k)

+[(A − KL)x̃(k) + (B − KG)v(k)

+[Cx̃(k) + Dv(k)]ω(k)]TP[(A − KL)x̃(k)

+(B − KG)v(k) + [Cx̃(k) + Dv(k)]ω(k)]

−αv(k)Tv(k)}

= E{x̃T(0)Px̃(0)} + α

T∑
k=0

E[v(k)Tv(k)]

+E
T∑

k=0

{x̃T(k)(MRTR1M − P)x̃(k)

−αv(k)Tv(k) + [(A − KL)x̃(k) + (B − KG)v(k)

+[Cx̃(k) + Dv(k)]ω(k)]TP[(A − KL)x̃(k)

+(B − KG)v(k) + [Cx̃(k) + Dv(k)]ω(k)]}.

Let T → ∞ in the above inequality, one can infer by
Definition 2.3

E{
∞∑

k=0

[x̃T(k)(MTR1M − P)x̃(k)] − αv(k)Tv(k)

+[(A − KL)x̃(k) + (B − KG)v(k) + [Cx̃(k)

+Dv(k)]ω(k)]TP[(A − KL)x̃(k) + (B − KG) · v(k)

+[Cx̃(k) + Dv(k)]ω(k)]} < 0,

which is equivalent to the following inequality being true:


x̃(k)
v(k)

x̃(k)ω(k)
ω(k)


T 


(A − KL)T

(B − KG)T

CT

DT

 P


(A − KL)T

(B − KG)T

CT

DT


T

−


P − MTR1M 0 0 0

0 αI 0 0
0 0 I 0
0 0 0 I






x̃(k)
v(k)

x̃(k)ω(k)
ω(k)

 < 0. (3.6)

Furthermore, we have from (3.6)
(A − KL)T

(B − KG)T

CT

DT

 P


(A − KL)T

(B − KG)T

CT

DT


T

−


P − MTR1 M 0 0 0

0 αI 0 0
0 0 I 0
0 0 0 I

 < 0.

Using Schur complement (Lemma 3.1), (3.2) is established.
At this point, the H∞ performance index is met, that is

E

 ∞∑
k=0

x̃T(k)MTR1Mx̃(k)

 ≤ E

x̃T(0)Px̃(0) + α

∞∑
k=0

v(k)Tv(k)

 ,
which is equivalent to saying that if (3.2) is guaranteed, then
H∞ performance index has upper bound α.
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Next, taking the H2 performance index (2.5) and (2.3) into
account, one gets

J2(K) = Tr(E{M[x̃(k + 1)R2 x̃T(k + 1)]MT})

= Tr(M{E[x̃(k + 1)R2 x̃T(k + 1)]}MT)

= Tr(M{E[(A − KL)x̃(k) + (B − KG)v(k)

+ [Cx̃(k) + Dv(k)]ω(k)]R2[(A − KL)x̃(k)

+ (B − KG)v(k) + [Cx̃(k) + Dv(k)]ω(k)]T}MT)

= Tr{M[(A − KL)E(x̃(k)x̃T(k))R2(A − KL)T

+ (B − KG)R2(B − KG)T + CE(x̃(k)x̃T(k))R2CT

+ DR2DT]MT}.

Letting Q = E
(
x̃(k)x̃T(k)

)
, then the above representation

becomes

J2(K) = Tr
{
M

[
(A − KL)QR2(A − KL)T − Q + (B − KG)

·R2(B − KG)T + CQR2CT + DR2DT
]

MT
}

+ Tr
(
MQMT

)
.

From above, it is shown that if the inequality

(A − KL)QR2(A − KL)T − Q + (B − KG)R2

· (B − KG)T + CQR2CT + DR2DT < 0
(3.7)

holds, then the H2 performance index has upper bound β

J2(K) < Tr
(
MQMT

)
, β. (3.8)

Set P = Q−1. Multiplying by P on both sides of (3.7), it can
be derived that

P(A − KL)P−1R2(A − KL)TP − P + P(B − KG)R2

· (B − KG)TP + PCQR2CTP + PDR2DTP < 0,

which is equivalent to the following inequality holding

(
P(B − KG)

√
R2

)T(
PD
√

R2

)T(
PC
√

R2

)T(
P(A − KL)

√
R2

)T



T 
I 0 0 0
0 I 0 0
0 0 P 0
0 0 0 P



·



(
P(B − KG)

√
R2

)T(
PD
√

R2

)T(
PC
√

R2

)T(
P(A − KL)

√
R2

)T


− P < 0.

Therefore, (3.3) is obtained by the lemma of Schur
complement. Moreover, (3.4) can be obtained by (3.8)
directly. �

Further, if we let Z = PK (or K = P−1Z), (3.2) and (3.3)
are respectively equivalent to the following LMIs (3.9)and
(3.10) (These two inequalities are detailed at the top of the
next page.) which can be addressed through LMI toolbox in
MAT LAB.

Therefore, the multi-objective optimization problem (3.1)
with limits (3.2), (3.3) and (3.4) is no different to the
following one:

(α∗, β∗) = min
P>0,Z

(α, β)

s.t. LMIs (3.9), (3.10) and (3.4).
(3.11)

Corollary 3.1. (i) When only the H∞ performance is

considered, the multi-objective optimization problem (3.11)

degenerates into a single-objective optimization problem of

H∞ filter design:
α0 = min

P>0,Z
α

s.t. (3.9).

(ii) When only the H2 performance is considered, the multi-

objective optimization problem (3.11) degenerates into a

single-objective optimization problem of H2 filter design:

β0 = min
P>0,Z

β

s.t. (3.10) and (3.4).

(iii) When considering the traditional H2/H∞ filter design,

we are going to solve a single-objective optimization

problem that gives the disturbance attenuation level α of H∞
filter:

β∗ = min
P>0,Z

β

s.t. (3.9), (3.10) and (3.4).

Theorem 3.2. The weighting sum method described below

can be used to solve the multi-objective H2/H∞ filter design

problem.

min
P>0,Z

η1α + η2β

s.t. LMIs (3.9), (3.10) and (3.4),
(3.12)

where η1 ≥ 0, η2 ≥ 0, and η1 + η2 = 1.

Proof. By replacing (α, β) with the weighted sumω1α+ω2β,
a conclusion can be drawn from Theorem 3.1. �
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P − MTR1M 0 0 0 ATP − LZT

0 αI 0 0 BTP −GZT

0 0 I 0 CT

0 0 0 I DT

PA − ZL PB − ZG C D P


> 0 (3.9)



P (PB − ZG)
√

R2 PD
√

R2 PC
√

R2 (PA − ZL)
√

R2

0 I 0 0 0
0 0 I 0 0
0 0 0 P 0(

(PB − ZG)
√

R2

)T (
PD
√

R2

)T (
PC
√

R2

)T (
(PA − ZL)

√
R2

)T
P


> 0 (3.10)

From above, the multi-objective H2/H∞ filter design
problem can be converted into a weighted sum filter design
problem (3.12) which has a single objective. In order
to get diverse Pareto optimal solutions, it is necessary to
use different weights in (3.12) several times, and different
weighted solutions will be obtained.

Remark 3.1. Generally speaking, so as to find a feasible

set of α and β, it is necessary to introduce the upper bounds

α1 and β1 and the lower bounds α0 and β0 of α and β

respectively, that is, α0 ≤ α ≤ α1 and β0 ≤ β ≤ β1.

Assuming (P,Z) ∈ Ω, where Ω represents a feasible
set of solutions under the constraint, the multi-objective
H2/H∞ filter design problem (3.11) can be expressed in the
following form:

min
P,Z∈Ω

(α, β)

s.t. LMIs (3.9), (3.10) and (3.4).

Remark 3.2. So as to obtain the optimal gain matrix K,

the most appropriate P,Z must be found. Assuming that

the corresponding solutions of the target values (α1, β1)
and (α2, β2) are (P1,Z1) and (P2,Z2), respectively, if an

inequality in α1 ≤ α2, β1 ≤ β2 holds, then we can know that

the solutions (P1,Z1) dominate the solutions (P2,Z2), that

is to say, the solutions (P1,Z1) are better than the solutions

(P2,Z2). For the solutions (P∗,Z∗) derived from the target

values (α∗, β∗), if there is no other solution (P1,Z1) with

the target values (α1, β1) such that the target values (α1, β1)
dominate (α∗, β∗), then we say (P∗,Z∗) is the Pareto optimal

solution of (3.11). The set of Pareto optimal solutions is the

Pareto boundary.

4. An example

In this section, an example is used to illustrate the
effectiveness of our obtained results.

Example 4.1. Consider the following one-dimensional
discrete-time linear stochastic systems:

x(k + 1) = −2x(k) + 1
2 v(k) + [

√
2x(k) + 1

√
2
v(k)]ω(k),

y(k) = −4x(k) + 1
4 v(k),

z(k) = 2x(k).
(4.1)

Taking R1 = R2 = 1
2 , (3.9), (3.10) and (3.4) can be written

as follows:

α
[(

P − M2R1

) (
P − D2 −C2

)
− (PA − ZL)2

]
−

(
P − M2R1

)
(PB − ZG)2 > 0,

P3 − R2

(
P2AB − ZLPB − ZGPA + Z2GL

)
> 0,

βP − M2 > 0.

In consideration of the parameters of system (4.1), we get

α >
(P − 2)(2P − Z)2

16[(P − 2)
(
P − 5

4

)
− (ZP + 4Z)2

] ,
P3 +

1
2

P2 −
5
4

ZP +
1
2

Z2 > 0,

β >
M2

P
.

By calculating, P = 3
2 , Z = 2 and K = 4

3 can be

derived. That is, we can find the optimality α and β meet

the constraints.
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5. Conclusions

In the sense of Pareto optimality, the H2/H∞ filter design
problem for stochastic systems with perturbations has been
dealt with in this paper. The multi-objective optimization
problem with some inequalities constrained was transformed
into an optimization problem having some LMIs constraint,
which simplifies the filter design as an LMIs-constrained
multi-objective optimization problem. Notice that so far
few conclusions involve Pareto optimal H2/H∞ filter design
problems for general nonlinear systems with perturbations
and multiplicative noises. These challenging issues will be
our future research topics.
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