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Abstract: In this paper, skew-symmetric games and a symmetric-based decomposition of finite games are investigated. First,
necessary and sufficient conditions for testing skew-symmetric games are obtained by the semi-tensor product method based on
adjacent transpositions. By using the obtained conditions for skew-symmetric games, a basis of the skew-symmetric game subspace
is constructed. Then, the discriminant equations for a skew-symmetric game with the minimum number are derived. Furthermore, based
on the basis of the skew-symmetric game subspace and that of the symmetric game subspace, a basis of the asymmetric game subspace
is constructed, which completely solves the problem of symmetric-based decomposition of finite games. Finally, an illustrative example
is provided to validate the obtained theoretical results.
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1. Introduction problems about symmetric games have been investigated in

[31, [4], [5], and [6]. In addition, based on the definition of

symmetric games, the concepts of skew-symmetric games,

Game theory is a mathematical theory studying

asymmetric games and the symmetric-based decomposition
Although

the bases of the symmetric game subspace and the skew-

competitive phenomena. Since John von Neumann ) i
of finite games have been proposed in [4].

proved the basic principles of game theory, modern game

theory was formally established [1, 2], which has been paid ] .
. . . . . symmetric game subspace have been constructed in [4], the
wide attention and applied to biology, economics, computer i
. . . vector space structure of the asymmetric game subspace has
science, and many other fields. For example, biologists o ) )
) : i not been revealed. Therefore, the motivation of this paper is
use game theory to predict certain outcomes of evolution. )
. to explore the vector space structure of the asymmetric game
Economists regard the game theory as one of the standard ]
. . subspace and thoroughly solve the problem of symmetric-
analysis tools of economics. o i

based decomposition of finite games. In our recent paper

The concept of symmetric games is first proposed by John
von Neumann in [2]. The symmetry of a game means
that all players have the same set of strategies and fair
payoffs, that is, the payoffs depend only on the strategies
employed, not on who is playing them. Because fair games
are more realistic and acceptable, many common games are
symmetric games such as the well-known games rock-paper-

scissors and prisoner’s dilemma. In recent years, many

[6], a new method to construct a basis of the symmetric game
subspace has been proposed, which gives us great inspiration
for the study of skew-symmetric games, asymmetric games,
and symmetric-based decomposition of finite games.

In the past decade, the semi-tensor product (STP) of
matrices has been successfully applied to game theory
by Cheng and his collaborators [7], which enables a
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game to be expressed in an algebraic form. In this
paper, we still use the matrix method based on STP to
investigate skew-symmetric games, asymmetric games and
First,

by the semi-tensor product method based on adjacent

symmetric-based decomposition of finite games.

transpositions, necessary and sufficient conditions for testing
skew-symmetric games are obtained. Then, based on the
necessary and sufficient conditions, a basis of the skew-
symmetric game subspace is constructed explicitly. In
addition, the discriminant equations for skew-symmetric
games with the minimum number are derived concretely.
According to the construction methods of the basis of the
symmetric game subspace in [6] and the basis of the skew-
symmetric game subspace in this paper, a basis of the
asymmetric game subspace is constructed for the first time.
Therefore, the problem of symmetric-based decomposition
of finite games is completely solved.

The rest of this paper is organized as follows: Section
2 gives some preliminaries. Section 3 studies skew-
symmetric games and skew-symmetric game subspace.
Section 4 studies asymmetric games and solves the problem
of symmetric-based decomposition of finite games. Section

5 is a brief conclusion.

2. Preliminaries

In this section, some necessary preliminaries are given.

Firstly, we list the following notations.

D = {0, 1} : the set of values of logical variables;

e &, : the i-th column of I;

o Api={6i:i=1,2,--- k)

o Silitin +++in] = [0 62 -+ 611

e M, : the set of m X n matrices;

o Ly = {L € MysulCol(L) € A}

e < : the left semi-tensor product of matrices;

e 1,: the n-dimensional column vector of ones;

e 0,,x,: the m X n matrix with zero entries;

e S,: the n-th order symmetric group, i.e., a permutation
group that is composed of all the permutations of n
things;

e R: the set composed of all the real numbers.

Definition 2.1 ([7]). Let A € My, B € My, The left
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semi-tensor product of A and B is defined as

AxB=(AQI:)B&Is), 2.1)

where ® is the Kronecker product and o = lcm(n, p) is the
least common multiple of n and p. When no confusion may

arise it is usually called the semi-tensor product (STP).

If n and p in Definition 2.1 satisfy n = p, the STP is
reduced to the traditional matrix product. So, the STP is
a generalized operation of the traditional matrix product.

Therefore, one can directly write A < B as AB.

Definition 2.2 ([7]). A swap matrix Wy, = (w{jJ ) is an
mn X mn matrix, defined as follows:

Its rows and columns are labeled by double indices.
The columns are arranged by the ordered multi-index
1d(iy, ir;m,n), and the rows are arranged by the ordered
multi-index 1d(iy, i1;n,m). The element at the position with

row index (1, J) and column index (i, j) is

1J _
-]

When m = n, matrix Wy, is denoted by W,;. Swap

1, I=iandJ =],

0, otherwise.

matrices have the following properties:
(e ® Wi)(Wiig ® L) (e ® Wiig) = (Wi ® L) (e ® W) (Wiig ® ).
2.2)

Definition 2.3 ([8]). A finite game is a triple G = (N, S, C),

where
1) N ={1,2,--- ,n} is the set of n players;

2) S =81Xx82%---XS8, is the set of strategy profiles, where

S = {s’A1 , sé, e, s;'(l_} is the set of strategies of player i;

3) C =A{cr e,
¢; © S — Ris the payoff function of player i.

-, ¢} is the set of payoff functions, where

Denote the set composed of all the games above by
Glnki jo ky]- When |S;| = k foreachi = 1,2,--- ,n, we
denote it by Gk

STP is a convenient tool for investigating games. Given a
game G € Gin.x), by using the STP method [9], each strategy
x; can be written into a vector form x; € Ay, and every payoff

function ¢; can be expressed as

(2.3)

_ Y€ N .
ci(x1, X2, , xp) = Vi <y X, 0= 1,2,---,n,
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_,Xj € Mg is called the STP form of the strategy

profile, and V7 is called the structure vector of c;.

where ><;!

Definition 2.4 ([10]). A game G € G is called a

symmetric game if for any permutation o € S,

ci(Xy, X2, ,Xy) = Co(i)(xwl(l),x(rl(z),"' s-xa'"(n)) (2.4)

foranyi=1,2,--- ,n.

3. Skew-symmetric game and skew-symmetric game

subspace

Definition 3.1 ([4]). A game G € Gy, is called a skew-

symmetric game if for any permutation o € S,

. ,xrl(n))
3.1

Ci(x1, X2, -+, %) = SEN(O)Cor(i)(Xo1(1)s Xo1(2)> * *

foranyi=1,2,--- ,n.
The set composed of all the skew-symmetric games in

Gln; k] is denoted as K[n; k].

Lemma 3.1 ([11]). The set of all the adjacent transpositions
(r,r+ 1), 1 < r < n—1is generator of the symmetric group
Sh

In the following, adjacent transpositions (r,r+1),1 <r <

n — 1 are represented as y,.

Lemma 3.2. Consider G € Gpx). For any 01,02 € Sy, if

o1 and o satisfy

ci(x1, X2, , X,) = $gN(T)Co(iy (Xo-1(1)> X12)5*** 5 X1 (m))
(3.2)
for any i = 1,2,--- ,n and any xi,x2,--- ,X, € Ay, the

compound permutation o o o also satisfies (3.2).
Proof. For any given x; € Ay, i =1,2,...,n,lety; = Xori)-
Then

CiX1, X250 2+, Xp)
=sgn(0'1)cm(,-)(x(,lfl(1), Xoo12)s " s x(,;l(,1))
=820 1)Coy (V15 Y25+ 5 Yn)
=sgn(02)sgN(01)Cor (0 (i) Wy (1) Yory ' 22" Vors ()
=8g0(072 © T1)Cas001 ()Xo (o1 (1)) X (5 @) > Ko (5 )>

which implies that o, o 0| satisfies (3.2).
According to Definition 3.1, Lemma 3.1 and Lemma 3.2,
the following lemma follows:
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Lemma 3.3. Consider G € Gj,x. Game G is a skew-

symmetric game if and only if

Ci(X1, X2, X0) = —Co ()X (1)s Xy 20> -+ * 5 X)) (3.3)

for any adjacent transposition u,, 1 < r < n—-1,1i
,2,--- ,n

Proposition 3.1. Consider G € G,y Game G is a skew-

symmetric game if and only if

Vi= —V;r(i)T,t,, Yi=1,2,---,n, 1<r<n-1, ((B.4)
where T, =i & Wy ® Ln—r1.
Proof. Forany i = 1,2,--- ,nandany 1 <r <n-1, we
have
Cuay () (X (15 Xty 205+ 5 Xpty))
=V X (DX, 2) " Xyt
:V;,(i)(XIXZ X)) (X1 X ) (X2 Xn) (3.5)

=V X X)) (Wi X X 1) (X2 < -+ Xn)

- c ..
—Vﬂ’A(i)T,,,_xl Xo o Xp.

From (2.3) and (3.5), it follows that (3.4) is equivalent to
(3.3). Therefore, the proposition is proved.

Theorem 3.1. Consider G € Gpp. Game G is a skew-

symmetric game if and only if

L. T,
Le T,

Lo T

Hn-1
Iin + T/ll

Iku + T,UZ

(Ve)' =0,  (3.6)

Iin+T

Hn-2 ]

where Ty, = I+ @ Wiy ® lynr1, Vg = [V] V5 -+ V], and
the omitted elements in the coefficient matrix of (3.6) are all

Zeros.

Proof. Since (Wyy)™' = Wy, we have (T,,)”' = T, for

-ve . T,

any 1 < r < n— 1. Then, the equation V{ = i T

. 1s

Volume 2, Issue 4, 257-267



260

equivalent to V;,(i) = -V¢T,,. According to Proposition 3.1,

G is a skew-symmetric game if and only if

7Ikn Tlll
I T,
Ikn Tﬂnfl
By (Va)' =0,
B,
Bn—l
B,
where
Iin + T,uz Lin + T/l3
Ik" -f'T#3 Ik” '|'T#4
B, = By = ,
[kn + Tlln—l Iku + Tlln—l
[ Ikn + TH] ] Ikn + T,u1
Ik" + T,J2 Ikn + TIJZ
Bn—l = . 7Bn =
»Ikn + T/ln—z_ Ikn + T/l"_z
[ Lo + Ty, |
Ik" + T/lz
Lin + T,
B =" B2 B<r<n-2).
Ik" + Tﬂr+l
]kn + T}lr+2
,Ik" + Tllym ]

Let the coefficient matrix of equation (3.7) be

Ay Ay
B 0(}’!—2)2/("><k”

On—2)krx(n—1ykn B,

where )
Ik/x T,Ul
Ikn Tl12
Ay = ,
Ikn Tl_erz
Lin |

Mathematical Modelling and Control

O(—2)kn ek
Ay = | 2k Xk}, (3.13)
Tﬂnfl
B
B,
B = ] . (3.14)
Bn—l
3.7
Since A; is an invertible matrix, we can perform the
following row transformation on the coefficient matrix of
3.7
[ T yir Ay A
—BAII I(n_Z)(n_l)kn B O(H_z)zknxkn
In—2y | [Og—2ykrxn—1yk B,
(3.8) Ay Az
= O(n72)2k”><(n71)k” —BAI_IAQ ,
| O¢n—2)k7x(n—1ykn B,
(3.15)
(3.9) where
(_l)n_lBlTﬂl T#z T T,unfl
(-1)""2B,T, Ty Ty,
— BAT'A, = S (3.16)
=BT, -1
(3.10) Let
Fi=152® (T/Jnfl Tu”,z e T,U])’
Fr=I38 Ty, Ty, T,),V2<r<n-1.
We perform the following row transformation on matrix
—BA'A,
(3.11) [(=1)"'Fy
(=1)"2F,
(—BAT'A;)
_Fn
) (3.17)
FlBlT#lT#z T Tlln—l
3.12) _ FZBZTHZTM T Tﬂnfl
Fn—an—lT n—1
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Therefore, the equivalent form of (3.7) is as follows

I Tlll
Ikn T,uz
Ly Ty,
F\B\T,, - T, |(Ve)'=0. (3.18)

FyBy Ty, -+ Ty,

Fn—an—lT n
B,

-1

From the property of Wy shown in (2.2), it follows that

Ty Ty T Ty T Ty

_ TH,‘
Tlli-l

Then, (3.18) is equivalent to (3.6).
complete.

o Ty

r+1
Yi<i<r-2, (3.19)

Vr+1<i<n-1.

Thus, the proof is

We see that the key of solving equation (3.6) is computing

the solution space of the following linear equation:

Ikn + Tlll

Ikn + T#2

x=0, (3.20)

1, K + Tﬂn72

where x is the k"-dimensional unknown vector. Considering

Lin + T‘u1 L + Wiy ® Ijn2
I + T,uz I + [ ® W[k] ® i3
Iin + THW2 | [in + Iins @ Wig @ I

LI + Wi @ Ijns

Iy + I @ Wi @ Tins
= . ®1L, (3.21)

L1 + Iins @ Wi
we only need to solve the linear equations as follows:
Iknfl + W[k] ® Ikn—3

L + [ ® W[k] ® s
. x=0,

(3.22)
It + Iins @ Wiy

Mathematical Modelling and Control

Let
x = (x4-1,,) be arranged by the ordered multi-index
1d(iy, iz, ..., 013k, k, ..., k), that is,

where x is the k"~!-dimensional unknown vector.

XZ (X111 15 X110125 + o v s X1 Loolks X11215 X1100225 « + + 5 X112k

 Xe)
(3.23)

oo s Xk ] s Xk k2> - -

Then, by the property of Wy, vector x is a solution of (3.22)
if and only if, forany 1 < I}, l,--- ,1,-1 < k, the following

equations hold:

XLblylyey = ~XbL Il
Xiblylyy = Xl ey
(3.24)
Xliblylyy = Xy alyoy i
ie.
Xiylyeodyy = SENT)Xn(ty 1y, 1)> V7T € Spy (3.25)

Thus, forany 1 <r <n-2,if [, = l,4, then

Xyoddylpsa -yt = Xyl sl >

that is,

Xpylyldyinly g = 0.

Therefore, all the free variables of the linear equations (3.22)

are

Xyt > V1< h<b<--<l,_1 <k, (3.26)

whose number is C ,’{"1. That is, the dimension of the solution
space of linear equations (3.22) is C’,j".

For every given repeatable combination sys3 - - 5,1, (1 <
< sp-1 < k), denote by Pg,s,..s,, the set
composed of all the repeatable permutation of sys; -+ 5,-1.
For example, P = {122,212,221}.
unrepeatable combination [jl, -+ [,-1,(1 <[} <l < -+ <
< k), denote by Ry,
the unrepeatable permutation of /1, ---1,_;. For example,
Rip3 = {123,132,213,231,312,321}. Let

U U

1<s)<sp<- <81 <k 1<l <ly<-<l— <k

s1 £ 5 £ -e
For every given
the set composed of all

ln—l

n—1

Q = ( PS]SQ-"S,,,]) \ ( Rlllz-"l,,,])'

Then, any permutation in Q is a repeated permutation.
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Lemma 3.4. For every given unrepeatable combination
hiby--- L, (1 <l <l <<l k), define a vector
Ghlber = x with the form (3.23) by

sgn(tity - ty_1), titz - th1 € Rypye,
'xtltZ"'tn—l = 0

Then the set

otherwise.

{9[1[2"'ln—]| l<h<b<--<l < k} 3.27)

is a basis of the solution space X,_; of (3.22). For every

Lhb---l,., (1 < L < L < < L1 £ k), we
define |Ry,1,..i,,| — 1 number of vectors vlrlllr;_fl:’:‘ = x with

riry - -rp— €R1][2...1n71 and riry .- rp— * 1112”'1}1—1 by

1, tity oty =l oy,
Xty = —SEM(T -+ lyo1), Lila < lpoy = F1F2 Py,
0, otherwise.
We define |Q| number of vectors AMMher =

(hihy -+ h,_1 € Q) by

Xttty = {

Then the set of v/'/* 7!
Lyl

k, iy r,—1 € Rlllz-nl

I, tity--ty_y = hihy - hyoy,

0, otherwise.

1 <h <b < -+ <1 <
1 # lily---1l,_1) and
by (s o b, € Q) is a basis of the orthogonal

complementary space z\_’j_l.

riry:---rp-1

Denote by M« the matrix
whose columns are composed of a basis of subspace W.

Then the linear system (3.22) is equivalent to M, x = 0.

n—1

Proof. For any 1 < [} < L, < < b1 £k,

sgn(lilp ---1,-1) = 1. From the equivalent equations (3.25)
and the free variables shown by (3.26), it follows that the

set of gl (1 < [} <l < -+- < I,_1 < k) is a basis of

the solution space X,_;. By the construction of Vit and
Alhehiy it i straightforward to see that each v'/>"! and

Ly
each A"/2"-1 are orthogonal to X,_;. The total number of

172 Tn-1

Iyl 1

D Ry, 1= 1) =

1<l <ly<-<l— <k

-1
> Ry, |-

1<l <b<-<l, <k

The total number of A"2/-1 jg

|Ps1sz-~-s,,_1| -

I<s)<sp<<sp-1<k

IRt |

1<l <bh<<l,-1<k

Mathematical Modelling and Control

— kn—l _

2

1<l <ly<<l, 1<k

IRy 150, |-

Then the total number of v)'> " and """t js k! —
Crl,ie. k' - dim(X,y).
that the set of v)'”"" 1 (1 < I} < b < -+

k, Fry:-:rp—1 € Rlllz---l

Therefore, we conclude
< L <
s # Lil---1,1) and
Attt (i b,y € Q) is a basis of X . Then, the

linear system (3.22) is equivalent to M{T?L x=0.

n—1

ryry:-rp-1

According to the above basis of the solution space of
linear equations (3.22), we can construct a basis of skew-
symmetric game subspace Ki,.x).

Theorem 3.2. The dimension of the skew-symmetric game
subspace Kinx is kC}'. A basis of Kinyq is composed of the

columns of matrix

(_1))1—1 W[knfl’k]
(_1)}172[[{ ® W[ku—zvk]
(—l)n_3lk2 ® W[k”‘3,k]

: (Mg ® 1), (3.28)
(—1)211(:;73 ® When
—Ln2 ® Wiy
Lo

where Mg is composed of the basis of the solution space
of (3.22). Moreover, the linear equations with the minimum

number to test skew-symmetric games in K, are

e Ty,
Lo Ty,
Vo)t =0,  (3.29)
Lo Ty,
My, ® I

n—1

where the omitted elements in the coefficient matrix of (3.29)

are all zeros.

Proof. By Theorem 3.1 and Lemma 3.4, we can easily get
the dimension of skew-symmetric game subspace K. is
kC,’cH. Using M3  whose columns are composed of a basis
of the solution space of (3.22), we get a basis of the solution

Volume 2, Issue 4, 257-267



263

space of (3.6) as follows:

[(—=1)"'Ty, -+ Ty (M ® 1)
(1" Tyy - Ty, (Mg, ® L)
(—1)"‘3T,13 ..

T, (Mg ®I)
e (3.30)

=T, (MX,H ® Iy)
My ®I;

n—1

By the property of swap matrices shown in (2.2), we have

T/‘ST#HI . T#nﬂ = Ik.v—l ® W[knﬂ.’k]

for each 1 < s < n — 1. Then, (3.30) is equivalent to
(3.28). That is, the set of the columns of matrix (3.28) is
a basis of K. Since (3.29) is equivalent to (3.6) and
the coefficient matrix of (3.29) has a full row rank, the
equations in (3.29) have the minimum number for testing

skew-symmetric games in Ki,..

Remark 3.1. The coefficient matrix of (3.29) has nk”—kCZ‘]
number of rows and each row has at most two nonzero
elements. Since CZ‘I <k, (n— DK < nk" - kCZ_1 < nk".
Therefore, the computational complexity is just O(nk") due

to

kl’l
lim —"

Mmoo
n—oo (n — 1)k

nl—>oo n—1
4. Symmetric-based decomposition of finite games

Definition 4.1 ([4]). A game G € G,y is called an

asymmetric game if its structure vector
Vi € [Siuxy ® King 1™

The set of asymmetric games is denoted by Epy.).

Lemma 4.1 ([6]). The dimension of the symmetric game

n—1
k+n-2*

the columns of matrix

subspace Sy is kC A basis of Sy is composed of

W[kn—l k1
Ik ® W[knfz’k]

Ik2 ® W[kn*},k]

(Mx, , ® I), 4.1)

I -2 @ W[k]
Lo

Mathematical Modelling and Control

where X,,—| is the solution space of linear equations

LIy — Wi ® Lins

Iknfl - Ik ® W[k] ® Ik”"‘
. x=0, 4.2)

L — I3 ® W[k]

and My, is the matrix composed of a basis of X,-.

n—1

Let
Wit g
I ® W2 g
Lo ® W3
: (M,

n—1

® Ip), 4.3)

L2 ® Wiy
Lin

(=D Wy g
(—1)n_21k ® W[k”*Z,k]

1" e ® Wi g

(Mg ®L). (44

—In2 ® Wiy
Ikﬂ

It is easy to check that

W[k”‘],k]
I ® W2
IkZ ® W[knfs’k]

I kn—2 ® W[k]
I

(=1 W1 g
(=12 @ Wi g
(_l)n_31k2 ® W[knffa’k]

—Ikmz ® W[k]

L

(4.5)

= Z(Ik,;l ® W[k,knfi])((_l)n_ilk[*l ® W[k”’i,k])
i=1

= zn:(—l Y L
i=1

Since the number of odd permutations of any combination is
the same as the number of even permutations, according to

the construction of a basis of X,_; in [6], we have

ATB = (MY @ 1)) (-1 L) (Mg, , ® L)
i=1

_ (4.6)

~D"(My Mg,  ®I)

n
i=1

= Opxgs

Volume 2, Issue 4, 257-267
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n—1

4 = kCZ‘l. That is, Sy, and K are

orthogonal. Therefore,

where p = kC

Gint = Sink) © Kinsig © Epnaay- 4.7)

So far, we have constructed a basis of the symmetric
game subspace and that of the skew-symmetric game
subspace, respectively. Next, according to the two bases,
we investigate the vector space structure of the asymmetric
game subspace.

Consider the following linear equations

(4.8)

where A and B are shown in (4.3) and (4.4), composed of
the bases of Sp,.x; and K, respectively. Therefore, (4.8)
is the discriminant equation with the minimum number for
asymmetric games, and a basis of the solution space of (4.8)
is also a basis of the asymmetric game subspace Ejy, k-
Construct matrices My,_, and Mg | as follows:

My, =lmin2 - ngmge1 - el My, =101 62 --- 6g], (4.9)

where @ = C!

_ n—1
ken—oB=C;" ", and

V1<i<B Al<lh<b<--<l <k

(4.10)
sty = nlllz“‘ln—l’ 9; = 91112“'1;171,
VB+1<i<a 1< <L<--- <1l <k,
4.11)
and ljlh---l,_1 € Q, st.y; = nl‘lz“'l"".
Let
T n
x =[G, @, e e R
where x/ € R¥". Then, (4.8) is equivalent to
) [(niT+(—1)”‘f+16iT) & Ll (L1 ® Wi gami)x/ =0,
i1 , . (4.12)
Zl[(n,»T + (=100 ® LIy ® Wi po-ip)x! = 0,
j=
1<i<p
and
Z(n;r Q Ik)(ij—l ® W[k,kn-/])xj =0 (413)

=1
B+l1<i<a).

Mathematical Modelling and Control

According to the construction of 7; = n>"-1 and 6; =
ghtber (1 < i < B), we conclude that (4.12) is equivalent to

b > X

- tityotjoy It jy oty
12ty Ry 1yt -‘-S’SL 1t tjotlnt iy tut
sgn(t) ty -, _1)=1 J1s o

j —_—
+ > Z Xtityet s lytregtyy 0,
ity eR,l byly_y 1;/5,, J j
sgn(ty 1y -ty )==1 J is even (4 14)
b DI P :
1112...1,,71£R1112__.,n7 Isjsn 1 tjtlntji1 I
sgn(tytyty_)=—1 11 odd
J
+ N o
Z Z t[lz"'fj,ll"t/+l...l"71

1<j<n

’1’2""rz—l€R1112---1n,1 R
j is even

sgn(tytyty_1)=1
forany 1 <y <l <---<l,1 <k, 1<, <k, and (4.13) is

equivalent to

=0 (4.15)

E J
X
tity - tjqlntjpr ot

tlt2"‘ln—lEPI]»--I”,1 1<j<n
forany 1 <} <L <--- <l <k Ll ---1,-y € Qand any
1<, <k

We first construct two sets of solution vectors of (4.14):

Lilyly1 Lilyly—1
{#rltl“'tn—llj} ’ {'utltzmt,,,];j} .
If n is odd, let
Liblpl INT T T T c R
Fiiyeetrsi = ()7 ()7, ()

: = («”
with each x” = (x;,,,...r, )s

1, p=nnrr-r=b4Lkh 1,
rrery, = —1 P = priracccty =ty tiqlt ey,
0, otherwise,

(4.16)

where l <l <b<--- <l 1<k 1<, <k ttr---t,_ €

Ry, ..., ,» 1 < j < nsatisfy one of following conditions:

@) j = n tiretyy # Ll and (-1 =
sgn(tity -+~ ty-1),

(i) j#n, (=1 =sgn(tyty - - ty-).
Similarly, let

l[lz'"l,,;—l

T n
e = [T @ @T] e R

with each x” = (xf ,,...,. ),

I, p=nrry:-r,= ZIZZ"'Zn—lln»

=1 =1, p=jrr-r=tty ittt

0, otherwise,

P
erVZ"'r»x

4.17)
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where tt,---t,-; and j satisfy one of the following
conditions:
(@ j=ntt -ty #Lbh---I1 = blily---1,_; and

(=1) = sgn(ty - 1),
() j#n, (-1) =sgn(tity - t,_1).

If n is even, let

Lyl _ T e
ey = [T G| e R
with
1, p=nriry--ra=hl---1,
[7 _ .
ippery =3 =1, p=jirirse ety = Gty bty s

0, otherwise,
(4.18)

< k1<, £k

where 1 < [;

hty---t,-1 € RZIIZ'“In—17 1 <

< 12 < e < ln—l
Jj < n satisfying one of the

following conditions,

# Lil---1,_1 and (—l)j

@ j = n ttr- -ty

sgn(tity -+ thet),
(i) j#n (1) = sgn(tity - 1,-1),

Similarly, let

T
Libly=1 _ INT 2\T T nk"
el = [T, @)L )] e R
with
I, p=nrryry=hb-ll,
P _ _ _
xr1-~~rn_ _1’ p—J,rer"'rn—t1t2"'tj—llntj"'tn—h

0, otherwise,
4.19)

where t1, - - - t,—1 and j satisfy one of following conditions:

G) j=ntith-tyy # LI,y = bljly-+-1,; and
(=17* = sgn(n1p -+ 1),

(i) j#n, (1) =sgn(tity - 1,).
Then we construct a set of solution vectors of (4.15):
Ly,
{ytltZ“'tn—I;j} :
Let

lilp+l,

T n
ypreh o= ahT AT @] e RS

Mathematical Modelling and Control

with
I, p=nriry--r,=hlb--1,
p _ .
Xppor, =94 =1, p=jirira-c oty =ttty byt by,

0, otherwise,
(4.20)

Sl £k bbb+l €0,
1<l <k tity- -ty € Pyppu,,, 1 < j < nsatisfy one of

where 1 <[} <[, < ---

the following conditions:

O j=ntitr- -ty #hl-- Ly,

(ii) j#n.
L1l lily+ly;=1
Theorem 4.1. The sets {'“zltz---z",l;j}’ {'“tlzz--fn,l;j} and
{751‘2::?’71,]} form a basis of the asymmetric game subspace
Ekl-

hibply;1

tityty-13j°
Lilyly31

ﬂll’z"‘lnfl;j}’

Proof. According to the construction method of u
Iilyelyi=1 iy,
Ht iyt s an Yitrotarsj?

1112'"[,,;—1 l]lz"'],l
{#tllz"'T;H:,i} and {yfllz"'fpxq:j

satisfy both (4.14) and (4.15). Moreover, we have

all the vectors in {

} are linearly independent and

Libdl | _ |y Bbeelyi=1
‘{ﬂlltZ“'tnfl;j}’ - ’{utlt?“tnfl;]‘}'
| Ryt |
= ), ke
1<li<l<-<l,.1<k
| Ryt | _
= > kn—22) — kG

1<li<h<-<l,.1<k
Ly,
‘{’yfllz“'fnq ;.i}|
= > kP, -1

1<l <ly <<l 1<k
Niy-ly-1€Q

k(n | Py, ) = (kCor_y = kCEH).

llyly—1€Q
So,
hibply;1 Iyl Iyl
| {#rltz“'tn—llj} |+ {'utlt2"'ln—l§j} |+ {’ytlfz"'tml;j} |
| Ryt | 1
=2 Z k(n%) - 2kC!

1<li<l<-<l,.1<k

D k] Py, ) = (KCE — kG

hily-ly—1€Q

= Z k(| Ry, 1)
1<l <l <<l <k
D k] Py, ) - kG, = kG

1<ty <l <<l _y <k
hilylp_1€Q

=nk" — kC}) , — kC}!
=nk” - dim(S[y,;k]) - dim(?([,l;k]).
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lllz'"l,,;l 1112'"[,,;1
Therefore, {MtIZZ"'tn—];j}’ {ﬂtllz"'T;H;.i

basis of Eppg.

hilply
711 fety-13j

} and { } form a

Remark 4.1. We have given the bases of skew-symmetric
game subspace Kin.) and asymmetric game subspace Epp:).
In our recently published paper [6], a basis of symmetric
game subspace Sy has also been given. Let the bases
of Stkty Ky Emng be {ay, a2, -+, ay), 181,82, . Bl
{y1,v2, -+ ,vi} respectively, where s = kC,’(’;’i_T t = kCZ‘l,
I =nk"—kC}! , —kCi™'. For any G € Gux), there are real

numbers pi,- -, Ps,q1, -

s qi> V1, 1 such that

Vo = pray +- -+ psas+ @iy +- -+ piff Hriyr +- iy

Thus» [pl»"' sPssq1s " 5 qes 11,0 ’rl]T is a SOILttion Of
equation
lay -+ @By - Biyy oy =V (4.21)

Since the coefficient matrix of (4.21) is a nonsingular matrix
and each row has less than 3n! nonzero elements, the
computational complexity of game decomposition is less

than or equal to O(n!nk™).

Example 4.1. Consider Gj3.0y. If 1 <1} <, <2, we have
T

=1,k =2 Then Mg, =[0, 1, =10] .If1 <l <h <2,

then l1l, = 11, I11 = 12 or l11, = 22. Therefore,

My, =

2

S O O =
S = = O
- O O O

According to (3.28), a basis of Kz is composed of the

columns of matrix

W[22!2]
L@ Wpo| (Mg, ® 1)
Iy

4.22)

According to (4.1), a basis of Sp. is composed of the

columns of matrix

W[22!2]
L@ Wpoy|(Mx, ® 1)
Iy

(4.23)
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According (4.18)-(4.20), the basis of 3,21 and all non-zero

elements in each vector are as follows:

21,1 3 _ 1 _ .
Mo s Yo = Lxpp, =-1
1201 3 _ 1 .2 _ 1.
Hy1s s Yo = Lxg = -1
1221 3 _ 1 _ .
Mo s X = Lxy, =-1;
1221 3 _ 1 .2 _ 1.
Hyys s Xip = Lxgy =-1;
121-1 3 _ 1 .2 _ 1.
Hips o X = Lxjp =-1
120-1 3 _ .
Moy s % = Ly = -1
12221 3 _ 1 .2 _ 1.
Hios s X0 = Ly, = =1
122-1 3 _ 1 _ 1.
Moy s Xap = Ly = -1
m .3 _ 1 _ 4.
Y X = Ly =-1
1 3 _q4 .2 _ 1.
Y X =Ly =-1
12 3 _ 1 _ .
Yir X =L, =-1
12 3 _q1 .2 _ 1.
Yz X =Ly =-1
»l 3 _ 1 _ .
Yoo X = Lixppy = -1
23 _ 1.2 _ 1.
Y20s Xy = Ly, = -1
2 3 _ 1 _ .
Y Ko = Lixgy = -1
2 3 _q .2 _
Y22 X = 1 X5, =~ 1.

It is easy to verify that the basis of Ez.) are orthogonal to
the columns of the matrices shown in (4.22) and (4.23).

5. Conclusions

This paper mainly investigates skew-symmetric game,
asymmetric game and the problem of symmetric-based
decomposition of finite games. By the semi-tensor product
of matrices method with adjacent transpositions, necessary
and sufficient conditions for testing skew-symmetric games
are obtained. Based on the necessary and sufficient
conditions of skew-symmetric games, a basis of skew-
symmetric game subspace is constructed explicitly. In
addition, the discriminant equations for skew-symmetric
games with the minimum number are derived concretely,
which reduce the computational complexity. Benefiting
from the construction methods of the bases of symmetric

game subspace and skew-symmetric game subspace given

Volume 2, Issue 4, 257-267
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by us, a basis of asymmetric game subspace is constructed
for the first time. Then, any game in G, can be linear
represented by the bases of symmetric game subspace, skew-
symmetric game subspace and asymmetric game subspace
given by this paper and our previous work. Therefore, the
problem of symmetric-based decomposition of finite games
is completely solved. Some other kind of games can also be
investigated in the frame of semi-tensor product of matrices
[12, 13, 14, 15].
results in our future work.

We will try to generalize the obtained
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