
Mathematical Modelling 

and Control

http://www.aimspress.com/journal/mmc

Editors in Chief:
Xiaodi Li & Sabri Arik

Mathematical
Modelling and Control

ISSN: 2767-8946Volume 1 January 2021

MMC, 2(4): 257–267
DOI:10.3934/mmc.2022024
Received: 02 September 2022
Revised: 02 November 2022
Accepted: 18 December 2022
Published: 27 December 2022

Theory article

Skew-symmetric games and symmetric-based decomposition of finite games

Lei Wang1, Xinyun Liu2, Ting Li1 and Jiandong Zhu1,∗

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
2 School of Mathematics and Information Sciences, Weifang University, Weifang 261061, China

* Correspondence: Email: zhujiandong@njnu.edu.cn.

Abstract: In this paper, skew-symmetric games and a symmetric-based decomposition of finite games are investigated. First,
necessary and sufficient conditions for testing skew-symmetric games are obtained by the semi-tensor product method based on
adjacent transpositions. By using the obtained conditions for skew-symmetric games, a basis of the skew-symmetric game subspace
is constructed. Then, the discriminant equations for a skew-symmetric game with the minimum number are derived. Furthermore, based
on the basis of the skew-symmetric game subspace and that of the symmetric game subspace, a basis of the asymmetric game subspace
is constructed, which completely solves the problem of symmetric-based decomposition of finite games. Finally, an illustrative example
is provided to validate the obtained theoretical results.
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1. Introduction

Game theory is a mathematical theory studying
competitive phenomena. Since John von Neumann
proved the basic principles of game theory, modern game
theory was formally established [1, 2], which has been paid
wide attention and applied to biology, economics, computer
science, and many other fields. For example, biologists
use game theory to predict certain outcomes of evolution.
Economists regard the game theory as one of the standard
analysis tools of economics.

The concept of symmetric games is first proposed by John
von Neumann in [2]. The symmetry of a game means
that all players have the same set of strategies and fair
payoffs, that is, the payoffs depend only on the strategies
employed, not on who is playing them. Because fair games
are more realistic and acceptable, many common games are
symmetric games such as the well-known games rock-paper-
scissors and prisoner’s dilemma. In recent years, many

problems about symmetric games have been investigated in
[3], [4], [5], and [6]. In addition, based on the definition of
symmetric games, the concepts of skew-symmetric games,
asymmetric games and the symmetric-based decomposition
of finite games have been proposed in [4]. Although
the bases of the symmetric game subspace and the skew-
symmetric game subspace have been constructed in [4], the
vector space structure of the asymmetric game subspace has
not been revealed. Therefore, the motivation of this paper is
to explore the vector space structure of the asymmetric game
subspace and thoroughly solve the problem of symmetric-
based decomposition of finite games. In our recent paper
[6], a new method to construct a basis of the symmetric game
subspace has been proposed, which gives us great inspiration
for the study of skew-symmetric games, asymmetric games,
and symmetric-based decomposition of finite games.

In the past decade, the semi-tensor product (STP) of
matrices has been successfully applied to game theory
by Cheng and his collaborators [7], which enables a
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game to be expressed in an algebraic form. In this
paper, we still use the matrix method based on STP to
investigate skew-symmetric games, asymmetric games and
symmetric-based decomposition of finite games. First,
by the semi-tensor product method based on adjacent
transpositions, necessary and sufficient conditions for testing
skew-symmetric games are obtained. Then, based on the
necessary and sufficient conditions, a basis of the skew-
symmetric game subspace is constructed explicitly. In
addition, the discriminant equations for skew-symmetric
games with the minimum number are derived concretely.
According to the construction methods of the basis of the
symmetric game subspace in [6] and the basis of the skew-
symmetric game subspace in this paper, a basis of the
asymmetric game subspace is constructed for the first time.
Therefore, the problem of symmetric-based decomposition
of finite games is completely solved.

The rest of this paper is organized as follows: Section
2 gives some preliminaries. Section 3 studies skew-
symmetric games and skew-symmetric game subspace.
Section 4 studies asymmetric games and solves the problem
of symmetric-based decomposition of finite games. Section
5 is a brief conclusion.

2. Preliminaries

In this section, some necessary preliminaries are given.
Firstly, we list the following notations.

• D = {0, 1} : the set of values of logical variables;
• δi

k : the i-th column of Ik;
• ∆k := {δi

k : i = 1, 2, · · · , k};
• δk[i1 i2 · · · in] := [δi1

k δ
i2
k · · · δ

in
k ];

• Mm×n : the set of m × n matrices;
• Lm×n := {L ∈ Mm×n|Col(L) ⊆ ∆m};
• n : the left semi-tensor product of matrices;
• 1n: the n-dimensional column vector of ones;
• 0m×n: the m × n matrix with zero entries;
• Sn: the n-th order symmetric group, i.e., a permutation

group that is composed of all the permutations of n

things;
• R: the set composed of all the real numbers.

Definition 2.1 ([7]). Let A ∈ Mm×n, B ∈ Mp×q. The left

semi-tensor product of A and B is defined as

A n B = (A ⊗ I α
n
)(B ⊗ I α

p
), (2.1)

where ⊗ is the Kronecker product and α = lcm(n, p) is the

least common multiple of n and p. When no confusion may

arise it is usually called the semi-tensor product (STP).

If n and p in Definition 2.1 satisfy n = p, the STP is
reduced to the traditional matrix product. So, the STP is
a generalized operation of the traditional matrix product.
Therefore, one can directly write A n B as AB.

Definition 2.2 ([7]). A swap matrix W[m,n] = (wIJ
i j ) is an

mn × mn matrix, defined as follows:

Its rows and columns are labeled by double indices.

The columns are arranged by the ordered multi-index

Id(i1, i2; m, n), and the rows are arranged by the ordered

multi-index Id(i2, i1; n,m). The element at the position with

row index (I, J) and column index (i, j) is

wIJ
i j =

 1, I = i and J = j,

0, otherwise.

When m = n, matrix W[m,n] is denoted by W[m]. Swap
matrices have the following properties:

(Ik ⊗W[k])(W[k] ⊗ Ik)(Ik ⊗W[k]) = (W[k] ⊗ Ik)(Ik ⊗W[k])(W[k] ⊗ Ik).
(2.2)

Definition 2.3 ([8]). A finite game is a triple G = (N, S ,C),
where

1) N = {1, 2, · · · , n} is the set of n players;

2) S = S 1×S 2×· · ·×S n is the set of strategy profiles, where

S i = {si
1, s

i
2, · · · , s

i
ki
} is the set of strategies of player i;

3) C = {c1, c2, · · · , cn} is the set of payoff functions, where

ci : S → R is the payoff function of player i.

Denote the set composed of all the games above by
G[n;k1,k2,··· ,kn]. When |S i| = k for each i = 1, 2, · · · , n, we
denote it by G[n;k].

STP is a convenient tool for investigating games. Given a
game G ∈ G[n;k], by using the STP method [9], each strategy
xi can be written into a vector form xi ∈ ∆k, and every payoff

function ci can be expressed as

ci(x1, x2, · · · , xn) = Vc
i n

n
j=1 x j, i = 1, 2, · · · , n, (2.3)
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where nn
j=1x j ∈ ∆kn is called the STP form of the strategy

profile, and Vc
i is called the structure vector of ci.

Definition 2.4 ([10]). A game G ∈ G[n;k] is called a

symmetric game if for any permutation σ ∈ Sn

ci(x1, x2, · · · , xn) = cσ(i)(xσ−1(1), xσ−1(2), · · · , xσ−1(n)) (2.4)

for any i = 1, 2, · · · , n.

3. Skew-symmetric game and skew-symmetric game
subspace

Definition 3.1 ([4]). A game G ∈ G[n;k] is called a skew-

symmetric game if for any permutation σ ∈ Sn

ci(x1, x2, · · · , xn) = sgn(σ)cσ(i)(xσ−1(1), xσ−1(2), · · · , xσ−1(n))
(3.1)

for any i = 1, 2, · · · , n.

The set composed of all the skew-symmetric games in
G[n; k] is denoted as K[n; k].

Lemma 3.1 ([11]). The set of all the adjacent transpositions

(r, r + 1), 1 ≤ r ≤ n − 1 is generator of the symmetric group

Sn.

In the following, adjacent transpositions (r, r + 1), 1 ≤ r ≤

n − 1 are represented as µr.

Lemma 3.2. Consider G ∈ G[n;k]. For any σ1, σ2 ∈ Sn, if

σ1 and σ2 satisfy

ci(x1, x2, · · · , xn) = sgn(σ)cσ(i)(xσ−1(1), xσ−1(2), · · · , xσ−1(n))

(3.2)

for any i = 1, 2, · · · , n and any x1, x2, · · · , xn ∈ ∆k, the

compound permutation σ2 ◦ σ1 also satisfies (3.2).

Proof. For any given xi ∈ ∆k, i = 1, 2, . . . , n, let yi = xσ−1
1 (i).

Then

ci(x1, x2, · · · , xn)

=sgn(σ1)cσ1(i)(xσ−1
1 (1), xσ−1

1 (2), · · · , xσ−1
1 (n))

=sgn(σ1)cσ1(i)(y1, y2, · · · , yn)

=sgn(σ2)sgn(σ1)cσ2(σ1(i))(yσ−1
2 (1), yσ−1

2 (2), · · · , yσ−1
2 (n))

=sgn(σ2 ◦ σ1)cσ2◦σ1(i)(xσ−1
1 (σ−1

2 (1)), xσ−1
1 (σ−1

2 (2)), · · · , xσ−1
1 (σ−1

2 (n))),

which implies that σ2 ◦ σ1 satisfies (3.2).
According to Definition 3.1, Lemma 3.1 and Lemma 3.2,

the following lemma follows:

Lemma 3.3. Consider G ∈ G[n;k]. Game G is a skew-

symmetric game if and only if

ci(x1, x2, · · · , xn) = −cµr(i)(xµr(1), xµr(2), · · · , xµr(n)) (3.3)

for any adjacent transposition µr, 1 ≤ r ≤ n − 1, i =

1, 2, · · · , n.

Proposition 3.1. Consider G ∈ G[n;k]. Game G is a skew-

symmetric game if and only if

Vc
i = −Vc

µr(i)Tµr , ∀i = 1, 2, · · · , n, 1 ≤ r ≤ n − 1, (3.4)

where Tµr = Ikr−1 ⊗W[k] ⊗ Ikn−r−1 .

Proof. For any i = 1, 2, · · · , n and any 1 ≤ r ≤ n − 1, we
have

cµr(i)(xµr(1), xµr(2), · · · , xµr(n))

=Vc
µr(i)xµr(1)xµr(2) · · · xµr(n)

=Vc
µr(i)(x1x2 · · · xr−1)(xr+1xr)(xr+2 · · · xn)

=Vc
µr(i)(x1x2 · · · xr−1)(W[k]xr xr+1)(xr+2 · · · xn)

=Vc
µr(i)Tµr x1x2 · · · xn.

(3.5)

From (2.3) and (3.5), it follows that (3.4) is equivalent to
(3.3). Therefore, the proposition is proved.

Theorem 3.1. Consider G ∈ G[n;k]. Game G is a skew-

symmetric game if and only if

Ikn Tµ1

Ikn Tµ2

. . .
. . .

Ikn Tµn−1

Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµn−2



(VG)T = 0, (3.6)

where Tµr = Ikr−1 ⊗W[k] ⊗ Ikn−r−1 , VG = [Vc
1 Vc

2 · · · Vc
n], and

the omitted elements in the coefficient matrix of (3.6) are all

zeros.

Proof. Since (W[k])−1 = W[k], we have (Tµr )
−1 = Tµr for

any 1 ≤ r ≤ n − 1. Then, the equation Vc
i = −Vc

µr(i)Tµr is
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equivalent to Vc
µr(i) = −Vc

i Tµr . According to Proposition 3.1,
G is a skew-symmetric game if and only if

Ikn Tµ1

Ikn Tµ2

. . .
. . .

Ikn Tµn−1

B1

B2

. . .

Bn−1

Bn



(VG)T = 0, (3.7)

where

B1 =


Ikn + Tµ2

Ikn + Tµ3

...

Ikn + Tµn−1


, B2 =


Ikn + Tµ3

Ikn + Tµ4

...

Ikn + Tµn−1


, (3.8)

Bn−1 =


Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµn−3


, Bn =


Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµn−2


, (3.9)

Br =



Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµr−2

Ikn + Tµr+1

Ikn + Tµr+2

...

Ikn + Tµn−1



(3 ≤ r ≤ n − 2). (3.10)

Let the coefficient matrix of equation (3.7) be
A1 A2

B 0(n−2)2kn×kn

0(n−2)kn×(n−1)kn Bn

 (3.11)

where

A1 =



Ikn Tµ1

Ikn Tµ2

. . .
. . .

Ikn Tµn−2

Ikn


, (3.12)

A2 =

0(n−2)kn×kn

Tµn−1

 , (3.13)

B =


B1

B2

. . .

Bn−1


. (3.14)

Since A1 is an invertible matrix, we can perform the
following row transformation on the coefficient matrix of
(3.7)


I(n−1)kn

−BA−1
1 I(n−2)(n−1)kn

I(n−2)kn




A1 A2

B 0(n−2)2kn×kn

0(n−2)kn×(n−1)kn Bn


=


A1 A2

0(n−2)2kn×(n−1)kn −BA−1
1 A2

0(n−2)kn×(n−1)kn Bn

 ,
(3.15)

where

− BA−1
1 A2 =


(−1)n−1B1Tµ1 Tµ2 · · · Tµn−1

(−1)n−2B2Tµ2 Tµ3 · · · Tµn−1

...

−Bn−1Tµn−1


. (3.16)

Let

F1 = In−2 ⊗ (Tµn−1 Tµn−2 · · · Tµ1 ),

Fr = In−3 ⊗ (Tµn−1 Tµn−2 · · · Tµr ), ∀ 2 ≤ r ≤ n − 1.

We perform the following row transformation on matrix
−BA−1

1 A2


(−1)n−1F1

(−1)n−2F2

. . .

−Fn


(−BA−1

1 A2)

=


F1B1Tµ1 Tµ2 · · · Tµn−1

F2B2Tµ2 Tµ3 · · · Tµn−1

...

Fn−1Bn−1Tµn−1


.

(3.17)
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Therefore, the equivalent form of (3.7) is as follows

Ikn Tµ1

Ikn Tµ2

. . .
. . .

Ikn Tµn−1

F1B1Tµ1 · · · Tµn−1

F2B2Tµ2 · · · Tµn−1

...

Fn−1Bn−1Tµn−1

Bn



(VG)T=0. (3.18)

From the property of W[k] shown in (2.2), it follows that

Tµn−1 · · · Tµr+1 Tµr Tµi Tµr Tµr+1 · · · Tµn−1

=

 Tµi ∀1 ≤ i ≤ r − 2,
Tµi−1 ∀r + 1 ≤ i ≤ n − 1.

(3.19)

Then, (3.18) is equivalent to (3.6). Thus, the proof is
complete.

We see that the key of solving equation (3.6) is computing
the solution space of the following linear equation:

Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµn−2


x = 0, (3.20)

where x is the kn-dimensional unknown vector. Considering
Ikn + Tµ1

Ikn + Tµ2

...

Ikn + Tµn−2


=


Ikn + W[k] ⊗ Ikn−2

Ikn + Ik ⊗W[k] ⊗ Ikn−3

...

Ikn + Ikn−3 ⊗W[k] ⊗ Ik



=


Ikn−1 + W[k] ⊗ Ikn−3

Ikn−1 + Ik ⊗W[k] ⊗ Ikn−4

...

Ikn−1 + Ikn−3 ⊗W[k]


⊗ Ik, (3.21)

we only need to solve the linear equations as follows:
Ikn−1 + W[k] ⊗ Ikn−3

Ikn−1 + Ik ⊗W[k] ⊗ Ikn−4

...

Ikn−1 + Ikn−3 ⊗W[k]


x = 0, (3.22)

where x is the kn−1-dimensional unknown vector. Let
x = (xl1l2···ln−1 ) be arranged by the ordered multi-index
Id(i1, i2, . . . , in−1; k, k, . . . , k), that is,

x= (x11···11, x11···12, . . . , x11···1k, x11···21, x11···22, . . . , x11···2k,

. . . , xkk···k1, xkk···k2, . . . , xkk···kk)T.

(3.23)

Then, by the property of W[k], vector x is a solution of (3.22)
if and only if, for any 1 ≤ l1, l2, · · · , ln−1 ≤ k, the following
equations hold:

xl1l2l3···ln−1 = −xl2l1l3···ln−1 ,

xl1l2l3···ln−1 = −xl1l3l2···ln−1 ,

...

xl1l2l3···ln−1 = −xl1···ln−3ln−1ln−2 ,

(3.24)

i.e.

xl1l2···ln−1 = sgn(π)xπ(l1l2···ln−1), ∀π ∈ Sn−1. (3.25)

Thus, for any 1 ≤ r ≤ n − 2, if lr = lr+1, then

xl1···lr lr lr+2···ln−1 = −xl1···lr lr lr+2···ln−1 ,

that is,
xl1···lr lr lr+2···ln−1 = 0.

Therefore, all the free variables of the linear equations (3.22)
are

xl1l2···ln−1 , ∀ 1 ≤ l1 < l2 < · · · < ln−1 ≤ k, (3.26)

whose number is Cn−1
k . That is, the dimension of the solution

space of linear equations (3.22) is Cn−1
k .

For every given repeatable combination s1s2 · · · sn−1, (1 ≤
s1 ≤ s2 ≤ · · · ≤ sn−1 ≤ k), denote by Ps1 s2···sn−1 the set
composed of all the repeatable permutation of s1s2 · · · sn−1.
For example, P122 = {122, 212, 221}. For every given
unrepeatable combination l1l2 · · · ln−1, (1 ≤ l1 < l2 < · · · <

ln−1 ≤ k), denote by Rl1l2···ln−1 the set composed of all
the unrepeatable permutation of l1l2 · · · ln−1. For example,
R123 = {123, 132, 213, 231, 312, 321}. Let

Q = (
⋃

1≤s1≤s2≤···≤sn−1≤k

Ps1 s2···sn−1 ) \ (
⋃

1≤l1<l2<···<ln−1≤k

Rl1l2···ln−1 ).

Then, any permutation in Q is a repeated permutation.
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Lemma 3.4. For every given unrepeatable combination

l1l2 · · · ln−1 (1 ≤ l1 < l2 < · · · < ln−1 ≤ k), define a vector

θl1l2···ln−1 = x with the form (3.23) by

xt1t2···tn−1 =

 sgn(t1t2 · · · tn−1), t1t2 · · · tn−1 ∈ Rl1l2···ln−1 ,

0, otherwise.

Then the set{
θl1l2···ln−1 | 1 ≤ l1 < l2 < · · · < ln−1 ≤ k

}
(3.27)

is a basis of the solution space X̄n−1 of (3.22). For every

l1l2 · · · ln−1 (1 ≤ l1 < l2 < · · · < ln−1 ≤ k), we

define |Rl1l2···ln−1 | − 1 number of vectors νr1r2···rn−1
l1l2···ln−1

= x with

r1r2 · · · rn−1 ∈ Rl1l2···ln−1 and r1r2 · · · rn−1 , l1l2 · · · ln−1 by

xt1t2···tn−1 =


1, t1t2 · · · tn−1 = l1l2 · · · ln−1,

−sgn(t1t2 · · · tn−1), t1t2 · · · tn−1 = r1r2 · · · rn−1,

0, otherwise.

We define |Q| number of vectors λh1h2···hn−1 = x

(h1h2 · · · hn−1 ∈ Q) by

xt1t2···tn−1 =

 1, t1t2 · · · tn−1 = h1h2 · · · hn−1,

0, otherwise.

Then the set of νr1r2···rn−1
l1l2···ln−1

(1 ≤ l1 < l2 < · · · < ln−1 ≤

k, r1r2 · · · rn−1 ∈ Rl1l2···ln−1 , r1r2 · · · rn−1 , l1l2 · · · ln−1) and

λh1h2···hn−1 (h1h2 · · · hn−1 ∈ Q) is a basis of the orthogonal

complementary space X̄⊥n−1. Denote by MW the matrix

whose columns are composed of a basis of subspace W.

Then the linear system (3.22) is equivalent to MT
X̄⊥n−1

x = 0.

Proof. For any 1 ≤ l1 < l2 < · · · < ln−1 ≤ k,
sgn(l1l2 · · · ln−1) = 1. From the equivalent equations (3.25)
and the free variables shown by (3.26), it follows that the
set of θl1l2···ln−1 (1 ≤ l1 < l2 < · · · < ln−1 ≤ k) is a basis of
the solution space X̄n−1. By the construction of νr1r2···rn−1

l1l2···ln−1
and

λh1h2···hn−1 , it is straightforward to see that each νr1r2···rn−1
l1l2···ln−1

and
each λh1h2···hn−1 are orthogonal to X̄n−1. The total number of
νr1r2···rn−1

l1l2···ln−1
is∑

1≤l1<l2<···<ln−1≤k

(|Rl1l2···ln−1 | − 1) =
∑

1≤l1<l2<···<ln−1≤k

|Rl1l2···ln−1 | −Cn−1
k .

The total number of λh1h2···hn−1 is∑
1≤s1≤s2≤···≤sn−1≤k

|Ps1 s2···sn−1 | −
∑

1≤l1<l2<···<ln−1≤k

|Rl1l2···ln−1 |

= kn−1 −
∑

1≤l1<l2<···<ln−1≤k

|Rl1l2···ln−1 |.

Then the total number of νr1r2···rn−1
l1l2···ln−1

and λh1h2···hn−1 is kn−1 −

Cn−1
k , i.e. kn−1 − dim(X̄n−1). Therefore, we conclude

that the set of νr1r2···rn−1
l1l2···ln−1

(1 ≤ l1 < l2 < · · · < ln−1 ≤

k, r1r2 · · · rn−1 ∈ Rl1l2···ln−1 , r1r2 · · · rn−1 , l1l2 · · · ln−1) and
λh1h2···hn−1 (h1h2 · · · hn−1 ∈ Q) is a basis of X̄⊥n−1. Then, the
linear system (3.22) is equivalent to MT

X̄⊥n−1
x = 0.

According to the above basis of the solution space of
linear equations (3.22), we can construct a basis of skew-
symmetric game subspace K[n;k].

Theorem 3.2. The dimension of the skew-symmetric game

subspaceK[n;k] is kCn−1
k . A basis ofK[n;k] is composed of the

columns of matrix



(−1)n−1W[kn−1,k]

(−1)n−2Ik ⊗W[kn−2,k]

(−1)n−3Ik2 ⊗W[kn−3,k]
...

(−1)2Ikn−3 ⊗W[k2,k]

−Ikn−2 ⊗W[k]

Ikn


(MX̄n−1

⊗ Ik), (3.28)

where MX̄n−1
is composed of the basis of the solution space

of (3.22). Moreover, the linear equations with the minimum

number to test skew-symmetric games in K[n;k] are



Ikn Tµ1

Ikn Tµ2

. . .
. . .

Ikn Tµn−1

MT
X̄⊥n−1
⊗ Ik


(VG)T = 0, (3.29)

where the omitted elements in the coefficient matrix of (3.29)

are all zeros.

Proof. By Theorem 3.1 and Lemma 3.4, we can easily get
the dimension of skew-symmetric game subspace K[n;k] is
kCn−1

k . Using MX̄n−1
whose columns are composed of a basis

of the solution space of (3.22), we get a basis of the solution
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space of (3.6) as follows:

(−1)n−1Tµ1 · · · Tµn−1 (MX̄n−1
⊗ Ik)

(−1)n−2Tµ2 · · · Tµn−1 (MX̄n−1
⊗ Ik)

(−1)n−3Tµ3 · · · Tµn−1 (MX̄n−1
⊗ Ik)

...

−Tµn−1 (MX̄n−1
⊗ Ik)

MX̄n−1
⊗ Ik


. (3.30)

By the property of swap matrices shown in (2.2), we have

Tµs Tµs+1 · · · Tµn−1 = Iks−1 ⊗W[kn−s,k]

for each 1 ≤ s ≤ n − 1. Then, (3.30) is equivalent to
(3.28). That is, the set of the columns of matrix (3.28) is
a basis of K[n;k]. Since (3.29) is equivalent to (3.6) and
the coefficient matrix of (3.29) has a full row rank, the
equations in (3.29) have the minimum number for testing
skew-symmetric games in K[n;k].

Remark 3.1. The coefficient matrix of (3.29) has nkn−kCn−1
k

number of rows and each row has at most two nonzero

elements. Since Cn−1
k ≤ kn−1, (n − 1)kn ≤ nkn − kCn−1

k ≤ nkn.

Therefore, the computational complexity is just O(nkn) due

to

lim
n→∞

nkn

(n − 1)kn = lim
n→∞

n
n − 1

= 1.

4. Symmetric-based decomposition of finite games

Definition 4.1 ([4]). A game G ∈ G[n;k] is called an

asymmetric game if its structure vector

VG ∈ [S[n;k] ⊕ K[n;k]]⊥.

The set of asymmetric games is denoted by E[n;k].

Lemma 4.1 ([6]). The dimension of the symmetric game

subspace S[n;k] is kCn−1
k+n−2. A basis of S[n;k] is composed of

the columns of matrix

W[kn−1,k]

Ik ⊗W[kn−2,k]

Ik2 ⊗W[kn−3,k]
...

Ikn−2 ⊗W[k]

Ikn


(MXn−1 ⊗ Ik), (4.1)

where Xn−1 is the solution space of linear equations
Ikn−1 −W[k] ⊗ Ikn−3

Ikn−1 − Ik ⊗W[k] ⊗ Ikn−4

...

Ikn−1 − Ikn−3 ⊗W[k]


x = 0, (4.2)

and MXn−1 is the matrix composed of a basis of Xn−1.

Let

A =



W[kn−1,k]

Ik ⊗W[kn−2,k]

Ik2 ⊗W[kn−3,k]
...

Ikn−2 ⊗W[k]

Ikn


(MXn−1 ⊗ Ik), (4.3)

B =



(−1)n−1W[kn−1,k]

(−1)n−2Ik ⊗W[kn−2,k]

(−1)n−3Ik2 ⊗W[kn−3,k]
...

−Ikn−2 ⊗W[k]

Ikn


(MX̄n−1

⊗ Ik). (4.4)

It is easy to check that

W[kn−1,k]

Ik ⊗W[kn−2,k]

Ik2 ⊗W[kn−3,k]
...

Ikn−2 ⊗W[k]

Ikn



T 

(−1)n−1W[kn−1,k]

(−1)n−2Ik ⊗W[kn−2,k]

(−1)n−3Ik2 ⊗W[kn−3,k]
...

−Ikn−2 ⊗W[k]

Ikn


=

n∑
i=1

(Iki−1 ⊗W[k,kn−i])((−1)n−iIki−1 ⊗W[kn−i,k])

=

n∑
i=1

(−1)n−iIkn

(4.5)

Since the number of odd permutations of any combination is
the same as the number of even permutations, according to
the construction of a basis of Xn−1 in [6], we have

ATB = (MT
Xn−1
⊗ Ik)(

n∑
i=1

(−1)n−iIkn )(MX̄n−1
⊗ Ik)

=

n∑
i=1

(−1)n−i(MT
Xn−1

MX̄n−1
⊗ Ik)

= 0p×q,

(4.6)
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where p = kCn−1
k+n−2, q = kCn−1

k . That is, S[n;k] and K[n;k] are
orthogonal. Therefore,

G[n;k] = S[n;k] ⊕ K[n;k] ⊕ E[n;k]. (4.7)

So far, we have constructed a basis of the symmetric
game subspace and that of the skew-symmetric game
subspace, respectively. Next, according to the two bases,
we investigate the vector space structure of the asymmetric
game subspace.

Consider the following linear equationsAT

BT

 x = 0, (4.8)

where A and B are shown in (4.3) and (4.4), composed of
the bases of S[n;k] and K[n;k], respectively. Therefore, (4.8)
is the discriminant equation with the minimum number for
asymmetric games, and a basis of the solution space of (4.8)
is also a basis of the asymmetric game subspace E[n;k].

Construct matrices MXn−1 and MX̄n−1
as follows:

MXn−1=[η1 η2 · · · ηβ ηβ+1 · · · ηα], MX̄n−1
=[θ1 θ2 · · · θβ], (4.9)

where α = Cn−1
k+n−2, β = Cn−1

k , and

∀ 1 ≤ i ≤ β, ∃ 1 ≤ l1 < l2 < · · · < ln−1 ≤ k,

s.t. ηi = ηl1l2···ln−1 , θi = θl1l2···ln−1 ,
(4.10)

∀ β + 1 ≤ i ≤ α, ∃ 1 ≤ l1 ≤ l2 ≤ · · · ≤ ln−1 ≤ k,

and l1l2 · · · ln−1 ∈ Q, s.t. ηi = ηl1l2···ln−1 .
(4.11)

Let
x =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

,

where x j ∈ Rkn
. Then, (4.8) is equivalent to

n∑
j=1

[(ηT
i +(−1)n− j+1θT

i ) ⊗ Ik](Ik j−1 ⊗W[k,kn− j])x j =0,
n∑

j=1
[(ηT

i + (−1)n− jθT
i ) ⊗ Ik](Ik j−1 ⊗W[k,kn− j])x j = 0,

(4.12)

(1 ≤ i ≤ β)

and

n∑
j=1

(ηT
i ⊗ Ik)(Ik j−1 ⊗W[k,kn− j])x j = 0 (4.13)

(β + 1 ≤ i ≤ α).

According to the construction of ηi = ηl1l2···ln−1 and θi =

θl1l2···ln−1 (1 ≤ i ≤ β), we conclude that (4.12) is equivalent to

∑
t1 t2 ···tn−1∈Rl1 l2 ···ln−1

sgn(t1 t2 ···tn−1)=1

∑
1≤ j≤n

j is odd

x j
t1t2···t j−1lnt j+1···tn−1

+
∑

t1 t2 ···tn−1∈Rl1 l2 ···ln−1
sgn(t1 t2 ···tn−1)=−1

∑
1≤ j≤n

j is even

x j
t1t2···t j−1lnt j+1···tn−1

= 0,

∑
t1 t2 ···tn−1∈Rl1 l2 ···ln−1

sgn(t1 t2 ···tn−1)=−1

∑
1≤ j≤n

j is odd

x j
t1t2···t j−1lnt j+1···tn−1

+
∑

t1 t2 ···tn−1∈Rl1 l2 ···ln−1
sgn(t1 t2 ···tn−1)=1

∑
1≤ j≤n

j is even

x j
t1t2···t j−1lnt j+1···tn−1

= 0

(4.14)

for any 1 ≤ l1 < l2 < · · · < ln−1 ≤ k, 1 ≤ ln ≤ k, and (4.13) is
equivalent to∑

t1t2···tn−1∈Pl1 ···ln−1

∑
1≤ j≤n

x j
t1t2···t j−1lnt j+1···tn−1

= 0 (4.15)

for any 1 ≤ l1 ≤ l2 ≤ · · · ≤ ln−1 ≤ k, l1l2 · · · ln−1 ∈ Q and any
1 ≤ ln ≤ k.

We first construct two sets of solution vectors of (4.14):{
µl1l2···ln;1

t1t2···tn−1; j

}
,

{
µl1l2···ln;−1

t1t2···tn−1; j

}
.

If n is odd, let

µl1l2···ln;1
t1t2···tn−1; j =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

with each xp = (xp
r1r2···rn ),

xp
r1r2···rn =


1, p = n, r1r2 · · · rn = l1l2 · · · ln,

−1, p = j, r1r2 · · · rn = t1t2 · · · t j−1lnt j · · · tn−1,

0, otherwise,
(4.16)

where 1 ≤ l1 < l2 < · · · < ln−1 ≤ k, 1 ≤ ln ≤ k, t1t2 · · · tn−1 ∈

Rl1···ln−1 , 1 ≤ j ≤ n satisfy one of following conditions:

(i) j = n, t1t2 · · · tn−1 , l1l2 · · · ln−1 and (−1) j+1 =

sgn(t1t2 · · · tn−1),

(ii) j , n, (−1) j+1 = sgn(t1t2 · · · tn−1).

Similarly, let

µl1l2···ln;−1
t1t2···tn−1; j =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

,

with each xp = (xp
r1r2···rn ),

xp
r1r2···rn =


1, p = n, r1r2 · · · rn = l̃1 l̃2 · · · l̃n−1ln,

−1, p = j, r1r2 · · · rn = t1t2 · · · t j−1lnt j · · · tn−1,

0, otherwise,
(4.17)
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where t1t2 · · · tn−1 and j satisfy one of the following
conditions:

(i) j = n, t1t2 · · · tn−1 , l̃1 l̃2 · · · l̃n−1 = l2l1l3 · · · ln−1 and
(−1) j = sgn(t1 · · · tn−1),

(ii) j , n, (−1) j = sgn(t1t2 · · · tn−1).

If n is even, let

µl1l2···ln;1
t1t2···tn−1; j =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

,

with

xp
r1r2···rn =


1, p = n, r1r2 · · · rn = l1l2 · · · ln,

−1, p = j, r1r2 · · · rn = t1t2 · · · t j−1lnt j · · · tn−1,

0, otherwise,
(4.18)

where 1 ≤ l1 < l2 < · · · < ln−1 ≤ k, 1 ≤ ln ≤ k,
t1t2 · · · tn−1 ∈ Rl1l2···ln−1 , 1 ≤ j ≤ n satisfying one of the
following conditions,

(i) j = n, t1t2 · · · tn−1 , l1l2 · · · ln−1 and (−1) j =

sgn(t1t2 · · · tn−1),

(ii) j , n, (−1) j = sgn(t1t2 · · · tn−1),

Similarly, let

µl1l2···ln;−1
t1t2···tn−1; j =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

,

with

xp
r1···rn =


1, p = n, r1r2 · · · rn = l̃1 l̃2 · · · l̃n−1ln,

−1, p = j, r1r2 · · · rn = t1t2 · · · t j−1lnt j · · · tn−1,

0, otherwise,
(4.19)

where t1t2 · · · tn−1 and j satisfy one of following conditions:

(i) j = n, t1t2 · · · tn−1 , l̃1 l̃2 · · · l̃n−1 = l2l1l3 · · · ln−1 and
(−1) j+1 = sgn(t1t2 · · · tn−1),

(ii) j , n, (−1) j+1 = sgn(t1t2 · · · tn−1).

Then we construct a set of solution vectors of (4.15):{
γl1l2···ln

t1t2···tn−1; j

}
.

Let

γl1l2···ln
t1t2···tn−1; j =

[
(x1)T, (x2)T, . . . , (xn)T

]T
∈ Rnkn

with

xp
r1···rn =


1, p = n, r1r2 · · · rn = l1l2 · · · ln,

−1, p = j, r1r2 · · · rn = t1t2 · · · t j−1lnt j · · · tn−1,

0, otherwise,
(4.20)

where 1 ≤ l1 ≤ l2 ≤ · · · ≤ ln−1 ≤ k, l1l2 · · · ln−1 ∈ Q,
1 ≤ ln ≤ k, t1t2 · · · tn−1 ∈ Pl1l2···ln−1 , 1 ≤ j ≤ n satisfy one of
the following conditions:

(i) j = n, t1t2 · · · tn−1 , l1l2 · · · ln−1 ,

(ii) j , n.

Theorem 4.1. The sets {µl1l2···ln;1
t1t2···tn−1; j}, {µ

l1l2···ln;−1
t1t2···tn−1; j} and

{γl1l2···ln
t1t2···tn−1; j} form a basis of the asymmetric game subspace

E[n;k].

Proof. According to the construction method of µl1l2···ln;1
t1t2···tn−1; j,

µl1l2···ln;−1
t1t2···tn−1; j and γl1l2···ln

t1t2···tn−1; j, all the vectors in {µl1l2···ln;1
t1t2···tn−1; j},

{µl1l2···ln;−1
t1t2···tn−1; j} and {γl1l2···ln

t1t2···tn−1; j} are linearly independent and
satisfy both (4.14) and (4.15). Moreover, we have∣∣∣∣{µl1l2···ln;1

t1t2···tn−1; j}

∣∣∣∣ =
∣∣∣∣{µl1l2···ln;−1

t1t2···tn−1; j}

∣∣∣∣
=

∑
1≤l1<l2<···<ln−1≤k

k(n
| Rl1l2···ln−1 |

2
− 1)

=
∑

1≤l1<l2<···<ln−1≤k

k(n
| Rl1l2···ln−1 |

2
) − kCn−1

k .

∣∣∣∣{γl1l2···ln
t1t2···tn−1; j}

∣∣∣∣
=

∑
1≤l1≤l2≤···≤ln−1≤k

l1 l2 ···ln−1∈Q

k(n | Pl1l2···ln−1 | −1)

=
∑

1≤l1≤l2≤···≤ln−1≤k
l1 l2 ···ln−1∈Q

k(n | Pl1l2···ln−1 |) − (kCn−1
k+n−2 − kCn−1

k ).

So,

| {µl1l2···ln;1
t1t2···tn−1; j} | + | {µ

l1l2···ln;1
t1t2···tn−1; j} | + | {γ

l1l2···ln
t1t2···tn−1; j} |

=2
∑

1≤l1<l2<···<ln−1≤k

k(n
| Rl1l2···ln−1 |

2
) − 2kCn−1

k

+
∑

1≤l1≤l2≤···≤ln−1≤k
l1 l2 ···ln−1∈Q

k(n | Pl1l2···ln−1 |) − (kCn−1
k+n−2 − kCn−1

k )

=
∑

1≤l1<l2<···<ln−1≤k

k(n | Rl1l2···ln−1 |)

+
∑

1≤l1≤l2≤···≤ln−1≤k
l1 l2 ···ln−1∈Q

k(n | Pl1l2···ln−1 |) − kCn−1
k+n−2 − kCn−1

k

=nkn − kCn−1
k+n−2 − kCn−1

k

=nkn − dim(S[n;k]) − dim(K[n;k]).
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Therefore, {µl1l2···ln;1
t1t2···tn−1; j}, {µ

l1l2···ln;1
t1t2···tn−1; j} and {γl1l2···ln

t1t2···tn−1; j} form a
basis of E[n;k].

Remark 4.1. We have given the bases of skew-symmetric

game subspace K[n;k] and asymmetric game subspace E[n;k].

In our recently published paper [6], a basis of symmetric

game subspace S[n;k] has also been given. Let the bases

of S[n;k], K[n;k], E[n;k] be {α1, α2, · · · , αs}, {β1, β2, · · · , βt},

{γ1, γ2, · · · , γl} respectively, where s = kCn−1
k+n−2, t = kCn−1

k ,

l = nkn − kCn−1
k+n−2 − kCn−1

k . For any G ∈ G[n;k], there are real

numbers p1, · · · , ps, q1, · · · , qt, r1, · · · , rl such that

VG = p1α1 + · · ·+ psαs + q1β1 + · · ·+ ptβt + r1γ1 + · · ·+ rlγl.

Thus, [p1, · · · , ps, q1, · · · , qt, r1, · · · , rl]T is a solution of

equation

[αT
1 · · · α

T
s β

T
1 · · · β

T
t γ

T
1 · · · γ

T
l ]x = VT

G. (4.21)

Since the coefficient matrix of (4.21) is a nonsingular matrix

and each row has less than 3n! nonzero elements, the

computational complexity of game decomposition is less

than or equal to O(n!nkn).

Example 4.1. Consider G[3;2]. If 1 ≤ l1 < l2 ≤ 2, we have

l1 = 1, l2 = 2. Then MX̄2
=

[
0, 1, −1 0

]T
. If 1 ≤ l1 ≤ l2 ≤ 2,

then l1l2 = 11, l1l2 = 12 or l1l2 = 22. Therefore,

MX2 =


1 0 0
0 1 0
0 1 0
0 0 1

 .

According to (3.28), a basis of K[3;2] is composed of the

columns of matrix


W[22,2]

−I2 ⊗W[2,2]

I23

 (MX̄2
⊗ I2) (4.22)

According to (4.1), a basis of S[3;2] is composed of the

columns of matrix


W[22,2]

I2 ⊗W[2,2]

I23

 (MX2 ⊗ I2) (4.23)

According (4.18)-(4.20), the basis of E[3;2] and all non-zero

elements in each vector are as follows:

µ121,1
12;1 , x3

121 = 1, x1
112 = −1;

µ121,1
21;2 , x3

121 = 1, x2
211 = −1;

µ122,1
12;1 , x3

122 = 1, x1
212 = −1;

µ122,1
21;2 , x3

122 = 1, x2
221 = −1;

µ121,−1
12;2 , x3

211 = 1, x2
112 = −1;

µ121,−1
21;1 , x3

211 = 1, x1
121 = −1;

µ122,−1
12;2 , x3

212 = 1, x2
122 = −1;

µ122,−1
21;1 , x3

212 = 1, x1
221 = −1;

γ111
11;1, x3

111 = 1, x1
111 = −1;

γ111
11;2, x3

111 = 1, x2
111 = −1;

γ112
11;1, x3

112 = 1, x1
211 = −1;

γ112
11;2, x3

112 = 1, x2
121 = −1;

γ221
22;1, x3

221 = 1, x1
122 = −1;

γ221
22;2, x3

221 = 1, x2
212 = −1;

γ222
22;1, x3

222 = 1, x1
222 = −1;

γ222
22;2, x3

222 = 1, x2
222 = −1.

It is easy to verify that the basis of E[3;2] are orthogonal to

the columns of the matrices shown in (4.22) and (4.23).

5. Conclusions

This paper mainly investigates skew-symmetric game,
asymmetric game and the problem of symmetric-based
decomposition of finite games. By the semi-tensor product
of matrices method with adjacent transpositions, necessary
and sufficient conditions for testing skew-symmetric games
are obtained. Based on the necessary and sufficient
conditions of skew-symmetric games, a basis of skew-
symmetric game subspace is constructed explicitly. In
addition, the discriminant equations for skew-symmetric
games with the minimum number are derived concretely,
which reduce the computational complexity. Benefiting
from the construction methods of the bases of symmetric
game subspace and skew-symmetric game subspace given
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by us, a basis of asymmetric game subspace is constructed
for the first time. Then, any game in G[n;k] can be linear
represented by the bases of symmetric game subspace, skew-
symmetric game subspace and asymmetric game subspace
given by this paper and our previous work. Therefore, the
problem of symmetric-based decomposition of finite games
is completely solved. Some other kind of games can also be
investigated in the frame of semi-tensor product of matrices
[12, 13, 14, 15]. We will try to generalize the obtained
results in our future work.
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