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Abstract: The Covid illness (COVID-19), which has emerged, is a highly infectious viral disease. This disease led to thousands of
infected cases worldwide . Several mathematical compartmental models have been examined recently in order to better understand the
Covid disease. The majority of these models rely on integer-order derivatives, which are incapable of capturing the fading memory and
crossover behaviour observed in many biological phenomena. Similarly, the Covid disease is investigated in this paper by exploring the
elements of COVID-19 pathogens using the non-integer Atangana-Baleanu-Caputo derivative. Using fixed point theory, we demonstrate
the existence and uniqueness of the model’s solution. All basic properties for the given model are investigated in addition to Ulam-Hyers
stability analysis. The numerical scheme is based on Lagrange’s interpolation polynomial developed to estimate the model’s approximate
solution. Using real-world data, we simulate the outcomes for different fractional orders in Matlab to illustrate the transmission patterns
of the present Coronavirus-19 epidemic through graphs.
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1. Introduction

A novel coronavirus (SARS-CoV-2) emerged out of
Wuhan city at the end of December, 2019 [1,2]. After spread
to almost all countries and was declared a pandemic [3].
The outbreak has mostly been controlled in some countries
since the end of April 2021, but still remains a series of
public health and social-economic the problem in all over
the world [4–6]. We know that most people infected with
2019-nCoV will experience mild to moderate respiratory
illness, such as difficulty in breathing, sickness, cough, fever,
and other symptoms [11, 13–15]. When an infected person
sneezes, coughs, or comes in touch with a contaminated
surface, the virus is mostly spread to healthy people via the
mouth, nose, and eyes [7, 8]. The usual incubation time is
1 to 14 days, according to [9]. As the vaccine is not yet
available everywhere, the control measures, for example,
social distancing, wearing of masks, regular hand sanitation
using sanitizer or soaps, and quarantine of the suspected

individuals, are effective interventions that control the virus.

Mathematical models are useful tools for analysing
outbreak dynamics. Mathematical models can be used to
predict the virus’s future spread, allowing the government to
be prepared and take the necessary actions [18–20]. Several
mathematical models were developed to better understand
the behaviour of coronavirus disease. Researchers in [21]
introduced a novel fractional model of COVID-19 while
accounting for the effects of isolation and quarantine. The
Mittag-Leffler, exponential kernels and power-law were
used to simulate the proposed model. Mathematical
modeling is an essential tool for formulating control
strategies and forces guessing the spreading of COVID-19.
To illustrate the dynamics of COVID-19, Chen and Zhao [7]
established a susceptible, un-quarantine infected, quarantine
infected, confirmed infected (SUQC) model. Similarly,
Song et al. [17] formulated a mathematical model based on
COVID-19 epidemiology, close contact, and the isolation
of healthy persons. Acknowledge the means to control the
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spread of coronavirus in the people has been recorded in
various mathematical modeling [12, 22].

Fractional calculus is the computation of integrals or
derivatives of any positive real order. In recent years, there
has been a lot of interest in the use of fractional differential
equations. Many researchers use fractional differential
equations in their research [24, 27, 46]. Therefore, many
researchers have shown more interest in studying fractional
derivative and fractional integrals. In the investigation
of differential equation for optimization, numerical and
qualitative importance was contributed by researchers [25,
26]. It is also notable that fractional differential equation
has been characterized in various manners. It is well-
known that regular kernels are not included in the definite
integral. Therefore types of seeds have been included in
different definitions. One crucial definition that has recently
attracted the attention of researchers is the ABC derivative
presented by Atangana, Baleanu, and Caputo [28] in 2016.
This derivative exhibits the singular kernel by non-singular
kernel, and So much has been studied [29,30]. Because most
of the non-linear problems are challenging to solve for their
analytical or exact solution, different numerical methods
have been introduced to solve these problems [10,23,31,32].
The best numerical procedure has recently been developed
to solve partial fractional differential equation under the
ABC derivative; see for detail [33, 34].

The following model investigates the COVID-19
transmission dynamic. The model included seven
compartments: susceptible population S , expose
population E , infected papulation I , Asymptomatic
population A , Quarantined population Q, Hospitalized
population H and the removed class R as:



ABC
0 Dα

t [S (t)] = Λ − (δ + µ) S ,

ABC
0 Dα

t [E (t)] = δS − (π + µ) E ,

ABC
0 Dα

t [I (t)] = πσ (1 − c) E + φρQ + γ1A

− (ϕ1 + ω1 + µ1 + µ) I ,

ABC
0 Dα

t [A (t)] = π (1 − σ) (1 − c) E + γAQ

− (γ1 + ϕA + µ) A ,

ABC
0 Dα

t [Q(t)] = πcE − (γA + φρ + µ) Q,

ABC
0 Dα

t [H (t)] = ω1I − (ϕH + µ1 + µ) H ,

ABC
0 Dα

t [R(t)] = ϕ1I + ϕAA + ϕHH − µR,

(1.1)

Figure 1. Flow diagram of the COVID-19 model
(1.1).

with the following initial conditions S (0) > 0,E (0) ≥
0,I (0) ≥ 0,A (0) ≥ 0,Q(0) ≥,H (t) ≥ 0,R(0) ≥ 0.
The COVID-19 transmission dynamics are represented in
the Figure 1 flow chart.

Some essential assumptions we put on the model are that
all of the model (1.1) involved parameters be non-negative.
The above model is examined from three perspectives. First,
since the presented model (1.1) is recently defined, we use
fixed point theory to demonstrate its existence. However,
since stability is vital, we will examine Hyers-Ulam type
stability for the proposed model. We refer to [43–45] for
further information on the general models that use ordinary
derivatives of fractional order. Furthermore, the model
under consideration is nonlinear because it is sometimes
impossible to discover an accurate solution to nonlinear
situations. Therefore several numerical processes (methods)
have been developed in the literature to deal with similar
problems, see [39–42]. Therefore a Lagrange’s interpolation
polynomial approach is used to simulate the findings using
Matlab-16.

We arranged the paper as Section 1 gives the introduction,
section 2 describes preliminaries, section 3 shows the
existence of the solution; section 4 offers uniqueness
solution to the model, section 5 provides Hyers Ulams
Stability analyses, and section 6 gives the numerical
solution. Section 7 shows a graphical representation to
support the analytical result. Finally, in section 8, we discuss
the conclusion.
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Table 1. Biological interpretations of parameters
in model (1.1).

Parameters Biological interpretations

Λ Describes the birth rate

δ
The effective contact rate of social
distancing

µ Natural death rate
π Shows the infected contact rate

σ
The rate of symptoms among infected
people

µ1
Showed the death rate due to the
coronavirus

ϕ1
Recovery rates of individuals in the
infected class

ϕA
Recovery rates of individuals in the
asymptomatic population

ω1
The transmission rate from the infected
class to the quarantined class

γ1

Shows the transition rate from
asymptomatic population to the
infected class

γA

Represents the movement rate from the
quarantined quarantined population to the
asymptomatic population

c
Represented the rate of quarantine for
exposed persons

ϕH
Recovery rate of individuals in the
hospitalized population

2. Basic definitions and theorems

Definition 2.1. Let F ∈ H1(a, b), b > a, for any α ∈ [0, 1],
the ABC fractional derivative is

ABC
0 Dα

t F (z) =
κ(α)
1 − α

∫ t

0
F
′

(S)Eα

[
−α(t − S)

1 − α

]
dS,

where E is a Mittag-Leffler function and κ(α) satisfied κ(0) =

κ(1) = 1.

Definition 2.2. Let F ∈ H1(a, b), b > a, and 0 ≤ α ≤ 1, the

ABC fractional integral is

ABC
0 Iαt F (z) =

1 − α
κ(α)

F (z) +
α

κ(α)Γ(α)

∫ t

0
F (S) (t − S)α−1 dS.

Lemma 2.1. The following Newton Leibniz formula is

satisfied for any F (t) ∈ H1(a, b)

ABC
0 Iαt

(
ABC
0 Dα

t F (t)
)

= F (0) − F (t).

3. Existence of the solution

Applying the Lemma (2.1) to (1.1), we get

S (t) −S (0) =
1 − α
κ(α)

(Λ − (δ + µ) S ) +
α

κ(α)Γ(α)∫ t

0
(t − S)α−1 (Λ − (δ + µ) S ) dS.

E (t) − E (0) =
1 − α
κ(α)

(δS − (π + µ) E ) +
α

κ(α)Γ(α)∫ t

0
(t − S)α−1 (Λ − (δ + µ) S ) dS.

I (t) −I (0) =
1 − α
κ(α)

(πσ (1 − c) E + φρQ + γ1A

− (ϕ1 + ω1 + µ1 + µ) I ) +
α

κ(α)Γ(α)∫ t

a
(t − S)α−1 (πσ (1 − c) E + φρQ + γ1A

− (ϕ1 + ω1 + µ1 + µ) I ) dS.

A (t) −A (0) =
1 − α
κ(α)

(π (1 − σ) (1 − c) E + γAQ

− (γ1 + ϕA + µ) A ) +
α

κ(α)Γ(α)

∫ t

0
(t − S)α−1

(π (1 − σ) (1 − c) E + γAQ − (γ1 + ϕA + µ)

A ) dS.

Q(t) −Q(0) =
1 − α
κ(α)

(πcE − (γA + φρ + µ) Q)∫ t

0
(t − S)α−1 (πcE − (γA + φρ + µ) Q) dS.

H (t) −H (0) =
1 − α
κ(α)

(ω1I − (ϕH + µ1 + µ) H ) +
α

κ(α)Γ(α)

+
α

κ(α)Γ(α)

∫ t

0
(t − S)α−1 (ω1I −

(ϕH + µ1 + µ) H ) dS.

R(t) −R(0) =
1 − α
κ(α)

(ϕ1I + ϕAA + ϕHH − µR)

+
α

κ(α)Γ(α)

∫ t

0
(t − S)α−1 (ϕ1I + ϕAA

+ϕHH − µR) dS.

Suppose the function Gi for i = 1, 2...7 given below

P1(t,S ) =Λ − (δ + µ) S

Mathematical Modelling and Control Volume 2, Issue 4, 228–242
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G2(t,E ) =δS − (π + µ) E

G3(t,I ) =πσ (1 − c) E + φρQ + γ1A − (ϕ1 + ω1

+µ1 + µ) I

G4(t,A ) =π (1 − σ) (1 − c) E + γAQ − (γ1 + ϕA + µ) A

G5(t,Q) =πcE − (γA + φρ + µ) Q

G6(t,H ) =ω1I − (ϕH + µ1 + µ) H

G7(t,R) =ϕ1I + ϕAA + ϕHH − µR.

We defined 

Θ1 = |δ + µ|

Θ2 = |π + µ|

Θ3 = |ϕ1 + ω1 + µ1 + µ|

Θ4 = |γ1 + ϕA + µ|

Θ5 = |γA + φρ + µ|

Θ6 = |ϕH + µ1 + µ|

Θ7 = |µ| .

(3.1)

Let

• (p), let, for S ,S ∗,E ,E ∗,I ,I ∗,A ,A ∗,Q,Q∗,H ,

H ∗,R,R∗ ∈ L[0, 1], there exits constants Wi > 0 ,
for i = 1, 2, 3, 4, 5, 6, 7 such that ‖S ‖ ≤ W1, ‖E ‖ ≤

W2, ‖I ‖ ≤ W3, ‖A ‖ ≤ W4, ‖Q‖ ≤ W5, ‖H ‖ ≤

W6, ‖R‖ ≤ W7 and η1, η2 > 0.

‖S + E + I + Q + H ‖ ≤ η1 (3.2)

‖A + R‖ ≤ η2. (3.3)

The Gi for i ∈ N7
1 satisfy the Lipschitz condition provided

that (p) is obeyed. First, we take for G1(t,S ), we have

G1(S )S − G1(S ∗) = ‖(Λ − (δ + µ) S ) − (Λ − (δ + µ) S ∗)‖

≤ |(δ + µ)| ‖(S −S ∗)‖

≤ Θ1 ‖(S −S ∗)‖ .

For the G2(t,E ), we have

G2(E ) − G2(E ∗) = ‖(δS − (π + µ) E ) − (δS − (π + µ) E ∗)‖

≤ |(π + µ)| ‖(E − E ∗)‖

≤ Θ2 ‖(E − E ∗)‖ .

For the G3(t,I ), we have

G3(I ) − G3(I ∗) =‖(πσ(1 − c)E + φρQ + γ1A

(ϕ1 + ω1 + µ1 + µ)I ) − (πσ(1 − c)E

+ φρQ + γ1A − (ϕ1 + ω1 + µ1 + µ)I ∗)‖

≤ |(ϕ1 + ω1 + µ1 + µ)| ‖(I −I ∗)‖

≤Θ3 ‖(I −I ∗)‖ .

For the G4(t,A ), we have

G4(A ) − G4(A ∗) =‖(π (1 − σ) (1 − c) E + γAQ − (γ1 + ϕA

+ µ)A ) − (π(1 − σ)(1 − c)E + γAQ

− (γ1 + ϕA + µ)A ∗)‖

≤ |(γ1 + ϕA + µ)| ‖(A −A ∗)‖

≤Θ4 ‖(A −A ∗)‖ .

Now, for G5(t,Q), we have

G5(Q) − G5(Q∗) =‖(πcE − (γA + φρ + µ)Q) − (πcE

− (γA + φρ + µ)Q∗)‖

≤ |(γA + φρ + µ)| ‖(Q −Q∗)‖

≤Θ5 ‖(Q −Q∗)‖ .

For the G6(t,H ), we have

G6(H ) − G6(H ∗) =‖(ω1I − (ϕH + µ1 + µ)H ) − (ω1I

− (ϕH + µ1 + µ)H ∗)‖

≤ |(ϕH + µ1 + µ)| ‖(H −H ∗)‖

≤Θ6 ‖(H −H ∗)‖ .

Similarly, for the G7(t,R), we have

G7(R) − G7(R∗) =‖(ϕ1I + ϕAA + ϕHH − µR) − (ϕ1I

+ ϕAA + ϕHH − µR∗)‖

≤ |µ| ‖(R −R∗)‖

≤Θ7 ‖(R −R∗)‖ .

Hence, the Gi, for i = 1, 2, ...7. satisfies the lipschitz
condition. We suppose that S (0) = E (0) = A (0) = I (0) =
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Q(0) = H (0) = R(0) = 0 , we have

S (t) =
1 − α
κ(α)

G1 (t,S (t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G1(z,S (z))dz

E (t) =
1 − α
κ(α)

G2 (t,E (t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G2(z,E (z))dz

I (t) =
1 − α
κ(α)

G3 (t,I (t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G3 (z,I (z)) dz

A (t) =
1 − α
κ(α)

G4 (t,A (t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G4 (z,A (z)) dz

Q(t) =
1 − α
κ(α)

G5 (t,Q(t)) +
α

κ(α∗5)Γ(α)

∫ t

a
(t − z)α−1

G5 (z,Q(z)) dz

H (t) =
1 − α
κ(α)

G6 (t,H (t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G6 (z,H (z)) dz

R(t) =
1 − α
κ(α)

G7 (t,R(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G7 (z,R(z)) dz.

We defined the following iterative relation for (1.1) as

Sn(t) =
1 − α
κ(α)

G1 (t,Sn−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G1 (z,Sn−1(z)) dz

En(t) =
1 − α
κ(α)

G2 (t,En−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G2 (z,En−1(z)) dz

In(t) =
1 − α
κ(α)

G3 (t,In−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G3 (z,In−1(z)) dz

An(t) =
1 − α
κ(α)

G4 (t,An−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G4 (z,An−1(z)) dz

Qn(t) =
1 − α
κ(α)

G5 (t,Qn−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G5 (z,Qn−1(z)) dz

Hn(t) =
1 − α
κ(α)

G6 (t,Hn−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G6 (z,Hn−1(z)) dz

Rn(t) =
1 − α
κ(α)

G7 (t,Rn−1(t)) +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 G7 (z,Rn−1(z)) dz.

Using the supposition (P) and (3.1), the model (1.1) has
a solution Ω = max {Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, Θ7, } . The
functions we defined as

Π1n(t) = Sn+1 −S

Π2n(t) = En+1 − E ,

Π3n(t) = In+1 −I ,

Π4n(t) = An+1 −A ,

Π5n(t) = Qn+1 −Q,

Π6n(t) = Hn+1 −H ,

Π7n(t) = Rn+1 −R.

(3.4)

Now, we using the definition (2.1) and (3.4), we get

‖Π1n‖ =
1 − α
κ(α)

‖G1(Sn) − G1(Sn−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G1 (z,Sn(z)) − G1 (z,Sn−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ1 ‖Sn −S ‖ .

Similarly, using the same procedure for the other
compartments of the model (1.1)

‖Π2n‖ =
1 − α
κ(α)

‖G2(En) − x2(En−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G2 (z,En(z)) − G2 (z,En−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α∗2)Γ(α)

]
Θ2 ‖En − E ‖ .

‖Π3n‖ =
1 − α
κ(α)

‖G3(In) − G3(In−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G3 (z,In(z)) − G3 (z,In−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ3 ‖In −I ‖ .

‖Π4n‖ =
1 − α
κ(α)

‖G4An) − G4(An−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G4 (z,An(z)) − G4 (z,An−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ4 ‖An −A ‖ .
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‖Π5n‖ =
1 − α
κ(α)

‖G5(Qn) − G5(Qn−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G5 (z,Qn(z)) − G5 (z,Qn−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ5 ‖Qn −Q‖ .

‖Π6n‖ =
1 − α
κ(α)

‖G6(Hn) − G1(Hn−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G6 (z,Hn(z)) − G6 (z,Hn−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ6 ‖Hn −H ‖ .

‖Π7n‖ =
1 − α
κ(α)

‖G7(Rn) − G7(Rn−1)‖ +
α

κ(α)Γ(α)∫ t

0
(t − z)α−1 ‖G7 (z,Rn(z)) − G1 (z,Rn−1(z))‖ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ7 ‖Rn −R‖ .

Hence, we have Πn(t)→ 0 as n→ ∞.

4. Uniqueness of the solution

Theorem 4.1. With the supposition (P) the model (1.1) has
unique solution if[

1 − φi

B(φi)
+

1
B(φi)Γ(φi)

]
Θi ≤ 1, i ∈ N7

i . (4.1)

Proof. We suppose that the solution of (1.1) is not unique
, Let {S ∗(t),E ∗(t),I ∗(t),A ∗(t),Q∗(t),H ∗(t),R∗(t)} be
another solution of (1.1), such that

S (t) =
1 − α
κ(α)

G1 (t,S ∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G1 (z,S ∗(z)) dz

E (t) =
1 − α
κ(α)

G2 (t,E ∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G2 (z,E ∗(z)) dz

I (t) =
1 − α
κ(α)

G3 (t,I ∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G3 (z,I ∗(z)) dz

A (t) =
1 − α
κ(α)

G4 (t,A ∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G4 (z,G ∗(z)) dz

Q(t) =
1 − α
κ(α)

G5 (t,Q∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G5 (z,Q∗(z)) dz

H (t) =
1 − α
κ(α)

G6 (t,H ∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G6 (z,H ∗(z)) dz

R(t) =
1 − α
κ(α)

G7 (t,R∗(t)) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G7 (z,R∗(z)) dz.

Then,

‖S −S ∗‖ =
1 − α
κ(α)

‖G1(t,S (t)) − G1(t,S ∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G1 (z,S (z))

− G1 (z,S ∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ1 ‖S −S ∗‖ .

Which implies that[
1 − α
κ(α)

Θ1 +
Θ1

κ(α)Γ(α)
− 1

]
‖S −S ∗‖ ≥ 0. (4.2)

By (4.1) , (4.2) is vaild for ‖S −S ∗‖ = 0, which means
that S = S ∗. Similarly, we repeat the same fashion for the
remaining compartment of the model (1.1), we have

‖E − E ∗‖ =
1 − α
κ(α)

‖G1(t,E (t)) − G1(t,E ∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G2 (z,E (z))

− G2 (z,E ∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ2 ‖E − E ∗‖ .

Which implies that[
1 − α
κ(α)

Θ2 +
Θ2

κ(α)Γ(α)
− 1

]
‖E − E ∗‖ ≥ 0. (4.3)

By using (4.1) which implies the (4.3) is valid for
‖E − E ∗‖ = 0, which means that E = E ∗. Similarly, for
I ,we have

‖I −I ∗‖ =
1 − α
κ(α)

‖G3(t,I (t)) − G3(t,I ∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G3 (z,I (z))

− G3 (z,I ∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ3 ‖I −I ∗‖ .
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Which implies that[
1 − α
κ(α)

Θ3 +
Θ3

κ(α)Γ(α)
− 1

]
‖I −I ∗‖ ≥ 0. (4.4)

From (4.1) , (4.4) result is valid for ‖I −I ∗‖ = 0, which
means that I = I ∗. Now, for A ,we have

‖A −A ∗‖ =
1 − α
κ(α)

‖G4(t,A (t)) − G4(t,A ∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G4 (z,A (z))

− G4 (z,A ∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ4 ‖A −A A ∗‖ .

Which implies that[
1 − α
κ(α)

Θ4 +
Θ4

κ(α)Γ(α)
− 1

]
‖A −A ∗‖ ≥ 0. (4.5)

By using (4.1) , the (4.5) is valid for ‖A −A ∗‖ = 0, which
means that A = A ∗. Similarly, for Q,

‖Q −Q∗‖ =
1 − α
κ(α)

‖G5(t,Q(t)) − G5(t,Q∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G5 (z,Q(z))

− G5 (z,Q∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ5 ‖Q −Q∗‖ .

Which implies that[
1 − α
κ(α)

Θ5 +
Θ5

κ(α)Γ(α)
− 1

]
‖Q −Q∗‖ ≥ 0. (4.6)

By using (4.1) which implies the (4.6) is valid for
‖Q −Q∗‖ = 0, which means that Q = Q∗. Similarly, for
H ,we have

‖H −H ∗‖ =
1 − α
κ(α)

‖G6(t,H (t)) − G6(t,H ∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G6 (z,H (z))

− G6 (z,H ∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ7 ‖H −H ∗‖ .

Which implies that[
1 − α
κ(α)

Θ6 +
Θ6

κ(α)Γ(α)
− 1

]
‖H −H ∗‖ ≥ 0. (4.7)

By using (4.1) , the (4.7) result is valid for ‖H −H ∗‖ = 0,
which means that H = H ∗. Similarly, for R,we have

‖R − R∗‖ =
1 − α
κ(α)

‖G7(t,R(t)) − G7(t,R∗(t))‖

+
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 ‖G7 (z,R(z))

− G7 (z,R∗(z)) ‖dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ7 ‖R −R∗‖ .

Which implies that[
1 − α
κ(α)

Θ7 +
Θ7

κ(α)Γ(α)
− 1

]
‖R −R∗‖ ≥ 0. (4.8)

By using (4.1) which implies that (4.8) results is valid for
‖R −R∗‖ = 0, which shows that R = R∗. Thus the model
(1.1) has a unique solution. �

5. Hyers Ulams Stability

The integral system Eqs. (3.4)-(3.4) is Hyers -ulam Stable
if for ηi > 0, εi > 0, for i ∈ N7

1 [47] , with

|S (t) −
1 − α
κ(α)

G1 (t,S (t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G1 (z,S (z)) dz| ≤ η1 (5.1)

|E (t) −
1 − α
κ(α)

G2 (t,E (t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G2 (z,E (z)) dz| ≤ η2 (5.2)

|I (t) −
1 − α
κ(α)

G3 (t,I (t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G3 (z,I (z)) dz| ≤ η3 (5.3)

|A (t) −
1 − α
κ(α)

G4 (t,A (t)) −
α

κ(α)Γ(α)

∫ t

a
(t − z)α−1

G4 (z,A (z)) dz| ≤ η4 (5.4)

|Q(t) −
1 − α
κ(α)

G5 (t,Q(t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G5 (z,Q(z)) dz| ≤ η5 (5.5)

|H (t) −
1 − α
κ(α)

G6 (t,H (t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G6 (z,H (z)) dz| ≤ η6 (5.6)

|R(t) −
1 − α
κ(α)

G7 (t,R(t)) −
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G7 (z,R(z)) dz| ≤ η7 (5.7)
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Now, we have Ṡ , Ė , İ , ˙A , Q̇, Ḣ , Ṙ, which implies that

Ṡ (t) =
1 − α
κ(α)

G1

(
t, Ṡ (t)

)
+

α

κ(α)Γ(α)

∫ t

0
(t − z)α−1 G1

(z, Ṡ (z))dz (5.8)

Ė (t) =
1 − α
κ(α)

G2

(
t, Ė (t)

)
+

α

κ(α)Γ(α)

∫ t

0
(t − z)α−1 G2(

z, Ė (z)
)

dz (5.9)

İ (t) =
1 − α
κ(α)

G3

(
t, İ (t)

)
+

α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 G3(

z, İ (z)
)

dz (5.10)

˙A (t) =
1 − α
κ(α)

G4

(
t, ˙A (t)

)
+

α

κ(α)Γ(α)

∫ t

a
(t − z)α−1 G4(

z, ˙A (z)
)

dz (5.11)

Q̇(t) =
1 − α
κ(α)

G5

(
t, Q̇(t)

)
+

α

κ(α)Γ(α)

∫ t

0
(t − z)α−1 G5(

z, Q̇(z)
)

dz (5.12)

Ḣ (t) =
1 − α
κ(α)

G6

(
t, Ḣ (t)

)
+

α

κ(α)Γ(α)

∫ t

0
(t − z)α−1 G6(

z, Ḣ (t)
)

dz (5.13)

Ṙ(t) =
1 − α
κ(α)

G7

(
t, Ṙ(t)

)
+

α

κ(α)Γ(α)

∫ t

0
(t − z)α−1 G7(

z, Ṙ(t)
)

dz. (5.14)

Such that∣∣∣S − Ṡ
∣∣∣ ≤ ε1η1,

∣∣∣E − Ė
∣∣∣ ≤ ε2η2,

∣∣∣I − İ
∣∣∣ ≤ ε3η3,∣∣∣A − ˙A

∣∣∣ ≤ ε4η4,
∣∣∣Q − Q̇

∣∣∣ ≤ ε5η5,
∣∣∣H − Ḣ

∣∣∣ ≤ ε6η6,∣∣∣R − Ṙ
∣∣∣ ≤ ε7η7.

Theorem 5.1. We assume that (P), Satisfied then the FOM
(1.1) is Hyers Ulam stable.

Proof. By using (4.1) , the FOM (1.1) has a unique
solution, say (S ,E ,I ,A ,Q,H ,R). Let we suppose
that

(
Ṡ , Ė , İ , ˙A , Q̇, Ḣ , Ṙ

)
be an another solution for the

considered model. We go ahead with first equation of the
(1.1), satisfying Eqs. (3.4). Then

∥∥∥S − Ṡ
∥∥∥ =

1 − α
κ(α)

∥∥∥G1(t,S (t)) − G1(t, Ṡ (t))
∥∥∥ +

α

κ(α)Γ(α)∫ t

0
(t − z)α−1

∥∥∥∥G1 (z,S (z)) − G1

(
z, Ṡ (z)

)∥∥∥∥ dz

≤

[
1 − α
κ(α)

+
α

κ(α)Γ(α)

]
Θ1

∥∥∥S − Ṡ
∥∥∥ .

Now, we taking η1 = Θ1 and 1−α
κ(α) + α

κ(α)Γ(α) = ∆1, this implies∥∥∥S − Ṡ
∥∥∥ ≤ η1∆1.

Similarly, for E (t), Ė (t),I (t), İ (t),A (t), ˙A (t),Q(t), Q̇(t),
H (t), Ḣ (t),R(t), Ṙ(t), we have

∥∥∥E − Ė
∥∥∥ ≤ η2∆2∥∥∥I − İ
∥∥∥ ≤ η3∆3∥∥∥A − ˙A
∥∥∥ ≤ η4∆4∥∥∥Q − Q̇
∥∥∥ ≤ η5∆5∥∥∥H − Ḣ
∥∥∥ ≤ η6∆6∥∥∥R − Ṙ

∥∥∥ ≤ η7∆7.

(5.15)

Thus, the solution of the considered FOM is stable. �

6. Numerical algorithm

In this section,we find the numerical solution by using
the numerical method of Lagrange’s interpolation. For the
solution of the system (1.1), we consider

ABC
0 Dα

t [S (t)] = G1(t,S ),
ABC
0 Dα

t [E (t)] = G2(t,E ),
ABC
0 Dα

t [I (t)] = G3(t,I ),
ABC
0 Dα

t [A (t)] = G4(t,A ),
ABC
0 Dα

t [Q(t)] = G5(t,Q),
ABC
0 Dα

t [H (t)] = G6(t,H ),
ABC
0 Dα

t [R(t)] = G7(t,R).

(6.1)

Using the Lemma (2.1) and (6.1), we get

S (t) −S (0) =
1 − α
κ(α)

x1 (t,S ) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G1 (z,S ) dz (6.2)

E (t) − E (0) =
1 − α
κ(α)

G2 (t,E ) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G2 (z,E ) dz (6.3)

I (t) −I (0) =
1 − α
κ(α)

G3 (t,I ) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G3 (z,I ) dz (6.4)

A (t) −A (0) =
1 − α
κ(α)

G4 (t,A ) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G4 (z,A ) dz (6.5)
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Q(t) −Q(0) =
1 − α
κ(α)

G5 (t,Q) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G5 (z,Q) dz (6.6)

H (t) −H (0) =
1 − α
κ(α)

G6 (t,H ) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G6 (z,H) dz (6.7)

R(t) −R(0) =
1 − α
κ(α)

G7 (t,R) +
α

κ(α)Γ(α)

∫ t

0
(t − z)α−1

G7 (z,R) dz. (6.8)

Let [0,T] be the interval which we want to find the solution
of the system (1.1). For this we divided the given interval as
a set of points tm+1, for m=0,1,2,..n, we have

S (tm+1) =
1 − α
κ(α)

G1 (tm,S ) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm+1 − z)α−1

G1 (z,S ) dz (6.9)

E (tm+1) =
1 − α
κ(α)

G2 (tm,E ) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm+1 − z)α−1

G2 (z,E ) dz (6.10)

I (tm+1) =
1 − α
κ(α)

G3 (tm,I ) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm − z)α−1

G3 (z,I ) dz (6.11)

A (tm+1) =
1 − α
κ(α)

G4 (tm,A ) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm − z)α−1

G4 (z,A ) dz (6.12)

Q(tm+1) =
1 − α
κ(α)

G5 (tm,Q) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm − z)α−1

G5 (z,Q) dz (6.13)

H (tm+1) =
1 − α
κ(α)

G6 (tm,H (t)) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm − z)α−1

G6 (z,H ) dz (6.14)

R(tm+1) =
1 − α
κ(α)

G7 (tm,R) +
α

κ(α)Γ(α)

n∑
k=0

∫ tk+1

tk
(tm − z)α−1

G7 (z,R) dz. (6.15)

Using lagrange’s interpolation, we get

S (tm+1) =S0 +
1 − α
κ(α)

G1 (tm,S ) +
α

κ(α)

m∑
ζ=1

[
hαG1(tζ ,S )
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG1(tζ−1,S )
Γ(α + 2)

((1 + m − ζ)α

− (m − ζ)α(1 + m − ζ + α))].

E (tm+1) =E0 +
1 − α
κ(α)

G2 (tm,E ) +
α

κ(α)

m∑
ζ=0

[
hαG2(tζ ,E )
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG1(tζ−1,E )
Γ(α + 2)

((m + 1 − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

I (tm+1) =I0 +
1 − α
κ(α)

G3 (tm,I ) +
α

κ(α)

m∑
ζ=0

[
hαG3(tζ ,I )
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG3(tζ−1,I )
Γ(α + 2)

((m + 1 − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

A (tm+1) =A0 +
1 − α
κ(α)

G4 (tm,A ) +
α

κ(α)

m∑
ζ=0

[
hαG4(tζ ,A )
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α). − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG4(tζ−1,A )
Γ(α + 2)

((m + 1 − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

Q(tm+1) =Q0 +
1 − α
κ(α)

G5 (tm,Q) +
α

κ(α)

n∑
ζ=0

[
hαG5(tζ ,Q)
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG5(tζ−1,Q)
Γ(α + 2)

((m + 1 − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

H (tm+1) =H0 +
1 − α
κ(α)

G6 (tm,H ) +
α

κ(α)

n∑
ζ=0

[
hαG6(tζ ,H )
Γ(α + 2)

((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG6(tζ−1,H )
Γ(α + 2)

((m + 1 − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

R(tm+1) =R0 +
1 − α
κ(α)

G7 (tm,R) +
α

κ(α)

n∑
ζ=0

[
hαG7(tζ ,R)
Γ(α + 2)
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((1 + m − ζ)α(2 + m − ζ + α) − (m − ζ)α(m − ζ

+ 2 + 2α)) −
hαG7(tζ−1,R)
Γ(α + 2)

((1 + m − ζ)α

− (m − ζ)α(m + 1 − ζ + α))].

This numerical scheme will be used in the next section.

7. Graphical representation of the solution

In this part of the paper, we apply the numerical
method described in the previous section to demonstrate the
graphical results of the model (1.1).

Table 2. Description of the parameters used in
model (1.1).

Parameters Parameters Values

δ 0.9497
µ 0.099
π 0.97
σ 0.3
ρ 0.09497
φ 0.5
µ1 0.005
ϕ 0.762
ϕa 0.00922
γ1 0.04
γA 0.01
c 2.54
ϕH 0.7

The parameters used in simulations are given in Table.2,
most of which are taken from previous published work [35–
38]. Plotting in the Figure 2, the behavior of the model with
two activate parameters, isolation rate (c , 0) and social
distancing rate (δ , 0), is shown by the bold blue line. In
contrast, the bold red line shows the behavior of the model
with parameters c and δ equal to zero.
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Figure 2. The effect of δ and c on the dynamical
behavior of the system with α = 1.

Individuals in the exposed, asymptomatic, infected, and
hospitalized classes declined considerably with isolation
and social distance parameters, but the suspectable and
recovered population increased fast. These graphs
demonstrate that these factors are useful in reducing Covid-
19 infection in the population.
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Figure 3. Dynamical behaviour of the susceptible
population for various values of α.
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Figure 4. Dynamical behaviour of the exposed
population for various values of α.
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Figure 5. Dynamical behaviour of the infected
population for various values of α.
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Figure 6. Dynamical behaviour of the asymptotic
population for various values of α.
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Figure 7. Dynamical behaviour of the quarantined
population for various values of α.
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Figure 8. Dynamical behaviour of the
hospitalized population for various values of
α.
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Figure 9. Dynamical behaviour of the recovered
population for various values of α.

From Figures 3-9, we see that the susceptible, infection,
asymptotic, quarantined, and hospitalized population will

decrease, and consequently, the recovery will increase. We
observed a rapid decrease in the population of exposed,
asymptomatic, quarantined, hospitalized, and infected
classes, which becomes more significant for fractional value
compared to integer order α = 1.
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Figure 10. Dynamics behavior of the susceptible,
exposed, infected, asymptomatic, quarantine,
hospitalized,and recovered people when Λ = 0.8.

From Figure 10, we noted that the susceptible, exposed,
and asymptomatic individuals are the smallest due to the
smallest value of Λ. Otherwise, the largest value of the
Λ could be high population density, close contact with
the people, improper social distancing, and insufficient
preventive measures. This will lead to a relatively high
spread of the disease.

8. Conclusions

This work studied the transmission dynamics of the
COVID-19 pandemic with asymptomatic, quarantine, and
hospitalization individuals through an ABC fractional
model. Initially, we formulated a mathematical model
and analyzed the model using the fractional operator with
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the power-law kernel. We have used fixed point theory
to conclude the existence of such a model in the real
world. Then we have shown the unique solution of the
model. Further, we investigated significant conditions for
the Ulam Hyers type stability via non-linear functional
analysis. The computational scheme is derived for the
numerical simulation and is checked for available data.
Further, We simulate the COVID-19 model for different
transmission rate values to evaluate the dynamics of the
separate compartments in the model. The dynamics of
the COVID-19 pandemic and the impact of various control
strategies by including additional classes into the current
model will be addressed in future research. The vaccinated
population and the number of pathogens in the environment
are two compartments. The suggested model will include
memory characteristics and non-locality and be an expanded
version of the current model. This study’s findings will help
health care centers forecast how the coronavirus may affect
the world in the future.
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