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Abstract: The Covid illness (COVID-19), which has emerged, is a highly infectious viral disease. This disease led to thousands of
infected cases worldwide . Several mathematical compartmental models have been examined recently in order to better understand the
Covid disease. The majority of these models rely on integer-order derivatives, which are incapable of capturing the fading memory and
crossover behaviour observed in many biological phenomena. Similarly, the Covid disease is investigated in this paper by exploring the
elements of COVID-19 pathogens using the non-integer Atangana-Baleanu-Caputo derivative. Using fixed point theory, we demonstrate
the existence and uniqueness of the model’s solution. All basic properties for the given model are investigated in addition to Ulam-Hyers
stability analysis. The numerical scheme is based on Lagrange’s interpolation polynomial developed to estimate the model’s approximate
solution. Using real-world data, we simulate the outcomes for different fractional orders in Matlab to illustrate the transmission patterns

of the present Coronavirus-19 epidemic through graphs.

Keywords: fractional derivatives; fractional integral; Hyers Ulams stability; Lagrange’s interpolation

1. Introduction

A novel coronavirus (SARS-CoV-2) emerged out of
Wuhan city at the end of December, 2019 [1,2]. After spread
to almost all countries and was declared a pandemic [3].
The outbreak has mostly been controlled in some countries
since the end of April 2021, but still remains a series of
public health and social-economic the problem in all over
the world [4-6]. We know that most people infected with
2019-nCoV will experience mild to moderate respiratory
illness, such as difficulty in breathing, sickness, cough, fever,
and other symptoms [11, 13—15]. When an infected person
sneezes, coughs, or comes in touch with a contaminated
surface, the virus is mostly spread to healthy people via the
mouth, nose, and eyes [7, 8]. The usual incubation time is
1 to 14 days, according to [9]. As the vaccine is not yet
available everywhere, the control measures, for example,
social distancing, wearing of masks, regular hand sanitation
using sanitizer or soaps, and quarantine of the suspected

individuals, are effective interventions that control the virus.

Mathematical models are useful tools for analysing
outbreak dynamics. Mathematical models can be used to
predict the virus’s future spread, allowing the government to
be prepared and take the necessary actions [18-20]. Several
mathematical models were developed to better understand
the behaviour of coronavirus disease. Researchers in [21]
introduced a novel fractional model of COVID-19 while
accounting for the effects of isolation and quarantine. The
Mittag-Leffler, exponential kernels and power-law were
used to simulate the proposed model. = Mathematical
modeling is an essential tool for formulating control
strategies and forces guessing the spreading of COVID-19.
To illustrate the dynamics of COVID-19, Chen and Zhao [7]
established a susceptible, un-quarantine infected, quarantine
infected, confirmed infected (SUQC) model.

Song et al. [17] formulated a mathematical model based on

Similarly,

COVID-19 epidemiology, close contact, and the isolation
of healthy persons. Acknowledge the means to control the
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spread of coronavirus in the people has been recorded in
various mathematical modeling [12,22].

Fractional calculus is the computation of integrals or
derivatives of any positive real order. In recent years, there
has been a lot of interest in the use of fractional differential
equations. Many researchers use fractional differential
equations in their research [24,27,46]. Therefore, many
researchers have shown more interest in studying fractional
derivative and fractional integrals. In the investigation
of differential equation for optimization, numerical and
qualitative importance was contributed by researchers [25,
26].

has been characterized in various manners.

It is also notable that fractional differential equation
It is well-
known that regular kernels are not included in the definite
integral. Therefore types of seeds have been included in
different definitions. One crucial definition that has recently
attracted the attention of researchers is the ABC derivative
presented by Atangana, Baleanu, and Caputo [28] in 2016.
This derivative exhibits the singular kernel by non-singular
kernel, and So much has been studied [29,30]. Because most
of the non-linear problems are challenging to solve for their
analytical or exact solution, different numerical methods
have been introduced to solve these problems [10,23,31,32].
The best numerical procedure has recently been developed
to solve partial fractional differential equation under the
ABC derivative; see for detail [33, 34].

The following model

the COVID-19

included seven

investigates
The model

susceptible

transmission dynamic.

compartments: population ., expose

population &, infected papulation .#, Asymptomatic

population .o/, Quarantined population 2, Hospitalized
population # and the removed class Z as:

DS D= A=+ ) S,

ECDEM =6 —(n+ ) &,

SBC.@,"[J(I)] =n0(1-¢)&+¢pp2 +y, o
—(p1 +wp +p +p) S,

BCPNA D] =n(1-0)(1-0)E +y22 (1.1)
—nteatwd,

SPCD20) = 7k = (ya + dp + 1) 2,

SBCDAA D] = w1 I — (oy + 1 + ) A,

ABCQURWO) = 01 I + add + oy — U,
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Figure 1. Flow diagram of the COVID-19 model
(1.1).

with the following initial conditions ./(0) > 0,&(0) >
0,7(0) = 0,70) = 0,200) >,5() = 0,%2(0) > 0.
The COVID-19 transmission dynamics are represented in
the Figure 1 flow chart.

Some essential assumptions we put on the model are that
all of the model (1.1) involved parameters be non-negative.
The above model is examined from three perspectives. First,
since the presented model (1.1) is recently defined, we use
fixed point theory to demonstrate its existence. However,
since stability is vital, we will examine Hyers-Ulam type
stability for the proposed model. We refer to [43—45] for
further information on the general models that use ordinary
derivatives of fractional order. Furthermore, the model
under consideration is nonlinear because it is sometimes
impossible to discover an accurate solution to nonlinear
situations. Therefore several numerical processes (methods)
have been developed in the literature to deal with similar
problems, see [39-42]. Therefore a Lagrange’s interpolation
polynomial approach is used to simulate the findings using
Matlab-16.

We arranged the paper as Section 1 gives the introduction,
section 2 describes preliminaries, section 3 shows the
existence of the solution; section 4 offers uniqueness
solution to the model, section 5 provides Hyers Ulams
Stability analyses, and section 6 gives the numerical
solution. Section 7 shows a graphical representation to
support the analytical result. Finally, in section 8, we discuss

the conclusion.
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Table 1. Biological interpretations of parameters Lemma 2.1. The following Newton Leibniz formula is
in model (1.1). satisfied for any F (t) € H'(a, b)
Parameters  Biological interpretations GKBC Ie (ch 9;17:0)) = F(0) = F(1).
A Describes the birth rate
5 The effective contact rate of social 3. Existence of the solution
distancing
M Natural death rate Applying the Lemma (2.1) to (1.1), we get
g Shows the infected contact rate o
- The rate of symptoms among infected ()= (0) _T A=+ + m
people ol
p Showed the death rate due to the f =9 (A-@+pF)ds.
1 .
coronavirus E() - £0) =—2 (65” () &)+ —E
Recovery rates of individuals in the x(a) x(a)l (@)
v infected class f =S (A= + W .7 ds.
Recovery rates of individuals in the
o asymptomatic population F() - 2(0) = T (7r0' A-0)&+¢pp2 +y o
The transmission rate from the infected
@1 class to the quarantined class St et S x(a)F (@)
Shows the transition rate from f ! (- S)‘H (o (1= )& + ¢p.2 + 1./
Y1 asymptomatic population to the a
infected class - (901 +wy +u +p)F)ds.
Represents the movement rate from the A - A(0) =—2 (ﬂ (=)= ¢)& +y4.2
Ya quarantined quarantined population to the ( )
asymptomatic population —(y1 + @a + ) ) + @ f ' (t - §)!
Represented the rate of quarantine for #(@)@) Jo
¢ exposed persons @Al =0)(1 =) +ya2 ~ (y1 +pa + 1)
. Recovery rate of individuals in the ) dS.
H

hospitalized population l-a
P bop @) (mc& — (ya + ¢p + 1) 2)

f (1 = S (1e6 - (ya + dp + 1) 2) dS.

20 - 2(0) =

2. Basic definitions and theorems

a
H(t) — A(0) = T(wl (¢H+#1+H)%)+m
Definition 2.1. Let ¥ € H'(a,b),b > a, for any « € [0, 1], .
the ABC fractional derivative is + m f t=9)"" (w7~
0
! [— f—
SBCD??:(Z) _ i”f(a) f F (S)E, [ alt S)] s, (SDH + 1 +p) ) dS.
—a Jy -«
Z() - %(0) = T L @1I + ot +ouHt — uR)
where E is a Mittag-Leffler function and »x(a) satisfied x(0) = ,
1H=1. - _ a-1 of
(1) s [ s v
Definition 2.2. Let ¥ € H'(a,b),b > a,and 0 < a < 1, the +ou A — uR) ds.

ABC fractional integral is
Suppose the function ¢; for i = 1,2...7 given below

o B 1l—-a [ ! a—
ST = ST s | FOU=9 -G
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D(t,8) =05 —(n+w) & (p1 + w1+ + W I) = (ro(1 = )&
G(t, I) =no (1 =) & + ¢pL2 + 1.9 — (g1 + wi +¢p2 +y1.9 — (g1 + wi + i + ) I

Hu + ) I <1 + w1+ + (I = )]
Gyt, /) =n(1-0)(1 =) E+yaZ - (Y1 +oa+ ) o <O; (I = ).

Y5(t,2) =ncE — (ya+¢p+ 1) 2

Go(1, ) = I — (g + 1 + ) H For the 9,(t, <7), we have
g7(l‘,<%) =(,01f + QOAM + ‘PH% —/J%.

We defined Gu( ) = Ga( ") = (1 =) (1 =) E +ya2 — (y1 + ¢a
0= 16+ + )= (r(1 = o)1 — )& +ya 2
0, = |1+ 4 = (1 +@a+ A

<|y1 + @a + (/' = 27|
3.1 SO |I(A — ).

O3 = |1 +wy + g + pl
O4 = |y1 +@a +
Os = lya + ¢p +

O6 = lou + w1 + Now, for %(t, 2), we have

07 = |ul.
Y5(2) — 95(2") =ll(nc& — (ya + ¢p + W2) — (nc&
—(ya+dp+ w2
<Itya + ¢p + WIILZ - 29

Let

o (p), let, for ¥, 9%, 8,8, ., 9%, o, A%, 2,97,
IR, % € L0, 1], there exits constants W; > 0,

for i = 1,2,3,4,5,6,7 such that %] < Wy, |I€] < <65 (2 - 2.
Wo, 71 < Wil < W42l < Ws, |57 <
We, IZ]| < W7 and 571,12 > 0. For the %(t, 7), we have
|.+&+ F +2+ )< (3.2) i
Gs(I) = G () =|(w1I = (@ + 1 + W) — (W1 I
le + Z|l < 1. (3.3)

= (o + 1 + WA
The ¢; for i € N] satisfy the Lipschitz condition provided <|(py +u1 + W — A
that (p) is obeyed. First, we take for ¢4 (¢, %), we have

<Ol = A

G = G(S) = (A= G +p).F) = (A= 6+

<6+ I =29 Similarly, for the %;(t, %), we have

<O = ).
For the % (t, &), we have G(Z) —G( %) =] + pr + oI — uR) — (1.5
D) ~ DH(E) = 0. — (n+ 1) E) ~ (0.F — (x +1) &) +oad +on It~ pdl|

<o+l = &I <l = 7200
<6111 - 2.

<6, I(& =

For the %(t, .#), we have
Hence, the ¥, for i = 1,2,..7. satisfies the lipschitz

G(I) - G(I) =l(no(1 — )& + ¢pp2 + y.o condition. We suppose that .(0) = &(0) = &7(0) = Z(0) =

Mathematical Modelling and Control Volume 2, Issue 4, 228-242
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2(0) = #°(0) = Z(0) = 0, we have

_ a ' _ a1
y(t)——( 19,0+ fo (t-2)

% (z,.7(2))dz

_l -« a ' _ a1l
EW) =S EW) + fo (t-2)

9 (z,8(2))dz

l-a o ! el
IO =SB 1T )+ fo (t-2)
% (o, 7(2) dz

A (f) = ff o — !
o) = () S (0)+ )f< 2
Gy (2, /(D)) dz

l-a @ L el
2 = @) Ys (1, 2(1)) + —%(az)r @ fa (t—2)
gs (z, 2(2)) dz
_ a1
%”(t)— ()%(t«%ﬂ(t))+ )F()f( 2)
«% (z,70(2)) dz
R — R _ a1
®= <>%“ O+ e )f( 2

% (z, #(2)) dz.

We defined the following iterative relation for (1.1) as

() = 541 (1, Sna (1)) +

(04
( ) x(a)I (@)
f (1= G (& 1 (D)) dz

o
o“’(t)— ()%(to‘”‘n 1O)+ ——— AT @
f (1= G (2, 6y1(2)) dz
a
Tty =2 ()%( t, Ipa (1) + ST
f (1= " Gy (2, Iy 1 () d2
%(t)— o )% t, A (1) + ——— o )F(a/)
f (t -2 Y (z, H-1(2)) dz
a
2,(t) = e )% t, 21 () + ———— AT @)

f (t—2"" %5 (2, 2,-1(2) dz
0
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@
( )% t, (D)) + ——— AT @

f (t— 2" Y (z, #,1(2)) dz

%’(t)_

«
@ )% t, Fp1(D) + ——— AT @

[fa-o h @i
Using the supposition (P) and (3.1), the model (1.1) has
a solution Q = max{@,O,, 03,04, 05,04 607,}. The
functions we defined as

1,0 = Sy -

112,(t) = &p1 — &,

113,(t) = Iy = 7,

14,(t) = oy — A, 34

115,() = Zpa1 — 2,

116,(t) = Ay — A,

H7,(t) = By = X.
Now, we using the definition (2.1) and (3.4), we get

@
11, =TII%(,5”) G (S -0l + %) (@)

f (t -2 % (2, 70(2) = % (2, Fn1 ()l dz
0

0117 = 7.

<L,
[ x(@)  x@)l (a)]
Similarly, using the same procedure for the other

compartments of the model (1.1)

a
172,]) =2 iy 1960 =G+ s

fo (1= 2" % (2 6,2) - % (2, Epr (D) d2

1- @
= [ @) | Al >} o2l =l
a
73,1 = ( iy 1) = B A+ s

f (t -2 1% (2, 7u(2) = % (2, Tp1 (D)l dz
0

0317, — Il

[ o
< +
x(@)  x(a) (@)

a
1114,]| :T (1“s)) — Ga(p)Il + @@

fo (t = 2y (2, () — % (2, F1 (D) dz

O4 |ty — ||

1 —
= [ @) %(a)rm)]

Volume 2, Issue 4, 228-242
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a
nmm77M@>%%W+@M)

f (t = 2" N5 (2, 2,(2)) = D5 (2, 2u1(2))ll dz
0

1- a
S[%(a) +%(a)r( )}@5 ”QH_QH

«
116, =— %) - S
7764l @) 196 (A0) = G (DIl + ——— A @

fO)MMQ%@)%@  (@)ldz

1 — 04
S[M " S =,
04
W7, _THS%(%) G1( K-l + (a)F(a)

1:O—ZW”H%Naﬁﬁ&D—%HzﬂﬂqQDWh
1-a o
|5 * s o .
Hence, we have I7,(tf) —» 0 as n — co.

4. Uniqueness of the solution

Theorem 4.1. With the supposition (P) the model (1.1) has
unique solution if

1—¢
B(d)

<l,ieN]. @.1)

Ch
+@wa

Proof. We suppose that the solution of (1.1) is not unique
. Let {71, & (1), I (1), &*(1), 27(1), (1), Z* (1)} be

another solution of (1.1), such that

a ! a—1
ym~77%aymn-@nmﬁa—@
G (2, 7)) dz
_ l-a * @ ' _ a1
&) = @) G (t,5(1)) + (@) L (t—2)

% (z, & (2)) dz

a—1
( )%(tf(t))+ )F( )f( -2)
(2, 77 (2)dz

L) =

1-
wm=%;%@ﬂmﬂ

(2,9 (2)) dz

-« . @ ! oel
B0 2O s | e

Mathematical Modelling and Control

@ ' a-1
%mwmxﬁu_@

20 =

% (z, 2°(2)) dz

H(f) = 2 . JC* (1)) +

a—1
e )I( >‘f‘( 2
a ! a-1
xmwmxﬁa_@

( )
Y (z, 77 (2)) dz
- Y (1.2 (1) +
x(a@)
1 (2, %" (2)) dz.

A(t) =

Then,

17—l == (2, S (1) -

( ) G @, O

_ a1
Wm)fan 1% 2.7 (2)
G (@) e

1- a .
< [ @) + %(a)]"(a)] 0,17 - 7.

Which implies that

[]—(Z @1 (42)

+ AT @ 1} .7 — | = 0.

x(@)

By (4.1), (4.2) is vaild for ||.¥ — .*|| = 0, which means
that .7 = .¢’*. Similarly, we repeat the same fashion for the

remaining compartment of the model (1.1), we have

& =&l _T 21t 6@) - Gt E O

f -
+Raﬁaikhm 1%, (2, £))
- % (2.6 () |ldz

1- a )
S[%(a/) + m}@zllg—g Il
Which implies that
l-a 6, *
[%(0) 2 @)l (@) 1} 6= &7 = 0. 4.3)

By using (4.1) which implies the (4.3) is valid for
[|& — &*|| = 0, which means that & = &*.
# ,we have

Similarly, for

.7 - f*ll—ﬁll%(t J (1) = G5, I )]

t a—1
i m f (t=2""'I%; (2. 7 (2)
- % (z, I (2) lldz

<1—af
_L@+

a *
m}@”“"f”'

Volume 2, Issue 4, 228-242



234

Which implies that
1-«a @3
+ - 1{[.ZL =7 = 0. 4.4
@) AT @ }II I (4.4)

From (4.1) , (4.4) result is valid for ||.# — #*|| = 0, which
means that .¢ = .#*. Now, for &/ ,we have

le? — o™ _T [EARAGIERA=-AG)

a—1
%(G)F(a) f (=" NI%s (2. 7 (2))
—- Y (2,9 (2)) lldz

1- a .
S[—%(Q) +—H(a)r(a)}@4lld—d% Il

Which implies that

0O,
x(a) (@)

- 1] lle? — &7*|| = 0. (4.5)

1—
O4 +
[ )
By using (4.1) , the (4.5) is valid for ||/ — &7*|| = 0, which
means that .f = &7*. Similarly, for 2,

12 - o@*ll=(—)ll%(t 2(0) - 951, 2" )l

a—1
%<w>F<a>f (r = 2" I1%5 (2. 2(2))
- 45 (2, 2°(2)) lldz

1- a ;
< [ o + %—(a)]"(a)] 05112 - 27.

Which implies that

4.6
@ O dor@ (+6)

By using (4.1) which implies the (4.6) is valid for
|2 — 2%|| = 0, which means that 2 = 2*. Similarly, for
€ ,we have

[1_“ 9s ]ug 2= 0.

2 — A7 —Tll%(t (D) = Gs(t, A (D)

' a—1
' m f (t =" 1% (2, #(2)
~ G (2, 7 (2)) lldz

1- a .
S[%(a) + —%(a)F(a)]@7 |27 — 7.
Which implies that
-« @6 %
[%(a) O + AT @ 1} ¢ — 27| = 0. 4.7)

Mathematical Modelling and Control

By using (4.1) , the (4.7) result is valid for || — 52| = 0,
which means that 57 = J#*. Similarly, for #,we have

IR — Rl _T 147(t, Z(0)) = 6 (t, Z" ()]

a—1
”(G)I"(a) f (t=2"" 197 (2, Z(2))
-4 (2, #(2)) lldz

1- a .
S[%(a) + %(a)r(a)]@ﬂlﬁ—%’ Il
Which implies that
1- @7 #
[%(a) 07 + AT @ 1] % - Z%"|| = 0. 4.8)

By using (4.1) which implies that (4.8) results is valid for
|Z — Z*|| = 0, which shows that Z = Z%*. Thus the model

(1.1) has a unique solution. O
5. Hyers Ulams Stability

The integral system Egs. (3.4)-(3.4) is Hyers -ulam Stable
if forn; > 0,¢ > 0, fori e N17 [47] , with

a ' _ a1
A (@ fo (-2

5.1

. (1) - T% (t, (1) -

9 (z, L () dz <

-« @ ! )
@) EZX(NAG) B @@ \fo‘ (t-2)
% (z,8(2)) dz] < mp

-« @ ! o1
BT i Jy €9
45 (z, I () dzl <3

&) -

(5.2)

.7 (1) -

(5.3)

42 ! a—1
AT (@) f -2
5.4)

1-
|\ (1) = ——, (1, (1)) —
x(a@)

Y4 (2, (2))dzl <14

-« @ ! ol
(@) Y5 (1, 20) - m fo (t-2)
95 (2, 2(z)) dz] < s

|2(1) —

(5.5)

1 e @ ! a—1
0 = S5 0,7 0) = fo (t-2)
Y (2, 7(2)) dz| < 1 (5.6)
l-«a a ! a1
0 = S L FO) - fo (t-2)
(2, %(2))dz] < 17 5.7

Volume 2, Issue 4, 228-242
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Now, we have 2, &, ., of , 2, 5, %, which implies that

_ a1
P00 = 4 (7 0) 4 %(a)rw)f (-
(z, S(2)dz (5.8)
— @ ' _ el
&) = () % (1, éa(t))+%(a)F(a) fo -9
(z, éa(z)) dz (5.9)
' a ! a—1
0= w5 (- “))U(a)r(a)fa“"@ %
(z, S ) dz (5.10)
a—1
s =2 (s 0)+ o (a4
(z, A (2))dz (5.11)
) _ a ' _ el
Q(t)— %( (1) + ST fo (t-2)"" %
(z, e@(z)) z (5.12)
o 1—a . a ! Ce-l
H ) = o (. %(x))+%(0)r @ fo (t—-2"" %
(z.7(1)) dz (5.13)
N . a ! -l
RO =y (t,%(t))+%(a)r(a) fo t-2""'%
(2. %) dz (5.14)
Such that

|Y—y| < eml,|£’— cg’l < en, |f— J| < ens,
|%—,§Zf.|S€47]4,|Q—Q|S657]5,|%—%|S667]6,
|% —%l < gn.

Theorem 5.1. We assume that (P), Satisfied then the FOM
(1.1) is Hyers Ulam stable.

Proof. By using (4.1) , the FOM (1.1) has a unique
solution, say (&, &, 9, o, 2, ,%). Let we suppose
that (5” E I A, D, A %’) be an another solution for the
considered model. We go ahead with first equation of the
(1.1), satisfying Eqs. (3.4). Then

|~ - y“ ||§41(t L) -4t SO+ ———

#(a )F(a)
fo (t—z)CH H% @S ~% (2.7 @) “dz
1l-a 1% ,
< [ T (Q)} o |7 -7

Mathematical Modelling and Control

Now, we taking 7, = ©; and 12
”y —y“ <mA;.
Similarly, for £(t), £(t), 7 (1), Z (1), & (1), A (1), (1), 2(1),

(), H0), B, Z (1), we have

= Ay, this implies

x(a) %((l)r((l/)

€ - & < mas
-7 = | < mis
Jor - ] < m
o - 9 <
o — ] < e
”%’ - %’H < A

(5.15)

Thus, the solution of the considered FOM is stable. O
6. Numerical algorithm
In this section,we find the numerical solution by using

the numerical method of Lagrange’s interpolation. For the

solution of the system (1.1), we consider

ABCDLS (0] = 41, ),

ABC o[ £(1)] = (8, &),

AECGI 0] = G5(t,.9),

aBC o (1)] = Gu(t, ), (6.1)
aBC P 2(0] = 95(1, 2),

ABC DAA (1)) = Go(t, ),

ABC DR ()] = G1(t, R).

Using the Lemma (2.1) and (6.1), we get

1_ f
F(1) - .S (0) = %(a‘)”xl t,.9) + %(a)"}(a) fo (t = 2)!
«% (z,)dz 6.2)
a ' _ a1
E1) - £0) =2 — (£)+mfo<r 2
%2 (z,&)dz (6.3)
— a ' _ a1
Sy - 7(0) = ()%(r I s fo (t-2)
% (@, 9)dz (6.4)

L) - o (0) =% d ft-,al
() — 7(0) @) u (t, ) + @@ 0(t 2)

Yy (z, ) dz (6.5)
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o !
2(1) - 2(0 Y4, f t—2)!
(H—-20) = ( ) 5(1,2) + A@ o (t-2
% (z,2)dz 6.6) < (tms1)
o !
H(t)— 70 % _ f S
) 0 = ( ) 6 (1, 7) + Al @ Jy (t-2)
% (z, H)dz 6.7)
R(t) — Z(0 G (t, % f -zt
" —-%0) = ()7( ()F() (t-2)
4 (2, %) dz. ©6.8)  £t,.1)
Let [0,T] be the interval which we want to find the solution
of the system (1.1). For this we divided the given interval as
a set of points 11, for m=0,1,2,..n, we have I (tm+1)

T+ 1 ol
yMM—U%wY)MW@ZL (1t = 2)

G (.S dz (6.9) mr1)
a n fher 1 e
éa(tm-f-l) = ( ) gZ ( ms %(a,)r(a,) é L (tm+1 Z)
% (z,8)dz (6.10)
a n it ol
ﬂwm—()%WJv%@nm;l;mrn
Q(tm+l)
G (2, 7)dz 6.11)
a Tkt 1 a1
'Q{(tm-%—l) = ( ) g4 (tm JZ{) %(a)F(a) kZJ; Z)
G (z, ) dz (6.12)
l-a a - T
e@(tm-H) = gS (tm, o@) + f (tm — Z)a_l
x(@) x(a) (@) kz::j A Hpt)
Y5 (2, 2)dz (6.13)
flet a—1
f%p(tm-%—l) = ( ) g6 (tm jf(’)) %( )F(a) ZL (tm - Z)
Ys (2, 70) dz (6.14)
T+ 1 oel
:%ww(fwm% mmmzﬁ (tw = 2)
[
G, (2, R) dz. 615 )
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25’0 +

Using lagrange’s interpolation, we get

a < hagl(lg,y)
()gm%iy) m);y Tasd)
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=5+
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This numerical scheme will be used in the next section.

7. Graphical representation of the solution

In this part of the paper, we apply the numerical
method described in the previous section to demonstrate the

graphical results of the model (1.1).

Table 2. Description of the parameters used in
model (1.1).

Parameters Parameters Values
o 0.9497
u 0.099
big 0.97
o 0.3
0 0.09497
0] 0.5

Ui 0.005
@ 0.762
Ya 0.00922

Y1 0.04

YA 0.01
c 2.54

©H 0.7

The parameters used in simulations are given in Table.2,
most of which are taken from previous published work [35—
38]. Plotting in the Figure 2, the behavior of the model with
two activate parameters, isolation rate (¢ # 0) and social
distancing rate (0 # 0), is shown by the bold blue line. In
contrast, the bold red line shows the behavior of the model
with parameters ¢ and ¢ equal to zero.
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(© (d)
(e ®
(®

Figure 2. The effect of § and ¢ on the dynamical

behavior of the system with o = 1.

Individuals in the exposed, asymptomatic, infected, and
hospitalized classes declined considerably with isolation
and social distance parameters, but the suspectable and
recovered population increased fast. These graphs
demonstrate that these factors are useful in reducing Covid-

19 infection in the population.
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Figure 3. Dynamical behaviour of the susceptible
population for various values of a.
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Figure 4. Dynamical behaviour of the exposed

population for various values of .
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Figure 5. Dynamical behaviour of the infected

population for various values of a.
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Figure 6. Dynamical behaviour of the asymptotic

population for various values of a.
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Figure 7. Dynamical behaviour of the quarantined

population for various values of a.
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Figure 8. Dynamical behaviour of the
hospitalized population for various values of

.
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Figure 9. Dynamical behaviour of the recovered

population for various values of «.

From Figures 3-9, we see that the susceptible, infection,
asymptotic, quarantined, and hospitalized population will

Mathematical Modelling and Control

decrease, and consequently, the recovery will increase. We
observed a rapid decrease in the population of exposed,
asymptomatic, quarantined, hospitalized, and infected
classes, which becomes more significant for fractional value

compared to integer order @ = 1.

(@ (b)

(d)

—o020

20 30
“Time (Days)

®

Figure 10. Dynamics behavior of the susceptible,

exposed, infected, asymptomatic, quarantine,

hospitalized,and recovered people when A = 0.8.

From Figure 10, we noted that the susceptible, exposed,
and asymptomatic individuals are the smallest due to the
smallest value of A. Otherwise, the largest value of the
A could be high population density, close contact with
the people, improper social distancing, and insufficient
preventive measures. This will lead to a relatively high

spread of the disease.

8. Conclusions

This work studied the transmission dynamics of the
COVID-19 pandemic with asymptomatic, quarantine, and
hospitalization individuals through an ABC fractional
model. Initially, we formulated a mathematical model

and analyzed the model using the fractional operator with
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the power-law kernel. We have used fixed point theory
to conclude the existence of such a model in the real
world. Then we have shown the unique solution of the
model. Further, we investigated significant conditions for
the Ulam Hyers type stability via non-linear functional
analysis. The computational scheme is derived for the
numerical simulation and is checked for available data.
Further, We simulate the COVID-19 model for different
transmission rate values to evaluate the dynamics of the
separate compartments in the model. The dynamics of
the COVID-19 pandemic and the impact of various control
strategies by including additional classes into the current
model will be addressed in future research. The vaccinated
population and the number of pathogens in the environment
are two compartments. The suggested model will include
memory characteristics and non-locality and be an expanded
version of the current model. This study’s findings will help
health care centers forecast how the coronavirus may affect

the world in the future.
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