Research article

\textbf{\textit{H}-representation method for solving reduced biquaternion matrix equation}

Xueling Fan1,2, Ying Li1,2,*, Wenxv Ding1,2 and Jianli Zhao1,2

1 College of Mathematical Sciences, Liaocheng University, Liaocheng, 252000, China
2 Research Center of Semi-tensor Product of Matrices: Theory and Applications, Liaocheng, 252000, China

* Correspondence: Email: liyingld@163.com; Tel: +8618865209166.

Abstract: In this paper, we study the Hankel and Toeplitz solutions of reduced biquaternion matrix equation (1.1). Using semi-tensor product of matrices, the reduced biquaternion matrix equation (1.1) can be transformed into a general matrix equation of the form $AX = B$. Then, due to the special structure of Hankel matrix and Toeplitz matrix, the independent elements of Hankel matrix or Toeplitz matrix can be extracted by combining the \mathcal{H}-representation method of matrix, so as to reduce the elements involved in the operation in the process of solving matrix equation and reduce the complexity of the problem. Finally, by using Moore-Penrose generalized inverse, the necessary and sufficient conditions for the existence of solutions of reduced biquaternion matrix equation (1.1) are given, and the corresponding numerical examples are given.

Keywords: reduced biquaternion matrix equation; semi-tensor product of matrices; \mathcal{H}-representation; real representation; Hankel matrix; Toeplitz matrix

1. Introduction

The symbols used in this article are as follows: \mathbb{R} is the set of all real numbers; \mathbb{R}^m is the set of all real column vectors with m-dimensional and $\mathbb{R}^{m\times n}$ is the set of all $m \times n$ dimensional real matrices. \mathbb{Q}_b is the set of all reduced biquaternions and \mathbb{Q}_b^n is the set of all n-dimensional reduced biquaternion vectors. $\mathbb{Q}_b^{m\times n}$ is the set of all $m \times n$ dimensional reduced biquaternion matrices. $\mathbb{H}_b^{m\times n}$ and $\mathbb{T}_b^{m\times n}$ represent the set of all $n \times n$ dimensional real Hankel matrices and real Toeplitz matrices respectively. $\mathbb{H}_b^{m\times n}$ and $\mathbb{T}_b^{m\times n}$ represent the set of all $n \times n$ dimensional reduced biquaternion Hankel matrices and reduced biquaternion Toeplitz matrices respectively. A^T is the transpose of A; A^\dagger is the Moore-Penrose generalized inverse of A. 0 and I_n represent zero matrix of suitable size and identity matrix of n-dimensional respectively. $A \otimes B$ is the Kronecker product of A and B. V_c and V_r represent the column expansion and row expansion of the matrix.

Efficient methods for solving matrix equations play an important role in promoting the application in engineering mechanics [1], color images [2,3], control and system theory [4], neural network, and so on. Many scholars are devoted to the study of the solutions of matrix equations, [5] gave the necessary and sufficient conditions for Lyapunov matrix equation to have Hermitian solution, and the sensitivity of Lyapunov equation to disturbance was analyzed; the iterative solutions of discrete-time periodic Sylvester matrix equations were discussed in [6] based on jacobian gradient algorithm and accelerated iteration algorithm, and their applications in antilinear periodic systems were introduced; in [7], a method similar to Hermitian splitting and oblique Hermitian splitting was used to solve the continuous time algebraic Riccati matrix equation, and the convergence of the iterative method was analyzed. Because of the importance of matrix equation, whether it is real, complex or quaternion matrix equation, it has attracted extensive attention. In [8], Yuan derived the expression of
the least squares Hermitian solution of the quaternion matrix equation \((AXB, CXD) = (E, F)\) with the least norm over the skew field of quaternions. Wang [9] divided the quaternion bisymmetric matrix into four blocks by using the partition idea, and gave the necessary and sufficient conditions for the existence of bisymmetric solutions of the quaternion matrix equation \(AXB = C\) by using the relation between the block matrices. Zhang [10] gave the necessary and sufficient conditions for quaternion matrix equation \(AX = B\) to have the pure imaginary least squares solution and the real least squares solution, she also used pure imaginary quaternions to represent color images, and applies quaternion matrix equation and solve matrix equation by semi-tensor product of matrices method. Wang [13], Ding [14] studied the special solutions of generalized Lyapunov equation and Sylvester equation based on semi-tensor product of matrices and quaternion matrix real vector representation, respectively; by using semi-tensor product of matrices, Zhao [15] gave the necessary and sufficient conditions for the existence of the minimum norm least squares Tridiagonal (Anti-) Hermitian solution of the quaternion matrix Stein equation.

A quaternion is a generalization of complex numbers. A quaternion has four components, one real part and three imaginary parts

\[q = q_0 + q_1i + q_2j + q_3k, \quad q_i \in \mathbb{R}(i = 0, 1, 2, 3), \]

and \(i, j, k\) obey the rules as follows, \(i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j\). We know that the multiplication of quaternions does not satisfy the commutative law of multiplication, which has become an obstacle to solve some quaternion problems. The difference between reduced biquaternions and quaternions are that the multiplication of reduced biquaternions satisfies the commutative law. The representation of reduced biquaternions is [16–18]

\[q = q_0 + q_1i + q_2j + q_3k, \quad q_i \in \mathbb{R}(i = 0, 1, 2, 3), \]

where \(i^2 = k^2 = -1, j^2 = 1, ij = ji = k, jk = k, jk = -ij = i, ki = -ik = j\). In [19], Davenport gave the matrix representation for the four-dimensional commutative hypercomplex algebras. The matrix representation is determined by the multiplication rules, so for reduced biquaternions, we have:

\[1 \rightarrow I_4 \equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \]

\[i \rightarrow N_i \equiv \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \]

\[j \rightarrow N_j \equiv \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \]

\[k \rightarrow N_k \equiv \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \]

where \(N_i^2 = I_4, N_j^2 = N_k^2 = -I_4, N_iN_j = N_jN_i = N_k, N_iN_k = N_kN_i = N_j, N_jN_k = N_kN_j = -N_i, N_iN_l = N_lN_i = -N_j, N_jN_l = N_lN_j = -N_i\). Therefore, the matrix representation of a reduced biquaternion \(q = q_0 + q_1i + q_2j + q_3k\) is

\[q \rightarrow N_q \equiv \begin{bmatrix} q_0 & -q_1 & q_2 & -q_3 \\ q_1 & q_0 & q_3 & q_2 \\ q_2 & -q_3 & q_0 & -q_1 \\ q_3 & q_2 & q_1 & q_0 \end{bmatrix}. \]

Similarly, for reduced biquaternion matrix \(Q = Q_0 + Q_1i + Q_2j + Q_3k\), the matrix representation is

\[Q \rightarrow N_Q \equiv \begin{bmatrix} Q_0 & -Q_1 & Q_2 & -Q_3 \\ Q_1 & Q_0 & Q_3 & Q_2 \\ Q_2 & -Q_3 & Q_0 & -Q_1 \\ Q_3 & Q_2 & Q_1 & Q_0 \end{bmatrix}. \]

Define an operator \(\Phi_Q = \begin{bmatrix} V_c(Q_0) \\ V_c(Q_1) \\ V_c(Q_2) \\ V_c(Q_3) \end{bmatrix}\), obviously \(V_c(\Phi_Q) = V_c(Q_0)\). The unique advantage of reduced biquaternion is that its multiplication is commutative. In addition, reduced biquaternion matrix theory is widely
used in digital signal and color image processing. For example, in [20], the complex symmetric multichannel system and symmetric lattice filter system were analyzed by reduced biquaternion, which greatly reduces the complexity of digital signal processing; in [21], the SVD of reduced biquaternion matrix was used to process color images, the SVD method of reduced biquaternion greatly reduces the complexity of reconstructing the original color image; [22] the pure imaginary solutions and real solutions of the reduced biquaternion matrix equation $AX = B$ were solved in the form of $e_1 - e_2$, and the $e_1 - e_2$ representation of the reduced biquaternion was applied to color image restoration. The methods to solve the reduced biquaternion matrix equation mainly include using the $e_1 - e_2$ representation of reduced biquaternion, or with the help of the real representation and complex representation of the reduced biquaternion matrix.

In this paper, we mainly consider the Hankel and Toeplitz solutions of reduced biquaternion matrix equation

$$\sum_{i=1}^{k} A_i XB_i = C$$

(1.1)

by using semi-tensor product of matrices, real representation.

Hankel matrix and Toeplitz matrix are collectively referred to as banded matrix. Banded matrix has important applications in many fields, such as image, signal processing, communication system analysis and so on. For example, Toeplitz system arise in a variety of applications in mathematics, scientific computing and engineering, numerical partial and ordinary differential equations; numerical solution of convolution-type integral equations; optimization problems in control theory; signal processing and image restoration [23, 24]. In addition, Hankel matrix has important applications in electric power, microseismic data processing and array signal processing [25]. In this paper, we will solve the special solutions of reduced biquaternion matrix equation (1.1) by combining semi-tensor product of matrices, real representation of reduced biquaternion matrix and \mathcal{H}-representation of special matrices, Moore-Penrose generalized inverse. The main questions we considered are as follows.

Problem 1 Given $A_i \in \mathbb{Q}_b^{m \times n}$, $B_i \in \mathbb{Q}_b^{n \times s}$ ($i = 1, 2, \ldots, k$), $C \in \mathbb{Q}_b^{m \times s}$, find

$$M_h = \left\{ X | X \in \mathbb{H}_b^{m \times n}, \sum_{i=1}^{k} A_i XB_i = C \right\}. \quad (1.2)$$

Problem 2 Given $A_i \in \mathbb{Q}_b^{m \times n}$, $B_i \in \mathbb{Q}_b^{n \times s}$ ($i = 1, 2, \ldots, k$), $C \in \mathbb{Q}_b^{m \times s}$, find

$$M_t = \left\{ X | X \in \mathbb{T}_b^{m \times n}, \sum_{i=1}^{k} A_i XB_i = C \right\}. \quad (1.3)$$

We will find a sufficient and necessary condition for M_h and M_t to be nonempty. When the reduced biquaternion matrix equation (1.1) has a solution, we will give a general expression for $X \in M_h$ and $X \in M_t$. When the reduced biquaternion matrix equation (1.1) has a unique solution, and we will give a unique expression for $\hat{X}_h \in \tilde{M}_h$ and $\hat{X}_t \in \tilde{M}_t$.

This paper is organized as follows. In Section 2, we give some basic knowledge of semi-tensor product of matrices. In Section 3, we first introduce the definition of \mathcal{H}-representation [29], and the \mathcal{H}-representation methods of Hankel matrix and Toeplitz matrix are given. By using the results to drive the explicit expression for the solutions of Problem 1,2, in Section 4, respectively. Finally, in Section 5, we give a brief summary.

2. Semi-tensor product of matrices

We know that matrix multiplication is limited by dimension. It needs to meet that the dimension of the first matrix column is equal to that of the second matrix row. If the matrix operation is extended to any dimension matrix, the application of matrix method will be greatly expanded. This section first introduces a matrix multiplication between arbitrary dimensions, semi-tensor product of matrices.

Definition 2.1. [26] Suppose $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$, $t = \text{lcm}(n, p)$ is the least common multiple of n and p. The semi-tensor product of A and B is denoted by

$$A \otimes B = (A \otimes I_{tn})(B \otimes I_{tp}).$$

Denoted by the symbol \otimes.

From the definition of semi-tensor product of matrices, we can see that semi-tensor product of matrices is the

Mathematical Modelling and Control

Volume 2, Issue 2, 65–74
Suppose $X \in \mathbb{R}^n$ is a column of vector, then
\[X \bowtie A = (I_n \otimes A) \bowtie X. \]

Swap matrix, which exchange the order of factors, are defined as follows

Definition 2.2. [27] A swap matrix $W_{[m,n]} \in \mathbb{R}^{mxnxn}$ is defined as
\[W_{[m,n]} = \delta_{mn} [1, m + 1, \ldots, (n - 1)m + 1, \ldots, 2m, \ldots, nm], \]
where $\delta_{[i_1, \ldots, i_k]}$ is a shorthand of $[\delta_{i_1}^{i_2}, \ldots, \delta_{i_k}^{i_1}].$

The swap matrix has the function of exchanging the order of two vector factors and some other propositions.

Lemma 2.3. [26] (1) Suppose $X \in \mathbb{R}^m$, $Y \in \mathbb{R}^n$ is two columns, then
\[W_{[m,n]} \bowtie X \bowtie Y = Y \bowtie X; \]
(2) Suppose $A \in \mathbb{R}^{mxn}$, then
\[W_{[m,n]} V_Y(A) = V_Y(A); \]
\[W_{[n,m]} V_A(Y) = V_A(Y); \]
(3) Suppose $A \in \mathbb{R}^{mxn}$, $B \in \mathbb{R}^{nxn}$, then
\[A \otimes B = W_{[n,m]} \bowtie B \bowtie W_{[m,n]} \bowtie A = (I_m \otimes B) \bowtie A. \]

Since reduced biquaternions are commutative, we can know that the above conclusion for semi-tensor product of matrices is also true for reduced biquaternions. In addition, Li [28] gave the properties for semi-tensor product of matrices which play an important role in solving matrix equations. For reduced biquaternion matrix, we have the similar conclusions.

Theorem 2.1. Suppose $A \in \mathbb{Q}_b^{mxn}$, $X \in \mathbb{Q}_b^{nxq}$. $Y \in \mathbb{Q}_b^{pxm}$.
\[(1) \quad V_Y(A) = A^T \bowtie V_Y(A); \]
\[V_Y(A) = A \bowtie V_Y(X). \]

Proof. (1) We proof $V_Y(A) = A^T \bowtie V_Y(Y)$.
Let $A = (a_1, \ldots, a_n), a_i \in \mathbb{Q}_b^{m_i}, (i = 1, \ldots, n), Y = (y_1, \ldots, y_{pq}), y_j \in \mathbb{Q}_b^{q_j}, (j = 1, \ldots, m)$, then
\[Y a_i = a_i y_1 + \ldots + a_i y_{pq} = \begin{bmatrix} Y a_1 \\ \vdots \\ Y a_n \end{bmatrix} \]
from the commutability of reduced biquaternion, there have
\[Y a_i = a_i y_1 + \ldots + a_i y_{pq} = \begin{bmatrix} a_1 I_p \\ \vdots \\ a_n I_p \end{bmatrix} V_Y(Y). \]

So
\[V_Y(Y) = (A^T \otimes I_p) V_Y(Y) = A^T \bowtie V_Y(Y). \]

(2) We proof $V_Y(Y) = W_{[n,p]} \bowtie A^T \bowtie W_{[p,m]} \bowtie V_Y(Y)$.
Suppose $A \in \mathbb{Q}_b^{mxn}$, $Y \in \mathbb{Q}_b^{pox}$, then by Lemma 2.3 we have
\[V_Y(Y) = W_{[n,p]} V_Y(Y) = W_{[n,p]} A^T \bowtie V_Y(Y) = W_{[n,p]} A^T \bowtie W_{[p,m]} \bowtie V_Y(Y) = (I_p \otimes A^T) \bowtie V_Y(Y). \]
3. \(\mathcal{H}\)-representation

In this article, we are very interested in \(\mathcal{H}\)-representation of Hankel matrix and Toeplitz matrix. The following part mainly introduces the \(\mathcal{H}\)-representation of Hankel matrix and Toeplitz matrix. The concept of \(\mathcal{H}\)-representation is as follows.

Definition 3.1. [29] Consider a \(q\)-dimensional real matrix

\[
\Psi \in \mathbb{R}^{n \times n}
\]

over the field \(\mathbb{R}\). Assume that \(e_1, e_2, \ldots, e_q\) form the basis of \(\Psi\), and define \(H = [V_e(e_1) \ V_e(e_2) \ \ldots \ V_e(e_q)]\). For each \(X \in \Psi\), if we express \(\Psi(X) = V_e(X)\) in the form of

\[
\Psi(X) = H\tilde{X},
\]

with a \(q \times 1\) vector \(\tilde{X} = [x_1 \ x_2 \ \ldots \ x_q]^T\). Then \(H\tilde{X}\) is called an \(\mathcal{H}\)-representation of \(\Psi(X)\), and \(H\) is called an \(\mathcal{H}\)-representation matrix of \(\Psi(X)\).

Definition 3.2. Suppose \(H_n = (h_{ij})_{n \times n} \in \mathbb{R}^{n \times n}\) satisfies \(h_{ij} = h_{i+j-1}\), \((i, j = 1, \ldots, n)\), that is

\[
H_n = \begin{bmatrix}
 h_1 & h_2 & h_3 & \cdots & h_n \\
 h_2 & h_3 & h_4 & \cdots & h_{n+1} \\
 h_3 & h_4 & h_5 & \cdots & h_{n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h_n & h_{n+1} & h_{n+2} & \cdots & h_{2n-1}
\end{bmatrix},
\]

then \(H_n\) is called a real Hankel matrix, and the set of all \(n\)-dimensional real Hankel matrices is recorded as \(\mathbb{H}_n^{\mathbb{R}^n}\).

Definition 3.3. Suppose \(T_n = (t_{ij})_{n \times n} \in \mathbb{R}^{n \times n}\) satisfies \(t_{ij} = t_{i+j-1}\), \((i, j = 1, \ldots, n)\), that is

\[
T_n = \begin{bmatrix}
 t_0 & t_1 & t_2 & \cdots & t_{n-1} \\
 t_1 & t_0 & t_1 & \cdots & t_{n-2} \\
 t_2 & t_1 & t_0 & \cdots & t_{n-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 t_{n-1} & t_{n-2} & t_{n-3} & \cdots & t_0
\end{bmatrix},
\]

then \(T_n\) is called a real Toeplitz matrix, and the set of all \(n\)-dimensional real Toeplitz matrices is recorded as \(\mathbb{T}_n^{\mathbb{R}^n}\).

Example 3.1. Let \(\mathcal{X} = \mathbb{H}_3^{\mathbb{R}^3}\), \(H_3 = (h_{ij})_{3 \times 3} \in \mathcal{X}\), and then \(\dim(\mathcal{X}) = 5\). If we select a basis of \(\mathcal{X}\) as

\[
\Psi(T_3) = \begin{bmatrix}
 t_0 & t_{-1} & t_{-2} & t_1 & t_0 & t_{-1} & t_2 & t_1 & t_0
\end{bmatrix}^T.
\]

It is easy to compute

\[
\Psi(H_3) = [h_1 \ h_2 \ h_3 \ h_4 \ h_5],
\]

Example 3.2. Let \(\mathcal{X} = \mathbb{H}_3^{\mathbb{R}^3}\), \(T_3 = (t_{ij})_{3 \times 3} \in \mathcal{X}\), and then \(\dim(\mathcal{X}) = 5\). If we select a basis of \(\mathcal{X}\) as

\[
\Psi(H_3) = [h_1 \ h_2 \ h_3 \ h_4 \ h_5],
\]

Example 3.2. Let \(\mathcal{X} = \mathbb{H}_3^{\mathbb{R}^3}\), \(T_3 = (t_{ij})_{3 \times 3} \in \mathcal{X}\), and then \(\dim(\mathcal{X}) = 5\). If we select a basis of \(\mathcal{X}\) as

\[
\Psi(H_3) = [h_1 \ h_2 \ h_3 \ h_4 \ h_5],
\]

Example 3.2. Let \(\mathcal{X} = \mathbb{H}_3^{\mathbb{R}^3}\), \(T_3 = (t_{ij})_{3 \times 3} \in \mathcal{X}\), and then \(\dim(\mathcal{X}) = 5\). If we select a basis of \(\mathcal{X}\) as

\[
\Psi(H_3) = [h_1 \ h_2 \ h_3 \ h_4 \ h_5],
\]
and
\[
H_i = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

The following Theorem is obvious from Definition 3.1.

For the general case, if \(\mathcal{X} = \mathbb{H}_{P_{max}}^n \), we select a standard basis as
\[
\{E_1, E_2, \ldots, E_{2n-1}\},
\]
where \(E_i = \begin{bmatrix} J_i & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}, (i \leq n), \)
\[
\begin{bmatrix} 0 & 0 \\ 0 & J_{2n-1-i} \end{bmatrix}_{n \times n}, (n < i \leq 2n-1),
\]
\[
J_n = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}_{n \times n}.
\]

Based on above standard basis, for any \(H_n = (h_j)_{n \times n} \in \mathcal{X} \), we have
\[
\bar{H}_n = \begin{bmatrix} h_1 & h_2 & \ldots & h_{2n-1} \end{bmatrix}^T,
\]
and \(H_n = \left[V_i(E_1) \ V_i(E_2) \ \ldots \ V_i(E_{2n-1}) \right] \in \mathbb{R}^{n \times 2n-1} \).

Similarly if \(\mathcal{X} = \mathbb{T}^n_{P_{max}} \), we select a standard basis as
\[
\{F_1, F_2, \ldots, F_{2n-1}\},
\]
where \(F_i = \begin{bmatrix} 0 & 0 \\ I_{n-i+1} & 0 \end{bmatrix}_{n \times n}, (i \leq n), \)
\[
\begin{bmatrix} 0 & 0 \\ 0 & I_{2n-i} \end{bmatrix}_{n \times n}, (n < i \leq 2n-1).
\]

Based on above standard basis, for any \(T_n = (t_j)_{n \times n} \in \mathcal{X} \), we have
\[
\bar{T}_n = \begin{bmatrix} t_0 & t_1 & \ldots & t_{n+1} \\ t_{n+1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ t_{2n-1} & \ldots & t_{n+1} & t_0 \end{bmatrix},
\]
and \(H_i = \left[V_i(F_1) \ V_i(F_2) \ \ldots \ V_i(F_{2n-1}) \right] \in \mathbb{R}^{n \times 2n-1} \).

The following Theorem is obvious from Definition 3.1.

Theorem 3.1. For an \(n^2 \times 1 \) vector \(\alpha_1 \), if \(\Psi^{-1}(\alpha_1) \in \mathbb{H}_{P_{max}}^n \), then there exists an \((2n-1) \times 1 \) vector \(\beta_1 \), such that \(\alpha_1 = H_1\beta_1 \). For an \(n^2 \times 1 \) vector \(\alpha_2 \), if \(\Psi^{-1}(\alpha_2) \in \mathbb{T}_{P_{max}}^n \), then there exists an \((2n-1) \times 1 \) vector \(\beta_2 \), such that \(\alpha_2 = H_2\beta_2 \).

4. The Solution of Problem 1.2

In order to obtain the solution of the reduced biquaternion matrix equation (1.1), we first give the following Lemma.

Lemma 4.1. [30] The matrix equation \(AX = b \), with \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \), has a solution \(x \in \mathbb{R}^n \) if and only if
\[
AA^\dagger b = b,
\]
in this case it has the general solution
\[
x = A^\dagger b + (I_n - A^\dagger A)y,
\]
where \(y \in \mathbb{R}^n \) is an arbitrary vector, and it has the unique solution \(x = A^\dagger b \) for the case when \(\text{rank}(A) = n \).

In order to obtain the Hankel solution and Toeplitz solution of reduced biquaternion matrix equation (1.1), we first make some signs as follows, for \(A_i \in \mathbb{Q}_{P_{max}}^n, B_i \in \mathbb{Q}_{P_{max}}^n(i = 1, 2, \ldots, k), C \in \mathbb{Q}_{P_{max}}^n \), let
\[
P = \sum_{i=1}^{k} (B_i^\dagger \otimes A_i) = P_0 + P_1i + P_2j + P_3k;
\]
\[
W_1 = \text{diag}(H_1, H_2, H_3, H_4), W_2 = \text{diag}(H_1, H_2, H_3, H_4);
\]
\[
R = N_p W_1, S = N_p W_2;
\]
\[
V_i(\Phi_C) = \begin{bmatrix} V_i(C_0) \\ V_i(C_1) \\ V_i(C_2) \\ V_i(C_3) \end{bmatrix}.
\]

Theorem 4.1. Suppose \(A_i \in \mathbb{Q}_{P_{max}}^n, B_i \in \mathbb{Q}_{P_{max}}^n(i = 1, 2, \ldots, k), C \in \mathbb{Q}_{P_{max}}^n \), the necessary and sufficient condition for the equation (1.1) to have Hankel solution is
\[
RR^\dagger V_i(\Phi_C) = V_i(\Phi_C).
\]

Under the condition of solution, the solution set \(M_h \) of the equation (1.1) can be expressed as
\[
M_h = \left\{ X \big| V_i(\Phi_X) = W_1 R^\dagger V_i(\Phi_C) + W_1 \left(I_{8n-4} - R^\dagger R \right) y \right\},
\]
where for any \(y \in \mathbb{R}^{8n-4} \). Further, when \(\text{rank}(R) = 8n - 4 \), the unique solution set of equation (1.1) is
\[
\overline{M}_h = \left\{ \overline{X} \big| V_i(\Phi_{\overline{X}}) = W_1 R^\dagger V_i(\Phi_C) \right\}.
\]
Proof. By Theorem 2.1, combing with \mathcal{H}-representation of Hankel matrix, the reduced biquaternion matrix equation (1.1) is equivalent to

$$ \sum_{i=1}^{k} A_i X B_i = C $$

$$ \iff \sum_{i=1}^{k} (I_i \otimes A_i) \times V_c(XB_i) = V_c(C) $$

$$ \iff \sum_{i=1}^{k} (I_i \otimes A_i) \times B_i^T \times V_c(X) = V_c(C) $$

$$ \iff \sum_{i=1}^{k} (I_i \otimes A_i)(B_i^T \otimes I_n) \times V_c(X) = V_c(C) $$

$$ \iff \sum_{i=1}^{k} (B_i^T \otimes A_i)V_c(X) = V_c(C) $$

$$ \iff N_p V_c(\Phi_X) = V_c(\Phi_C) $$

$$ \iff N_p W_1 = V_c(\Phi_C) $$

$$ \iff R \times V_c(\Phi_X) = V_c(\Phi_C). $$

By Lemma 4.1, we have

$$ \tilde{X}_0 \quad \tilde{X}_1 \quad \tilde{X}_2 \quad \tilde{X}_3 = R^T V_c(\Phi_C) + \left(I_{8n-4} - R^T R\right) y, $$

further, we can obtain

$$ V_c(\Phi_X) = W_1 \times R^T V_c(\Phi_C) + W_1 \left(I_{8n-4} - R^T R\right) y. $$

Then if $\text{rank}(R) = 8n - 4$, the unique solution of equation (1.1) satisfies

$$ V_c(\Phi_X) = W_1 \times R^T V_c(\Phi_C). $$

Similar to the conclusion of Hankel solution, we can obtain the following conditions for the existence of Toeplitz solution of reduced biquaternion matrix equation (1.1).

Theorem 4.2. Suppose $A_i \in \mathbb{Q}^{n \times n}_b$, $B_i \in \mathbb{Q}^{n \times n}_b (i = 1, 2, \ldots, k)$, $C \in \mathbb{Q}^{n \times n}_b$, the necessary and sufficient condition for the equation (1.1) to have Toeplitz solution is

$$ SS^TV_c(\Phi_C) = V_c(\Phi_C). $$

(4.7)

Under the condition of solution, the solution set M_t of the equation (1.1) can be expressed as

$$ M_t = \left(X \mid V_c(\Phi_X) = W_2 S^TV_c(\Phi_C) + W_2 \left(I_{8n-4} - S^T S\right) y\right), $$

(4.8)

where $\forall y \in \mathbb{R}^{8n-4}$. Further, when

$$ \text{rank}(S) = 8n - 4, $$

(4.9)

the unique solution set of equation (1.1) is

$$ \tilde{M}_t = \left(\tilde{X}_0 \mid V_c(\Phi_X) = W_2 S^TV_c(\Phi_C)\right). $$

(4.10)

5. Numerical exemplification

We now provide numerical algorithms and examples for finding the solutions of Problem 1.2. Algorithms 5.1 and 5.2 are based on Theorem 4.1 and Theorem 4.2. Examples are based on Algorithms 5.1 and 5.2, respectively.

Algorithm 5.1. (For Problem 1)

1. **Input:** $A_i \in \mathbb{Q}^{n \times n}_b$, $B_i \in \mathbb{Q}^{n \times n}_b (i = 1, 2, \ldots, k)$, $C \in \mathbb{Q}^{n \times n}_b$, and P, H_b.

2. **Compute** N_p, W_1, R and $V_c(\Phi_C)$.

3. **If** both (4.3) and (4.5) hold, then output the Hankel solution $X_0(X_0 \in \tilde{M}_b)$ according to (4.6).

4. **Output:** the solution $X_0 \in \tilde{M}_b$.

Algorithm 5.2. (For Problem 2)

1. **Input:** $A_i \in \mathbb{Q}^{n \times n}_b$, $B_i \in \mathbb{Q}^{n \times n}_b (i = 1, 2, \ldots, k)$, $C \in \mathbb{Q}^{n \times n}_b$, and P, H_t.

2. **Compute** N_p, W_2, S and $V_c(\Phi_C)$.

3. **If** both (4.7) and (4.9) hold, then output the Toeplitz solution $X_1(X_1 \in \tilde{M}_t)$ according to (4.10).

4. **Output:** the solution $X_1 \in \tilde{M}_t$.

Example 5.1. Suppose \(m = n = p, A_i, B_i \in \mathbb{Q}_b^{n \times n} (i = 1, 2) \) be generated randomly for \(n = 2l, l = 1 : 15 \). Randomly generated Hankel or Toeplitz reduced biquaternion matrix \(X_h, X_t \) for equation (1.1), respectively, calculate \(C = A_1X_hB_1 + A_2X_hB_2, C = A_1X_tB_1 + A_2X_tB_2 \). In this case, \(\text{rank}(R) = 8n - 4, \text{rank}(S) = 8n - 4 \) is satisfied, at this time, the reduced biquaternion matrix equation (1.1) has a unique solution. Substitute \(X_h, X_t \) into the reduced biquaternion equation (1.1), its computational solutions can be obtained by using Algorithm 5.1-Algorithm 5.2, respectively. Define \(\varepsilon_1 = \log_{10}(\|V_c(\Phi_{X_h}) - V_c(\Phi_{\dot{X}_h})\|), \varepsilon_2 = \log_{10}(\|V_c(\Phi_{X_t}) - V_c(\Phi_{\dot{X}_t})\|) \) as the error obtained by Algorithms 5.1 and 5.2 respectively. As the dimension changes, \(\varepsilon_i (i = 1, 2) \) is shown in the Figure 5.1 and Figure 5.2.

Figure 5.1. Errors in different dimensions for Problem 1.

Figure 5.2. Errors in different dimensions for Problem 2.

It can be seen from the figure that the error value obtained by the algorithm is less than \(-11\), which fully proves the effectiveness and rationality of the algorithm.

6. Conclusions

The multiplication of reduced biquaternion satisfies the commutative law, which provides great convenience for some of our quaternion calculations. This paper mainly uses the semi-tensor product of matrices, combines the real representation of reduced biquaternion matrix and the \(\mathcal{H} \)-representation of matrix to solve the Hankel and Toeplitz solutions of reduced biquaternion matrix equation (1.1), this provides a new method for the solution of reduced biquaternion matrix equation. It is believed that the semi-tensor product of matrices and \(\mathcal{H} \)-representation of matrices will be more widely used in solving matrix equation problems.

Acknowledgment

This work is supported by National Natural Science Foundation of China, 62176112, Science and Technology Project of Department of Education, Shandong Province ZR2020MA053, the science foundation of Liaocheng University under grants 318011921. The authors are grateful to the referees for their careful reading and helpful suggestion, which have led to considerable improvement of the presentation of this paper.

Conflict of interest

The authors declare that there is no conflict of interest.

References

21. S. Pei, J. Chang, J. Ding, et al, Eigenvalues and Singular Value Decompositions of Reduced Biquaternion

