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Abstract: This paper focuses on output controllability and observability of mix-valued logic control networks (MLCNs), of which the
updating of outputs is determined by both inputs and states via logical rules. First, as for output controllability, the number of different
control sequences are derived to steer a MLCN from a given initial state to a destination output in a given number of time steps via semi-
tensor product method. By construsting the output controllability matrix, criteria for the output controllability are obtained. Second, to
solve the problem of observability, we construct an augmented MLCN with the same transition matrix, and use the set controllability
approach to determine the observability of MLCNs. Finally, a hydrogeological example is presented to verify the obtained results.
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1. Introduction

Boolean networks (BNs) were proposed by Kauffman in
1969 for the first time to model gene regulatory networks
[1]. In BNs, the state of each gene can only take values
from Boolean variables, where 1 (or 0) represents active
(or inactive, respectively). The state evolution of each gene
is determined by a corresponding Boolean function at each
discrete-time instant. Moreover, if external inputs are added
to manipulate the network, BNs can be naturally extended to
Boolean control networks (BCNs) [2].

The semi-tensor product (STP) of matrices, firstly
proposed by Cheng et al. [3], is an effective technique
in expression and analysis of Boolean (control) networks.
As a generalization of conventional matrix product, STP
enables multiplication of two matrices with arbitrary
dimensions. Via STP, a logical function can be converted
into its algebraic form, and then the logical dynamic of
a Boolean (control) network can be transformed into a
discrete-time linear system [3]. Based on this approach,
tremendous breakthroughs have been made in the study of
BNs and BCNs, including stability and stabilization [4–6],

observability [7–9], controllability [10–13], output tracking
[14], disturbance decoupling [15] and so on.

Among the above problems, controllability is a basic and
vital issue in control theory. The state controllability of
BCNs has been deeply investigated by means of reachable
set [7], input-state incidence matrix [8], Perron-Frobenius
theory [10], etc. Furthermore, output controllability, the
ability of steering the output between any initial and
final condition via an external input, has drawn lots of
concentration recently. In [16], a sufficient condition for
the output controllability of BCNs was put forward by
constructing topological adjacency matrix. Besides, for
temporal Boolean networks (TBCNs), some necessary and
sufficient conditions on output controllability are derived
in [17] by referring to reachable set.

The observability is also an interesting and challenging
problem. Several kinds of observability have been
investigated in [7, 8, 18–20]. Some necessary and sufficient
conditions of observability are presented in [7] based on
observability matrix. In [19], a graph-theoretic approach
is provided to solve observability, and the computational
complexity is analyzed.
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Note that mix-valued logic control networks (MLCNs),
a generalization of Boolean control networks, are more
intricate and wider applied in real life, such as the
modeling of cognitive sciences [21], game theory [22],
etc. As addressed in [23], a contex-aware system can
be expressed as a MLCN. It should be noticed that
the contex-aware system is composed of the contex and
monitoring system, both of which can be regarded as a
MLCN seperately, and the ultimate output is in consonance
with the output of monitoring system. Despite of the
context state which acts as an output of the Contex
system but an input to the monitoring system, there may
exist additional inputs to monitoring system. Thus the
ultimate output of contex-aware system depends on not
only states but also inputs, which is different from the
conventional MLCN (of which the output depends on states
only). In [23], the authors used an avalanche landslide
alert system as an example and investigated the case
of constant inputs. With the help of STP method and
the algebraic representation, equilibria, observability and
reconstructibility corresponding to constant inputs, and the
problem of fault detection have been sucessfully studied.

However, to the authors’ best knowledge, there is
little literature available about output controllability and
observability of such MLCNs under general inputs. In this
paper, output controllability and observability of the specific
MLCNs by utlizing output controllability matrix and set
controllability approach are investigated. Motivated by the
above discussions, this paper makes the following main
contributions:

(1) In order to study output controllability for MLCNs, the
number of different control sequences are derived to
steer a MLCN from a given initial state to a destination
output in a given number of time steps, based on which
the output controllability matrix is provided and a series
of output controllability criteria are obtained;

(2) The observability of MLCNs is equivalently
transformed into the corresponding set controllability.
Further, to utlize set controllability technique, an
augmented MLCN with the same transition matrix is
constructed, then a necessary and sufficient condition
for observability is derived;

(3) A comparison between the conventional and the
considered MLCNs is made.

The rest of this paper is organized as follows. Section
2 reviews some necessary preliminries on STP and the
algebraic representation of MLCNs. Section 3 and Section 4
respectively study some necessary and sufficient conditions
for output controllability and observability of MLCNs. In
Section 5, we make a comparison between the conventional
and the considered MLCNs. In Section 6, an illustrative
example is given to clarify our results. Section 7 is a brief
conclusion.

2. Preliminaries and problem formulation

In this section, some preliminaries about STP of matrices
and the algebraic form of MLCNs will be presented.

2.1. Notations and STP of matrices

1) R: the sets of real numbers;
2) N+: the sets of positive integers;
3) Dk := {1, k−2

k−1 , · · · ,
1

k−1 , 0};
4) Mm×n: the set of m × n-dimensional real matrices;
5) δi

k: the i-th column of identity matrix Ik;
6) ∆k := {δi

k |1 ≤ i ≤ k};
7) Coli(A) (Rowi(A)): the i-th column (row) of A;
8) Col(A) (Row(A)): the collection of columns (rows) of

A;
9) Ai j: the (i, j)-th element of a matrix A;

10) Bm×n :=
{
B ∈ Mm×n | Bi j ∈ D

}
is the set of m × n

Boolean matrices;
11) Lm×n := {L ∈ Bm×n | Coli(L) ∈ ∆m, i = 1, 2, . . . , n} is

the set of m × n logical matrices;
12) δm[i1, i2, · · · , in]: a matrix [δi1

m, δ
i2
m, · · · , δ

in
m] ∈ Lm×n ;

13) M +B N :=
(
Mi j ∨ Ni j

)
m×n
∈ Bm×n, M,N ∈ Lm×n;

14) M ×B N :=
∑

B
n
k=1

(
Mik ∧ Nk j

)
∈ Bn×n, M,N ∈ Ln×n;

15) A(k) := A ×B · · · ×B A︸             ︷︷             ︸
k

;

16) |V |: the cardinality of set V;
17) 1m×n : an m × n matrix with all elements 1;
18) 1k = [1, 1, . . . , 1︸      ︷︷      ︸

k

]T.

Definition 2.1. [3] Given two matrices X ∈ Mm×n and Y ∈

Mp×q, the semi-tensor product (STP) of X and Y, denoted
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by X n Y, is defined as

X n Y = (X ⊗ Iα/n)(Y ⊗ Iα/p),

where α = lcm(n, p) represents the least common multiple of

n and p, and ⊗ is the Kronecker product.

Remark 2.1. When n = p, the semi-tensor product becomes

the conventional matrix product. In this paper, the default

matrix product is assumed as STP, and thus the symbol “ n ”
is mostly omitted without confusion.

Definition 2.2. [3] Given two matrices X ∈ Mm×n and Y ∈

Mp×n, the Khatri-Rao product of X and Y, denoted by X ∗Y,

is defined as

Col j(X ∗ Y) = Col j(X) n Col j(Y), j = 1, 2, · · · , n.

Using vector form expression of k-valued logical
variables, i

k−1 is equivalent to δk−i
k , i = 1, 2, · · · , k. Thus,

Dk is equivalent to ∆k. Based on this, we have the following
result.

Lemma 2.1. [3] Let xi ∈ ∆ki , i = 1, 2, · · · , r be ki-valued

logical variables. Consider a mix-valued logical function

f (x1, x2, · · · , xr) : ∆k1 × ∆k2 × · · · × ∆kr → ∆k0 , there exists a

unique matrix L f ∈ Lk0×
∏r

i=1 ki , called the structure matrix of

f , such that f (x1, x2, · · · , xr) = L f n x1 n x2 n · · · n xr.

Next, some fundamental concepts and properties of STP
are presented as follows.

Lemma 2.2. [3] Let A ∈ Mm×n and x ∈ Mt×1 is a column

vector. Then x n A = (It ⊗ A) n x.

Lemma 2.3. [3] Let x ∈ ∆n and y ∈ ∆m. Then x n y =

W[m,n] n y n x, where W[m,n] := [In ⊗ δ
1
m, In ⊗ δ

2
m, · · · , In ⊗ δ

m
m]

is called a swap matrix.

Lemma 2.4. [3] Let x ∈ ∆n. Then x n x = Φnx, where

Φn = [δ1
nnδ

1
n, δ

2
nnδ

2
n, · · · , δ

n
nnδ

n
n] is called a power-reducing

matrix.

2.2. MLCN and its algebraic representation

Consider a MLCN with n nodes, m control inputs and p

outputs as



x1(t + 1) = f1
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

x2(t + 1) = f2
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

...

xn(t + 1) = fn
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

y1(t) = h1
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

y2(t) = h2
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

...

yp(t) = hp
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

(2.1)

where xi ∈ ∆Ni , i = 1, · · · , n are state variables; uk ∈

∆Mk , k = 1, · · · ,m are inputs (or controls); y j ∈ ∆P j , j =

1, · · · , p are outputs; fi :
∏n

i=1 ∆Ni ×
∏m

k=1 ∆Mk → ∆Ni , i =

1, · · · , n and h j :
∏n

i=1 ∆Ni ×
∏m

k=1 ∆Mk → ∆P j , j = 1, · · · , p

are logical functions.

Let x(t) = nn
i=1xi(t) ∈ ∆N , u(t) = nm

k=1uk(t) ∈ ∆M and
y(t) = n

p
j=1y j(t) ∈ ∆P, where N =

∏n
i=1 Ni, M =

∏m
k=1 Mk

and P =
∏p

j=1 P j. By Lemma 2.1, for every logical function
fi, h j, we can obtain their unique structure matrices L fi ∈

LNi×MN and Lh j ∈ LP j×MN , i = 1, · · · , n, j = 1, · · · , p. Thus,
system (2.1) can be transformed into a vector form as

x1(t + 1) = L f1 u(t)x(t),
x2(t + 1) = L f2 u(t)x(t),
...

xn(t + 1) = L fn u(t)x(t),
y1(t) = Lh1 u(t)x(t),
y2(t) = Lh2 u(t)x(t),
...

yp(t) = Lhp u(t)x(t),

(2.2)

Furthermore, (2.2) can be expressed into an algebraic
form as  x(t + 1) = Lu(t)x(t),

y(t) = Hu(t)x(t),
(2.3)

where L ∈ LN×MN and H ∈ LP×MN . We call L,H the
network transition matrices of MLCN (2.1), which can be
calculated as L = L f1∗L f2∗· · ·∗L fn and H = Lh1∗Lh2∗· · ·∗Lhp .

Remark 2.2. Compared with ordinary MLCNs [15], the

main difference of the considered system (2.1) is that the

output of MLCN (2.1) is not only determined by states xi,

but also external inputs uk, via logical functions.
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3. Output controllability via a free control sequence

In this subsection, the output controllability of MLCN
(2.1), equivalently (2.3), via a free control sequence is
investigated. First, we introduce the concept of output
controllability below.

Definition 3.1. [17] Consider system (2.3):

1) Given initial state x0 ∈ ∆N , the destination output yd ∈

∆P and the finite time s ∈ N+, MLCN (2.3) is said to be

output controllable from x0 to yd at the sth step if there

exist an input sequence {u(0), u(1), · · · , u(s)}, such that

y(s) = yd.

2) MLCN (2.3) is said to be output controllable from x0

to yd if there exist a s ∈ N+ and an input sequence

{u(0), u(1), · · · , u(s)}, such that y(s) = yd.

3) MLCN (2.3) is said to be output controllable at x0 if it

is output controllable from x0 to each yd ∈ ∆P.

4) MLCN (2.3) is said to be output controllable if it is

output controllable at each x0 ∈ ∆N .

Inspired by [8] and [10], we propose a formula for the
number of different control sequences steering a MLCN
(2.3) between initial states and objective outputs in a finite
time, based on which the output controllability matrix can
be derived.

Lemma 3.1. The number of different control sequences that

steer MLCN (2.3) from x0 ∈ ∆N to yd ∈ ∆P in sth step is

l(s; x0, yd) = yT
d (H n 1M)(L n 1M)sx0. (3.1)

Proof. Denote matrix L̃ = LW[N,M], H̃ = HW[N,M], and thus
system (2.3) can be converted into x(t + 1) = L̃x(t)u(t),

y(t) = H̃x(t)u(t).
(3.2)

For simplicity, let vectors U(t) = nt
i=0u(i) ∈ ∆Mt+1 , t ∈ N+.

By mathematical induction, we have

x(i) = L̃ix(0) ni−1
t=0 u(t) = L̃ix(0)U(i − 1).

Substituting it into the second equation of (3.2), we get

y(i) = H̃L̃sx(0) ni
t=0 u(t) = H̃L̃sx(0)U(i).

Let W1(s),W2(s), · · · ,W l(s;x0,yd)(s) ∈ ∆Ms+1 be the different
control sequences steering MLCN (2.3) from x0 to yd at the
sth step, i.e.,

yd = H̃L̃sx0W i(s), i = 1, 2, · · · , l(s; x0, yd). (3.3)

Since the total number of control sequences U(s) in s time
steps is Ms+1, there must be V j(s) ∈ ∆Ms+1 , | j| = Ms+1 −

l(s; x0, yd), such that

yd , H̃L̃sx0V j(s), j = 1, 2, · · · ,Ms+1 − l(s; x0, yd). (3.4)

Multiply (3.3) and (3.4) from the left by yT
d and sum up this

set of Ms+1 equations yields

l(s; x0, yd) = yT
d H̃L̃sx0 n 1Ms+1 . (3.5)

In order to convert (3.5) into the form of (3.1), we use the
properties of STP and swap matrices as follows.

L̃sx0 n 1Ms+1

= (LW[N,M])sx0 n
s+1
i=1 1M

= (LW[N,M])s−1LW[N,M]x0 n 1M n
s
i=1 1M

= (LW[N,M])s−1L n 1M n x0 n
s
i=1 1M

= (LW[N,M])s−2L n 1M n (L n 1M n x0) ns−1
i=1 1M

= · · ·

= (L n 1M)s n x0 n 1M .

By straightforward computation, the right side of (3.5) can
be rewrited as yT

d H̃(L n 1M)s n x0 n 1M = yT
d HW[N,M](L n

1M)sx01M = yT
d (H n 1M)(L n 1M)sx0. Then (3.1) can be

obtained. �

Remark 3.1. Formula (3.1) reflects the precise number of

different paths from a given state to an objective output.

But as for output controllability task, we only focus on the

existence of paths instead of the precise number. Hence, the

matrix algebra above can simply be replaced by Boolean

algebra.

For the simplification of expression, we define the sth step
input-output transfer matrix of MLCN (2.3) as

Cs :=

∑
B

M

i=1

Hδi
M

 ×B

∑
B

M

i=1

Lδi
M

(s)

∈ BP×N , (3.6)

and set
C :=

∑
B

MN

s=1

Cs ∈ BP×N , (3.7)
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which is called the output controllability matrix.

Resorting to the definitions given in this subsection, some
necessary and sufficient conditions on output controllability
of MLCN (2.3) can be obtained as follows.

Theorem 3.1. MLCN (2.3) is

1) output controllable from δ
j
N to δi

P at the sth step, if and

only if (Cs)i j > 0.

2) output controllable from δ
j
N to δi

P, if and only if (C)i j >

0.

3) output controllable at δ j
N , if and only if Col j(C) > 0.

4) output controllable, if and only if C > 0.

Proof. 1) Referring to Lemma 3.1, (Cs)i j > 0 is equivalent
to l(s; δ j

N , δ
i
P) = (δi

P)T (H n 1M)(L n 1M)sδ
j
N > 0, which

means that there exists at least one control sequence
{u(0), u(1), · · · , u(s)} that steer MLCN (2.3) from x0 = δ

j
N

to yd = δi
P in sth step, in other words, MLCN (2.3) is output

controllable from δ
j
N to δi

P at the sth step.

2) According to 1) and Definition 3.1, MLCN (2.3) is
output controllable from δ

j
N to δi

P, if and only if there exists a
positive integer S , such that

(∑
B

S
s=1Cs

)
i j
> 0. When H and

L are given, the matrix Cs is determined only by the index
s. Noting that the matrix M given by (14) in [8] is equal to∑

B
2m

i=1Lδi
2m , and from Corollary 3.2 of [8], we get that the

upper bound of S is MN.

The discussions of 3)-4) are similar to 1)-2), and they can
be easily obtained based on Definition 3.1. Thus, we omit
them.

The proof is completed. �

Next, an algorithm (Algorithm 1) is proposed to find a
control, which steers δ j

N to δi
P. Since there can be different

integer k satisfying Colk
(
(δi

P)T H̃L̃sδ
j
N

)
, 0, it leads to

several control sequences. In this paper, we just care about
the existence of control sequence.

Example 3.1. Consider a reduced BCN model [24] for the

lac operon in the bacterium Escherichia coli:
x1(t + 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)) ,
x2(t + 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),
x3(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))) ,

(3.8)

Algorithm 1: An algorithm for finding a control
sequence to steer δ j

N to δi
P

Input: δ j
N , δ

i
P

Output: {u(0), u(1), · · · , u(s)}
1 Initialization
2 s = 1.
3 If s ≤ MN, do step 4;
4 If (Cs)i j > 0, do step 6;
5 else s← s + 1, do step 3.
6 Calculate H̃, L̃s, and (δi

P)T H̃L̃sδ
j
N .

7 For k = 1→ Ms+1, do step 8;
8 If Colk

(
(δi

P)T H̃L̃sδ
j
N

)
, 0, then return

{u(0), u(1), · · · , u(s)} satisfying ns
i=0u(i) = δk

Ms+1 ;
9 else end.

10 end for.
11 else end.
12 end.

where x1, x2 and x3 are Boolean state variables which

represent lac mRNA, lactose in high concentrations, and

lactose in medium concentrations, respectively; u1, u2 and

u3 are Boolean control inputs which denote extracellular

glucose, high extracellular lactose, and the medium

extracellular lactose, respectively.

In this example, the outputs are assumed as y1(t) = x1(t) ∧ u2(t),
y2(t) = x2(t).

(3.9)

Its algebric form is

x(t + 1) = Lu(t)x(t), y(t) = Hu(t)x(t),

where state x ∈ ∆8, input u ∈ ∆8, output y ∈ ∆4,

L = δ8[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

1, 1, 1, 5, 3, 3, 3, 7, 1, 1, 1, 5, 3, 3, 3, 7,

3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 8],

H = δ4[1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4,

3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4,

1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4,

3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4].
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Then the output controllability matrix can be calculated

as

C =

∑
B

8

i=1

Hδi
8

 ×B

∑
B

64

s=1

∑
B

8

i=1

Lδi
8

(s)

= 14×8.

Hence, system (3.8) with output (3.9) is output

controllable according to Theorem 3.1. More precisely, we

have C3 = 14×8, while C2 , 14×8, which indicates that it’s

output controllable within three steps. Based on Algorithm

1, control inputs can be find to steer each initial state to each

destination output. Taking initial state x0 = δ1
8 for example,

when destination output yd = δ1
4, we find out a control

sequence {u(0) = δ3
8, u(1) = δ3

8, u(2) = δ3
8, u(3) = δ1

8}; When

yd = δ2
4, we have {u(0) = δ1

8, u(1) = δ3
8, u(2) = δ3

8, u(3) = δ1
8};

When yd = δ3
4, we have {u(0) = δ3

8, u(1) = δ3
8, u(2) =

δ3
8, u(3) = δ3

8}; When yd = δ3
4, we have {u(0) = δ1

8, u(1) =

δ1
8, u(2) = δ1

8, u(3) = δ1
8}. The discussion of control sequence

is essentially the same as other x0 ∈ ∆8, and here we omit

them.

4. Observability analysis based on set controllability

In this section, in order to dicuss the problem of
observability of MLCN (2.1), we first recall the set
controllability approach.

Let N :=
{
δ1

N , δ
2
N , · · · , δ

N
N

}
and s ∈ 2N , where 2N is the

power set of N . Now we define the index vector of s, which
is denoted by V(s) ∈ RN , as

[V(s)]i =

1, δi
N ∈ s,

0, δi
N < s.

The family of initial sets P0 and the family of destination
sets Pd are defined as

P0 :=
{
s0

1, s
0
2, · · · , s

0
α

}
⊂ 2N ,

Pd :=
{
sd

1, s
d
2, · · · , s

d
β

}
⊂ 2N ,

(4.1)

where α and β are any positive integers.

Definition 4.1. Consider system (2.3) with the initial and

destination sets defined in (4.1). MLCN (2.3) is

1) set controllability from s0
j to sd

i , if it is controllable from

some x0 ∈ s0
j to some xd ∈ sd

i .

2) set controllability at s0
j , if it is set controllability from

s0
j to each sd

i ∈ Pd.

3) set controllability, if it is set controllability at each s0
j ∈

P0 .

Based on the families of initial and destination sets,
namely P0 and Pd, we define the initial index matrix J0 and
the destination index matrix Jd respectively as

J0 := [V(s0
1),V(s0

2), · · · ,V(s0
α)] ⊂ BN×α,

Jd := [V(sd
1),V(sd

2), · · · ,V(sd
β)] ⊂ BN×β.

(4.2)

Next, we define the set controllability matrix as

S := JT
d ×B M ×B J0 ∈ Bβ×α, (4.3)

where M :=
∑

B
N
s=1

(∑
B

M
i=1Lδi

M

)(s)
is called the control

transfer matrix of MLCN (2.3).
According to the definition of set controllability, the

following proposition is easily verifiable.

Proposition 1. Consider MLCN (2.3) with the family of

initial sets P0 and the family of destination sets Pd defined in

(4.1) as well as the corresponding set controllability matrix

defined in (4.3). Then MLCN (2.3) is

1) set controllable from s0
j to sd

i , if and only if (S)i j = 1;

2) set controllable at s0
j , if and only if Col j(S) = 1β;

3) set controllable, if and only if S = 1β×α.

Definition 4.2. MLCN (2.3) is observable, if for any two

different initial states x(0) and x′(0), there exist an integer

t ∈ N+ and an input sequence {u(0), u(1), · · · , u(t)}, such

that the output sequence {y(0), y(1), · · · , y(t)} is distinct to

{y′(0), y′(1), · · · , y′(t)}.

Definition 4.3. Consider MLCN (2.3). A state pair (x, x′) ∈
∆N × ∆N is distinguishable if x , x′ and there exist an

input u ∈ ∆M , such that Hux , Hux′. Otherwise,
(x, x′) is called indistinguishable. We denote Θ, Ξ as

the set of distinguishable and indistinguishable state pairs,

respectively.

Lemma 4.1. Split H into M square blocks as H =

[H1,H2, · · · ,HM]. The state pair (δi
N , δ

j
N) is digtinguishable,

if and only if there exist an integer k ∈ [1,M], such that

(HT
k Hk)i j = 0 = (HT

k Hk) ji.
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To investigate the relationship between two different
initial states and their output trajectories integrally, we
introduce an augmented MLCN as x′(t + 1) = Lu(t)x′(t),

y(t) = Hu(t)x′(t).
(4.4)

Let z(t) = x(t)n x′(t) and g(t) = y(t)ny′(t). Exploting STP
method, we can combine system (2.3) and (4.4) into a new
MLCN, for which the algebraic form can be expressed as z(t + 1) = Eu(t)z(t),

g(t) = Gu(t)z(t),
(4.5)

where

E := L(IMN ⊗ L)(IM ⊗W[M,N])ΦM ∈ LN2×MN2 ,

G := H(IMN ⊗ H)(IM ⊗W[M,N])ΦM ∈ LP2×MN2 .

According to Defnition 4.3, we partition the product state
space ∆N × ∆N into three disjoint subsets as

S n := {z := x n x′|x , x′,Hk x = Hk x′,∀k ∈ [1,M]} ;
S d := {z := x n x′|x , x′,Hk x , Hk x′,∃k ∈ [1,M]} ;
S e := {z := x n x′|x = x′} .

(4.6)

Then the observability problem of system (2.3) can be
converted into a set controllability problem of system (4.5).
To utilize the set controllability technique, we set P0 :=⋃

z∈S n
{z} and Pd := S d. Then the corresponding index

matrices J0 and Jd can be obtained. The set controllability
matrix can be calculated as

S = JT
d ×B M ×B J0 ∈ L1×|S n |,

where M =
∑

B
N2

s=1

(∑
B

M
i=1Eδi

M

)(s)
is the control transfer

matrix of MLCN (4.5).

Theorem 4.1. MLCN (2.3) is observable, if and only if

MLCN (4.5) is set controllable from P0 to Pd as defined

above (e.i., S = 1T
|S n |

).

Proof. (Necessity.) Suppose that MLCN (2.3) is observable,
but S , 1T

|S n |
. Without loss of generality, we assume that

there exists an integer i ∈ [1, |S n|], such that Si = 0. Then,
the ith entry z = x n x′ ∈ P0 can never be driven to Pd under

any possibile control sequences. According to the state-
space partition (4.6), this means that the state z = xn x′ ∈ S n

can only stay in S n or be transferred into S e without passing
S d by any input sequence. In this case, the output sequences
starting from two initial states x , x′ are the same all the
time by any input sequence. Hence, MLCN (2.3) is not
observable, which is in contradiction with the assumption.

(Sufficiency.) If system (4.5) is set controllable from
P0 to Pd, for any indistingushable state pair (x0, x′0) ∈ Θ,
x0 , x′0, there must exist an integer k ∈ N+ and an input
sequence {u(0), u(1), · · · , u(k − 1)}, steering (x0, x′0) ∈ Θ to
(xd, x′d) ∈ Ξ. Without loss of generality, we just assume
that (xd, x′d) is distinguishable under control ud ∈ ∆M . Take
u(k) = ud, then the output sequences stemming from x0

and x′0 satisfy {y(0), y(1), · · · , y(k)} , {y′(0), y′(1), · · · , y′(k)}
by control sequence {u(0), u(1), · · · , u(k)}, which proves that
MLCN (2.3) is observable. �

Remark 4.1. Suppose that MLCN (2.3) is observable. From

the proof above, the input sequence {u(0), u(1), · · · , u(k)}
that distinguish between x0 and x′0 can also be obtained.

Example 4.1. Reconsider the reduced lac operon model in

Example 3.1. First, the matrices E and G of the combined

system can be easily computed as

E = δ64[64, 64, 64, · · · , 60, 60, 60, 64] ∈ L64×512,

G = δ16[1, 1, 2, 2, · · · , 15, 15, 16, 16] ∈ L16×512.

Second, we can obtain

S n =
{
δ2

64, δ
9
64, δ

20
64, δ

27
64, δ

38
64, δ

45
64, δ

56
64, δ

63
64

}
;

S e =
{
δ1

64, δ
10
64, δ

19
64, δ

28
64, δ

37
64, δ

46
64, δ

55
64, δ

64
64

}
;

S d =
{
δi

64 : i ∈ [1, 64], δi
64 < S n ∪ S e

}
.

Utlizing the family of initial set P0 =
⋃

z∈S n
{z} and the

destination set Pd = S d, we have

J0 = δ64[2, 9, 20, 27, 38, 45, 56, 63];
Jd =

∑
δi

64∈S d
δi

64.

It follows that

S = JT
d ×B M ×B J0 = [0 0 1 1 0 0 1 1] , 1T

8 ,

where M =
∑

B
64
s=1

(∑
B

8
i=1Eδi

8

)(s)
.

According to Theorem 4.1, system (3.8) with output (3.9)
is not observable.
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5. Comparisons with conventional MLCNs

In the above sections, we have investigated the output
controllability of a specific MLCN (2.3), of which the
upating of outputs is determined by both inputs and states.
Note that if the output evlution depends on states only, then
MLCN (2.3) will turn into an ordinary MLCN. Thus, in the
following sequel, we will make comparisons between them.

Recall a conventional and widely studied MLCN, with n

nodes, m control inputs and p outputs as

x1(t + 1) = f1
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

x2(t + 1) = f2
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

...

xn(t + 1) = fn
(
x1(t), · · · , xn(t); u1(t), · · · , um(t)

)
,

y1(t) = ĥ1
(
x1(t), · · · , xn(t)

)
,

y2(t) = ĥ2
(
x1(t), · · · , xn(t)

)
,

...

yp(t) = ĥp
(
x1(t), · · · , xn(t)

)
,

(5.1)

where fi (i = 1, 2, · · · , n), ĥ j ( j = 1, 2, · · · , p) are Boolean
functions, and fi (i = 1, 2, · · · , n) are the same as MLCN
(2.1).

Let x(t) = nn
i=1xi(t) ∈ ∆N , u(t) = nm

k=1uk(t) ∈ ∆M and
y(t) = n

p
j=1y j(t) ∈ ∆P. Using STP method, we can obtain its

equivalent algebraic equations: x(t + 1) = Lu(t)x(t),
y(t) = Ĥx(t),

(5.2)

where L ∈ LN×MN and Ĥ ∈ LP×N .
According to [17] , the output controllability matrix of

MLCN (5.2) is

Ĉ :=
∑
B

MN

i=1

Ĉs ∈ BP×N , (5.3)

where

Ĉs := Ĥ ×B

∑
B

M

i=1

Lδi
M

(s)

∈ BP×N , (5.4)

represents the sth step input-output transfer matrix.
Note that the only difference between MLCN (2.3) and

MLCN (5.2) is the evolution of outputs. In order to estabilsh
connections between MLCN (2.3) and MLCN (5.2), we split
H into M square blocks as H = [H1,H2, · · · ,HM] and
assume that there exists k ∈ [1,M], such that Hk = Ĥ.

Based on equation (3.6) and (5.4), the sth step input-
output transfer matrix of MLCN (2.3) can be computed as

Cs =

∑
B

M

i=1

Hi

 ×B

∑
B

M

i=1

Lδi
M

(s)

= Ĉs +B

∑
B

k−1

i=1

Hi +B

∑
B

M

i=k+1

Hi

 ×B

∑
B

M

i=1

Lδi
M

(s)

.

Referring to the definition of output controllability in [17],
the following result can be verified easily.

Theorem 5.1. Consider MLCN (2.3) and MLCN (5.2).
Suppose that there exists k ∈ [1,M], such that Hk = Ĥ.

If MLCN (5.2) is output controllable, then MLCN (2.3) is

output controllable.

Next, an illustrate biological example is given.

Example 5.1. Reconsider the lac operon regulatory network

model (3.8) in Example 3.1 and Example 4.1. Now, assume

that the outputs are  y1(t) = x1(t),
y2(t) = x2(t).

(5.5)

Its algebric form is

x(t + 1) = Lu(t)x(t), y(t) = Ĥx(t),

where state x ∈ ∆8, input u ∈ ∆8, output y ∈ ∆4,

Ĥ = δ4[1, 1, 2, 2, 3, 3, 4, 4].

Firstly, we study the output controllability of system (3.8)
with output (5.5). By straightforward computation, we have

Ĉ = Ĥ ×B

∑
B

64

s=1

∑
B

8

i=1

Lδi
8

(s)

= 14×8.

Hence, system (3.8) with output (5.5) is output controllable.

More precisely, we have Ĉ3 = 14×8, while Ĉ2 , 14×8, which

indicates that it’s output controllable within three steps.

Compared with outputs (3.9), and split the network

transition matrix H into 8 square blocks as H =

[H1,H2, · · · ,H8], thus we have Ĥ = H1 = H2 = H5 = H6.

According to Theorem 5.1, we conclude that system (3.8)
with output (3.9) is output controllable, which matches the

result in Example 3.1.
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Remark 5.1. The converse proposition of Theorem 5.1

does not hold. A counterexample with regard to system

(3.8) is presented as follows. Assume that the algebric

form of outputs (5.5) is replaced by y(t) = Ĥx(t) =

δ4[3, 3, 4, 4, 3, 3, 4, 4]x(t). It’s obvious that Ĥ = H3 = H4 =

H7 = H8, but

Ĉ =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 ,
which indicates that it is not output controllable. Thus,

the converse proposition of Theorem 5.1 does not hold

generally.

Next, we consider the observability problem of these
systems. The observability of MLCN (5.2), deeply dicussed
in [7] and [20], can be deduced from the definitions and
theorem propsosed in Section 4 as well. Following the
progress shown in (4.4)-(4.6), we construct the combined
system for MLCN (5.2) as z(t + 1) = Eu(t)z(t),

g(t) = Ĝz(t),
(5.6)

where E := L(IMN ⊗ L)(IM ⊗ W[M,N])ΦM ∈ LN2×MN2 , Ĝ :=
Ĥ(IN ⊗ Ĥ) ∈ LP2×N2 .

And the product state space ∆N × ∆N can be divided into
three disjoint subsets as

Ŝ n :=
{
z := x n x′|x , x′, Ĥx = Ĥx′

}
;

Ŝ d :=
{
z := x n x′|x , x′, Ĥx , Ĥx′

}
;

Ŝ e := {z := x n x′|x = x′} .

(5.7)

Correspondingly, we set P̂0 :=
⋃

z∈Ŝ n
{z} and P̂d := Ŝ d, as

well as the index matrices Ĵ0 and Ĵd. The set controllability
matrix of MLCN (5.2) can be obtained as:

Ŝ := ĴT
d ×B M ×B Ĵ0 ∈ Bβ×α, (5.8)

where M :=
∑

B
N
s=1

(∑
B

M
i=1Lδi

M

)(s)
is the same as the control

transfer matrix of MLCN (2.3).
Referring to the definition of observability in [20], we

have the following result.

Lemma 5.1. MLCN (5.2) is observable, if and only if MLCN

(5.6) is set controllable from P̂0 to P̂d as defined above (e.i.,

Ŝ = 1T
|Ŝ n |

).

Theorem 5.2. Consider MLCN (2.3) and MLCN (5.2),
supposing that there exists k ∈ [1,M], such that Hk = Ĥ. If

MLCN (5.2) is observable, then MLCN (2.3) is observable.

Proof. According to the partition of the product state space
and the assumption that Hk = Ĥ, we have S e = Ŝ e, Ŝ d ⊂ S d,
and thus S n ⊂ Ŝ n. Since MLCN (5.2) is observable, that is
MLCN (5.6) is set controllable from P̂0 to P̂d, then MLCN
(4.5) is set controllable from P0 to Pd, which means MLCN
(2.3) is observable. �

Example 5.2. Reconsider the observability of lac operon

regulatory network model (3.8) in Example 5.1.

As discussed in Example 3.1, system (3.8) with output

(3.9) is not observable. Thus, according to the inverse

negative proposition of Theorem 5.2, system (3.8) with

output (5.5) is unobservable.

Remark 5.2. The inverse proposition of Theorem 5.2 does

not hold. With regard to system (3.8), assume that the

algebraic form of outputs is y(t) = Hu(t)x(t), where

H = δ4[1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4,

1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4,

1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4,

1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4].

It’s obvious that every state pair (x, x′), x , x′, is

distinguishable in this case. Hence, it is observable.

Compared with system (3.8) with output (5.5), although

Ĥ = H1 = H2 = H5 = H6, system (3.8) with output (5.5) is

unobservable. Therefore, when MLCN (2.3) is observable,

we can’t always conclude that MLCN (5.2) is observable.

6. An illustrative example

In this section, we consider a hydrogeological example,
proposed in [23] originally, to illustrate the main results.

Example 6.1. Consider the algebraic representation of a

hydrogeological example in [23],
c(t + 1) = C n u(t) n c(t),
a(t + 1) = A n v3(t) n a(t),
v4(t) = Hc n c(t),
m(t) = M n v(t) n a(t),

(6.1)
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where C = δ5[2, 3, 4, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
A = δ3[2, 3, 3, 1, 1, 1], Hc = δ2[2, 2, 2, 2, 1], M =

δ3[2, 2, 1, 2, 2, 2, 2, 2, 2, · · · , 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
∈ L3×48; c(t) ∈ ∆5 and a(t) ∈ ∆3 represent the

corresponding counters of contex system and monitoring

system; m(t) ∈ ∆3 is the output of monitoring

system, which divides the situation into three typies

as ”alarm”, ”attention” and ”nomal”, according to

the obtained data; u(t) = u1(t) n u2(t) ∈ ∆4 and

v(t) = v1(t) n v2(t) n v3(t) n v4(t) ∈ ∆16 represent the

corresponding contex input vector and monitoring input

vector. Here, u1(t), u2(t), v1(t), v2(t), v3(t) ∈ ∆2 are used

to descirbe inputs representing earthquake, snow, terrain

temperature, snow height and accelerometer, respectively;

v4(t) ∈ ∆2, namely contex-alert, is both contex output and

monitoring input, which can forecast danger or quiet of the

contex system.

Denote u(t) := u(t) n v1(t) n v2(t) n v3(t) ∈ ∆32 as input,

x(t) := c(t)na(t) ∈ ∆15 as state vector, and y(t) := m(t) ∈ ∆3

as output, then system (6.1) can be converted into a standard

MLCN in the form of (2.3), and the corresponding structure

matrices can be computed as L = [(C⊗1T
8 )⊗ (1T

16⊗A)](I32⊗

W[32,5])Φ32 ∈ L15×480, H = (1T
4 ⊗ M)(I32 ⊗Hc) ∈ L3×480.

Now, we investigate the output controllability of system

(6.1). The sth step input-output transfer matrix is

Cs =

∑
B

32

i=1

Hδi
M

 ×B

∑
B

32

i=1

Lδi
M

(s)

∈ B3×15.

By straightforward computation, we have C4 = 13×15, while

C3 , 13×15. Therefore, according to Theorem 3.1, we

conclude that system (6.1) with a free control sequence is

output controllable at the 4th step, and it’s also output

controllable. Meanwhile, different control inputs can be

obtained to drive each initial state to destination output by

Algorithm 1.

Moreover, observability of system (6.1) can also be

verified by Theorem 4.1. According to the definition of

distinguishable state pairs, (δi
15, δ

15
15), i = 1, 2, · · · , 14 is

digtinguishable under input u = δ1
32, while the rest state

pairs are indigtinguishable. Hence, the product state space

can be partition into the following three subsets:

S d = {δ15
225, δ

30
225, δ

45
225, δ

60
225, δ

75
225, δ

90
225, δ

105
225, δ

120
225, δ

135
225, δ

150
225,

δ165
225, δ

180
225, δ

195
225, δ

210
225, δ

211
225, δ

212
225, δ

213
225, δ

214
225, δ

215
225, δ

216
225,

δ217
225, δ

218
225, δ

219
225, δ

220
225, δ

221
225, δ

222
225, δ

223
225, δ

224
225};

S e = {δ1
225, δ

4
225, δ

9
225, δ

16
225, δ

25
225, δ

36
225, δ

49
225, δ

64
225, δ

81
225, δ

100
225,

δ121
225, δ

144
225, δ

169
225, δ

196
225, δ

225
225};

S n = {δi
225 : i ∈ [1, 225], δi

225 < S d ∪ S e}.

Subsequently, the family of initial sets P0 :=
⋃

z∈S n
{z} and

the family of destination sets Pd := S d can be obtained,

as well as the corresponding index matrices J0 and Jd,

according to (4.2). What’s more, the network transition

matrix E of the combined system can be computed as E =

L(I480 ⊗ L)(I32 ⊗W[32,15])Φ32 ∈ L225×7200. Therefore, we get

the set controllability matrix as

S = JT
d ×B M ×B J0 ∈ L1×182,

where M =
∑

B
225
s=1

(∑
B

32
i=1Eδi

32

)(s)
∈ L225×225.

By calculation, we have S , 1T
182, which implies that

system (6.1) is not observable.

7. Conclusions

In this paper, output controllability and observability of
MLCNs have been investigated. Utilizing the effective
technique of semi-tensor product and swap matrices, we
have obtained a formula for the number of different control
sequences that steers a MLCN from a given initial state
to an objective output in a given number of time steps.
Then the corresponding output controllablity matrix has
been derived, based on which we obtain some necessary and
sufficient conditions for output controllability. Additionally,
we introduce the augmented system and convert the
observability problem of the original MLCN into the set
controllability task of the combined system, thus criteria are
obtained accordingly. Furthermore, we make a comparison
between the conventional and the considered MLCNs.
Finally, a hydrogeological example has been studied to
demonstrate the efficiency of the theoretical results.
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