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Abstract: In this paper, we study the problem of partitioning the vertex set of a planar graph with girth restriction into parts, also
referred to as color classes, such that each part induces a graph with components of bounded order. An (I, Ok)-partition of a graph G is
the partition of V(G) into two non-empty subsets V1 and V2, such that G[V1] is an edgeless graph and G[V2] is a graph with components
of order at most k. We prove that every planar graph with girth 9 and without intersecting 9-face admits an (I, O6)-partition. This
improves a result of Choi, Dross and Ochem (2020) which says every planar graph with girth at least 9 admits an (I, O9)-partition.
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1. Introduction

All graphs considered in this paper are finite, simple, and
undirected. Given a graph G, we use V(G), E(G), and F(G)
to denote the vertex set of G, edge set of G and face set of G,
respectively. We say that two faces are intersecting if they
have at least one vertex in common. Let g(G) denote the
girth of G, which is the length of a shortest cycle in G.

Given a graph G, let Gi be a class of graphs for 1 ≤ i ≤ m.
A (G1, G2, . . . , Gm)-partition of a graph G is the partition
of V(G) into m sets V1,V2, . . . ,Vm, such that for all 1 ≤ i ≤

m, the induced subgraph G[Vi] belongs to Gi. We use I,
Ok, Pk, F and Fd to denote the class of edgeless graphs
(independent sets), the class of graphs whose components
have order at most k, the class of graphs whose components
are paths of order at most k, the class of forests and the class
of forests with maximum degree d . In particular, an (I,
Ok)-partition of a graph G is the partition of V(G) into two
non-empty subsets V1 and V2, such that G[V1] is an edgeless
graph and G[V2] is a graph with components of order at most
k. A planar graph G, equipped with a drawing in the plane so
that two edges intersect only at their ends, ia called a plane
graph.

There are many results on partitions of graphs. The Four
Color Theorem [1, 2] implies that every planar graph has an
(I, I, I, I)-partition. Alon et al. [5] showed that there is
no finite k such that every planar graph has an (Ok, Ok, Ok)-
partition. Poh [6] showed that every planar graphs admit an
(F2, F2, F2)-partition. Borodin [8] proved that every planar
graph admits an (I, F , F )-partition.

We focus on partitions of planar graphs with girth
restrictions. Borodin, Kostochka, and Yancey [4] proved that
a planar graph with girth at least 7 has a (P2, P2)-partition.
Borodin and Glebov [7] showed that every planar graph with
girth 5 admits an (I, F )-partition. Dross, Montassier, Pinlou
[9] proved that every triangle-free planar graph admits an
(F5, F )-partition. Choi, Dross and Ochem [3] proved that
every planar graph with girth at least 10 admits an (I, P3)-
partition and every planar graph with girth at least 9 admits
an (I, O9)-partition. Choi, Dross and Ochem [3] give an
example that a planar graph with girth 7 and maximum
degree 4 that has no (I, P3)-partition.

In this paper, we establish the following result.

Theorem 1. Every plane graph with girth at least 9 and

without intersecting 9-face admits an (I, O6)-partition.
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2. Proof of Theorem 1

2.1. Structure properties of minimum counterexample

Assume that G is the counterexample to Theorem 1
such that G is vertex-minimal. The graph G is connected,
since otherwise at least one of its components would be a
counterexample with fewer vertices than G. This further
implies that every vertex of G has degree at least 1.

For an element x ∈ V(G)∪F(G), the degree of x is denoted
by d(x). A vertex v is called a k-vertex, k+-vertex, or k−-
vertex if d(v) = k, d(v) ≥ k, or d(v) ≤ k, respectively.
We define a k-face, k+-face, or k−-face analogously. Let
N(v) denote the set of the neighbours of v. Let N[v] denote
N(v) ∪ {v}. A neighbour of the vertex v with degree k, at
least k, or at most k is called a k-neighbour, k+-neighbour,
or k−-neighbour of v, respectively. We use dk( f ), dk+ ( f )
and dk− ( f ) to denote the number of k-vertices incident with
f , k+-vertices incident with f and k−-vertices incident with
f respectively. For f ∈ F(G), we use b( f ) to denote the
boundary walk of f , and f = [v1v2 . . . vm] if v1, v2, . . . , vm are
the boundary vertices of f in cyclic order. An (`1,`2,. . . ,`k)-
face is a k-face [v1v2 . . . vk] with d(vi) = `i for each i ∈

{1, 2, . . . , k}. An (`1,`2,. . . ,`k)-path is a k-path v1v2 . . . vk with
d(vi) = `i for each i ∈ {1, 2, . . . , k}, analogously.

Given an (I, Ok)-partition of G, we will assume that
V(G) is partitioned into two parts I and O where I is an
independent set and O induces a graph whose components
have order at most k; we also call the sets I and O colors, and
a vertex in I and O is said to have color I and O, respectively.

Claim 1. Every vertex in G has degree at least 2.

Proof. Let v be a vertex of degree 1 in G. Since the graph
G − v has fewer vertices than G, it admits an (I, O6)-
partition, which can be extended to an (I, O6)-partition of
G by giving to v the color distinct from that of its neighbour.
This contradicts G as a counterexample. �

Claim 2. Every 6−-vertex in G has at least one 3+-

neighbour.

Proof. Let v be a 6−-vertex where every neighbour has
degree 2 and let G

′

= G − N[v]. Because the girth of
graph G is at least 9, every 2-neighbour of v can not have
neighbours in N(v) and the neighbours of 2-neighbour in G

′

are different. Since G
′

has fewer vertices than G, it admits
an (I, O6)-partition. For every neighbour u of v that has a
neighbour u

′

in G
′

, color u with the color distinct from that
of u

′

. And color v with color O. Obviously, it does not give
an (I, O6)-partition of G only when all uncoloured vertices
with O. Therefore, we can recolor v with I to obtain an (I,
O6)-partition of G, which is a contradiction. �

In G, a chain is a longest induced path whose internal
vertices all have degree 2. A chain with k internal vertices
is a k-chain. Every end-vertex of a chain is a 3+-vertex. By
Claim 2, there are no 3-chains in G. A 3-vertex is weak if
it has two 2-neighbours; a 3-vertex is bad if it is weak and
incident with a 2-chain; and a 3-vertex is good otherwise.

Remark 3. Let v1,v2,v3,v4 be four vertices of 2-chain, where

v2 and v3 are 2-vertices. Whether v1 has been colored I or

O, we choose one of the four coloring methods in Table 1 to

color the other three uncolored vertices of the 2-chain in the

following proofs.

Table 1. Four coloring methods of 2-chain.

v1 v2 v3 v4

I O I O

I O O I

O I O O

O I O I

Claim 4. Every d(v)-vertex v(3 ≤ d(v) ≤ 6)in G is incident

with at most (d(v) − 2) 2-chain.

Proof. By Claim 2, v has at least one 3+-neighbour v1.
Assume to the contrary that v is incident with (d(v) − 1) 2-
chains. Let graph G

′

be a graph obtained from G by deleting
v and all 2-vertices of 2-chains incident with v. By the
minimality of G, G

′

has an (I, O6)-partition. For all the 3+-
vertices other than v of 2-chains that have been colored, we
let them correspond to v1 in the Table 1. Now we color the
uncolored vertices. Firstly, we color v with the color distinct
from that of v1. Then according to Remark 3, no matter what
color v and all the 3+-vertices other than v of 2-chains are
colored, we can always choose appropriate methods from
Table 1 to color all the uncolored 2-vertices such that G

admits an (I, O6)-partition. This is a contradiction. �
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Claim 5. Every 3-vertex v is adjacent to at most one weak

3-vertex.

Proof. Let v1, v2 and v3 be the neighbours of v. Assume
to the contrary that v is adjacent to 2 weak 3-vertices. That
is, d(v1) = d(v2) = 3 and d(v3) ≥ 2. Let u1 and u2 be
two 2-neighbours of v1. Let w1 and w2 be two 2-neighbours
of v2. Let z1 and z2 be the neighbours other than v1 of u1

and u2, respectively. By the minimality of G, G
′

= G −

{v, v1, v2, u1, u2,w1,w2} has an (I, O6)-partition. Now we
color the uncolored vertices. Firstly, we color v with the
color distinct from that of v3. Secondly, we consider the
coloring methods of v1, u1 and u2. We give the following
three coloring methods. If z1 and z2 are colored O, then
we assign I to u1, u2 and assign O to v1. If z1 and z2 are
colored I, then we assign O to u1, u2 and assign O to v1. If
z1 and z2 are colored I and O respectively, then we assign
O to v1, u1 and assign I to u2. In all of the above cases,
we can assign O to v1. The coloring methods of v2, w1 and
w2 are similar to those of v1, u1 and u2. We can color the
remaining uncolored vertices according to the given three
coloring methods. It does not give an (I, O6)-partition of
G only when every vertex in {v, v1, v2, u1, u2,w1,w2} with O.
Therefore, we can recolor v1 and v2 with I to obtain an (I,
O6)-partition of G, which is a contradiction. �

Claim 6. Every 4-vertex v incident with two 2-chains can

not be adjacent to a weak 3-vertex.

Proof. Let v1, v2, v3 and v4 be the neighbours of v. Assume
to the contrary that v is adjacent to at least weak 3-vertex.
That is, d(v1) = d(v2) = 2, d(v3) = 3 and d(v4) ≥ 2. Let
ui be the 2-vertex adjacent to vi for i = 1, 2. Let w1 and
w2 be two 2-neighbours of v3. By the minimality of G, G

′

=

G−{v, v1, v2, v3, u1, u2,w1,w2} has an (I, O6)-partition. Now
we color the uncolored vertices. Firstly, we color v with the
color distinct from that of v4. Then according to Remark 3
and the given three coloring methods of v1, u1 and u2 in the
proof of Claim 5, we can always choose appropriate methods
to color the remaining uncolored vertices such that G admits
an (I, O6)-partition. This is a contradiction. �

Claim 7. Let v1 and v2 be two adjacent 3-vertices.

(1)These two vertices can not both be weak 3-vertices.

(2)If v1 is a weak 3-vertex, then v2 can not be incident with

2-chain.

Proof. (1)Assume to the contrary that v1 and v2 be two weak
3-vertices. Let u1 and u2 be two 2-neighbours of v1. Let w1

and w2 be two 2-neighbours of v2. By the minimality of
G, G

′

= G − {v1, v2, u1, u2,w1,w2} has an (I, O6)-partition.
Now we color the uncolored vertices. According to the given
three coloring methods of v1, u1 and u2 in the proof of Claim
5, we can always choose appropriate methods to color all
uncolored vertices such that G admits an (I, O6)-partition.
This is a contradiction.

(2)By (1), we know v2 has a 3+-neighbour z1. Assume to
the contrary that v2 is incident with a 2-chain. Let u1 and u2

be two 2-neighbours of v1. Let w1 and w2 be two 2-vertices
of 2-chain. Here w1 is a neighbour of v2. By the minimality
of G, G

′

= G−{v1, v2, u1, u2,w1,w2} has an (I, O6)-partition.
Now we color the uncolored vertices. Firstly, we color v2

with the color distinct from that of z1. Then according to
Remark 3 and the given three coloring methods of v1, u1 and
u2 in the proof of Claim 5, we can always choose appropriate
methods to color the remaining uncolored vertices such that
G admits an (I, O6)-partition. This is a contradiction. �

Claim 8. Let v1, v2 and v3 be three 3-vertices such that vivi+1

∈ E(G), where i = 1, 2.

(1)If v1 is a weak 3-vertex and v2 is incident with one 1-

chain, then v3 can not be incident with 2-chain.

(2)If v2 is adjacent to a 2-vertex, then v1 and v3 can not

both be incident with 2-chain.

Proof. (1)By Claim 5, we know v3 has at least a 3+-
neighbour z1. Assume to the contrary that v3 is incident
with a 2-chain. Let u1 and u2 be two 2-neighbours of v1.
Let w1 and w2 be two 2-vertices of 2-chain. Let y1 and y2

be the neighbours other than v1 of u1 and u2, respectively.
Let x1 be one 2-neighbour of v2. Let x2 be an another 3+-
vertex of 1-chain incident with v2. By the minimality of
G, G

′

= G − {v1, v2, v3, u1, u2,w1,w2, x1} has an (I, O6)-
partition. Now we color the uncolored vertices. Firstly, we
color v3 with the color distinct from that of z1. Secondly,
we consider the coloring methods of x1 and v2. We give the
following two coloring methods. If x2 is colored I, then we
assign O to x1 and assign O to v2. If x2 is colored O, then
we assign I to x1 and assign O to v2. So, we can assign O to
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v2 whatever x2 has been colored I or O. Then we consider
the coloring methods of v1, u1 and u2. We give the following
three coloring methods. If y1 and y2 are colored O, then we
assign I to u1, u2 and assign O to v1. If y1 and y2 are colored
I, then we assign O to u1, u2 and assign I to v1. If y1 and y2

are colored I and O respectively, then we assign O to v1, u1

and assign I to u2. Then according to Remark 3 and the given
these coloring methods , we can always choose appropriate
methods to color the remaining uncolored vertices such that
G admits an (I, O6)-partition. This is a contradiction.

(2)Assume to the contrary that v1 and v3 are both incident
with a 2-chain. Let u1 and u2 be two 2-vertices of 2-chain
incident with v1. Let w1 and w2 be two 2-vertices of 2-chain
incident with v3. Let x1 be one 2-neighbour of v2. Let z1

and z2 be other neighbours of v1 and v3 respectively. By the
minimality of G, G

′

= G − {v1, v2, v3, u1, u2,w1,w2, x1} has
an (I, O6)-partition. Now we color the uncolored vertices.
According to Remark 3 and the given two coloring methods
of x1 and v2 in the proof of Claim 8(1), we can always choose
appropriate methods to color all uncolored vertices such that
G admits an (I, O6)-partition. This is a contradiction. �

Claim 9. Let v1 and v3 be two 3-vertices and v2 is the

common 2-neighbor of v1 and v3. Then v1 and v3 can not

both be incident with 2-chain.

Proof. Assume to the contrary that v1 and v3 are both
incident with a 2-chain. Let u1 and u2 be two 2-vertices
of 2-chain incident with v1. Let w1 and w2 be two 2-
vertices of 2-chain incident with v3. By the minimality of G,
G
′

= G − {v1, v2, v3, u1, u2,w1,w2} has an (I, O6)-partition.
Now we color the uncolored vertices. Firstly, we assign
O to v2. Then by Remark 3, we can color all uncolored
vertices such that G admits an (I, O6)-partition. This is a
contradiction. �

Claim 10. Let v1, v2, v3 and v4 be four 3-vertices such

that vivi+1 ∈ E(G), where i = 1, 2, 3. If v2 and v3 are both

incident with a 1-chain, then v1 and v4 can not both be weak

3-vertices.

Proof. Assume to the contrary that v1 and v4 be two weak
3-vertices. Let u1 and u2 be two 2-neighbours of v1. Let
w1 and w2 be two 2-neighbours of v4. Let z1 and z2 be 2-
neighbours of v2 and v3 respectively. By the minimality of

G, G
′

= G − {v1, v2, v3, v4, u1, u2,w1,w2, z1, z2} has an (I,
O6)-partition. Now we color the uncolored vertices. We
can color all uncolored vertices according to the given two
coloring methods of x1, v2 and three coloring methods of v1,
u1 and u2 in the proof of Claim 8(1). Obviously, it does not
give an (I, O6)-partition of G only when v1, v2, v3 and v4

are colored with O and at least one of z1 and z2 is colored
with O, say z1. Then we recolor 3-neighbour v2 of z1 with I.
Therefore, we can know G admits an (I, O6)-partition. This
is a contradiction. �

Claim 11. If f is a 9-face with d3( f ) = 9, then these 3-

vertices on f can not all be incident with 2-chain.

Proof. Assume to the contrary that these 3-vertices all
be incident with 2-chain. According to Claim 8(2), this
situation is impossible. �

Claim 12. There are no (3, 2, 2, 3, 2, 3, 2, 3, 2)-faces in G.

Proof. Suppose to the contrary that G contains such a
(3, 2, 2, 3, 2, 3, 2, 3, 2)-face f . By Claim 2, we know the
neighbours of these 3-vertices that are not on f are 3+-
vertices. Let graph G

′

be a graph obtained from G by
deleting all vertices on f . By the minimality of G, G

′

has
an (I, O6)-partition. Now we color the uncolored vertices.
Firstly, we color these 3-vertices on f with the color distinct
from that of their 3+-neighbours. We know these 3-vertices
on f color either I or O. Then we consider the coloring
of 2-vertices on f . If two 3-vertices of 1-chain are colored
O(I), then we assign I(O) to 2-vertex. If two 3-vertices of
1-chain are colored O and I respectively, then we assign O

to 2-vertex. And we assign O to two 2-vertices of 2-chain.
In this way, we can get an (I, O6)-partition of graph G, a
contradiction. �

Claim 13. If f is a (3, 2, 2, 3, 3, 2, 3, 2, 3)-face, then the

neighbours of v1 and v4 that are not on f can not both be

2-vertices.

Proof. Let v
′

1 and v
′

4 be neighbours of v1 and v4 that are
not on f , respectively. Assume to the contrary that v

′

1 and
v
′

4 are both 2-vertices. Let z1 be another neighbour other
than v1 of v

′

1. By Claim 7(2), we know the neighbours of
v5 and v9 that are not on f are 3+-vertices. By Claim 2, we
know the neighbour of v7 that is not on f is a 3+-vertex. Let
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graph G
′

be a graph obtained from G by deleting v
′

1, v
′

4 and
all vertices on f . By the minimality of G, G

′

has an (I,
O6)-partition. Now we color the uncolored vertices. Firstly,
we color v5, v7 and v9 to make their colors different from
their 3+-neighbours that are not on f . Then we consider the
coloring of v1 and v

′

1. If z1 is colored I, then we assign O to
v
′

1 and assign O to v1. If z1 is colored O, then we assign I to
v
′

1 and assign O to v1. So, we can assign O to v1 whatever
z1 has been colored I or O. The coloring methods of v4 and
v
′

4 are similar to those of v1 and v
′

1. Finally, we consider
the coloring of 2-vertices on f . We assign O and I to v2

and v3, respectively. If two 3-vertices of 1-chain are colored
O(I), then we assign I(O) to 2-vertex. If two 3-vertices of
1-chain are colored O and I respectively, then we assign O

to 2-vertex. In this way, we can get an (I, O6)-partition of
graph G, a contradiction. �

Claim 14. If f is a (3, 3, 2, 3, 2, 3, 2, 3, 2)-face, then the

neighbors of v1 and v2 that are not on f are both 3+-vertices.

Proof. Let v
′

1 and v
′

2 be neighbours of v1 and v2 that are not
on f , respectively. By Claim 7(1), we know that one of v

′

1

and v
′

2 is a 3+-vertex. Without loss of generality, let v
′

1 be a
3+-vertex. Assume to the contrary that v

′

2 is a 2-vertex. By
Claim 2, we know the neighbours of v4, v6 and v8 that are not
on f are 3+-vertices. Let graph G

′

be a graph obtained from
G by deleting v

′

2 and all vertices on f . By the minimality of
G, G

′

has an (I, O6)-partition. Now we color the uncolored
vertices. Firstly, we color v1, v4, v6 and v8 to make their
colors different from their 3+-neighbours that are not on f .
Then we consider the coloring of v2 and v

′

2. According to
the coloring methods of v1 and v

′

1 in the proof of Claim 13,
we can color v2 and v

′

2. Finally, we consider the coloring
of 2-vertices on f . If two 3-vertices of 1-chain are colored
O(I), then we assign I(O) to 2-vertex. If two 3-vertices of
1-chain are colored O and I respectively, then we assign O

to 2-vertex. In this way, we can get an (I, O6)-partition of
graph G, a contradiction. �

Claim 15. If f is a (3, 3, 2, 3, 3, 2, 3, 3, 2)-face, then at least

a pair of adjacent 3-vertices on f have two 3+-neighbours

that are not on f .

Proof. By Claim 7(1), we know one neighbour of each pair
of adjacent 3-vertices that is not on f is a 3+-vertex. Assume

to the contrary that the other neighbour of each pair of
adjacent 3-vertices that is not on f is a 2-vertex. Let graph G

′

be a graph obtained from G by deleting all vertices on f and
2-vertices which are not on f and are incident with 3-vertices
on f . By the minimality of G, G

′

has an (I, O6)-partition.
Now we color the uncolored vertices. Firstly, we color non-
weak 3-vertices on f to make their colors different from
their 3+-neighbours that are not on f . Then, we consider the
coloring of weak 3-vertices and their 2-neighbours that are
not f . According to the coloring methods of v1 and v

′

1 in the
proof of Claim 13, we can color weak 3-vertices and their 2-
neighbours that are not f . Finally, we consider the coloring
of 2-vertices on f . If two 3-vertices of 1-chain are colored
O(I), then we assign I(O) to 2-vertex. If two 3-vertices of
1-chain are colored O and I respectively, then we assign O

to 2-vertex. In this way, we can get an (I, O6)-partition of
graph G, a contradiction. �

Claim 16. If f is a (3, 3, 2, 3, 3, 2, 3, 2, 2)-face, then at least

a pair of adjacent 3-vertices on f have two 3+-neighbours

that are not on f .

Proof. By Claim 2, we know the neighbour of v7 that is not
on f is a 3+-vertex. By Claim 7(2), we know the neighbour
of v2 that is not on f is a 3+-vertex. By Claim 7(1), we
know one neighbour of each pair of adjacent 3-vertices that
is not on f is a 3+-vertex. Assume to the contrary that the
other neighbour of each pair of adjacent 3-vertices that is
not on f is a 2-vertex. Let graph G

′

be a graph obtained
from G by deleting all vertices on f and 2-vertices which
are not on f and are incident with 3-vertices on f . By the
minimality of G, G

′

has an (I, O6)-partition. Now we color
the uncolored vertices. Firstly, we color non-weak 3-vertices
on f to make their colors different from their 3+-neighbours
that are not on f . Then, we consider the coloring of weak 3-
vertices and their 2-neighbours that are not f . According to
the coloring methods of v1 and v

′

1 in the proof of Claim 13,
we can color weak 3-vertices and their 2-neighbours that are
not f . Finally, we consider the coloring of 2-vertices on f .
If two 3-vertices of 1-chain are colored O(I), then we assign
I(O) to 2-vertex. If two 3-vertices of 1-chain are colored O

and I respectively, then we assign O to 2-vertex. And we
assign O and I to v8 and v9, respectively. In this way, we can
get an (I, O6)-partition of graph G, a contradiction. �
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2.2. Discharging procedure

To prove Theorem 1, we will get a contradiction by a
discharging procedure. For all x ∈ V(G) ∪ F(G), we define
an initial weight functionω: if v ∈ V(G), letω(v) = 2d(v)−5;
if f ∈ F(G), let ω( f ) = 1

2 d( f ) − 5. The total initial charge is
negative, since Euler’s formula implies∑

v∈V(G)

(2d(v) − 5) +
∑

f∈F(G)

(
1
2

d( f ) − 5) = −10. (2.1)

We then redistribute the charge at the vertices and faces
according to carefully designed discharging rules, which
preserve the total charge sum. Once the discharging is
finished, a new charge function ω

′

is produced. Finally, we
can show that the final charge ω

′

on V(G) ∪ F(G) satisfies∑
x∈V(G)∪F(G)

ω
′

(x) ≥ 0. Then it leads to a contradiction in the

inequality:

0 ≤
∑

x∈V(G)∪F(G)

ω
′

(x) =
∑

x∈V(G)∪F(G)

ω(x) = −10. (2.2)

and thus this completes the proof of Theorem 1. The
discharging rules are as follows.

(R1)Every 2-vertex that belongs to a 1-chain gets charge
1
2 from its each ends, while each 2-vertex that belongs to a
2-chain gets charge 1 from its neighbour of degree greater
than 3.

(R2)Every weak 3-vertex sends charge 1
2 to its adjacent

2-vertex on 2-chain.
(R3)Every good 3-vertex sends charge 1 to its adjacent

2-vertex on 2-chain.
(R4)Each 3+-vertex along its adjacent bad 3-vertex v

sends charge 1
2 to 2-vertex on 2-chain adjacent v

For each 3-vertex v, let α(v) be the remaining charge of v

after rules R1 − R4.
(R5)Each 3-vertex v sends charge α(v) to each incident

9-face.
(R6)Each 4+-vertex sends charge 1

2 to each incident 9-
face.

In the following, we will prove that ω
′

(x) ≥ 0 for all x ∈

V(G) ∪ F(G).

Claim 17. Every vertex v has non-negative final charge.

Proof. Let v be a 2-vertex, which has initial charge −1. If v

belongs to a 1-chain, then ω
′

(v) = −1 + 1
2 × 2 = 0 by R1.

If v belongs to a 2-chain, then ω
′

(v) = −1 + 1
2 + 1

2 = 0 or
ω
′

(v) = −1 + 1 = 0 by R1, R2, R3, and R4.

Let v be a 3-vertex, which has initial charge 1. By the
discharging rules, we only need to show that α(v) ≥ 0. By
Claim 2, we know v has at least a 3+-neighbour v1. By Claim
4, we know v is incident with at most one 2-chain. Suppose
v is a weak 3-vertex. By Claim 7(1), we know v1 can not be
a weak 3-vertex. Then α(v) = 1 − 1

2 −
1
2 = 0 by R1 and R2.

Suppose v is a good 3-vertex. By Claim 5, we know every
3-vertex v is adjacent to at most one weak 3-vertex. If v is
not incident with chains, then α(v) ≥ 1 − 1

2 = 1
2 by R4. If

v is incident with a 1-chain, then α(v) ≥ 1 − 1
2 −

1
2 = 0 by

R1 and R4. If v is incident with a 2-chain, then we know v

can not be adjacent to weak 3-vertices by Claim 7(2). Thus,
α(v) = 1 − 1 = 0 by R3.

Let v be a 4-vertex, which has initial charge 3. By Claim
2, we know v has at least a 3+-neighbour v1. By Claim 4, we
know v is incident with at most two 2-chains. We also know
v incident with two 2-chains can not be adjacent to weak 3-
vertex by Claim 6. Then ω

′

(v) ≥ 3 −max{1 × 2 + 1
2 + 1

2 , 1 +
1
2 × 2 + 1

2 + 1
2 } = 0 by R1, R4 and R6.

Let v be a 5-vertex, which has initial charge 5. By Claim
2, we know v has at least a 3+-neighbour v1. By Claim 4,
we know v is incident with at most three 2-chains. Then
ω
′

(v) ≥ 5 − 1 × 3 − 1
2 −

1
2 −

1
2 = 1

2 by R1, R4 and R6.

Let v be a 6-vertex, which has initial charge 7. By Claim
2, we know v has at least a 3+-neighbour v1. By Claim 4, we
know v is incident with at most four 2-chains. Then ω

′

(v) ≥
7 − 1 × 4 − 1

2 −
1
2 −

1
2 = 3

2 by R1, R4 and R6.

Each 7+-vertex with degree d(v) has initial charge 2d(v)−
5. Then ω

′

(v) ≥ 2d(v) − 5 − d(v) − 1
2 = d(v) − 11

2 ≥
3
2 by R1

and R6. �

Claim 18. Every 10+-face f has non-negative final charge.

Proof. Let f be a 10+-face. We know that a 10+-face is not
involved in discharging rules, soω

′

( f ) = ω( f ) = 1
2 d( f )−5 ≥

1
2 × 10 − 5 = 0. �

Before discussing 9-faces, we give the following two
useful Lemmas.

Lamma 19. If there is a (3, 2, 2, 3, 3, 3)-path on f , then

ω
′

( f ) ≥ 0.
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Proof. Let v
′

i be a neighbour of vi that is not on f (i = 4, 5).
By Claim 5, we know every 3-vertex is adjacent to at most
one weak 3-vertex.

Suppose v4 is a weak 3-vertex. If v
′

5 is a 3+-vertex, then
α(v5) = 1 − 1

2 = 1
2 by R4. So ω

′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.
If v

′

5 is a 2-vertex, then we can know v
′

5 belongs to 1-chain
by Claim 7(2). Then we consider the case of v6. According
to Claim 5 and Claim 8(2), we know v6 is not a weak 3-
vertex and v6 can not be incident with 2-chain. If v6 is not
adjacent 2-vertex, then α(v6) ≥ 1− 1

2 = 1
2 by R4. So ω

′

( f ) ≥
− 1

2 + 1
2 = 0 by R5. If v6 is incident with a 1-chain, then we

can know another 3+-vertex other than v5 of v6 is not a weak
3-vertex by Claim 10. Then α(v6) = 1 − 1

2 = 1
2 by R1. So

ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.

Suppose v4 is a good 3-vertex. If v
′

5 is a 3+-vertex, then
α(v5) ≥ 1 − 1

2 = 1
2 by R4. Thus, ω

′

( f ) ≥ − 1
2 + 1

2 = 0. So
we can assume v

′

5 is a 2-vertex. If v
′

5 belongs to 1-chain,
then we can know v6 is not a weak 3-vertex by Claim 8(1).
Then α(v5) = 1 − 1

2 = 1
2 by R1. So ω

′

( f ) ≥ − 1
2 + 1

2 = 0 by
R5. If v

′

5 belongs to 2-chain, then we consider the case of v6.
According to Claim 7(2) and Claim 8(2), we know v6 is not a
weak 3-vertex and v6 can not be incident with 2-chain. If v6

is not adjacent 2-vertex, Then α(v6) ≥ 1 − 1
2 = 1

2 by R4. So
ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5. If v6 is incident with a 1-chain,
then we can know another 3+-vertex other than v5 of v6 is
not a weak 3-vertex by Claim 8(1). Then α

′

(v6) = 1− 1
2 = 1

2

by R1. So ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5. �

Lamma 20. If there is a (3, 2, 3, 3, 3)-path on f , then

ω
′

( f ) ≥ 0.

Proof. Let v
′

i be a neighbour of vi that is not on f (i = 3, 4,).
By Claim 5, we know every 3-vertex is adjacent to at most
one weak 3-vertex.

Suppose v3 is a weak 3-vertex. If v
′

4 is a 3+-vertex, then
α(v4) ≥ 1 − 1

2 = 1
2 by R4. So ω

′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.
If v

′

4 is a 2-vertex, then we can know v
′

4 belongs to 1-chain
by Claim 7(2). Then we consider the case of v5. According
to Claim 5 and Claim 8(1), we know v5 is not a weak 3-
vertex and v5 can not be incident with 2-chain. If v5 is not
adjacent to 2-vertex, then α(v5) ≥ 1 − 1

2 = 1
2 by R4. So

ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5. If v5 is incident with a 1-chain,
then we can know another 3+-vertex other than v4 of v5 is

not a weak 3-vertex by Claim 10. Then α(v5) = 1 − 1
2 = 1

2

by R1. So ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.

Suppose v3 is a good 3-vertex. If v
′

3 is a 3+-vertex but
not a bad 3-vertex, then α(v3) = 1 − 1

2 = 1
2 by R1. So

ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5. If v
′

3 is a bad 3-vertex, then
we consider the case of v4. According to Claim 5 and Claim
8(2), we know v4 is not a weak 3-vertex and v4 can not be
incident with 2-chain. If v4 is not an adjacent 2-vertex, then
α(v4) ≥ 1 − 1

2 = 1
2 by R4. So ω

′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.
If v4 is incident with a 1-chain, then we can know v5 is not a
weak 3-vertex by Claim 10. Then α(v4) = 1 − 1

2 = 1
2 by R1.

So ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5. �

Claim 21. Every 9-face f has non-negative final charge.

Proof. If f is incident with at least a 4+-vertex, then ω
′

( f ) ≥
1
2 × 9 − 5 + 1

2 = 0 by R6. Now we only need to consider
the situation that f is only incident with 2-vertices and 3-
vertices.

Case 1. d2( f ) = 0.

By Claim 11, we know these 3-vertices on f can not all
be incident with 2-chain. So there is at least one vertex v not
incident with 2-chain. If v is incident with a 1-chain, then
α(v) = 1− 1

2 = 1
2 by R1. If v is adjacent to a 3+-vertex that is

not on f , then α(v) ≥ 1− 1
2 = 1

2 by R4. Soω
′

( f ) ≥ − 1
2 + 1

2 = 0
by R5.

Case 2. d2( f ) = 1.

By Lemma 20, we know ω
′

( f ) ≥ 0.

Case 3. d2( f ) = 2.

For (3, 2, 2, 3, 3, 3, 3, 3, 3)-face, we have ω
′

( f ) ≥ 0 by
Lemma 19.

For (3, 2, 3, 2, 3, 3, 3, 3, 3)-face, (3, 2, 3, 3, 2, 3, 3, 3, 3)-
face and (3, 2, 3, 3, 3, 2, 3, 3, 3)-face, we also have ω

′

( f ) ≥ 0
by Lemma 20.

Case 4. d2( f ) = 3.

For (3, 2, 2, 3, 2, 3, 3, 3, 3)-face, (3, 2, 2, 3, 3, 2, 3, 3, 3)-
face and (3, 2, 2, 3, 3, 3, 2, 3, 3)-face, we have ω

′

( f ) ≥ 0 by
Lemma 19.

For (3, 2, 3, 2, 3, 2, 3, 3, 3)-face and (3, 2, 3, 2, 3, 3, 2, 3, 3)-
face, we also have ω

′

( f ) ≥ 0 by Lemma 20.

For (3, 3, 2, 3, 3, 2, 3, 3, 2)-face, we can know at least a pair
of adjacent 3-vertices on f have two 3+-neighbours that are
not on f by Claim 15. By Claim 10, we know these two
3+-neighbours can not both be weak 3-vertices. So there is
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a 3-vertex v on f such that α(v) = 1 − 1
2 = 1

2 by R1. So
ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.

Case 5. d2( f ) = 4.

For (3, 2, 2, 3, 2, 3, 2, 3, 3)-face, we have ω
′

( f ) ≥ 0 by
Lemma 19.

For (3, 2, 2, 3, 3, 2, 3, 2, 3)-face, we can know the
neighbours of v1 and v4 that are not on f can not both
be 2-vertices by Claim 13. Without loss of generality, let
the neighbour of v4 that is not on f is a 3+-vertex. By
Claim 7(2), v5 is not a weak 3-vertex. By Claim 8(1),
we know 3+-neighbour of v5 that is not on f can not be
a weak 3-vertex. Then α(v5) = 1 − 1

2 = 1
2 by R1. So

ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.

For (3, 3, 2, 3, 2, 3, 2, 3, 2)-face, we can know the
neighbors of v1 and v2 that are not on f are both 3+-
vertices by Claim 14. By Claim 10, we know these two
3+-neighbours can not both be weak 3-vertices. So there
is a 3-vertex v on f such that α(v) = 1 − 1

2 = 1
2 by R1. So

ω
′

( f ) ≥ − 1
2 + 1

2 = 0 by R5.

For (3, 3, 2, 3, 3, 2, 3, 2, 2)-face, we can know at least a
pair of adjacent 3-vertices on f ,say v1 and v2, have two 3+-
neighbours that are not on f by Claim 16. By Claim 8(1), we
know 3+-neighbour of v2 that is not on f can not be a weak 3-
vertex. Then α(v2) = 1− 1

2 = 1
2 by R1. Soω

′

( f ) ≥ − 1
2 + 1

2 = 0
by R5.

For (3, 3, 3, 2, 2, 3, 3, 2, 2)-face, we know v2 can not have
a 2-neighbour that is not on f by Claim 8(2). By Claim 5,
we know every 3-vertex is adjacent to at most one weak 3-
vertex. then α(v2) ≥ 1− 1

2 = 1
2 by R1. So ω

′

( f ) ≥ − 1
2 + 1

2 = 0
by R5.

For (3, 2, 3, 3, 3, 2, 3, 2, 2)-face, there is a (3, 2, 3, 3, 3)-
path. For (3, 2, 3, 3, 3)-path, we can conclude that ω

′

( f ) ≥ 0
by using the same analysis method as Lemma 20.

By Claim 12, there are no (3, 2, 2, 3, 2, 3, 2, 3, 2)-faces in
G. We know there are no (3, 2, 2, 3, 3, 2, 2, 3, 2)-faces in G

by Claim 9. So there is no case of d2( f ) = 5.

According to Claim 2, we know that there are only 1-
chains and 2-chains in G. According to Claim 4, every 3-
vertex v in G is incident with at most one 2-chain. So there
is no case of d2( f ) ≥ 6. �

3. Conclusions

Every planar graph with girth 9 and without intersecting
9-face admits an (I, O6)-partition.
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