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Abstract: The control of complex networks has been studied extensively in the last decade, with different control models been
introduced. In this paper, we propose a new network control framework, called local controllability. Local controllability extends
the entire network control onto a local scale, and it concerns about the minimum number of inputs required to control a subset of nodes
in a directed network. We develop a mathematical formulation for local controllability as an optimization problem and show that it can
be solved by a cubic-time algorithm. Moreover, applications to both real networks and model networks are presented and results of these
numerical studies are then discussed.
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1. Introduction

Complex networks [1, 2], which are usually studied in
network theory, have been commonly used to model diverse
natural and artificial systems. These systems range from
biological systems such as DNA transcriptional regulation
in the cell nucleus and neural interaction in the brain, to
social, economic systems, and to technological systems such
as the World Wide Web and the Internet. Complex networks
arising in these systems display substantial nontrivial
topological features, with patterns of connection between
their elements neither purely regular nor purely random.

With the ever-increasing amount of data arising from
complex systems in various fields, complex networks
have been shown to be an effective modelling technique
for exploiting this complexity and studying the large-
scale properties of the complex systems. As a result
of multidisciplinary efforts, a large amount of literature
that has studied various aspects of complex networks is
now available. Among these studies, there are methods
that were proposed to characterize the roles of individual
nodes or to uncover meaningful small subnetworks within a
network [3–5]; development of network models to explain
the existing structural patterns in real networks [6, 7];

both theoretical and numerical studies on different network
properties considering the dynamics that take place on
networks, including diffusion [8], evolution [9], percolation
[10], synchronizability [11].

One particularly distinctive modelling aspect of complex
networks (also dependent on network dynamics) is
controllability. Controllability is a concept that is commonly
used in the study of dynamical systems [12], and recently
it found important applications in the study of complex
networks (network control). Two factors have complicated
the understanding of controllability of complex systems:
(1) the complex network architecture encapsulating the
interactions between the system’s components, (2) the
dynamical rule that governs the time-dependent (temporal)
behavior of each component. As a result, understanding
how network structure affects our ability to control complex
networks becomes increasingly important for designing
optimal control schemes to tame the network dynamics.

A pioneering work on the controllability of complex
networks was accomplished by Liu et al. [13], in which
a general framework for control of complex networks was
proposed, called network controllability. Liu et al. showed
that the minimum number of driver nodes required to fully
control a directed network is determined by a maximum
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matching of the digraph, and further revealed that driver
nodes tend to avoid ‘hubs’ in both real and model networks
[13]. Many subsequent works regarding the control of
complex networks have appeared in literature ever since.

1.1. Literature review

Here, we first review some of these controllability-related
works and then describe how our paper is related to the
existing literature in the next subsection 1.2. Nepusz and
Vicsek [14] studied the controllability of complex networks
in which the dynamics take place on the edges of the network
(switchboard dynamics) and showed that edge dynamics
lead to different controllability properties from the nodal
dynamics. They proved that the minimum number of
driver nodes can be determined by the divergent nodes in
the network and provided an efficient algorithm with time
complexity O(m+n). Yuan et al. [15] provided a frametwork
for controlling any network (undirected and weighted) called
exact controllability based on the PBH rank condition. They
proved that the minimum number of driver nodes equals
the maximum geometric multiplicity of any eigenvalue of
the network adjacency matrix. Note that the framework of
exact controllability can reproduce structural controllability
when the network is structured and thus it seems to have
wider application. When a controlled system is not fully
controllable, one can consider the the maximal controllable
subsystem by determining the generic rank [16]. Liu et
al. exploited this result to define the notion of control

centrality, which captures the generic dimension of the
maximal controllable subsystem that any single node is able
to induce when we control this node only [17].

The study that is most related or similar to our paper
was done by Gao et al., in which they proposed the scheme
of target control [18]. The focus of their study and ours
are both how to control a pre-selected subset of nodes
within a directed complex network. Gao et al. used the
rank condition for output controllability to derive a ‘k-
walk’ theory in case that one driver node is only needed,
and further provided a greedy algorithm to approximate the
minimum number of inputs sufficient for target control [18].
Furthermore, there exists a comprehensive survey paper
about control of complex systems recently crafted by Liu
and Barabási [19].

1.2. Our contribution

Despite Liu’s pioneering work on network controllability
which focuses on graph-theoretic algorithms to identify
minimum inputs needed to fully control a directed complex
network, it is yet unclear whether there is a polynomial-time
algorithm such that only a subset of nodes are controlled
within a directed network. Considering that in many real
control scenarios only a small fraction of nodes need to
be controlled, we try to answer the following research
questions:

(1) Is there a rigorous mathematical formulation for ‘only
a fraction of nodes being controlled in a directed network’?

(2) Is there a polynomial-time algorithm to identify a
minimum number of inputs such that the given subset of
nodes are controlled?

(3) What are the possible network properties that affect the
ability to control a subset of nodes (local controllability)?

For such research purposes, we introduce the framework
of local controllability in this paper. Local controllability
is defined as the minimum number of inputs required
to control a subset of nodes in a directed network
(please refer to subsection 2.3 for a detailed problem
formulation). Using graph-theoretic tools, we show that the
local controllability can be solved by identifying minimum-
weight cycle cover or minimum-weight perfect matching
in a weighted directed network extended from the original
given network. Furthermore, based on minimum-weight
perfect matching, we develop a cubic-time algorithm to
compute the local controllability and also identify the driver
nodes.

With the framework of local controllability, it is
convenient (in theory) to study the control of a meaningful
subset of nodes in a real network. Simulation studies show
that in both ER and scale-free networks, nodes with higher
degree/betweenness are easier to control and the hub attack
can cause more damage to local controllability than random
removal of out-neighbors (in-neighbors) of the pre-selected
subset of nodes.

Here, we explain a little bit more on how our work is
related to previous studies. The ‘core idea’ of our study is
to look for a minimum (local) graph structure that is able
to control the pre-selected subset of nodes by injecting a
minimum number of inputs to the given directed network.
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Thus, our work is established upon the work of Liu et al. on
network controllability [13], and can be seen as an extension
of network controllability onto a local scale.

In existing literature, the study that is most similar to
our paper was conducted by Gao et al., who proposed
the scheme called target control [18]. However, there are
certain differences in terms of problem formulation and
methods. Our framework of local controllability is based
on the graph-theoretic characterization of a controllable
subsystem that contains the pre-selected subset of nodes
required for control and our algorithm can produce the
minimum set of driver nodes with cubic time complexity.
We argue that local controllability differs from target control
by the mathematical formulation and allows for realistic
local control by identifying a local ‘cacti’ structure.

The rest of the paper is organized as follows. In
section 2, we present the model setup by first reviewing
some preliminary resuts followed by a detailed problem
formulation on local controllability. The theoretical results
on local controllability are given in section 3. In section 4,
numerical results are presented, including an application of
local controllability to the mouse brain networks as well as
model networks. In section 5, some concluding remarks are
given and possible future work is discussed. We leave the
formal proof for the main theorems in the Appendix section.

2. Model setup

In this section, we first present some preliminary results
that are necessary for establishing our model of local
controllability and then provide a detailed description of our
problem formulation.

2.1. Preliminaries on controllability and structural

controllability

Controllability is an important concept derived from
studies of dynamical systems [12]. The controllability of
complex networks is related to the controllability of a linear
time-invariant system [13].

A linear time-invariant system is usually represented by
the differential equation below:

ẋ(t) = Ax(t) + Bu(t), (2.1)

where

t ∈ R, x(t) ∈ Rn, u(t) ∈ Rm,

and

A ∈ Rn×n, B ∈ Rn×m.

In the linear time-invariant system (2.1), x(t) is called the
state vector, u(t) is called the input vector, whereas A, B are
called the state matrix, and the input matrix, respectively. A
linear time-invariant system is generally denoted by the pair
(A, B).

For a general dynamical system, controllability is defined
as the ability to steer the system to an arbitrary state from any
given initial state within finite time. Thus, for a linear time-
invariant system (A, B), the definition is stated as below.

Definition 2.1. The pair (A, B) is controllable on [t0, t1]
if and only if for any x0, x1 ∈ Rn, there exists u ∈

L2([t0, t1],Rm) that steers the system from (x0, t0) to (x1, t1),
that is,

x1 = et1−t0 +
∫ t1

t0
eA(t−τ)Bu(τ)dτ.

The best well-known test for controllability of a linear
time-invariant system (A, B) is based on the controllability

matrix: P = [B AB . . . An−1B]. It is known as
Kalman’s rank condition [20]: the pair (A, B) is controllable
if and only if Rank(P) = n.

The study of network controllability and our proposed
local controllability relies on the definition of ‘structural
controllability’, which was first introduced by Lin [21].
In order to define structural controllability, we make the
assumption that the exact values of the entries in A and B are
unknown, i.e., the matrices A and B are structured matrices.

Definition 2.2. M is called a structured matrix, if its entries

are either fixed zeros or independent free parameters. M̃

is called an admissible matrix of M if it can be obtained

by fixing the free parameters of M at some particular real

values.

Definition 2.3. Let A, B be structured matrices. Then the

pair (A, B) is called structurally controllable if there exists

an admissible pair (Ã, B̃) that is controllable.

The power of structural controllability comes from the
fact that if a system is structurally controllable then it is
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controllable (in the usual sense) for almost all possible
parameter realizations [22, 23]. In other words, structural
controllability is a generic property [24]. Thus, it is possible
to decide the controllability of a networked system, if we
have an accurate map of the the system’s wiring diagram
(network structure) without knowing the precise weight of
each link. This is where graph theory tools come into play.

Lin’s structural controllability theorem provides a graph-
theoretic characterization for structural controllability.
Interested readers may refer to [21] and [25] for the formal
proof.

Proposition 2.1. (Lin’s structural controllability theorem)

For a linear structured system (A, B), the following

statements are equivalent:

1. The pair (A, B) is structurally controllable.

2. The graph of (A, B) contains no non-accessible nodes

and no dilation.

3. The graph of (A, B) is spanned by a cacti.

2.2. Preliminaries on network controllability

Network controllability, is a framework of network
control first proposed by Liu et al. in his seminal paper
in 2012 [13]. It is based on Lin’s structural controllability
theory [21], by relaxing the requirement on the specific
weight of each link in a directed complex network. Thus,
given a directed network (only the topology is known), the
problem is to identify a set of driver nodes that, if driven
by different input signals, can offer full control over the
network [13]. In other words, we are interested in making
a directed networked system controllable with minimum
inputs. With the minimum number of inputs, the way of
connecting the inputs to nodes in the network is called a
control configuration. Generally, there are different control
configurations that are able to deliver full control.

Liu et al. showed that the minimum input problem
can be mapped to a purely graph-theoretic problem called
maximum matching [13]. This important result is known as
the minimum input theorem, as given in proposition 2.2.

Proposition 2.2. (Minimum input theorem) The minimum

number of inputs, ND, is one if there is a perfect matching

in a directed network G. Otherwise, it equals the number

of unmatched nodes with respect to any maximum matching

M∗, and to fully control G, each unmatched node needs to

be directly connected to a different input node. Therefore,

ND = max {1, n − |M∗|} . (2.2)

Minimum input theorem provides a way to find a control
configuration with the minimum number of inputs to fully
control a directed network . Indeed, there exists some
algorithm to construct such a control configuration based on
minimum spanning cacti by identifying a set of matching
paths and matching cycles [26]. In Figure 1, we give an
illustration of a maximum matching in a directed network
and a spanning cacti that can drive full control over the
network, based on mimimum input theorem.

To find a maximum matching in a directed network G,
one can find a maximum matching in a (undirected) bipartite
representation of G. Furthermore, a maximum matching in
a bipartite graph can be efficiently identified by using the
well-known Hopcroft-Karp algorithm [27].

2.3. Problem formulation for local controllability

The motivation for local controllability is as follows:
(1) it is neither feasible nor necessary to control the full
network, due to the large size of the complex network; (2)
sometimes it is realistic or useful to control just a subset of
nodes for some desirable task. It is important to study local
controllability, not only due to its theoretic interest, but also
because of its potential applications in the control of real
networks considering that there are certain situations when
one prefers to control just a subset of nodes in a network.
For example, turning on a specific subset of transcription
factors can convert one cell type to another and it is useful
to control a subset of target molecules (biomarkers) in
metabolic networks for the purpose of disease cure [28]. For
another example, it might be interesting to control a specific
brain area (with specific fucntions) in the brain network.

We are particularly interested in how to control a subset
of nodes in a directed network with a minimum number
of (external) inputs. Note that the framework of local
controllability is an extension of network controllability
onto a local scale, and hence, is based on the theory of
structural controllability. The basic modelling assumption
for local controllability is that we are given a directed
network with only its topology known, i.e., link weight
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(a) A directed network

(b) A spanning cacti

Figure 1. An example of constructing a spanning
cacti based on a maximum matching in a directed
network. In (a), the set of arcs in red form a
maximum matching. In (b), the nodes in blue are
the input nodes of the cacti. The nodes in green are
the unmatched nodes with respect to the maximum
matching.

information is not necessary. Then, the core problem we
study is formally stated as follows:

Given any nonempty subset S of nodes in any directed

network G = (V(G), A(G)), find a minimum number of

different inputs {u1, . . . , ul} such that when the inputs are

connected to the nodes in G appropriately, the subset S can

be controlled (regardless of whether nodes in V(G)\S being

controlled or not).

Here, the statement that a subset S is controlled in a
directed network G, is equivalent to that there is a subsystem
which contains S and is controllable after introducing inputs
to the network G, also equivalent to that there is a cacti
containing S after introducing inputs to the network G.

The problem above is well-defined, since we know

that the whole networked system becomes controllable by
introducing ND external inputs. In Figure 2, we give an
illustration of controlling a subset of nodes in a directed
network.

(a) A directed network G and a subset S

(b) A cacti containing S

Figure 2. An example of controlling a subset S of
nodes in a directed network G. In (b), the nodes in
blue are the input nodes of the cacti. The subset S

is the set of nodes in red.

Next, we give a rigorous mathematical formulation for the
problem stated above, which can be easily translated into an
(combinatorial) optimization problem.

Mathematical formulation: Suppose V(G) =

{v1, v2, . . . , vn} and S =
{
vi1 , vi2 , . . . , vir

}
with 1 ≤ i1 <

i2 < · · · < ir ≤ n. Let x(t) = (x1(t), x2(t), . . . , xn(t))T

be a column vector of n state functions. Let
u(t) = (u1(t), u2(t), . . . , un(t))T be a column vector of
n input functions. Let E = (ei j) ∈ Rn×n be a binary
diagonal matrix, that is, eii ∈ {0, 1} , i = 1, 2, . . . , n. Let
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F = ( fi j) ∈ Rn×n be a binary diagonal matrix such that
fik ik = 1, k = 1, 2, . . . , r.

Let C = (ci j) ∈ Rn×n be a structured matrix in which
each entry is a free parameter. Let D = (di j) ∈ Rn×n be a
structured matrix defined as

di j =

 a free paramter, if (v j → vi) ∈ A(G),
zero, if (v j → vi) < A(G).

Define the structured matrix A = FDF ∈ Rn×n, and define
the structured matrix B = FCE ∈ Rn×n. The pair (A, B)
represents a linear structured system of the form (2.1).

Then, the local controllability of S in G is defined as

lc(G, S ) = min
E,F

 n∑
i=1

eii : (A, B) is structurally controllable

 .
(2.3)

The local controllability of S in G, denoted by lc(G, S ), is
equal to the minimum number of inputs required to control S

in a directed network G, i.e., the minimum number of inputs
required to construct a cacti structure (minimum controllable
graph structure) containing S . As the definition suggests,
lc(G, S ) depends on both G and S .

3. Theoretical results of local controllability

In this section, we present the main theorectical results
about local controllability based on the problem formulation
described above. We show that the local controllability
lc(G, S ) can be found by identifying a minimum-weight
cycle cover or a minimum-weight perfect matching in a
weighted directed network, which is extended from G.
Before we proceed to our main theorems, we should
incorporate some graph-theoretic notations leading to the the
definition of minimum-weight cycle cover.

3.1. Minimum-weight cycle cover

Let G = (V(G), A(G)) be a directed network with |V(G)| =
n, and S be a subset of nodes in G, i.e., S ⊆ V(G).
Now, extend G to the complete directed network G∗: G∗ =

(V(G∗), A(G∗)) with V(G∗) = V(G) and A(G∗) = V(G) ×
V(G), where V(G) × V(G) denotes the Cartesian product of
the set V(G) with itself, that is, for any node u ∈ V(G∗) and
any node v ∈ V(G∗), there is a directed edge (u, v) ∈ A(G∗).

Next, we assign a weight function w onto the edges in
G∗ as follows. Let V(G) = {v1, v2, . . . , vn}. Suppose S ={
vi1 , vi2 , . . . , vir

}
with an indexing set IS = {i1, i2, . . . , ir} and

V(G)\S =
{
v j1 , v j2 , . . . , v jn−r

}
. Denote the set of self-loops

for each node in V(G)\S by Γ, that is,

Γ =
{
(v j1 , v j1 ), (v j2 , v j2 ), . . . , (v jn−r , v jn−r )

}
.

Then, the weight function w is a mapping, w : A(G∗) → R,
defined as

w((u, v)) =


0, (u, v) ∈ Γ,

1, (u, v) ∈ A(G)\Γ,
n, (u, v) ∈ A(G∗)\(A(G) ∪ Γ).

(3.1)

Definition 3.1. Let G be any directed network and S be a

subset of nodes in G. A cycle cover of S in G is a set of

disjoint (independent) cycles in G that contain all the nodes

in S , that is, C = C1 ∪ · · · ∪ Ck is a cycle cover of S in G if

all the cycles C1, . . . ,Ck are disjoint and each node in S is

contained within some cycle C j.

Definition 3.2. For any directed network G = (V(G), A(G))
and a subset S of nodes in G, let C = C1 ∪ · · · ∪ Ck be any

cycle cover of S in G and let w : A(G) → R be a weight

function. The weight of the cycle cover C, w(C), is then

defined as

w(C) =
∑k

i=1 w(Ci),

where the weight of a cycle, w(Ci), is given by

w(Ci) =
∑

(u,v)∈Ci
w((u, v)).

Moreover, if C is a cycle cover such that

w(C) = min {w(C) : C is a cycle cover of S in G},

then C is called a minimum-weight cycle cover of S in G.

Since G∗ is a complete directed network, a cycle cover
of S in G∗ always exists. Our first result is that the
local controllability lc(G, S ) can be calculated by finding
a minimum-weight cycle cover of S in G∗, as shown in
Theorem 3.1.

3.2. Main theorems

Theorem 3.1. Let G = (V(G), A(G)) be a directed network

with |V(G)| = n, and S be a subset of nodes in G. Let the

weight function w : A(G∗)→ R be defined as in (3.1). Let C

be a minimum-weight cycle cover of S in G∗, then we have
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lc(G, S ) = max
{
1,

⌊
w(C)

n

⌋}
,

where b·c is the floor function.

We leave the proof for this theorem in the appendix (note
that, the proof relies on Minimum input theorem 2.2). For
the problem of minimum-weight cycle cover, it is readily
stated as an integer linear program (ILP), which can be
relaxed to a linear program (LP) due to total unimodularity.
Thus, the local controllability can be calculated by solving a
linear program for which efficient algorithms exist.

Alternatively, we present another theorem for computing
local controllability in terms of minimum-weight perfect
matching. Furthermore, the minimum-weight perfect
matching, also known as assignment problem, can be solved
by a cubic-time algorithm.

Theorem 3.2. Let G = (V(G), A(G)) be a directed network

with |V(G)| = n, and S be a subset of nodes in G. Let the

weight function w : A(G∗)→ R be defined as in (3.1). Let M

be a minimum-weight perfect matching in G∗, then we have

lc(G, S ) = max
{
1,

⌊
w(M)

n

⌋}
.

Proof. To show this theorem, we note that each cycle cover
of S in G∗ corresponds to a perfect matching in G∗ as
follows. Suppose CG∗ (S ) = C1 ∪ · · · ∪ Ck is a cycle cover
of S in G∗, denote the set of nodes contained in CG∗ (S ) by
V(CG∗ (S )), then S ⊆ V(CG∗ (S )). Let V(G∗)\V(CG∗ (S )) ={
w1,w2, . . . ,wp

}
, then by definition,

{
w1,w2, . . . ,wp

}
is a

subset of V(G)\S =
{
v j1 , v j2 . . . , v jn−r

}
. Form a self-loop

for each node wi and denote it by Li, that is, Li = (wi,wi)
for i = 1, 2, . . . , p. Then CG∗ (S ) corresponds to a perfect
matching MG∗ in G∗ defined as

MG∗ = CG∗ (S ) ∪ L1 ∪ L2 ∪ · · · ∪ Lp.

It is easy to see that MG∗ is a cycle decomposition in G∗,
thus a perfect matching in G∗. Furthermore, since w(Li) = 0
for i = 1, 2, . . . , p, we have w(MG∗ ) = w(CG∗ (S )).

Conversely, a perfect matching in G∗ easily corresponds
to a cycle cover of S in G∗ as follows. Given a
perfect matching MG∗ , since a perfect matching is a cycle
decomposition, we can denote MG∗ = C̃1 ∪ C̃2 ∪ · · · ∪ C̃p for
some positive integer p, where each C̃i is a cycle (including
self-loop) in G∗. Identify all the cycles C̃i which contains at
least one node in S , and denote the set of all the identified

cycles by
{
C̃ j1 , C̃ j2 , . . . , C̃ js

}
. Then, MG∗ corresponds to a

cycle cover CG∗ (S ) of S in G∗ defined as

CG∗ (S ) = C̃ j1 ∪ C̃ j2 ∪ · · · ∪ C̃ js .

Moreover, w(CG∗ (S )) ≤ w(MG∗ ).

Therefore, a minimum-weight perfect matching in G∗

corresponds to a minimum-weight cycle cover of S in G∗

and they have equal weight. Thus, this theorem follows from
Theorem 3.1.

�

Here, we illustrate Theorem 3.2 (minimum-weight perfect
matching) by an example, as shown in Figure 3. In Figure
3, we have drawn the initial network G (in the left) and the
complete directed network G∗ (in the right).

Figure 3. An example to show that lc(G, S ) can be
calculated by finding a minimum-weight perfect
matching in G∗ (marked by the red arcs). The
subset S is the set of all the nodes in red. Note that
the set of red arcs also form a minimum-weight
cycle cover of S in G∗.

Generally, to find a minimum-weight perfect matching in
G∗, we used the Hungarian method for assignment problem
[29]. The steps of Hungarian method based on cost matrix
are described in the appendix, and our algorithm for local
controllability uses the cost matrix-based Hungarian method
as its core ingredient. Furthermore, our algorithm (with
time complexity O(n3)) can not only calculate lc(G, S ),
but also identify a minimum set of driver nodes and
the corresponding control configuration. Note that, our
algorithm is based on Theorem 3.2, and it is presented in
subsection 3.3.
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Table 1. The p-value for the alternative hypothesis that the local controllability of a subdivision is smaller than
that of random subsets with the same size. The sigfinicant p-values (p1 < 0.05) are marked in bold.

The p-value p1
ipsilateral network contralateral network

P-value cutoff 0.05 0.02 0.01 0.005 0.001 0.05 0.02 0.01 0.005 0.001
Isocortex (38) 0.3254 0.1534 0.123 0.0686 0.0188 0.0002 0 0.0004 0.0002 0
Olfactroy Areas (11) 0.8756 0.7816 0.94 0.9082 0.9532 0.9744 0.974 0.965 0.9658 0.9966
Hippocampus (11) 0.8756 0.7816 0.742 0.6776 0.5382 0.2194 0.1896 0.4202 0.4198 0.2938
Cortical Subplate (7) 0.948 0.8956 0.8754 0.8414 0.7722 0.9922 0.9894 0.9874 0.983 0.996
Striatum (12) 0.9974 0.9926 0.988 0.9744 0.9866 1 1 1 1 1
Pallidum (8) 0.9354 0.8716 0.8542 0.8072 0.6966 0.391 0.3744 0.3248 0.3202 0.8028
Thalamus (35) 0.97 0.9896 0.982 1 0.9998 1 1 1 1 1
Hypothalamus (20) 0.684 0.5046 0.4572 0.3538 0.2124 0.2594 0.2218 0.1826 0.1796 0.0836
Midbrain (21) 0.6588 0.4792 0.4224 0.332 0.1874 0.0868 0.068 0.0478 0.0522 0.0862
Pons (13) 0.9974 0.9874 0.9974 0.9936 0.9824 0.3672 0.3354 0.2966 0.2868 0.4012
Medulla (25) 0.8366 0.6838 0.6134 0.512 0.3058 0.0062 0.0064 0.0036 0.0028 0.0234
Cerebellum (12) 0.8514 0.758 0.7196 0.6374 0.493 0.6878 0.67 0.6162 0.612 0.4732

3.3. Algorithm for local controllability

The algorithm for local controllability:
Input: a directed network G = (V(G), A(G)) with |V(G)| =

n and a subset S of nodes in G.

Output: the minimum number of inputs required to
control S in G, i.e., lc(G, S ) and a minimum set of driver
nodes.

Step 1: Denote V(G) = {v1, v2, . . . , vn} and assume S ={
vi1 , vi2 , . . . , vir

}
with an indexing set IS = {i1, i2, . . . , ir}.

Denote the complement of S in V(G) by S , i.e., S =

V(G)\S , and assume that there is an indexing set IS =

{ j1, j2, . . . , jn−r} such that S =
{
v j1 , v j2 , . . . , v jn−r

}
.

Step 2: Extend G to the complete directed network G∗,
which is defined as

G∗ = (V(G∗) = V(G), A(G∗) = V(G) × V(G)).

Assign a weight function w onto the directed edges in G∗,
i.e., w : A(G∗)→ R, defined as in (3.1).

Step 3: Construct a n×n cost matrix C to be the weighted
adjacency matrix of G∗. The cost matrix C = (ci j) is
therefore defined as

ci j = w((vi, v j)).

Step 4: Apply the cost matrix-based Hungarian method
to C to find an optimal assignment σ. Output the local
controllability to be

lc(G, S ) = max
{
1,

⌊∑n
i=1 ciσ(i)

n

⌋}
.

Step 5: Given the optimal assignment σ, identify the set
D =

{
vσ(i) : ciσ(i) = n

}
, output D to be the set of driver nodes.

4. Application of local controllability

In this section, we provide some numerical results
derived from application of local controllability to both real
networks and model networks.

4.1. Real networks

It is reasonable to locally control a subdivision (a subset of
nodes) in the brain network as a specific subdivision might
perform unique functional properties. For instance, the
hypothalamus is concerned with the autonomic control of
cardiovascular activity, respiratory and alimentary functions;
the striatum is a massive nucleus in the basal forebrain that
plays a pivotal role in modulating motor activity and higher
cognitive function. Here, we applied the framework of local
controllability onto mouse brain networks constructed from
a mesoscale connectome of the mouse brain [30].

We constructed 10 networks, each consisting of 213 nodes
(brain regions) and 12 subdivisions, by using 5 different p-
value cutoffs from the original mouse connectome dataset
[30]. For each p-value cutoff chosen, both ipsilateral and
contralateral networks are obtained. By calculating the local
controllability of each subdivision in each network, we find
that Isocortex is the easiest to control while Striatum and
Thalamus are difficult to control.

We then compared with the local controllability of
random subsets with equal size (see Tables 1 and 2). The
statiscal comparisons show that Isocortex and Medulla are
significantly easier (all p-values < 0.03) to control than
random subsets in contralateral networks, while Striatum
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Table 2. The p-value for the alternative hypothesis that the local controllability of a subdivision is larger than
that of random subsets with the same size.. The sigfinicant p-values (p2 < 0.05) are marked in bold.

The p-value p2
ipsilateral network contralateral network

P-value cutoff 0.05 0.02 0.01 0.005 0.001 0.05 0.02 0.01 0.005 0.001
Isocortex (38) 1 1 1 1 1 1 1 1 1 1
Olfactroy Areas (11) 1 1 0.258 0.3224 0.175 0.0936 0.1032 0.124 0.1192 0.0178
Hippocampus (11) 1 1 1 1 1 1 1 0.8262 0.8224 0.9014
Cortical Subplate (7) 1 1 1 1 1 0.049 0.061 0.075 0.0806 0.0248
Striatum (12) 0.0236 0.061 0.076 0.1144 0.0624 0 0 0.0004 0 0.0002
Pallidum (8) 1 1 1 1 1 1 1 1 1 0.4638
Thalamus (35) 0.1176 0.0394 0.0576 0.0016 0.002 0 0 0 0 0
Hypothalamus (20) 1 1 1 1 1 0.8976 0.9176 0.9296 0.9346 0.9746
Midbrain (21) 1 1 1 1 1 0.9776 0.9844 0.9916 0.9888 0.9752
Pons (13) 0.0242 0.0724 0.0172 0.0346 0.0786 0.8572 0.8788 0.9012 0.9026 0.812
Medulla (25) 0.4362 0.6114 0.689 0.7688 0.8896 1 1 1 1 0.9948
Cerebellum (12) 1 1 1 1 1 0.5848 0.6046 0.644 0.6552 0.7676

and Thalamus are significantly harder (all p-values <

0.01) to control. These differences might be related
to the structural basis of the subdivisions: Isocortex,
Medulla are homogeneous [31] and Striatum, Thalamus are
heterogeneous in structure [32].

4.2. Model networks

We consider two types of model networks: ER random
network and scale-free network. The ER random networks
are generated by ER model [33], and the scale-free networks
are generated by the directed static model [34]. We have
constructed 1000 realizations of both types of networks with
1000 nodes and each varying parameter.

On the one hand, we try to identify how lc(G, S ) relies
on the choice of S by dividing all the 1000 nodes into 10
equal-size subsets based on the degree/in-degree/out-degree
of each node. The results show that in ER random networks,
nodes with higher degree tend to be easier to control, but
there is no definite (monotone) relationship between local
controllability and in-degree or out-degree. This is also true
for scale-free networks. Furthermore, we show that nodes
with higher betweenness (measure) are easier to control in
both types of model networks.

On the other hand, we try to explore how lc(G, S ) depends
on G with S fixed by investigating the robustness of local
controllability against link and node removal in model
networks. In the process of link removal, we fixed the
subset S to be the top 100 hubs (nodes with highest degree),
and randomly deleted an outgoing (incoming) link of S in
each step until all outgoing (incoming) links of S have been

removed. We observe that this process will increase the
local controllability of S and make it converge to the upper
bound ND(G0[S ]), which is the network controllability of
the subnetwork G0[S ] of G0 induced by S .
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Figure 4. The plot of local controllability versus
the number of outgoing/incoming links deleted for
a scale-free network G0 with n = 1000, 〈k〉 = 4
and γ = 2.5.

For the scale-free network with small degree exponent γ =

2.5, the hubs are very densely interconnected, and we found
that the local controllability of S (the subset of top 100 hubs)
is robust to the removal of both outgoing links and incoming
links: only after a large number of outgoing/incoming links
have been deleted can the local controllability of S start to
increase (see Figure 4).

For the scale-free network with large degree exponent
γ = 4 and the ER random network, the local controllability
lc(G0, S ) varies greatly with the network controllability
ND(G0[S ]), and the removal of outgoing links or incoming
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links can increase the local controllability of S steadily,
especially in the later steps (see Figures 5 and 6). Moreover,
in these networks, we can see that local controllability is
less robust to incoming link removal: the removal of a few
incoming links seems to have a greater impact on the local
controllability of S than the removal of the same number of
outgoing links.
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Figure 5. The plot of local controllability versus
the number of outgoing/incoming links deleted for
a scale-free network G0 with n = 1000, 〈k〉 = 4
and γ = 4.
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Figure 6. The plot of local controllability versus
the number of outgoing/incoming links deleted for
an ER random network G0 with n = 1000 and
〈k〉 = 4.

Similar procedures are performed on both types of model
networks under two schemes: random removal and hub
attack of in-neighbors (out-neighbors) of S . We find
that in both ER random networks and scale-free networks,
hub attack can increase (damage) the local controllability

more effectively than random removal. Furthermore, local
controllability is less robust to in-neighbor hub attack than
out-neighbor hub attack, though the difference is not that
obvious.

5. Concluding remarks

In this paper, we briefly review the mathematical
foundation for network controllability and then give a
formal definition of local controllablity and present the
theoretical results as well as numerical results. We
prove that the local controllability is an mathematical
optimization problem which can be solved by minimum-
weight cycle cover or minimum-weight perfect matching.
Based on minimum-weight perfect matching, we develop an
cubic-time algorithm to calculate lc(G, S ) and identify the
minimum driver node set for controlling a subset of nodes S

in a directed network G.

The framework of local controllability can be used to
study local control of any meaningful subset of nodes in
real networks. We apply it to mouse brain networks, and
show that Isocortex and Medulla are significantly easier
to control, while Striatum and Thalamus are significantly
harder to control. We suggest that these differences
might be related to the (anatomical) structural basis of
the brain subdivision. In order to explore how lc(G, S )
depends on choices of the subset S and the underlying
network G, we performed numerical study on two types
of model networks: ER random network and scale-free
network. We observe that ER random networks and scale-
free networks show both similar and different behaviors in
terms of local controllability. First, in both ER and SF
networks, nodes with higher degree/betweenness are easier
to control and the hub attack can cause more damage to
local controllability than random removal of out-neighbors
(in-neighbors) of S . Second, it is easier (harder) to control
nodes with the highest (lowest) degrees in SF networks
than in ER networks and local controllability is more robust
to the removal of outgoing and incoming links of S in
scale-free networks than in ER random networks. These
differences could be explained by the different structures of
ER random networks and scale-free networks: ER random
networks are homogeneous, while scale-free networks are
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heterogeneous. As the degree exponent γ becomes larger,
scale-free networks become less heterogeneous, and their
behaviors become more similar to those of ER random
networks.

There are still limitations for our model that could provide
avenues for future study. First, local controllability is
defined on directed networks, and how to locally control
a subset of nodes in undirected (and weighted) networks
is still unknown. Second, whether the framework of
local controllability can provide efficient and realistic
local control in real networks requires examination
by experiment, and it may incorporate more control
characteristic into the study: control energy, control
trajectory, the non-linear dynamics and so on.
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Appendix

In the appendix, we show the proof for Theorem 3.1 and
the main steps of cost matrix-based Hungarian method.

Proof for Theorem 3.1:
The proof is due to the correspondence between the set of

path-cycle covers of S in G and the set of cycle covers of S

in G∗.

First, define a path-cycle cover of S in G to be a set of
disjoint paths and cycles in G that contain S : CG(S ) = P1 ∪

· · · ∪ Pl ∪ C1 ∪ · · · ∪ Ck is a path-cycle cover of S in G,
if P1, . . . , Pl are directed paths in G, C1, . . . ,Ck are directed
cycles in G (all the paths and cycles are disjoint), and each
node in S is contained in CG(S ).

For each path-cycle cover of S in G, denoted by CG(S ) =

P1∪· · ·∪Pl∪C1∪· · ·∪Ck, it corresponds to a cycle cover of
S in G∗, denoted by CG∗ (S ), by adding a directed edge from
the last node to the first node in each directed path P j, j =

1, . . . , l. After the edge addition, each path thus becomes a
(closed) cycle. Note that, in the resulting cycle cover CG∗ (S ),
each cycle contains at most one directed edge that is not in
G.

Conversely, for each cycle cover of S in G∗, denoted
by CG∗ (S ), it corresponds to a path-cycle cover of S in G,
denoted by CG(S ), by removing from CG∗ (S ) all the directed
edges that are not contained in G. After the edge removal,
some cycles are broken into paths.

We know that lc(G, S ) (the minimum number of inputs
required to control S in G) is given by the minimum
number of paths in a path-cycle cover of S in G, since
each independent path requires a different input to control
and each independent cycle requires no additional input,
according to the minimum input theorem (Theorem 2.2).
Note that, in the case that there is actually a cycle cover of
S in G (a cycle cover is also a path-cycle cover, without any
path), then one input is sufficient for control, and lc(G, S ) =

1.

Consider a path-cycle cover of S in G, CG(S ) = P1∪· · ·∪

Pl ∪ C1 ∪ · · · ∪ Ck, where l , 0. Furthermore, assume that
CG(S ) has the minimum number of paths among all path-
cycle covers of S in G. Then, the corresponding cycle cover
of S in G∗, CG∗ (S ), has weight w(CG∗ (S )) = l ·n+q, where q

is the number of edges in CG(S ) and q < n. Thus, lc(G, S ) =

l =
⌊

w(CG∗ (S ))
n

⌋
.

Therefore, if C = CG∗ (S ) is a minimum-weight cycle
cover of S in G∗, it corresponds to a path-cycle cover of S in
G, CG(S ), which should contain exactly l paths. Otherwise,
CG(S ) would contain more than l paths, and consequently,
CG∗ (S ) would have weight at least (l + 1) · n. This is a
contradiction with the assumption that C = CG∗ (S ) is a
minimum-weight cycle cover of S in G∗.
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These arguments show that if l , 0, then the local
controllability lc(G, S ) is given by

lc(G, S ) = l =

⌊
w(C)

n

⌋
.

Lastly, note that lc(G, S ) is at least one, thus, the proof is
complete.

The Hungarian method based on cost matrix:
Step 1: For each row of the cost matrix, find the smallest

element in this row, and subtract it from every element in
this row.

Step 2: Find a zero element (denoted by Z) in the resulting
matrix. If there is no starred zero in its row or column, star
Z (by starring Z, we mean labelling Z by a star *, and Z is
called ‘starred’). Repeat for each zero element in the matrix.

Step 3: Cover each column that contains a starred zero
(by covering a column, we mean covering the elements in
the column by a straight line, and the column together with
the elements in the column are called ‘covered’, a column
that is not covered is called ‘uncovered’). If n columns are
covered, the starred zeros describe an optimal assignment,
stop and output the assignment indicated by a permutation
σ defined as follows: denote the set of n starred zero entries
by

{
c1k1 , . . . , cnkn

}
, then σ(i) = ki, for i = 1, . . . , n. If less

than n columns are covered, go to Step 4.

Step 4: Find an uncovered zero (a zero entry that is
not covered by a straight line) and underline it (label it
by an underline, and it is called ‘underlined’), If there is
no starred zero in the row containing this underlined zero,
go to Step 5. Otherwise, cover this row and uncover the
column containing the starred zero which is in the row of
this underlined zero (by uncovering the column, we mean
removing the straight line that covers the column). Continue
in this manner until there are no uncovered zeros left. Save
the smallest uncovered value and go to Step 6.

Step 5: Construct a series of alternating underlined and
starred zeros as follows. Let Z0 denote the uncovered
underlined zero found in Step 4. Let Z1 denote the starred
zero in the column of Z0 (if any). Let Z2 denote the
underlined zero in the row of Z1 (there will always be
one). Continue until the series terminates at an underlined
zero that has no starred zero in its column. Unstar each
starred zero of the series (by unstarring a starred zero, we

mean removing the star * that labels this starred zero), star
each underlined zero of the series, erase all underlines and
uncover every line (a line is a row or a column) in the matrix.
Return to Step 3.

Step 6: Add the value found in Step 4 to every element
of each covered row, and subtract it from every element of
each uncovered column. Return to Step 4 without altering
any stars, underlines, or covered lines.
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